Prediction of evaporation from dam reservoirs under climate change using soft computing techniques
This study aimed to predict evaporation from dam reservoirs using artificial intelligence considering climate change. Mahabad Dam, near Lake Urmia, in northwestern Iran, is used to investigate the proposed approach. There are three parts to the study presented herein. In the first part, two machine...
Saved in:
| Published in | Environmental science and pollution research international Vol. 30; no. 10; pp. 27912 - 27935 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Berlin/Heidelberg
Springer Berlin Heidelberg
01.02.2023
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1614-7499 1614-7499 |
| DOI | 10.1007/s11356-022-23899-5 |
Cover
| Abstract | This study aimed to predict evaporation from dam reservoirs using artificial intelligence considering climate change. Mahabad Dam, near Lake Urmia, in northwestern Iran, is used to investigate the proposed approach. There are three parts to the study presented herein. In the first part, two machine learning models, namely group method of data handling (GMDH) and least squares support vector regression (LS-SVR), were used to model the inflow to the dam reservoir. Temperature, precipitation, and inflow during the previous month from 1990 to 2017 were used as input data. In the second part, the evaporation from the dam reservoir was modeled using the adaptive neuro-fuzzy inference system (ANFIS) and optimized ANFIS using Harris hawks optimization (HHO) and the arithmetic optimization algorithm (AOA) optimization algorithms. The input parameters in this part were temperature, precipitation, inflow to the dam reservoir, along with evaporation from the dam reservoir in the previous month. In the third part, precipitation and temperature were predicted using the fifth report of IPCC based on RCP2.6, RCP4.5, and RCP8.5 scenarios for the period 2020–2040. Out of 28 models presented in the fifth report, EC-ERATH and FIO-ESM had the greatest similarity with observational data of temperature and precipitation, respectively. The results of scatter plots and Taylor’s diagram showed the higher performance of LS-SVR (root mean square error (RMSE), mean absolute percentage error (MAPE), and Nash–Sutcliffe efficiency (NSE) of 8.65, 4.69, and 0.96) compared to GMDH (RMSE, MAPE, and NSE of 11.65, 7.81, and 0.93) in modeling the inflow. Moreover, both hybrid modes (AOA-ANFIS and HHO-ANFIS) improved the performance of ANFIS in modeling the evaporation from the dam reservoir. The RMSE, MAPE, and NSE values for ANFIS were 0.56, 0.52, and 0.89, respectively, while these values for the AOA-ANFIS (RMSE, MAPE, and NSE of 0.31, 0.24, and 0.93) and HHO-ANFIS (RMSE, MAPE, and NSE of 0.20, 0.30, and 0.96) were improved remarkably. The impact of climate change reduced the inflow to the dam reservoir by about 0.45, 0.80, and 1.7 MCM in RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively. Also, the effect of climate change caused the evaporation from the dam reservoir to increase by about 0.2, 0.9, and 1 MCM in RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively. The findings of this study show that the correct management of dam reservoirs needs to consider the potential effects of climate change in the future. Moreover, the hybrid machine learning models used in this study can be used to predict the amount of evaporation in other reservoirs. |
|---|---|
| AbstractList | This study aimed to predict evaporation from dam reservoirs using artificial intelligence considering climate change. Mahabad Dam, near Lake Urmia, in northwestern Iran, is used to investigate the proposed approach. There are three parts to the study presented herein. In the first part, two machine learning models, namely group method of data handling (GMDH) and least squares support vector regression (LS-SVR), were used to model the inflow to the dam reservoir. Temperature, precipitation, and inflow during the previous month from 1990 to 2017 were used as input data. In the second part, the evaporation from the dam reservoir was modeled using the adaptive neuro-fuzzy inference system (ANFIS) and optimized ANFIS using Harris hawks optimization (HHO) and the arithmetic optimization algorithm (AOA) optimization algorithms. The input parameters in this part were temperature, precipitation, inflow to the dam reservoir, along