Development and Testing of the GRAPES Regional Ensemble-3DVAR Hybrid Data Assimilation System

Based on the GRAPES(Global/Regional Assimilation and Prediction System) regional ensemble prediction system and 3DVAR(three-dimensional variational) data assimilation system,which are implemented operationally at the Numerical Weather Prediction Center of the China Meteorological Administration,an e...

Full description

Saved in:
Bibliographic Details
Published inActa meteorologica Sinica Vol. 29; no. 6; pp. 981 - 996
Main Author 陈良吕 陈静 薛纪善 夏宇
Format Journal Article
LanguageEnglish
Published Beijing The Chinese Meteorological Society 01.12.2015
Chongqing Institute of Meteorological Sciences, Chongqing 401147
Chinese Academy of Meteorological Sciences, Beijing 100081%Numerical Weather Prediction Center, China Meteorological Administration, Beijing 100081%Chinese Academy of Meteorological Sciences,Beijing,100081%Chengdu University of Information Technology,Chengdu,610225
Subjects
Online AccessGet full text
ISSN2095-6037
0894-0525
2198-0934
2191-4788
DOI10.1007/s13351-015-5021-y

Cover

Abstract Based on the GRAPES(Global/Regional Assimilation and Prediction System) regional ensemble prediction system and 3DVAR(three-dimensional variational) data assimilation system,which are implemented operationally at the Numerical Weather Prediction Center of the China Meteorological Administration,an ensemble-based 3DVAR(En-3DVAR) hybrid data assimilation system for GRAPES-Meso(the regional mesoscale numerical prediction system of GRAPES) was developed by using the extended control variable technique to implement a hybrid background error covariance that combines the climatological covariance and ensemble-estimated covariance.Considering the problems of the ensemble-based data assimilation part of the system,including the reduction in the degree of geostrophic balance between variables,and the non-smooth analysis increment and its obviously smaller size compared with the 3DVAR data assimilation,corresponding measures were taken to optimize and ameliorate the system.Accordingly,a single pressure observation ensemble-based data assimilation experiment was conducted to ensure that the ensemble-based data assimilation part of the system is correct and reasonable.A number of localization-scale sensitivity tests of the ensemble-based data assimilation were also conducted to determine the most appropriate localization scale.Then,a number of hybrid data assimilation experiments were carried out.The results showed that it was most appropriate to set the weight factor of the ensemble-estimated covariance in the experiments to be 0.8.Compared with the 3DVAR data assimilation,the geopotential height forecast of the hybrid data assimilation experiments improved very little,but the wind forecast improved slightly at each forecast time,especially over 300 hPa.Overall,the hybrid data assimilation demonstrates some advantages over the3 DVAR data assimilation.
AbstractList Based on the GRAPES (Global/Regional Assimilation and Prediction System) regional ensemble prediction system and 3DVAR (three-dimensional variational) data assimilation system, which are implemented operationally at the Numerical Weather Prediction Center of the China Meteorological Administration, an ensemble-based 3DVAR (En-3DVAR) hybrid data assimilation system for GRAPES_Meso (the regional mesoscale numerical prediction system of GRAPES) was developed by using the extended control variable technique to implement a hybrid background error covariance that combines the climatological covariance and ensemble-estimated covariance. Considering the problems of the ensemble-based data assimilation part of the system, including the reduction in the degree of geostrophic balance between variables, and the non-smooth analysis increment and its obviously smaller size compared with the 3DVAR data assimilation, corresponding measures were taken to optimize and ameliorate the system. Accordingly, a single pressure observation ensemble-based data assimilation experiment was conducted to ensure that the ensemble-based data assimilation part of the system is correct and reasonable. A number of localization-scale sensitivity tests of the ensemble-based data assimilation were also conducted to determine the most appropriate localization scale. Then, a number of hybrid data assimilation experiments were carried out. The results showed that it was most appropriate to set the weight factor of the ensemble-estimated covariance in the experiments to be 0.8. Compared with the 3DVAR data assimilation, the geopotential height forecast of the hybrid data assimilation experiments improved very little, but the wind forecast improved slightly at each forecast time, especially over 300 hPa. Overall, the hybrid data assimilation demonstrates some advantages over the 3DVAR data assimilation.
