Prediction of evaporation from dam reservoirs under climate change using soft computing techniques

This study aimed to predict evaporation from dam reservoirs using artificial intelligence considering climate change. Mahabad Dam, near Lake Urmia, in northwestern Iran, is used to investigate the proposed approach. There are three parts to the study presented herein. In the first part, two machine...

Full description

Saved in:
Bibliographic Details
Published inEnvironmental science and pollution research international Vol. 30; no. 10; pp. 27912 - 27935
Main Authors Kayhomayoon, Zahra, Naghizadeh, Fariba, Malekpoor, Mohammadreza, Arya Azar, Naser, Ball, James, Ghordoyee Milan, Sami
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 01.02.2023
Subjects
Online AccessGet full text
ISSN1614-7499
1614-7499
DOI10.1007/s11356-022-23899-5

Cover

Abstract This study aimed to predict evaporation from dam reservoirs using artificial intelligence considering climate change. Mahabad Dam, near Lake Urmia, in northwestern Iran, is used to investigate the proposed approach. There are three parts to the study presented herein. In the first part, two machine learning models, namely group method of data handling (GMDH) and least squares support vector regression (LS-SVR), were used to model the inflow to the dam reservoir. Temperature, precipitation, and inflow during the previous month from 1990 to 2017 were used as input data. In the second part, the evaporation from the dam reservoir was modeled using the adaptive neuro-fuzzy inference system (ANFIS) and optimized ANFIS using Harris hawks optimization (HHO) and the arithmetic optimization algorithm (AOA) optimization algorithms. The input parameters in this part were temperature, precipitation, inflow to the dam reservoir, along with evaporation from the dam reservoir in the previous month. In the third part, precipitation and temperature were predicted using the fifth report of IPCC based on RCP2.6, RCP4.5, and RCP8.5 scenarios for the period 2020–2040. Out of 28 models presented in the fifth report, EC-ERATH and FIO-ESM had the greatest similarity with observational data of temperature and precipitation, respectively. The results of scatter plots and Taylor’s diagram showed the higher performance of LS-SVR (root mean square error (RMSE), mean absolute percentage error (MAPE), and Nash–Sutcliffe efficiency (NSE) of 8.65, 4.69, and 0.96) compared to GMDH (RMSE, MAPE, and NSE of 11.65, 7.81, and 0.93) in modeling the inflow. Moreover, both hybrid modes (AOA-ANFIS and HHO-ANFIS) improved the performance of ANFIS in modeling the evaporation from the dam reservoir. The RMSE, MAPE, and NSE values for ANFIS were 0.56, 0.52, and 0.89, respectively, while these values for the AOA-ANFIS (RMSE, MAPE, and NSE of 0.31, 0.24, and 0.93) and HHO-ANFIS (RMSE, MAPE, and NSE of 0.20, 0.30, and 0.96) were improved remarkably. The impact of climate change reduced the inflow to the dam reservoir by about 0.45, 0.80, and 1.7 MCM in RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively. Also, the effect of climate change caused the evaporation from the dam reservoir to increase by about 0.2, 0.9, and 1 MCM in RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively. The findings of this study show that the correct management of dam reservoirs needs to consider the potential effects of climate change in the future. Moreover, the hybrid machine learning models used in this study can be used to predict the amount of evaporation in other reservoirs.
AbstractList This study aimed to predict evaporation from dam reservoirs using artificial intelligence considering climate change. Mahabad Dam, near Lake Urmia, in northwestern Iran, is used to investigate the proposed approach. There are three parts to the study presented herein. In the first part, two machine learning models, namely group method of data handling (GMDH) and least squares support vector regression (LS-SVR), were used to model the inflow to the dam reservoir. Temperature, precipitation, and inflow during the previous month from 1990 to 2017 were used as input data. In the second part, the evaporation from the dam reservoir was modeled using the adaptive neuro-fuzzy inference system (ANFIS) and optimized ANFIS using Harris hawks optimization (HHO) and the arithmetic optimization algorithm (AOA) optimization algorithms. The input parameters in this part were temperature, precipitation, inflow to the dam reservoir, along with evaporation from the dam reservoir in the previous month. In the third part, precipitation and temperature were predicted using the fifth report of IPCC based on RCP2.6, RCP4.5, and RCP8.5 scenarios for the period 2020-2040. Out of 28 models presented in the fifth report, EC-ERATH and FIO-ESM had the greatest similarity with observational data of temperature and precipitation, respectively. The results of scatter plots and Taylor's diagram showed the higher performance of LS-SVR (root mean square error (RMSE), mean absolute percentage error (MAPE), and Nash-Sutcliffe efficiency (NSE) of 8.65, 4.69, and 0.96) compared to GMDH (RMSE, MAPE, and NSE of 11.65, 7.81, and 0.93) in modeling the inflow. Moreover, both hybrid modes (AOA-ANFIS and HHO-ANFIS) improved the performance of ANFIS in modeling the evaporation from the dam reservoir. The RMSE, MAPE, and NSE values for ANFIS were 0.56, 0.52, and 0.89, respectively, while these values for the AOA-ANFIS (RMSE, MAPE, and NSE of 0.31, 0.24, and 0.93) and HHO-ANFIS (RMSE, MAPE, and NSE of 0.20, 0.30, and 0.96) were improved remarkably. The impact of climate change reduced the inflow to the dam reservoir by about 0.45, 0.80, and 1.7 MCM in RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively. Also, the effect of climate change caused the evaporation from the dam reservoir to increase by about 0.2, 0.9, and 1 MCM in RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively. The findings of this study show that the correct management of dam reservoirs needs to consider the potential effects of climate change in the future. Moreover, the hybrid machine learning models used in this study can be used to predict the amount of evaporation in other reservoirs.