with evaporation from the dam reservoir in the previous month. In the third part, precipitation and temperature were predicted using the fifth report of IPCC based on RCP2.6, RCP4.5, and RCP8.5 scenarios for the period 2020-2040. Out of 28 models presented in the fifth report, EC-ERATH and FIO-ESM had the greatest similarity with observational data of temperature and precipitation, respectively. The results of scatter plots and Taylor's diagram showed the higher performance of LS-SVR (root mean square error (RMSE), mean absolute percentage error (MAPE), and Nash-Sutcliffe efficiency (NSE) of 8.65, 4.69, and 0.96) compared to GMDH (RMSE, MAPE, and NSE of 11.65, 7.81, and 0.93) in modeling the inflow. Moreover, both hybrid modes (AOA-ANFIS and HHO-ANFIS) improved the performance of ANFIS in modeling the evaporation from the dam reservoir. The RMSE, MAPE, and NSE values for ANFIS were 0.56, 0.52, and 0.89, respectively, while these values for the AOA-ANFIS (RMSE, MAPE, and NSE of 0.31, 0.24, and 0.93) and HHO-ANFIS (RMSE, MAPE, and NSE of 0.20, 0.30, and 0.96) were improved remarkably. The impact of climate change reduced the inflow to the dam reservoir by about 0.45, 0.80, and 1.7 MCM in RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively. Also, the effect of climate change caused the evaporation from the dam reservoir to increase by about 0.2, 0.9, and 1 MCM in RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively. The findings of this study show that the correct management of dam reservoirs needs to consider the potential effects of climate change in the future. Moreover, the hybrid machine learning models used in this study can be used to predict the amount of evaporation in other reservoirs. This study aimed to predict evaporation from dam reservoirs using artificial intelligence considering climate change. Mahabad Dam, near Lake Urmia, in northwestern Iran, is used to investigate the proposed approach. There are three parts to the study presented herein. In the first part, two machine learning models, namely group method of data handling (GMDH) and least squares support vector regression (LS-SVR), were used to model the inflow to the dam reservoir. Temperature, precipitation, and inflow during the previous month from 1990 to 2017 were used as input data. In the second part, the evaporation from the dam reservoir was modeled using the adaptive neuro-fuzzy inference system (ANFIS) and optimized ANFIS using Harris hawks optimization (HHO) and the arithmetic optimization algorithm (AOA) optimization algorithms. The input parameters in this part were temperature, precipitation, inflow to the dam reservoir, along with evaporation from the dam reservoir in the previous month. In the third part, precipitation and temperature were predicted using the fifth report of IPCC based on RCP2.6, RCP4.5, and RCP8.5 scenarios for the period 2020-2040. Out of 28 models presented in the fifth report, EC-ERATH and FIO-ESM had the greatest similarity with observational data of temperature and precipitation, respectively. The results of scatter plots and Taylor's diagram showed the higher performance of LS-SVR (root mean square error (RMSE), mean absolute percentage error (MAPE), and Nash-Sutcliffe efficiency (NSE) of 8.65, 4.69, and 0.96) compared to GMDH (RMSE, MAPE, and NSE of 11.65, 7.81, and 0.93) in modeling the inflow. Moreover, both hybrid modes (AOA-ANFIS and HHO-ANFIS) improved the performance of ANFIS in modeling the evaporation from the dam reservoir. The RMSE, MAPE, and NSE values for ANFIS were 0.56, 0.52, and 0.89, respectively, while these values for the AOA-ANFIS (RMSE, MAPE, and NSE of 0.31, 0.24, and 0.93) and HHO-ANFIS (RMSE, MAPE, and NSE of 0.20, 0.30, and 0.96) were improved remarkably. The impact of climate change reduced the inflow to the dam reservoir by about 0.45, 0.80, and 1.7 MCM in RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively. Also, the effect of climate change caused the evaporation from the dam reservoir to increase by about 0.2, 0.9, and 1 MCM in RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively. The findings of this study show that the correct management of dam reservoirs needs to consider the potential effects of climate change in the future. Moreover, the hybrid machine learning models used in this study can be used to predict the amount of evaporation in other