Based on the GRAPES(Global/Regional Assimilation and Prediction System) regional ensemble prediction system and 3DVAR(three-dimensional variational) data assimilation system,which are implemented operationally at the Numerical Weather Prediction Center of the China Meteorological Administration,an ensemble-based 3DVAR(En-3DVAR) hybrid data assimilation system for GRAPES-Meso(the regional mesoscale numerical prediction system of GRAPES) was developed by using the extended control variable technique to implement a hybrid background error covariance that combines the climatological covariance and ensemble-estimated covariance.Considering the problems of the ensemble-based data assimilation part of the system,including the reduction in the degree of geostrophic balance between variables,and the non-smooth analysis increment and its obviously smaller size compared with the 3DVAR data assimilation,corresponding measures were taken to optimize and ameliorate the system.Accordingly,a single pressure observation ensemble-based data assimilation experiment was conducted to ensure that the ensemble-based data assimilation part of the system is correct and reasonable.A number of localization-scale sensitivity tests of the ensemble-based data assimilation were also conducted to determine the most appropriate localization scale.Then,a number of hybrid data assimilation experiments were carried out.The results showed that it was most appropriate to set the weight factor of the ensemble-estimated covariance in the experiments to be 0.8.Compared with the 3DVAR data assimilation,the geopotential height forecast of the hybrid data assimilation experiments improved very little,but the wind forecast improved slightly at each forecast time,especially over 300 hPa.Overall,the hybrid data assimilation demonstrates some advantages over the3 DVAR data assimilation.
Author 陈良吕 陈静 薛纪善 夏宇
AuthorAffiliation Chongqing Institute of Meteorological Sciences, Chongqing 401147 Chinese Academy of Meteorological Sciences, Beijing 100081 Numerical Weather Prediction Center, China Meteorological Administration, Beijing 100081 Chengdu University of Information Technology, Chengdu 610225
AuthorAffiliation_xml – name: Chongqing Institute of Meteorological Sciences, Chongqing 401147;Chinese Academy of Meteorological Sciences, Beijing 100081%Numerical Weather Prediction Center, China Meteorological Administration, Beijing 100081%Chinese Academy of Meteorological Sciences,Beijing,100081%Chengdu University of Information Technology,Chengdu,610225
Author_xml – sequence: 1
  fullname: 陈良吕 陈静 薛纪善 夏宇
BookMark eNp9kEtv1DAURi1UJErpD2BnsYFNwI_YjpejztBWqgSaFnbIcpzr1FXizMSZ0vx73KYCiUVX9y7OuY_vLTqKQwSE3lPymRKiviTKuaAFoaIQhNFifoWOGdVVQTQvj3JPtCgk4eoNOk3pjhDCNBOKsWP0aw330A27HuKEbWzwDaQpxBYPHk-3gM-3q--ba7yFNgzRdngTE_R1BwVf_1xt8cVcj6HBaztZvEop9KGzUybx9Zwm6N-h1952CU6f6wn68XVzc3ZRXH07vzxbXRWOV2QqGiiV5rRUleM1bSrrnHIN9az2SlQMXKkVB-ek10xxz5RXlNTWSyKYo67mJ-jjMve3jd7G1twNhzGfm8z-4aE2wHI0RBJSZfLTQu7GYX_Iv5o-JAddZyMMh2SoqpSWupIqo3RB3TikNII3uzH0dpwNJeYxd7PkbvJw85i7mbOj_nNcmJ4SmUYbuhdNtpgpb4ktjP9-eEn68LzudojtPnt_b5RSVaUUgvI_8qujzA
CitedBy_id crossref_primary_10_1007_s13351_020_9088_8
crossref_primary_10_1016_j_atmosres_2023_107105
Cites_doi 10.1002/qj.2054
10.1175/2008MWR2312.1
10.1175/2010MWR3245.1
10.1007/s13351-014-4028-0
10.1175/MWR-D-12-00141.1
10.1175/MWR-D-11-00079.1
10.1175/2008MWR2445.1
10.1007/s13351-013-0304-7
10.1007/s00704-005-0162-z
10.1007/s00376-009-9122-3
10.1175/WAF-D-10-05058.1
10.1175/MWR3282.1
10.1256/qj.02.132
10.1256/qj.04.15
10.1175/2008MWR2444.1
ContentType Journal Article
Copyright The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2015
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2015
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W94
~WA
AAYXX
CITATION
7TG
7UA
C1K
F1W
H96
KL.