This study aimed to predict evaporation from dam reservoirs using artificial intelligence considering climate change. Mahabad Dam, near Lake Urmia, in northwestern Iran, is used to investigate the proposed approach. There are three parts to the study presented herein. In the first part, two machine learning models, namely group method of data handling (GMDH) and least squares support vector regression (LS-SVR), were used to model the inflow to the dam reservoir. Temperature, precipitation, and inflow during the previous month from 1990 to 2017 were used as input data. In the second part, the evaporation from the dam reservoir was modeled using the adaptive neuro-fuzzy inference system (ANFIS) and optimized ANFIS using Harris hawks optimization (HHO) and the arithmetic optimization algorithm (AOA) optimization algorithms. The input parameters in this part were temperature, precipitation, inflow to the dam reservoir, along with evaporation from the dam reservoir in the previous month. In the third part, precipitation and temperature were predicted using the fifth report of IPCC based on RCP2.6, RCP4.5, and RCP8.5 scenarios for the period 2020-2040. Out of 28 models presented in the fifth report, EC-ERATH and FIO-ESM had the greatest similarity with observational data of temperature and precipitation, respectively. The results of scatter plots and Taylor's diagram showed the higher performance of LS-SVR (root mean square error (RMSE), mean absolute percentage error (MAPE), and Nash-Sutcliffe efficiency (NSE) of 8.65, 4.69, and 0.96) compared to GMDH (RMSE, MAPE, and NSE of 11.65, 7.81, and 0.93) in modeling the inflow. Moreover, both hybrid modes (AOA-ANFIS and HHO-ANFIS) improved the performance of ANFIS in modeling the evaporation from the dam reservoir. The RMSE, MAPE, and NSE values for ANFIS were 0.56, 0.52, and 0.89, respectively, while these values for the AOA-ANFIS (RMSE, MAPE, and NSE of 0.31, 0.24, and 0.93) and HHO-ANFIS (RMSE, MAPE, and NSE of 0.20, 0.30, and 0.96) were improved remarkably. The impact of climate change reduced the inflow to the dam reservoir by about 0.45, 0.80, and 1.7 MCM in RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively. Also, the effect of climate change caused the evaporation from the dam reservoir to increase by about 0.2, 0.9, and 1 MCM in RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively. The findings of this study show that the correct management of dam reservoirs needs to consider the potential effects of climate change in the future. Moreover, the hybrid machine learning models used in this study can be used to predict the amount of evaporation in other reservoirs.This study aimed to predict evaporation from dam reservoirs using artificial intelligence considering climate change. Mahabad Dam, near Lake Urmia, in northwestern Iran, is used to investigate the proposed approach. There are three parts to the study presented herein. In the first part, two machine learning models, namely group method of data handling (GMDH) and least squares support vector regression (LS-SVR), were used to model the inflow to the dam reservoir. Temperature, precipitation, and inflow during the previous month from 1990 to 2017 were used as input data. In the second part, the evaporation from the dam reservoir was modeled using the adaptive neuro-fuzzy inference system (ANFIS) and optimized ANFIS using Harris hawks optimization (HHO) and the arithmetic optimization algorithm (AOA) optimization algorithms. The input parameters in this part were temperature, precipitation, inflow to the dam reservoir, along with evaporation from the dam reservoir in the previous month. In the third part, precipitation and temperature were predicted using the fifth report of IPCC based on RCP2.6, RCP4.5, and RCP8.5 scenarios for the period 2020-2040. Out of 28 models presented in the fifth report, EC-ERATH and FIO-ESM had the greatest similarity with observational data of temperature and precipitation, respectively. The results of scatter plots and Taylor's diagram showed the higher performance of LS-SVR (root mean square error (RMSE), mean absolute percentage error (MAPE), and Nash-Sutcliffe efficiency (NSE) of 8.65, 4.69, and 0.96) compared to GMDH (RMSE, MAPE, and NSE of 11.65, 7.81, and 0.93) in modeling the inflow. Moreover, both hybrid modes (AOA-ANFIS and HHO-ANFIS) improved the performance of ANFIS in modeling the evaporation from the dam reservoir. The RMSE, MAPE, and NSE values for ANFIS were 0.56, 0.52, and 0.89, respectively, while these values for the AOA-ANFIS (RMSE, MAPE, and NSE of 0.31, 0.24, and 0.93) and HHO-ANFIS (RMSE, MAPE, and NSE of 0.20, 0.30, and 0.96) were improved remarkably. The impact of climate change reduced the inflow to the dam reservoir by about 0.45, 0.80, and 1.7 MCM in RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively. Also, the effect of climate change caused the evaporation from the dam reservoir to increase by about 0.2, 0.9, and 1 MCM in RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively. The findings of this study show that the correct management of dam reservoirs needs to consider the potential effects of climate change in the future. Moreover, the hybrid machine learning models used in this study can be used to predict the amount of evaporation in other reservoirs.
Author Arya Azar, Naser
Malekpoor, Mohammadreza
Kayhomayoon, Zahra
Ghordoyee Milan, Sami
Naghizadeh, Fariba
Ball, James
Author_xml – sequence: 1
  givenname: Zahra
  surname: Kayhomayoon
  fullname: Kayhomayoon, Zahra
  email: Zkayhomayoon@pnu.ac.ir
  organization: Department of Geology, Payame Noor University
– sequence: 2
  givenname: Fariba
  surname: Naghizadeh
  fullname: Naghizadeh, Fariba
  organization: Department of Water Engineering, College of Agricultural Sciences, University of Guilan
– sequence: 3
  givenname: Mohammadreza
  surname: Malekpoor
  fullname: Malekpoor, Mohammadreza
  organization: Department of Civil Engineering, Azarshahr Branch, Islamic Azad University
– sequence: 4
  givenname: Naser
  surname: Arya Azar
  fullname: Arya Azar, Naser
  organization: Department of Water Engineering, Faculty of Agriculture, University of Tabriz
– sequence: 5
  givenname: James
  surname: Ball
  fullname: Ball, James
  organization: School of Civil and Environmental Engineering, University of Technology Sydney
– sequence: 6
  givenname: Sami
  surname: Ghordoyee Milan
  fullname: Ghordoyee Milan, Sami
  organization: Department of Irrigation and Drainage Engineering, Aburaihan Campus, University of Tehran
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36385346$$D View this record in MEDLINE/PubMed
BookMark eNqFkctqHDEQRUVwiB_JD2QRtMymHT269VgGk9gBQ7xw1kJTXW3LdEsTSW3I30czY0PwwllVFZxbRd17So5iikjIR87OOWP6S-FcDqpjQnRCGmu74Q054Yr3ne6tPfqnPyanpTwwJpgV-h05lkqaQfbqhGxuMo4BakiRponio9-m7PfjlNNCR7_QjAXzYwq50DWOmCnMYfEVKdz7eId0LSHe0ZKmSiEt27XuxopwH8PvFct78nbyc8EPT_WM_Pr-7fbiqrv-efnj4ut1B9Kw2sHIEEBoMHbTK9EKA8PRWskBpOg1b61kw6hQChCgJyUm7rXZjIp7oeQZ-XzYu81pd7e6JRTAefYR01qcMEYrNihj_49qqXulzB799ISumwVHt83t9_zHPVvYAHMAIKdSMk4OQt07WLMPs-PM7dJyh7RcS8vt03JDk4oX0uftr4rkQVQa3OzP7iGtOTZnX1P9BQfCp6I