reservoirs.This study aimed to predict evaporation from dam reservoirs using artificial intelligence considering climate change. Mahabad Dam, near Lake Urmia, in northwestern Iran, is used to investigate the proposed approach. There are three parts to the study presented herein. In the first part, two machine learning models, namely group method of data handling (GMDH) and least squares support vector regression (LS-SVR), were used to model the inflow to the dam reservoir. Temperature, precipitation, and inflow during the previous month from 1990 to 2017 were used as input data. In the second part, the evaporation from the dam reservoir was modeled using the adaptive neuro-fuzzy inference system (ANFIS) and optimized ANFIS using Harris hawks optimization (HHO) and the arithmetic optimization algorithm (AOA) optimization algorithms. The input parameters in this part were temperature, precipitation, inflow to the dam reservoir, along with evaporation from the dam reservoir in the previous month. In the third part, precipitation and temperature were predicted using the fifth report of IPCC based on RCP2.6, RCP4.5, and RCP8.5 scenarios for the period 2020-2040. Out of 28 models presented in the fifth report, EC-ERATH and FIO-ESM had the greatest similarity with observational data of temperature and precipitation, respectively. The results of scatter plots and Taylor's diagram showed the higher performance of LS-SVR (root mean square error (RMSE), mean absolute percentage error (MAPE), and Nash-Sutcliffe efficiency (NSE) of 8.65, 4.69, and 0.96) compared to GMDH (RMSE, MAPE, and NSE of 11.65, 7.81, and 0.93) in modeling the inflow. Moreover, both hybrid modes (AOA-ANFIS and HHO-ANFIS) improved the performance of ANFIS in modeling the evaporation from the dam reservoir. The RMSE, MAPE, and NSE values for ANFIS were 0.56, 0.52, and 0.89, respectively, while these values for the AOA-ANFIS (RMSE, MAPE, and NSE of 0.31, 0.24, and 0.93) and HHO-ANFIS (RMSE, MAPE, and NSE of 0.20, 0.30, and 0.96) were improved remarkably. The impact of climate change reduced the inflow to the dam reservoir by about 0.45, 0.80, and 1.7 MCM in RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively. Also, the effect of climate change caused the evaporation from the dam reservoir to increase by about 0.2, 0.9, and 1 MCM in RCP2.6, RCP4.5, and RCP8.5 scenarios, respectively. The findings of this study show that the correct management of dam reservoirs needs to consider the potential effects of climate change in the future. Moreover, the hybrid machine learning models used in this study can be used to predict the amount of evaporation in other reservoirs. |
| Author | Arya Azar, Naser Malekpoor, Mohammadreza Kayhomayoon, Zahra Ghordoyee Milan, Sami Naghizadeh, Fariba Ball, James |
| Author_xml | – sequence: 1 givenname: Zahra surname: Kayhomayoon fullname: Kayhomayoon, Zahra email: Zkayhomayoon@pnu.ac.ir organization: Department of Geology, Payame Noor University – sequence: 2 givenname: Fariba surname: Naghizadeh fullname: Naghizadeh, Fariba organization: Department of Water Engineering, College of Agricultural Sciences, University of Guilan – sequence: 3 givenname: Mohammadreza surname: Malekpoor fullname: Malekpoor, Mohammadreza organization: Department of Civil Engineering, Azarshahr Branch, Islamic Azad University – sequence: 4 givenname: Naser surname: Arya Azar fullname: Arya Azar, Naser organization: Department of Water Engineering, Faculty of Agriculture, University of Tabriz – sequence: 5 givenname: James surname: Ball fullname: Ball, James organization: School of Civil and Environmental Engineering, University of Technology Sydney – sequence: 6 givenname: Sami surname: Ghordoyee Milan fullname: Ghordoyee Milan, Sami organization: Department of Irrigation and Drainage Engineering, Aburaihan Campus, University of Tehran |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36385346$$D View this record in MEDLINE/PubMed |
| BookMark | eNqFkctqHDEQRUVwiB_JD2QRtMymHT269VgGk9gBQ7xw1kJTXW3LdEsTSW3I30czY0PwwllVFZxbRd17So5iikjIR87OOWP6S-FcDqpjQnRCGmu74Q054Yr3ne6tPfqnPyanpTwwJpgV-h05lkqaQfbqhGxuMo4BakiRponio9-m7PfjlNNCR7_QjAXzYwq50DWOmCnMYfEVKdz7eId0LSHe0ZKmSiEt27XuxopwH8PvFct78nbyc8EPT_WM_Pr-7fbiqrv-efnj4ut1B9Kw2sHIEEBoMHbTK9EKA8PRWskBpOg1b61kw6hQChCgJyUm7rXZjIp7oeQZ-XzYu81pd7e6JRTAefYR01qcMEYrNihj_49qqXulzB799ISumwVHt83t9_zHPVvYAHMAIKdSMk4OQt07WLMPs-PM7dJyh7RcS8vt03JDk4oX0uftr4rkQVQa3OzP7iGtOTZnX1P9BQfCp6I |