L.G
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s13351-015-5021-y
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-自然科学
中文科技期刊数据库- 镜像站点
CrossRef
Meteorological & Geoastrophysical Abstracts
Water Resources Abstracts
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
ASFA: Aquatic Sciences and Fisheries Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Water Resources Abstracts
Environmental Sciences and Pollution Management
DatabaseTitleList
Aquatic Science & Fisheries Abstracts (ASFA) Professional

DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
DocumentTitleAlternate Development and Testing of the GRAPES Regional Ensemble-3DVAR Hybrid Data Assimilation System
EISSN 2198-0934
2191-4788
EndPage 996
ExternalDocumentID qxxb_e201506008
10_1007_s13351_015_5021_y
667846551
GeographicLocations China, People's Rep
GeographicLocations_xml – name: China, People's Rep
GrantInformation_xml – fundername: the National Natural Science Foundation of China; China Meteorological Administration Special Public Welfare Research Fund
  funderid: (91437113 and 41275111); (GYHY201506005)
GroupedDBID -01
-0A
-EM
-SA
-S~
06D
2KG
2KM
2RA
4.4
406
5VR
5XA
5XB
5XL
92L
92M
96X
9D9
9DA
AAAVM
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AAYFA
AAYIU
AAYQN
AAZMS
ABDZT
ABECU
ABFGW
ABFTV
ABJOX
ABKAS
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBMV
ACBRV
ACBYP
ACGFS
ACHSB
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACTTH
ACVWB
ACWMK
ACZOJ
ADHIR
ADMDM
ADOXG
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGNC
AEJHL
AEJRE
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETCA
AEVLU
AEVTX
AEXYK
AFLOW
AFNRJ
AFUIB
AFZKB
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWZB
AGYKE
AHAVH
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AKQUC
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
ANMIH
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
BGNMA
CAJEA
CAJUS
CCEZO
CCVFK
CHBEP
CQIGP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EDH
EIOEI
EJD
ESBYG
FA0
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGRSB
GJIRD
IKXTQ
IWAJR
J-C
JUIAU
JZLTJ
KOV
L8X
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
Q--
Q-0
R-A
RLLFE
RSV
RT1
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T8Q
TSG
U1F
U1G
U5A
U5K
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
W94
ZMTXR
~LG
~WA
0R~
AACDK
AAJBT
AASML
AATVU
AAUYE
AAXDM
AAYTO
AAYZH
ABAKF
ABJNI
ACDTI
ACPIV
ADINQ
ADKNI
AEFQL
AEMSY
AFBBN
AFQWF
AGAYW
AGQEE
AGRTI
AHBYD
AIGIU
AMYLF
GGCAI
H13
IAO
IEP
IGS
ITC
OK1
ROL
SJYHP
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
0VY
23M
30V
408
5GY
67M
7TG
7UA
8TC
95.
ACGOD
AFRAH
AFWTZ
AJRNO
C1K
CW9
DX2
F1W
H96
HMJXF
HRMNR
I0C
KL.
L.G
P2P
R9I
S27
S3B
SCL
SEV
SHX
T13
U2A
~A9
2B.