CitedBy_id crossref_primary_10_1007_s00024_023_03426_4
crossref_primary_10_2166_nh_2024_191
crossref_primary_10_1038_s41598_025_90550_x
crossref_primary_10_1186_s12302_024_01028_y
crossref_primary_10_1007_s13201_023_02001_5
crossref_primary_10_1007_s13762_024_05917_w
crossref_primary_10_1007_s12145_023_01063_y
crossref_primary_10_1007_s13201_023_01923_4
crossref_primary_10_1007_s12145_024_01223_8
crossref_primary_10_1007_s40710_023_00669_0
crossref_primary_10_3390_su151310141
Cites_doi 10.21203/rs.3.rs-927576/v1
10.1007/s00704-017-2244-0
10.1109/TLA.2018.8447374
10.1029/2020WR027562
10.1007/978-1-4757-2440-0
10.1016/j.ejrs.2021.08.006
10.1109/21.256541
10.1007/s00366-021-01459-8
10.1016/j.jhydrol.2020.125013
10.1109/SICE.1998.742993
10.1016/j.jhydrol.2021.126258
10.1080/19942060.2019.1647879
10.1016/0269-7491(94)90019-1
10.1016/j.cma.2020.113609
10.1016/B978-0-12-823830-1.00003-1
10.1029/2008WR007615
10.1007/s12205-015-0298-z
10.3390/app10155160
10.1016/j.jhydrol.2020.125018
10.1007/s10661-021-09495-z
10.1016/j.jhydrol.2021.126336
10.1007/s00477-010-0423-y
10.1155/2015/515376
10.1023/A:1018628609742
10.1007/s10584-005-1157-6
10.1007/s40710-019-00353-2
10.1016/j.chemolab.2018.04.016
10.1007/s11356-020-11062-x
10.1007/s41324-020-00337-7
10.3390/w11061226
10.3390/cli7040051
10.1007/s00366-021-01523-3
10.1061/(ASCE)IR.1943-4774.0000496
10.1007/s10040-019-02017-9
10.1016/j.future.2019.02.028
10.1016/j.catena.2017.05.034
10.1016/j.jenvman.2021.113237
10.1080/02723646.2020.1776087
10.1007/s11269-016-1452-1
ContentType Journal Article
Copyright The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
Copyright_xml – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
– notice: 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1007/s11356-022-23899-5
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
AGRICOLA
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Environmental Sciences
EISSN 1614-7499
EndPage 27935
ExternalDocumentID 36385346
10_1007_s11356_022_23899_5
Genre Journal Article
GeographicLocations Iran
GeographicLocations_xml – name: Iran
GroupedDBID ---
-5A
-5G
-5~
-BR
-EM
-Y2
-~C
.VR
06D
0R~
0VY
199
1N0
2.D
203
29G
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
4P2
53G
5GY
5VS
67M
67Z
6NX
78A
7WY
7X7
7XC
88E
88I
8AO
8C1
8FE
8FH
8FI
8FJ
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHBH
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACGOD
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSNA
ACSVP
ACZOJ
ADBBV
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AFBBN
AFGCZ
AFKRA
AFLOW
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHMBA
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
ASPBG
ATCPS
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EBD
EBLON
EBS
EDH
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
FYUFA
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Y
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6~
KDC
KOV
L8X
LAS
LLZTM
M0C
M1P
M2P
M4Y
MA-
ML.
N2Q
N9A
NB0
NDZJH
NF0
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
PATMY
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSQYO
PT4
PT5
PYCSY
Q2X
QOK
QOS
R89
R9I
RHV
RNI
RNS
ROL
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCK
SCLPG
SDH
SEV
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK6
WK8
Y6R
YLTOR
Z45
Z5O
Z7R
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z8P
Z8Q
Z8S
ZMTXR
~02
~KM
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PJZUB
PPXIY
PUEGO
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
ID FETCH-LOGICAL-c380t-cd0ecc27c89b462c890c81e9931cc32471993305d6e32c2c7f62f1a78bd61a263
IEDL.DBID U2A
ISSN 1614-7499
IngestDate Thu Oct 02 11:41:32 EDT 2025
Wed Oct 01 14:18:03 EDT 2025
Wed Feb 19 02:25:01 EST 2025
Wed Oct 01 03:13:34 EDT 2025
Thu Apr 24 23:10:06 EDT 2025
Fri Feb 21 02:45:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Optimization algorithms
Reservoir evaporation
Climate change
Time-series data
Machine learning
Language English
License 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c380t-cd0ecc27c89b462c890c81e9931cc32471993305d6e32c2c7f62f1a78bd61a263
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 36385346
PQID 2737466889
PQPubID 23479
PageCount 24
ParticipantIDs proquest_miscellaneous_2887605689
proquest_miscellaneous_2737466889
pubmed_primary_36385346
crossref_citationtrail_10_1007_s11356_022_23899_5
crossref_primary_10_1007_s11356_022_23899_5
springer_journals_10_1007_s11356_022_23899_5
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-02-01
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: 2023-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Germany
PublicationTitle Environmental science and pollution research international
PublicationTitleAbbrev Environ Sci Pollut Res
PublicationTitleAlternate Environ Sci Pollut Res Int
PublicationYear 2023
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References SebbarAHeddamSDjemiliLPredicting daily pan evaporation (E pan) from dam reservoirs in the Mediterranean regions of Algeria: OPELM vs OSELMEnvironmental Processes20196130931910.1007/s40710-019-00353-2
Kondo T (1998) GMDH neural network algorithm using the heuristic self-organization method and its application to the pattern identification problem. In Proceedings of the 37th SICE Annual Conference. International Session Papers (pp. 1143–1148). IEEE
SuykensJAVandewalleJLeast squares support vector machine classifiersNeural Process Lett19999329330010.1023/A:1018628609742
AbreuALENetoACMachine learning model for predicting evaporation losses in reservoirsIEEE Lat Am Trans20181672040204410.1109/TLA.2018.8447374
Bac BH, Nguyen H, Thao NTT, Hanh VT, Duyen LT, Dung NT,..., Hiep NH (2021) Estimating heavy metals absorption efficiency in an aqueous solution using nanotube-type halloysite from weathered pegmatites and a novel Harris hawks optimization-based multiple layers perceptron neural network. Eng Comput 1–16
TermehSVRKhosraviKSartajMKeesstraSDTsaiFTCDijksmaRPhamBTOptimization of an adaptive neuro-fuzzy inference system for groundwater potential mappingHydrogeol J20192772511253410.1007/s10040-019-02017-9
ParyaniSNeshatAPradhanBImprovement of landslide spatial modeling using machine learning methods and two Harris hawks and bat algorithmsThe Egyptian Journal of Remote Sensing and Space Science202124384585510.1016/j.ejrs.2021.08.006
ChenWPanahiMPourghasemiHRPerformance evaluation of GIS-based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (ANFIS) with genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) for landslide spatial modellingCATENA201715731032410.1016/j.catena.2017.05.034
HulmeMJonesPDGlobal climate change in the instrumental periodEnviron Pollut1994831–223361:STN:280:DC%2BD2c7psFOntA%3D%3D10.1016/0269-7491(94)90019-1
KayhomayoonZAzarNAMilanSGMoghaddamHKBerndtssonRNovel approach for predicting groundwater storage loss using machine learningJ Environ Manage202129610.1016/j.jenvman.2021.113237
Abbaspour KC, Faramarzi M, Ghasemi SS, Yang H (2009) Assessing the impact of climate change on water resources in Iran. Water Resour Res 45(10).