| CitedBy_id | crossref_primary_10_1007_s00024_023_03426_4 crossref_primary_10_2166_nh_2024_191 crossref_primary_10_1038_s41598_025_90550_x crossref_primary_10_1186_s12302_024_01028_y crossref_primary_10_1007_s13201_023_02001_5 crossref_primary_10_1007_s13762_024_05917_w crossref_primary_10_1007_s12145_023_01063_y crossref_primary_10_1007_s13201_023_01923_4 crossref_primary_10_1007_s12145_024_01223_8 crossref_primary_10_1007_s40710_023_00669_0 crossref_primary_10_3390_su151310141 |
| Cites_doi | 10.21203/rs.3.rs-927576/v1 10.1007/s00704-017-2244-0 10.1109/TLA.2018.8447374 10.1029/2020WR027562 10.1007/978-1-4757-2440-0 10.1016/j.ejrs.2021.08.006 10.1109/21.256541 10.1007/s00366-021-01459-8 10.1016/j.jhydrol.2020.125013 10.1109/SICE.1998.742993 10.1016/j.jhydrol.2021.126258 10.1080/19942060.2019.1647879 10.1016/0269-7491(94)90019-1 10.1016/j.cma.2020.113609 10.1016/B978-0-12-823830-1.00003-1 10.1029/2008WR007615 10.1007/s12205-015-0298-z 10.3390/app10155160 10.1016/j.jhydrol.2020.125018 10.1007/s10661-021-09495-z 10.1016/j.jhydrol.2021.126336 10.1007/s00477-010-0423-y 10.1155/2015/515376 10.1023/A:1018628609742 10.1007/s10584-005-1157-6 10.1007/s40710-019-00353-2 10.1016/j.chemolab.2018.04.016 10.1007/s11356-020-11062-x 10.1007/s41324-020-00337-7 10.3390/w11061226 10.3390/cli7040051 10.1007/s00366-021-01523-3 10.1061/(ASCE)IR.1943-4774.0000496 10.1007/s10040-019-02017-9 10.1016/j.future.2019.02.028 10.1016/j.catena.2017.05.034 10.1016/j.jenvman.2021.113237 10.1080/02723646.2020.1776087 10.1007/s11269-016-1452-1 |
| ContentType | Journal Article |
| Copyright | The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
| Copyright_xml | – notice: The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. – notice: 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| DOI | 10.1007/s11356-022-23899-5 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | MEDLINE MEDLINE - Academic AGRICOLA |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Environmental Sciences |
| EISSN | 1614-7499 |
| EndPage | 27935 |
| ExternalDocumentID | 36385346 10_1007_s11356_022_23899_5 |
| Genre | Journal Article |
| GeographicLocations | Iran |
| GeographicLocations_xml | – name: Iran |
| GroupedDBID | --- -5A -5G -5~ -BR -EM -Y2 -~C .VR 06D 0R~ 0VY 199 1N0 2.D 203 29G 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 4P2 53G 5GY 5VS 67M 67Z 6NX 78A 7WY 7X7 7XC 88E 88I 8AO 8C1 8FE 8FH 8FI 8FJ 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHBH AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFO ACGFS ACGOD ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACPRK ACREN ACSNA ACSVP ACZOJ ADBBV ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADYOE ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEUYN AEVLU AEXYK AFBBN AFGCZ AFKRA AFLOW AFQWF AFRAH AFWTZ AFYQB AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHMBA AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMTXH AMXSW AMYLF AMYQR AOCGG ARMRJ ASPBG ATCPS AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGNMA BHPHI BPHCQ BSONS BVXVI CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 DWQXO EBD EBLON EBS EDH EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC FYUFA GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMCUK HMJXF HQYDN HRMNR HVGLF HZ~ IJ- IKXTQ IWAJR IXC IXD IXE IZIGR IZQ I~X I~Y I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6~ KDC KOV L8X LAS LLZTM M0C M1P M2P M4Y MA- ML. N2Q N9A NB0 NDZJH NF0 NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM P19 P2P PATMY PF0 PQBIZ PQBZA PQQKQ PROAC PSQYO PT4 PT5 PYCSY Q2X QOK QOS R89 R9I RHV RNI RNS ROL RSV RZK S16 S1Z S26 S27 S28 S3B SAP SCK SCLPG SDH SEV SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TSG TSK TSV TUC TUS U2A U9L UG4 UKHRP UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK6 WK8 Y6R YLTOR Z45 Z5O Z7R Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z8P Z8Q Z8S ZMTXR ~02 ~KM AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PJZUB PPXIY PUEGO CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
| ID | FETCH-LOGICAL-c380t-cd0ecc27c89b462c890c81e9931cc32471993305d6e32c2c7f62f1a78bd61a263 |
| IEDL.DBID | U2A |
| ISSN | 1614-7499 |
| IngestDate | Thu Oct 02 11:41:32 EDT 2025 Wed Oct 01 14:18:03 EDT 2025 Wed Feb 19 02:25:01 EST 2025 Wed Oct 01 03:13:34 EDT 2025 Thu Apr 24 23:10:06 EDT 2025 Fri Feb 21 02:45:39 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 10 |