4A8
92I
93N
PSX
TCJ
ID FETCH-LOGICAL-c380t-de47931478c3b1d8acc7cd1f2bf7582ec4973ecc6f9273f27f710baf6052c1cb3
IEDL.DBID AGYKE
ISSN 2095-6037
0894-0525
IngestDate Thu May 29 04:06:29 EDT 2025
Fri Jul 11 16:09:12 EDT 2025
Thu Apr 24 23:08:46 EDT 2025
Wed Oct 01 01:45:11 EDT 2025
Fri Feb 21 02:40:30 EST 2025
Wed Feb 14 10:22:56 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords hybrid data assimilation
regional ensemble prediction
GRAPES
GRAPES_Meso
extended control variable
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c380t-de47931478c3b1d8acc7cd1f2bf7582ec4973ecc6f9273f27f710baf6052c1cb3
Notes Based on the GRAPES(Global/Regional Assimilation and Prediction System) regional ensemble prediction system and 3DVAR(three-dimensional variational) data assimilation system,which are implemented operationally at the Numerical Weather Prediction Center of the China Meteorological Administration,an ensemble-based 3DVAR(En-3DVAR) hybrid data assimilation system for GRAPES-Meso(the regional mesoscale numerical prediction system of GRAPES) was developed by using the extended control variable technique to implement a hybrid background error covariance that combines the climatological covariance and ensemble-estimated covariance.Considering the problems of the ensemble-based data assimilation part of the system,including the reduction in the degree of geostrophic balance between variables,and the non-smooth analysis increment and its obviously smaller size compared with the 3DVAR data assimilation,corresponding measures were taken to optimize and ameliorate the system.Accordingly,a single pressure observation ensemble-based data assimilation experiment was conducted to ensure that the ensemble-based data assimilation part of the system is correct and reasonable.A number of localization-scale sensitivity tests of the ensemble-based data assimilation were also conducted to determine the most appropriate localization scale.Then,a number of hybrid data assimilation experiments were carried out.The results showed that it was most appropriate to set the weight factor of the ensemble-estimated covariance in the experiments to be 0.8.Compared with the 3DVAR data assimilation,the geopotential height forecast of the hybrid data assimilation experiments improved very little,but the wind forecast improved slightly at each forecast time,especially over 300 hPa.Overall,the hybrid data assimilation demonstrates some advantages over the3 DVAR data assimilation.
11-2277/P
GRAPES;GRAPES_Meso;hybrid data assimilation;regional ensemble prediction;extended control variable
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1787969867
PQPubID 23462
PageCount 16
ParticipantIDs wanfang_journals_qxxb_e201506008
proquest_miscellaneous_1787969867
crossref_primary_10_1007_s13351_015_5021_y
crossref_citationtrail_10_1007_s13351_015_5021_y
springer_journals_10_1007_s13351_015_5021_y
chongqing_primary_667846551
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-12-01
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Acta meteorologica Sinica
PublicationTitleAbbrev J Meteorol Res
PublicationTitleAlternate Acta Meteorologica Sinica
PublicationTitle_FL Journal of Meteorological Research(JMR)
PublicationYear 2015
Publisher The Chinese Meteorological Society
Chongqing Institute of Meteorological Sciences, Chongqing 401147
Chinese Academy of Meteorological Sciences, Beijing 100081%Numerical Weather Prediction Center, China Meteorological Administration, Beijing 100081%Chinese Academy of Meteorological Sciences,Beijing,100081%Chengdu University of Information Technology,Chengdu,610225
Publisher_xml – name: The Chinese Meteorological Society
– name: Chinese Academy of Meteorological Sciences, Beijing 100081%Numerical Weather Prediction Center, China Meteorological Administration, Beijing 100081%Chinese Academy of Meteorological Sciences,Beijing,100081%Chengdu University of Information Technology,Chengdu,610225
– name: Chongqing Institute of Meteorological Sciences, Chongqing 401147
References Wang, Liu, Wang (CR12) 2010; 27
Wang, Barker, Snyder (CR17) 2008; 136
Ma, Xue, Lu (CR9) 2009; 23
Qiu, Chou (CR11) 2006; 83
Zhang, Chen, Zhi (CR20) 2014; 40
Huang, Liu, Dong (CR4) 2014; 30
Lorenc (CR5) 2003; 129
Wang, Barker, Snyder (CR16) 2008; 136
Wang (CR14) 2011; 26
Liu, Xue (CR8) 2014; 28
Zhuang, Xue, Li (CR21) 2011; 69
Xue, Dong (CR19) 2013; 27
Wang, Parrish, Kleist (CR18) 2013; 141
Hamill, Whitaker, Kleist (CR3) 2011; 139
Liu, Xue (CR6) 2005; 21