AbualigahLDiabatAMirjaliliSAbd ElazizMGandomiAHThe arithmetic optimization algorithmComput Methods Appl Mech Eng202137610.1016/j.cma.2020.113609
Shamim MA, Hassan M, Ahmad S, Zeeshan M (2016) A comparison of artificial neural networks (ANN) and local linear regression (LLR) techniques for predicting monthly reservoir levels. KSCE J Civ Eng 20:971–977. https://doi.org/10.1007/s12205-015-0298-z
Hughes A, Mansour M, Ward R, Kieboom N, Allen S, Seccombe D, ..., Prudhomme C (2021) The impact of climate change on groundwater recharge: national-scale assessment for the British mainland. J Hydrol 598:126336
Arya AzarNGhordoyee MilanSKayhomayoonZPredicting monthly evaporation from dam reservoirs using LS-SVR and ANFIS optimized by Harris hawks optimization algorithmEnviron Monit Assess20211931111410.1007/s10661-021-09495-z
MilanSGRoozbahaniAAzarNAJavadiSDevelopment of adaptive neuro fuzzy inference system–evolutionary algorithms hybrid models (ANFIS-EA) for prediction of optimal groundwater exploitationJ Hydrol202159810.1016/j.jhydrol.2021.126258
SivakumarBGlobal climate change and its impacts on water resources planning and management: assessment and challengesStoch Env Res Risk Assess201125458360010.1007/s00477-010-0423-y
Diaz-NietoJWilbyRLA comparison of statistical downscaling and climate change factor methods: impacts on low flows in the River Thames United KingdomClimatic Change200569224526810.1007/s10584-005-1157-6
KoukouliPGeorgiouPEKarpouzosDKEvaluation of climate change impacts on reference evapotranspiration under RCPs scenarios in Northern GreeceGlobal NEST J20192145195291:CAS:528:DC%2BB3cXhtVSlsbnE
HeidariAAMirjaliliSFarisHAljarahIMafarjaMChenHHarris hawks optimization: algorithm and applicationsFutur Gener Comput Syst20199784987210.1016/j.future.2019.02.028
Paryani S, Neshat A, Pradhan B (2021b) Improvement of landslide spatial modeling using machine learning methods and two Harris hawks and bat algorithms. The Egyptian Journal of Remote Sensing and Space Science.
AllawiMFBinti OthmanFAfanHAAhmedANHossainMFaiCMEl-ShafieAReservoir evaporation prediction modeling based on artificial intelligence methodsWater2019116122610.3390/w11061226
Salih SQ, Allawi MF, Yousif AA, Armanuos AM, Saggi MK, Ali M, ..., Chau KW (2019) Viability of the advanced adaptive neuro-fuzzy inference system model on reservoir evaporation process simulation: case study of Nasser Lake in Egypt. Eng Appl Comput Fluid Mech 13(1):878-891
Arya Azar N, Kardan N, Ghordoyee Milan S (2021b) Developing the artificial neural network–evolutionary algorithms hybrid models (ANN–EA) to predict the daily evaporation from dam reservoirs. Eng Comput 1–19
Pallavi K, Rajeev S (2016) Predicting reservoir evaporation using artificial neural network. International Journal of Innovative Research in Science, Engineering and Technology,(An ISO 3297: 2007 Certified Organization) Vol, 5
EmamiFKochMModeling the impact of climate change on water availability in the Zarrine River Basin and inflow to the Boukan Dam IranClimate2019745110.3390/cli7040051
NouraniVRouzegariNMolajouABaghanamAHAn integrated simulation-optimization framework to optimize the reservoir operation adapted to climate change scenariosJ Hydrol202058710.1016/j.jhydrol.2020.125018
Asefpour VakilianKMassahJA fuzzy-based decision making software for enzymatic electrochemical nitrate biosensorsChemom Intell Lab Syst201817755631:CAS:528:DC%2BC1cXot1yjsrY%3D10.1016/j.chemolab.2018.04.016
SebbarAHeddamSDjemiliLKernel extreme learning machines (KELM): a new approach for modeling monthly evaporation (EP) from dams reservoirsPhys Geogr202142435137310.1080/02723646.2020.1776087
GoodarziEDastoraniMTalebiAEvaluation of the change-factor and LARS-WG methods of downscaling for simulation of climatic variables in the future (Case study: Herat Azam Watershed, Yazd-Iran)Ecopersia201531833846
KwartengEAGyamfiCAnyemeduFOKAdjeiKAAnornuGKCoupling SWAT and bathymetric data in modelling reservoir catchment hydrologySpat Inf Res2021291556910.1007/s41324-020-00337-7
VapnikVThe nature of statistical learning theory1995New YorkSpringer10.1007/978-1-4757-2440-0
ShehabeldeenTAAbd ElazizMElsheikhAHZhouJModeling of friction stir welding process using adaptive neuro-fuzzy inference system integrated with harris hawks optimizerJ Market Res201986588258921:CAS:528:DC%2BC1MXhvFymsb7N
AshoftehPSHaddadOBMariñoAM. Climate change impact on reservoir performance indexes in agricultural water supplyJ Irrig Drain Eng20131392859710.1061/(ASCE)IR.1943-4774.0000496
AllawiMFAidanIAEl-ShafieAEnhancing the performance of data-driven models for monthly reservoir evaporation predictionEnviron Sci Pollut Res20212878281829510.1007/s11356-020-11062-x
Wubneh MA, Worku TA, Fikadie FT, Aman TF, Kifelew MS (2022) Climate change impact on Lake Tana water storage, Upper Blue Nile Basin, Ethiopia. Geocarto International 1–23
Gupta PK, Yadav BK, Sharma D (2022) Impacts of climatic variability on subsurface water resources. In Advances in Remediation Techniques for Polluted Soils and Groundwater (pp. 171–189). Elsevier
GhorbaniMADeoRCYaseenZMKashaniMHMohammadiBPan evaporation prediction using a hybrid multilayer perceptron-firefly algorithm (MLP-FFA) model: case study in North IranTheoret Appl Climatol201813331119113110.1007/s00704-017-2244-0