Wang (CR13) 2010; 138
Buehner (CR1) 2005; 131
Liu, Xiao, Wang (CR7) 2008; 136
Ma, Zhuang, Xue (CR10) 2009; 23
Clayton, Lorenc, Barker (CR2) 2013; 139
Wang, Snyder, Hamill (CR15) 2007; 135
Zhuang, Xue, Li (CR22) 2011; 69
M. Xue (5021_CR19) 2013; 27
M. Buehner (5021_CR1) 2005; 131
B. Wang (5021_CR12) 2010; 27
H. Zhang (5021_CR20) 2014; 40
Z. Zhuang (5021_CR21) 2011; 69
X. G. Wang (5021_CR17) 2008; 136
C. Liu (5021_CR6) 2005; 21
T. M. Hamill (5021_CR3) 2011; 139
A. C. Lorenc (5021_CR5) 2003; 129
X. Ma (5021_CR10) 2009; 23
J. Huang (5021_CR4) 2014; 30
C. Qiu (5021_CR11) 2006; 83
X. G. Wang (5021_CR13) 2010; 138
X. G. Wang (5021_CR15) 2007; 135
X. G. Wang (5021_CR18) 2013; 141
Z. Zhuang (5021_CR22) 2011; 69
A. M. Clayton (5021_CR2) 2013; 139
X. G. Wang (5021_CR16) 2008; 136
Y. Liu (5021_CR8) 2014; 28
C. S. Liu (5021_CR7) 2008; 136
X. Ma (5021_CR9) 2009; 23
X. G. Wang (5021_CR14) 2011; 26
References_xml – volume: 139
  start-page: 1445
  year: 2013
  end-page: 1461
  ident: CR2
  article-title: Operational implementation of a hybrid ensemble/4D-Var global data assimilation system at the Met Office
  publication-title: Quart. J. Roy. Meteor. Soc.
  doi: 10.1002/qj.2054
– volume: 136
  start-page: 3363
  year: 2008
  end-page: 3373
  ident: CR7
  article-title: An ensemblebased four-dimensional variational data assimilation scheme. Part I: Technical formulation and preliminary test
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/2008MWR2312.1
– volume: 23
  start-page: 725
  year: 2009
  end-page: 737
  ident: CR10
  article-title: Developments of the three-dimensional variational data assimilation system for the nonhydrostatic GRAPES
  publication-title: Acta Meteor. Sinica
– volume: 138
  start-page: 2990
  year: 2010
  end-page: 2995
  ident: CR13
  article-title: Incorporating ensemble covariance in the gridpoint statistical interpolation variational minimization: A mathematical framework
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/2010MWR3245.1
– volume: 28
  start-page: 1061
  year: 2014
  end-page: 1074
  ident: CR8
  article-title: Assimilation of global navigation satellite radio occultation observations in GRAPES: Operational implementation
  publication-title: J. Meteor. Res.
  doi: 10.1007/s13351-014-4028-0
– volume: 23
  start-page: 562
  year: 2009
  end-page: 574
  ident: CR9
  article-title: Study on ETKF-based initial perturbation scheme for GRAPES global ensemble prediction
  publication-title: Acta. Meteor. Sinica
– volume: 141
  start-page: 4098
  year: 2013
  end-page: 4117
  ident: CR18
  article-title: GSI 3DVar-based ensemble-variational hybrid data assimilation for NCEP global forecast system: Singleresolution experiments
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/MWR-D-12-00141.1
– volume: 69
  start-page: 620
  year: 2011
  end-page: 630
  ident: CR21
  article-title: The GRAPES ensemble Kalman filter data assimilation system. Part I: Design and its tentative experiment
  publication-title: Acta Meteor. Sinica
– volume: 139
  start-page: 3243
  year: 2011
  end-page: 3247
  ident: CR3
  article-title: Predictions of 2010’s tropical cyclones using the GFS and ensemble-based data assimilation methods
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/MWR-D-11-00079.1
– volume: 40
  start-page: 1076
  year: 2014
  end-page: 1087
  ident: CR20
  article-title: Study on the application of GRAPES regional ensemble prediction system
  publication-title: Meteor. Mon.
– volume: 136
  start-page: 5132
  year: 2008
  end-page: 5147
  ident: CR17
  article-title: A hybrid ETKF-3DVAR data assimilation scheme for the WRF model. Part II: Real observation experiments
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/2008MWR2445.1
– volume: 27
  start-page: 379
  year: 2013
  end-page: 399
  ident: CR19
  article-title: Assimilating best track minimum sea level pressure data together with Doppler radar data using and ensemble Kalman filter for Hurricane Ike (2008) at a cloud-resolving resolution
  publication-title: Acta Meteor. Sinica
  doi: 10.1007/s13351-013-0304-7
– volume: 83
  start-page: 51
  year: 2006
  end-page: 57
  ident: CR11
  article-title: Four-dimensional data assimilation method based on SVD: Theoretical aspect
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-005-0162-z
– volume: 27
  start-page: 715
  year: 2010
  end-page: 727
  ident: CR12
  article-title: An economical approach to four-dimensional variational data
  publication-title: Adv. Atmos. Sci.
  doi: 10.1007/s00376-009-9122-3
– volume: 26
  start-page: 868
  year: 2011
  end-page: 884
  ident: CR14
  article-title: Application of the WRF hybrid ETKF-3DVAR data assimilation system for hurricane track forecasts
  publication-title: Wea. Forecasting
  doi: 10.1175/WAF-D-10-05058.1
– volume: 135
  start-page: 222
  year: 2007
  end-page: 227
  ident: CR15
  article-title: On the theoretical equivalence of differently proposed ensemble/3DVAR hybrid analysis schemes
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/MWR3282.1
– volume: 129
  start-page: 3183
  year: 2003
  end-page: 3204
  ident: CR5
  article-title: The potential of the ensemble Kalman filter for NWP—A comparison with 4DVar
  publication-title: Quart. J. Roy. Meteor. Soc.
  doi: 10.1256/qj.02.132
– volume: 21
  start-page: 628
  year: 2005
  end-page: 633
  ident: CR6
  article-title: The ensemble Kalman filter theory and method development
  publication-title: J. Trop. Meteor.
– volume: 131
  start-page: 1013
  year: 2005
  end-page: 1043
  ident: CR1
  article-title: Ensemble-derived stationary and flow-dependent background error covariances: Evaluation in a quasi-operational NWP setting
  publication-title: Quart. J. Roy. Meteor. Soc.
  doi: 10.1256/qj.04.15
– volume: 30
  start-page: 1113
  year: 2014
  end-page: 1118
  ident: CR4
  article-title: Application of the hybrid data assimilation system for Typhoon Haiou
  publication-title: J. Trop. Meteor.
– volume: 69
  start-page: 860
  year: 2011
  end-page: 871
  ident: CR22
  article-title: The GRAPES ensemble Kalman filter data assimilation system. Part II: Regional analysis and ensemble prediction
  publication-title: Acta Meteor. Sinica
– volume: 136
  start-page: 5116
  year: 2008
  end-page: 5131
  ident: CR16
  article-title: A hybrid ETKF-3DVAR data assimilation scheme for the WRF model. Part I: Observing system simulation experiment
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/2008MWR2444.1
– volume: 136
  start-page: 5132
  year: 2008
  ident: 5021_CR17
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/2008MWR2445.1
– volume: 83
  start-page: 51
  year: 2006
  ident: 5021_CR11
  publication-title: Theor. Appl. Climatol.
  doi: 10.1007/s00704-005-0162-z
– volume: 136
  start-page: 5116
  year: 2008
  ident: 5021_CR16
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/2008MWR2444.1
– volume: 26
  start-page: 868
  year: 2011
  ident: 5021_CR14
  publication-title: Wea. Forecasting
  doi: 10.1175/WAF-D-10-05058.1
– volume: 27
  start-page: 379
  year: 2013
  ident: 5021_CR19
  publication-title: Acta Meteor. Sinica
  doi: 10.1007/s13351-013-0304-7
– volume: 40
  start-page: 1076
  year: 2014
  ident: 5021_CR20
  publication-title: Meteor. Mon.
– volume: 69
  start-page: 860
  year: 2011
  ident: 5021_CR22
  publication-title: Acta Meteor. Sinica
– volume: 141
  start-page: 4098
  year: 2013
  ident: 5021_CR18
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/MWR-D-12-00141.1
– volume: 131
  start-page: 1013
  year: 2005
  ident: 5021_CR1
  publication-title: Quart. J. Roy. Meteor. Soc.
  doi: 10.1256/qj.04.15
– volume: 135
  start-page: 222
  year: 2007
  ident: 5021_CR15
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/MWR3282.1
– volume: 23
  start-page: 725
  year: 2009
  ident: 5021_CR10
  publication-title: Acta Meteor. Sinica
– volume: 28
  start-page: 1061
  year: 2014
  ident: 5021_CR8
  publication-title: J. Meteor. Res.