SammenSSGhorbaniMAMalikATikhamarineYAmirRahmaniMAl-AnsariNChauKWEnhanced artificial neural network with Harris hawks optimization for predicting scour depth downstream of ski-jump spillwayAppl Sci2020101551601:CAS:528:DC%2BB3cXhslGgsbfL10.3390/app10155160
ZhongWGuoJChenLZhouJZhangJWangDFuture hydropower generation prediction of large-scale reservoirs in the upper Yangtze River basin under climate changeJ Hydrol202058810.1016/j.jhydrol.2020.125013
AllawiMFEl-ShafieAUtilizing RBF-NN and ANFIS methods for multi-lead ahead prediction model of evaporation from reservoirWater Resour Manage201630134773478810.1007/s11269-016-1452-1
JangJSANFIS: adaptive-network-based fuzzy inference systemIEEE Trans Syst Man Cybern199323366568510.1109/21.256541
Halik G, Anwar N, Santosa B (2015) Reservoir inflow prediction under GCM scenario downscaled by wavelet transform and support vector machine hybrid models. Adv Civil Eng 2015
Althoff D, Dias SHB, Filgueiras R, Rodrigues LN (2020) ETo‐Brazil: a daily gridded reference evapotranspiration data set for Brazil (2000–2018). Water Resour Res 56(7):e2020WR027562
MF Allawi (23899_CR6) 2021; 28
M Hulme (23899_CR22) 1994; 83
S Paryani (23899_CR31) 2021; 24
23899_CR19
23899_CR18
23899_CR12
23899_CR37
23899_CR9
JS Jang (23899_CR23) 1993; 23
23899_CR30
23899_CR7
N Arya Azar (23899_CR8) 2021; 193
F Emami (23899_CR15) 2019; 7
V Nourani (23899_CR29) 2020; 587
23899_CR33
23899_CR32
E Goodarzi (23899_CR17) 2015; 3
JA Suykens (23899_CR40) 1999; 9
K Asefpour Vakilian (23899_CR10) 2018; 177
PS Ashofteh (23899_CR11) 2013; 139
W Zhong (23899_CR44) 2020; 588
B Sivakumar (23899_CR39) 2011; 25
Z Kayhomayoon (23899_CR24) 2021; 296
EA Kwarteng (23899_CR27) 2021; 29
P Koukouli (23899_CR26) 2019; 21
J Diaz-Nieto (23899_CR14) 2005; 69
W Chen (23899_CR13) 2017; 157
23899_CR25
A Sebbar (23899_CR36) 2021; 42
SS Sammen (23899_CR34) 2020; 10
MF Allawi (23899_CR5) 2019; 11
23899_CR21
23899_CR43
AA Heidari (23899_CR20) 2019; 97
23899_CR1
SVR Termeh (23899_CR41) 2019; 27
TA Shehabeldeen (23899_CR38) 2019; 8
L Abualigah (23899_CR3) 2021; 376
MA Ghorbani (23899_CR16) 2018; 133
A Sebbar (23899_CR35) 2019; 6
SG Milan (23899_CR28) 2021; 598
V Vapnik (23899_CR42) 1995
MF Allawi (23899_CR4) 2016; 30
ALE Abreu (23899_CR2) 2018; 16
References_xml – reference: EmamiFKochMModeling the impact of climate change on water availability in the Zarrine River Basin and inflow to the Boukan Dam IranClimate2019745110.3390/cli7040051
– reference: GhorbaniMADeoRCYaseenZMKashaniMHMohammadiBPan evaporation prediction using a hybrid multilayer perceptron-firefly algorithm (MLP-FFA) model: case study in North IranTheoret Appl Climatol201813331119113110.1007/s00704-017-2244-0
– reference: SebbarAHeddamSDjemiliLKernel extreme learning machines (KELM): a new approach for modeling monthly evaporation (EP) from dams reservoirsPhys Geogr202142435137310.1080/02723646.2020.1776087
– reference: HulmeMJonesPDGlobal climate change in the instrumental periodEnviron Pollut1994831–223361:STN:280:DC%2BD2c7psFOntA%3D%3D10.1016/0269-7491(94)90019-1
– reference: KwartengEAGyamfiCAnyemeduFOKAdjeiKAAnornuGKCoupling SWAT and bathymetric data in modelling reservoir catchment hydrologySpat Inf Res2021291556910.1007/s41324-020-00337-7
– reference: VapnikVThe nature of statistical learning theory1995New YorkSpringer10.1007/978-1-4757-2440-0
– reference: AllawiMFBinti OthmanFAfanHAAhmedANHossainMFaiCMEl-ShafieAReservoir evaporation prediction modeling based on artificial intelligence methodsWater2019116122610.3390/w11061226
– reference: JangJSANFIS: adaptive-network-based fuzzy inference systemIEEE Trans Syst Man Cybern199323366568510.1109/21.256541
– reference: Diaz-NietoJWilbyRLA comparison of statistical downscaling and climate change factor methods: impacts on low flows in the River Thames United KingdomClimatic Change200569224526810.1007/s10584-005-1157-6
– reference: AbualigahLDiabatAMirjaliliSAbd ElazizMGandomiAHThe arithmetic optimization algorithmComput Methods Appl Mech Eng202137610.1016/j.cma.2020.113609
– reference: SuykensJAVandewalleJLeast squares support vector machine classifiersNeural Process Lett19999329330010.1023/A:1018628609742
– reference: Kondo T (1998) GMDH neural network algorithm using the heuristic self-organization method and its application to the pattern identification problem. In Proceedings of the 37th SICE Annual Conference. International Session Papers (pp. 1143–1148). IEEE
– reference: KoukouliPGeorgiouPEKarpouzosDKEvaluation of climate change impacts on reference evapotranspiration under RCPs scenarios in Northern GreeceGlobal NEST J20192145195291:CAS:528:DC%2BB3cXhtVSlsbnE
– reference: Arya Azar N, Kardan N, Ghordoyee Milan S (2021b) Developing the artificial neural network–evolutionary algorithms hybrid models (ANN–EA) to predict the daily evaporation from dam reservoirs. Eng Comput 1–19
– reference: Halik G, Anwar N, Santosa B (2015) Reservoir inflow prediction under GCM scenario downscaled by wavelet transform and support vector machine hybrid models. Adv Civil Eng 2015
– reference: Paryani S, Neshat A, Pradhan B (2021b) Improvement of landslide spatial modeling using machine learning methods and two Harris hawks and bat algorithms. The Egyptian Journal of Remote Sensing and Space Science.