  doi: 10.1007/s13351-014-4028-0
– volume: 139
  start-page: 1445
  year: 2013
  ident: 5021_CR2
  publication-title: Quart. J. Roy. Meteor. Soc.
  doi: 10.1002/qj.2054
– volume: 129
  start-page: 3183
  year: 2003
  ident: 5021_CR5
  publication-title: Quart. J. Roy. Meteor. Soc.
  doi: 10.1256/qj.02.132
– volume: 23
  start-page: 562
  year: 2009
  ident: 5021_CR9
  publication-title: Acta. Meteor. Sinica
– volume: 27
  start-page: 715
  year: 2010
  ident: 5021_CR12
  publication-title: Adv. Atmos. Sci.
  doi: 10.1007/s00376-009-9122-3
– volume: 69
  start-page: 620
  year: 2011
  ident: 5021_CR21
  publication-title: Acta Meteor. Sinica
– volume: 138
  start-page: 2990
  year: 2010
  ident: 5021_CR13
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/2010MWR3245.1
– volume: 136
  start-page: 3363
  year: 2008
  ident: 5021_CR7
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/2008MWR2312.1
– volume: 30
  start-page: 1113
  year: 2014
  ident: 5021_CR4
  publication-title: J. Trop. Meteor.
– volume: 21
  start-page: 628
  year: 2005
  ident: 5021_CR6
  publication-title: J. Trop. Meteor.
– volume: 139
  start-page: 3243
  year: 2011
  ident: 5021_CR3
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/MWR-D-11-00079.1
SSID ssj0002925722
ssib060478651
ssj0037831
ssib060478603
ssib013581858
Score 2.044028
Snippet Based on the GRAPES(Global/Regional Assimilation and Prediction System) regional ensemble prediction system and 3DVAR(three-dimensional variational) data...
Based on the GRAPES (Global/Regional Assimilation and Prediction System) regional ensemble prediction system and 3DVAR (three-dimensional variational) data...
SourceID wanfang
proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 981
SubjectTerms Atmospheric Protection/Air Quality Control/Air Pollution
Atmospheric Sciences
Earth and Environmental Science
Earth Sciences
Geophysics and Environmental Physics
GRAPES
Meteorology
三维变分同化
数据同化
测试
混合数据
葡萄
误差协方差
集合预报系统
Title Development and Testing of the GRAPES Regional Ensemble-3DVAR Hybrid Data Assimilation System
URI http://lib.cqvip.com/qk/88418X/201506/667846551.html
https://link.springer.com/article/10.1007/s13351-015-5021-y
https://www.proquest.com/docview/1787969867
https://d.wanfangdata.com.cn/periodical/qxxb-e201506008
Volume 29
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2198-0934
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002925722
  issn: 2095-6037
  databaseCode: AFBBN
  dateStart: 20110201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 2198-0934
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002925722
  issn: 2095-6037
  databaseCode: AGYKE
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 2198-0934
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0037831
  issn: 2095-6037
  databaseCode: U2A