– reference: AllawiMFEl-ShafieAUtilizing RBF-NN and ANFIS methods for multi-lead ahead prediction model of evaporation from reservoirWater Resour Manage201630134773478810.1007/s11269-016-1452-1
– reference: AllawiMFAidanIAEl-ShafieAEnhancing the performance of data-driven models for monthly reservoir evaporation predictionEnviron Sci Pollut Res20212878281829510.1007/s11356-020-11062-x
– reference: SammenSSGhorbaniMAMalikATikhamarineYAmirRahmaniMAl-AnsariNChauKWEnhanced artificial neural network with Harris hawks optimization for predicting scour depth downstream of ski-jump spillwayAppl Sci2020101551601:CAS:528:DC%2BB3cXhslGgsbfL10.3390/app10155160
– reference: Bac BH, Nguyen H, Thao NTT, Hanh VT, Duyen LT, Dung NT,..., Hiep NH (2021) Estimating heavy metals absorption efficiency in an aqueous solution using nanotube-type halloysite from weathered pegmatites and a novel Harris hawks optimization-based multiple layers perceptron neural network. Eng Comput 1–16
– reference: SebbarAHeddamSDjemiliLPredicting daily pan evaporation (E pan) from dam reservoirs in the Mediterranean regions of Algeria: OPELM vs OSELMEnvironmental Processes20196130931910.1007/s40710-019-00353-2
– reference: ChenWPanahiMPourghasemiHRPerformance evaluation of GIS-based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (ANFIS) with genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) for landslide spatial modellingCATENA201715731032410.1016/j.catena.2017.05.034
– reference: Abbaspour KC, Faramarzi M, Ghasemi SS, Yang H (2009) Assessing the impact of climate change on water resources in Iran. Water Resour Res 45(10).
– reference: SivakumarBGlobal climate change and its impacts on water resources planning and management: assessment and challengesStoch Env Res Risk Assess201125458360010.1007/s00477-010-0423-y
– reference: NouraniVRouzegariNMolajouABaghanamAHAn integrated simulation-optimization framework to optimize the reservoir operation adapted to climate change scenariosJ Hydrol202058710.1016/j.jhydrol.2020.125018
– reference: ZhongWGuoJChenLZhouJZhangJWangDFuture hydropower generation prediction of large-scale reservoirs in the upper Yangtze River basin under climate changeJ Hydrol202058810.1016/j.jhydrol.2020.125013
– reference: Shamim MA, Hassan M, Ahmad S, Zeeshan M (2016) A comparison of artificial neural networks (ANN) and local linear regression (LLR) techniques for predicting monthly reservoir levels. KSCE J Civ Eng 20:971–977. https://doi.org/10.1007/s12205-015-0298-z
– reference: ShehabeldeenTAAbd ElazizMElsheikhAHZhouJModeling of friction stir welding process using adaptive neuro-fuzzy inference system integrated with harris hawks optimizerJ Market Res201986588258921:CAS:528:DC%2BC1MXhvFymsb7N
– reference: Asefpour VakilianKMassahJA fuzzy-based decision making software for enzymatic electrochemical nitrate biosensorsChemom Intell Lab Syst201817755631:CAS:528:DC%2BC1cXot1yjsrY%3D10.1016/j.chemolab.2018.04.016
– reference: ParyaniSNeshatAPradhanBImprovement of landslide spatial modeling using machine learning methods and two Harris hawks and bat algorithmsThe Egyptian Journal of Remote Sensing and Space Science202124384585510.1016/j.ejrs.2021.08.006
– reference: Salih SQ, Allawi MF, Yousif AA, Armanuos AM, Saggi MK, Ali M, ..., Chau KW (2019) Viability of the advanced adaptive neuro-fuzzy inference system model on reservoir evaporation process simulation: case study of Nasser Lake in Egypt. Eng Appl Comput Fluid Mech 13(1):878-891
– reference: Arya AzarNGhordoyee MilanSKayhomayoonZPredicting monthly evaporation from dam reservoirs using LS-SVR and ANFIS optimized by Harris hawks optimization algorithmEnviron Monit Assess20211931111410.1007/s10661-021-09495-z
– reference: TermehSVRKhosraviKSartajMKeesstraSDTsaiFTCDijksmaRPhamBTOptimization of an adaptive neuro-fuzzy inference system for groundwater potential mappingHydrogeol J20192772511253410.1007/s10040-019-02017-9
– reference: HeidariAAMirjaliliSFarisHAljarahIMafarjaMChenHHarris hawks optimization: algorithm and applicationsFutur Gener Comput Syst20199784987210.1016/j.future.2019.02.028
– reference: Hughes A, Mansour M, Ward R, Kieboom N, Allen S, Seccombe D, ..., Prudhomme C (2021) The impact of climate change on groundwater recharge: national-scale assessment for the British mainland. J Hydrol 598:126336
– reference: AbreuALENetoACMachine learning model for predicting evaporation losses in reservoirsIEEE Lat Am Trans20181672040204410.1109/TLA.2018.8447374
– reference: GoodarziEDastoraniMTalebiAEvaluation of the change-factor and LARS-WG methods of downscaling for simulation of climatic variables in the future (Case study: Herat Azam Watershed, Yazd-Iran)Ecopersia201531833846
– reference: MilanSGRoozbahaniAAzarNAJavadiSDevelopment of adaptive neuro fuzzy inference system–evolutionary algorithms hybrid models (ANFIS-EA) for prediction of optimal groundwater exploitationJ Hydrol202159810.1016/j.jhydrol.2021.126258
– reference: Althoff D, Dias SHB, Filgueiras R, Rodrigues LN (2020) ETo‐Brazil: a daily gridded reference evapotranspiration data set for Brazil (2000–2018). Water Resour Res 56(7):e2020WR027562
– reference: Wubneh MA, Worku TA, Fikadie FT, Aman TF, Kifelew MS (2022) Climate change impact on Lake Tana water storage, Upper Blue Nile Basin, Ethiopia. Geocarto International 1–23
– reference: Gupta PK, Yadav BK, Sharma D (2022) Impacts of climatic variability on subsurface water resources. In Advances in Remediation Techniques for Polluted Soils and Groundwater (pp. 171–189). Elsevier
– reference: KayhomayoonZAzarNAMilanSGMoghaddamHKBerndtssonRNovel approach for predicting groundwater storage loss using machine learningJ Environ Manage202129610.1016/j.jenvman.2021.113237
– reference: Pallavi K, Rajeev S (2016) Predicting reservoir evaporation using artificial neural network. International Journal of Innovative Research in Science, Engineering and Technology,(An ISO 3297: 2007 Certified Organization) Vol, 5
– reference: AshoftehPSHaddadOBMariñoAM. Climate change impact on reservoir performance indexes in agricultural water supplyJ Irrig Drain Eng20131392859710.1061/(ASCE)IR.1943-4774.0000496
– ident: 23899_CR43
  doi: 10.21203/rs.3.rs-927576/v1
– ident: 23899_CR30
– volume: 133
  start-page: 1119
  issue: 3
  year: 2018
  ident: 23899_CR16
  publication-title: Theoret Appl Climatol
  doi: 10.1007/s00704-017-2244-0
– volume: 16
  start-page: 2040
  issue: 7
  year: 2018
  ident: 23899_CR2
  publication-title: IEEE Lat Am Trans
  doi: 10.1109/TLA.2018.8447374
– ident: 23899_CR7
  doi: 10.1029/2020WR027562
– volume-title: The nature of statistical learning theory
  year: 1995
  ident: 23899_CR42
  doi: 10.1007/978-1-4757-2440-0
– volume: 24
  start-page: 845
  issue: 3
  year: 2021
  ident: 23899_CR31
  publication-title: The Egyptian Journal of Remote Sensing and Space Science
  doi: 10.1016/j.ejrs.2021.08.006
– volume: 3
  start-page: 833
  issue: 1
  year: 2015
  ident: 23899_CR17
  publication-title: Ecopersia
– volume: 21
  start-page: 519
  issue: 4
  year: 2019
  ident: 23899_CR26
  publication-title: Global NEST J
– volume: 23
  start-page: 665
  issue: 3
  year: 1993
  ident: 23899_CR23
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/21.256541
– ident: 23899_CR12
  doi: 10.1007/s00366-021-01459-8
– volume: 588
  year: 2020
  ident: 23899_CR44
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2020.125013
– ident: 23899_CR25
  doi: 10.1109/SICE.1998.742993
– volume: 598
  year: 2021
  ident: 23899_CR28
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2021.126258
– ident: 23899_CR33
  doi: 10.1080/19942060.2019.1647879
– volume: 83
  start-page: 23
  issue: 1–2
  year: 1994
  ident: 23899_CR22
  publication-title: Environ Pollut
  doi: 10.1016/0269-7491(94)90019-1
– volume: 376
  year: 2021
  ident: 23899_CR3
  publication-title: Comput Methods Appl Mech Eng
  doi: 10.1016/j.cma.2020.113609
– ident: 23899_CR18
  doi: 10.1016/B978-0-12-823830-1.00003-1
– ident: 23899_CR1
  doi: 10.1029/2008WR007615
– ident: 23899_CR37
  doi: 10.1007/s12205-015-0298-z
– volume: 10
  start-page: 5160
  issue: 15
  year: 2020
  ident: 23899_CR34
  publication-title: Appl Sci
  doi: 10.3390/app10155160
– volume: 587
  year: 2020
  ident: 23899_CR29
  publication-title: J Hydrol
  doi: 10.1016/j.jhydrol.2020.125018
– volume: 193
  start-page: 1
  issue: 11
  year: 2021
  ident: 23899_CR8
  publication-title: Environ Monit Assess
  doi: 10.1007/s10661-021-09495-z
– ident: 23899_CR21
  doi: 10.1016/j.jhydrol.2021.126336
– volume: 25
  start-page: 583
  issue: 4
  year: 2011
  ident: 23899_CR39
  publication-title: Stoch Env Res Risk Assess
  doi: 10.1007/s00477-010-0423-y
– ident: 23899_CR19
  doi: 10.1155/2015/515376
– volume: 9
  start-page: 293
  issue: 3
  year: 1999
  ident: 23899_CR40
  publication-title: Neural Process Lett
  doi: 10.1023/A:1018628609742
– volume: 69
  start-page: 245
  issue: 2
  year: 2005
  ident: 23899_CR14
  publication-title: Climatic Change
  doi: 10.1007/s10584-005-1157-6
– volume: 6
  start-page: 309
  issue: 1
  year: 2019
  ident: 23899_CR35
  publication-title: Environmental Processes
  doi: 10.1007/s40710-019-00353-2
– volume: 177
  start-page: 55
  year: 2018
  ident: 23899_CR10
  publication-title: Chemom Intell Lab Syst
  doi: 10.1016/j.chemolab.2018.04.016
– volume: 28
  start-page: 8281
  issue: 7
  year: 2021
  ident: 23899_CR6
  publication-title: Environ Sci Pollut Res
  doi: 10.1007/s11356-020-11062-x
– volume: 29
  start-page: 55
  issue: 1
  year: 2021
  ident: 23899_CR27
  publication-title: Spat Inf Res
  doi: 10.1007/s41324-020-00337-7
– volume: 11
  start-page: 1226
  issue: 6
  year: 2019
  ident: 23899_CR5
  publication-title: Water
  doi: 10.3390/w11061226
– volume: 7
  start-page: 51
  issue: 4
  year: 2019
  ident: 23899_CR15
  publication-title: Climate
  doi: 10.3390/cli7040051
– ident: 23899_CR32
  doi: 10.1016/j.ejrs.2021.08.006
– ident: 23899_CR9
  doi: 10.1007/s00366-021-01523-3
– volume: 139
  start-page: 85
  issue: 2
  year: 2013
  ident: 23899_CR11
  publication-title: J Irrig Drain Eng
  doi: 10.1061/(ASCE)IR.1943-4774.0000496
– volume: 27
  start-page: 2511
  issue: 7
  year: 2019
  ident: 23899_CR41
  publication-title: Hydrogeol J
  doi: 10.1007/s10040-019-02017-9
– volume: 97
  start-page: 849
  year: 2019
  ident: 23899_CR20
  publication-title: Futur Gener Comput Syst
  doi: 10.1016/j.future.2019.02.028
– volume: 8
  start-page: 5882
  issue: 6
  year: 2019
  ident: 23899_CR38
  publication-title: J Market Res
– volume: 157
  start-page: 310
  year: 2017
  ident: 23899_CR13
  publication-title: CATENA
  doi: 10.1016/j.catena.2017.05.034
– volume: 296
  year: 2021
  ident: 23899_CR24
  publication-title: J Environ Manage
  doi: 10.1016/j.jenvman.2021.113237
– volume: 42
  start-page: 351
  issue: 4
  year: 2021
  ident: 23899_CR36
  publication-title: Phys Geogr
  doi: 10.1080/02723646.2020.1776087
– volume: 30
  start-page: 4773
  issue: 13
  year: 2016
  ident: 23899_CR4
  publication-title: Water Resour Manage
  doi: 10.1007/s11269-016-1452-1
SSID ssj0020927
Score 2.4344182
Snippet This study aimed to predict evaporation from dam reservoirs using artificial intelligence considering climate change. Mahabad Dam, near Lake Urmia, in...