  dateStart: 20110201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6V5dJLoaJVtzzkSpxaBW3sxEmOEU-1oqooW9FDZcWOvaCCF9isxPLrmdkkG1ohJO72RLbHmW88M98AbGttqOc7D6TQEh2U1ARaWEp2yGI0IIWUhhzF4-_yaBh9PYvPmjruSZvt3oYk53_qrthNiJhc3ziIKa9gtgTLMfknPVjOD39_655WeIZ6OI8fcAQQgRyIpI1nPiWHWBXOx350g9_81zp1kHMRJZ3X9nhX-NEjM3SwAqftAursk78700rvmPv_uB1fuMJVeNPAUpbXevQWXlm_Bn8eZRSxwpesIkoOP2JjxxA3ssOT_Mf-T0a9HQjPM_SI7ZW-tIHY-5WfsPMZVYMxykFlCNEvri7qvDtWs0e_g-HB_unuUdC0YwiMSAdVUFp6hQujJDVCh2VaGJOYMnRcO3Q6uDVRlgjUCOkyxESOJw7Riy4cOkzchEaL99DzY28_ACM-JQRWEYq0iIjKopBR5mQsrMxkom0f1hdHoq5r2g0l0a4S21vYh0F7SMo0TObUUONSdRzMtJMKd1LRTqpZHz4vprTynhn8qT15hZeNIiiFt-PpRKFaJ5nMUpn04Ut7hqq59ZPnJLJGa7rBN3d3WlleUzwO0o8vErgOr2lmnVezAb3qdmo3ER1Vequ5DVuwNOT5A6juBQM
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED9BeRgvG2ib6PjypD1tCmrixEkeqw0o40MTKxN7QFbs2AWNuitNJcpfv7smadg0IfHuXGTfOfe73N3vAD4opWnme-AJrgQGKIn2FDdU7JBG6EAyITQFiqdnoncRfr2MLqs-7kld7V6nJOdf6qbZjfOIQt_Ii6iuYLYMK6GfJGELVrqHP4-bXytBinY4zx8ECCA80eFxnc_8nxxiVbgeucEY3_m3d2og5yJLOu_tcTZzg0du6OAV9OsNlNUnv_amhdrTD_9wOz5zh2vwsoKlrFva0TosGfcarh5VFLHM5awgSg43YCPLEDeyw_Put_3vjGY7EJ5nGBGbobo1Hv_yo3vOrmfUDcaoBpUhRL8Z3pR1d6xkj34DFwf7_c89rxrH4GmedAovN_QXzg_jRHPl50mmdaxz3wbKYtARGB2mMUeLEDZFTGSD2CJ6UZnFgCnQvlb8LbTcyJkNYMSnhMAqRJEGEVGeZSJMrYi4EamIlWnD5kIl8ndJuyEF-lVie_Pb0KmVJHXFZE4DNW5lw8FMJynxJCWdpJy14ePikVreE4vf15qXeNkog5I5M5pOJJp1nIo0EXEbPtU6lNWtnzwlkVVW0ywe398raYKS4rGTvHuWwF140eufnsiTo7PjTVglKWWNzRa0irup2UakVKid6mb8AfTdBws
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3fT9swED5Bkaa9wNA2rfz0pD1tCjRx4iSPFVBgbAixgdjDZGLHLghwgaYS5a_fHUkahiakiXfnLNvn3He-u-8APimlqed74AmuBDooifYUN5TskEZoQDIhNDmK3_fFzlH49SQ6qfqcDuts9zokWdY0EEuTK9avc7veFL5xHpEbHHkR5RiMp2EG5_GjFsx0t3_tNc8sQYo6-RBLCBBMeKLD4zq2-S85xLBwNnD9G5z_b0vVwM9JxPShzsfZzPUfmaTeHJzWiykzUS7WRoVa0_dPeB5fsNo3MFvBVdYt9Wsepox7C78fZRqxzOWsIKoO12cDyxBPsu3D7sHWD0Y9HwjnM_SUzZW6NB7fPO4esrMxVYkxyk1lCN3Pr87LfDxWskq_g6Pe1s-NHa9q0-BpnnQKLzf0OueHcaK58vMk0zrWuW8DZdEZCYwO05ijpgibIlayQWwR1ajMoiMVaF8r_h5abuDMB2DEs4SAK0SRBpFSnmUiTK2IuBGpiJVpw-LkeOR1ScchBdpbYoHz29CpD0zqiuGcGm1cyoabmXZS4k5K2kk5bsPnySe1vGcGf6y1QOIlpMhK5sxgNJSo7nEq0kTEbfhSn6es_gbD5ySySoOawTd3d0qaoKR-7CQL_yVwFV4dbPbkt939vUV4TULK1JslaBW3I7OMAKpQK9Ul-QMksg_m
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Development+and+Testing+of+the+GRAPES+Regional+Ensemble-3DVAR+Hybrid+Data+Assimilation+System&rft.jtitle=%E6%B0%94%E8%B1%A1%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=CHEN+Liangl%C3%BC&rft.au=CHEN+Jing&rft.au=XUE+Jishan&rft.au=XIA+Yu&rft.date=2015-12-01&rft.pub=Chongqing+Institute+of+Meteorological+Sciences%2C+Chongqing+401147&rft.issn=2095-6037&rft.volume=29&rft.issue=6&rft.spage=981&rft.epage=996&rft_id=info:doi/10.1007%2Fs13351-015-5021-y&rft.externalDocID=qxxb_e201506008
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F88418X%2F88418X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fqxxb-e%2Fqxxb-e.jpg