SourceID proquest
pubmed
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 27912
SubjectTerms Algorithms
Aquatic Pollution
arithmetics
Artificial Intelligence
Atmospheric Protection/Air Quality Control/Air Pollution
Climate Change
Earth and Environmental Science
Ecotoxicology
Environment
Environmental Chemistry
Environmental Health
evaporation
Fuzzy Logic
Iran
lakes
Machine Learning
observational studies
prediction
regression analysis
Research Article
temperature
Waste Water Technology
Water Management
Water Pollution Control
Title Prediction of evaporation from dam reservoirs under climate change using soft computing techniques
URI https://link.springer.com/article/10.1007/s11356-022-23899-5
https://www.ncbi.nlm.nih.gov/pubmed/36385346
https://www.proquest.com/docview/2737466889
https://www.proquest.com/docview/2887605689
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1614-7499
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: AFBBN
  dateStart: 19970301
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Public Health Database
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: 8C1
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/publichealth
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1614-7499
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0020927
  issn: 1614-7499
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB7UXryIb-ujrOBNA8km2d0ci7SKoniwoKew2d1IQVtJqr_fmTxapFLwFEJmSdhvd_ItM98MwEViOUfWYb3YKjyg5LHyMqG5l0dGa5K9q4y0ww-P4nYU3b3EL40orGyz3duQZOWpF2K3IIwpYZZ7nIrCefE6dGIq54WreMT782OWn3DZyGP-Hvf7F7TEK5diotWvZrgNWw1HZP0a1B1Yc5NdOBgsJGn4sNmT5R5kTwUFW2iC2TRn7lt_NrAy0o4wqz8YaYyK7-m4KBmJxgpm3sdIVR2rdb-Mst_fWIkumZmqzQPdzsu7lvswGg6er2-9pnOCZ0LlzzxjfYSGS6OSLBIcL75RgUMuEhiDFEpS2h7udCtcyA03Mhc8D7RUmRWB5iI8gI3JdOKOgCWRzH0lM-eUi5IMJ1eoJBfSSBto3-ouBO1kpqYpK07dLd7TRUFkAiBFANIKgDTuwuV8zGddVGOl9XmLUYprnwIaeuKmX2WK1EtGQiiVrLBBL4pHNkE2hzXA83eG6HziMBJduGoRT5stXK74oOP_mZ_AJvWor1O9T2FjVny5M2Qys6wH6-o66EGnf_N6P-hVy_gHIYXugw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6V5QAXnoUuLdRIvdGgxEls54iqpdvyUA-sBCfLryAE3UXJLgd-fccbZ1dAtRKnKMpYSTzj8Tea-cYA3wpLKaIOG-VWYIBS5iLSTNGozIxSnvYutOcOX1yy_iD7fZ1fB1JY3Va7tynJqaeek92SNPcFszSivilclC_BcoYBCu3A8snPm7PeLNCKC8oDQeb_I19uQm-Q5Zus6HSzOV2HQfuZTY3J_fFkrI_N86sOju_9jw1YC-iTnDTmsgkf3HALdnpzshs-DKu93gb9p_JpHK86MiqJe1KPwWCIZ6UQq_4Sz16qnkZ3VU08Ha0i5uEOQbAjDaOY-Lr6W1KjsydmeoCEv501jq0_wuC0d_WjH4UzGSKTingcGRuj0ik3otAZo3iJjUgcopzEGARn3BcEog-xzKXUUMNLRstEcaEtSxRl6Q50hqOh-wSkyHgZC66dEy4rNCqNiaJk3HCbqNiqLiStkqQJDcv9uRkPct5q2U-lxKmU06mUeReOZmMem3YdC6UPW91LXFU-VaKGbjSpJYI6njEmRLFABv0zBoPMy-w2hjN7Z4puLU8z1oXvrRHI4BzqBR-09z7xr7DSv7o4l-e_Ls8-wypF_NUUlH-BzriauH3ES2N9EJbHPxD8DB0
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-QLyIb9dnBG9abNM2SY-iu_jGgwt7C2mSiqDdpd3d3-9M291VlAVPpXRCS75M-oWZb4aQs8QyBqzDerGVcEDJYumlXDMvi4zWKHuXKWqHn575bTe678W9byr-Ktt9EpKsNQ1YpSkfXg5sdjkTvgVhjMmzzGNYIM6LF8lyhIUSYEV32dX0yOUnTDRSmb_H_fwd_eKYv-Kj1W-ns07WGr5Ir2qAN8iCyzfJTnsmT4OHjX-WWyR9KTDwgpNN-xl1Yz1oIKaoI6FWf1LUGxXj_ntRUhSQFdR8vANtdbTWAFPMhH-jJWzP1FQtH_B2Wuq13CbdTvv1-tZruih4JpT-0DPWB5iYMDJJI87g4hsZOOAlgTFApwSm8IHXW-5CZpgRGWdZoIVMLQ804-EOWcr7udsjNIlE5kuROiddlKQwuVwmGRdG2ED7VrdIMJlMZZoS49jp4kPNiiMjAAoAUBUAKm6R8-mYQV1gY6716QQjBX6AwQ2du_6oVEDDRMS5lMkcG9hR4fjG0Wa3Bnj6zhA2ojiMeItcTBBXjTuXcz5o_3_mJ2Tl5aajHu-eHw7IKraurzPAD8nSsBi5IyA4w_S4WsNfCKnzSg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+evaporation+from+dam+reservoirs+under+climate+change+using+soft+computing+techniques&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Kayhomayoon%2C+Zahra&rft.au=Naghizadeh%2C+Fariba&rft.au=Malekpoor%2C+Mohammadreza&rft.au=Arya+Azar%2C+Naser&rft.date=2023-02-01&rft.issn=1614-7499&rft.eissn=1614-7499&rft.volume=30&rft.issue=10&rft.spage=27912&rft.epage=27935&rft_id=info:doi/10.1007%2Fs11356-022-23899-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11356_022_23899_5
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-7499&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-7499&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-7499&client=summon