| Keywords | Optimization algorithms Reservoir evaporation Climate change Time-series data Machine learning |
| Language | English |
| License | 2022. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature. |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c380t-cd0ecc27c89b462c890c81e9931cc32471993305d6e32c2c7f62f1a78bd61a263 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PMID | 36385346 |
| PQID | 2737466889 |
| PQPubID | 23479 |
| PageCount | 24 |
| ParticipantIDs | proquest_miscellaneous_2887605689 proquest_miscellaneous_2737466889 pubmed_primary_36385346 crossref_citationtrail_10_1007_s11356_022_23899_5 crossref_primary_10_1007_s11356_022_23899_5 springer_journals_10_1007_s11356_022_23899_5 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2023-02-01 |
| PublicationDateYYYYMMDD | 2023-02-01 |
| PublicationDate_xml | – month: 02 year: 2023 text: 2023-02-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Berlin/Heidelberg |
| PublicationPlace_xml | – name: Berlin/Heidelberg – name: Germany |
| PublicationTitle | Environmental science and pollution research international |
| PublicationTitleAbbrev | Environ Sci Pollut Res |
| PublicationTitleAlternate | Environ Sci Pollut Res Int |
| PublicationYear | 2023 |
| Publisher | Springer Berlin Heidelberg |
| Publisher_xml | – name: Springer Berlin Heidelberg |
| References | SebbarAHeddamSDjemiliLPredicting daily pan evaporation (E pan) from dam reservoirs in the Mediterranean regions of Algeria: OPELM vs OSELMEnvironmental Processes20196130931910.1007/s40710-019-00353-2 Kondo T (1998) GMDH neural network algorithm using the heuristic self-organization method and its application to the pattern identification problem. In Proceedings of the 37th SICE Annual Conference. International Session Papers (pp. 1143–1148). IEEE SuykensJAVandewalleJLeast squares support vector machine classifiersNeural Process Lett19999329330010.1023/A:1018628609742 AbreuALENetoACMachine learning model for predicting evaporation losses in reservoirsIEEE Lat Am Trans20181672040204410.1109/TLA.2018.8447374 Bac BH, Nguyen H, Thao NTT, Hanh VT, Duyen LT, Dung NT,..., Hiep NH (2021) Estimating heavy metals absorption efficiency in an aqueous solution using nanotube-type halloysite from weathered pegmatites and a novel Harris hawks optimization-based multiple layers perceptron neural network. Eng Comput 1–16 TermehSVRKhosraviKSartajMKeesstraSDTsaiFTCDijksmaRPhamBTOptimization of an adaptive neuro-fuzzy inference system for groundwater potential mappingHydrogeol J20192772511253410.1007/s10040-019-02017-9 ParyaniSNeshatAPradhanBImprovement of landslide spatial modeling using machine learning methods and two Harris hawks and bat algorithmsThe Egyptian Journal of Remote Sensing and Space Science202124384585510.1016/j.ejrs.2021.08.006 ChenWPanahiMPourghasemiHRPerformance evaluation of GIS-based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (ANFIS) with genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) for landslide spatial modellingCATENA201715731032410.1016/j.catena.2017.05.034 HulmeMJonesPDGlobal climate change in the instrumental periodEnviron Pollut1994831–223361:STN:280:DC%2BD2c7psFOntA%3D%3D10.1016/0269-7491(94)90019-1 KayhomayoonZAzarNAMilanSGMoghaddamHKBerndtssonRNovel approach for predicting groundwater storage loss using machine learningJ Environ Manage202129610.1016/j.jenvman.2021.113237 Abbaspour KC, Faramarzi M, Ghasemi SS, Yang H (2009) Assessing the impact of climate change on water resources in Iran. Water Resour Res 45(10). AbualigahLDiabatAMirjaliliSAbd ElazizMGandomiAHThe arithmetic optimization algorithmComput Methods Appl Mech Eng202137610.1016/j.cma.2020.113609 Shamim MA, Hassan M, Ahmad S, Zeeshan M (2016) A comparison of artificial neural networks (ANN) and local linear regression (LLR) techniques for predicting monthly reservoir levels. KSCE J Civ Eng 20:971–977. https://doi.org/10.1007/s12205-015-0298-z Hughes A, Mansour M, Ward R, Kieboom N, Allen S, Seccombe D, ..., Prudhomme C (2021) The impact of climate change on groundwater recharge: national-scale assessment for the British mainland. J Hydrol 598:126336 Arya AzarNGhordoyee MilanSKayhomayoonZPredicting monthly evaporation from dam reservoirs using LS-SVR and ANFIS optimized by Harris hawks optimization algorithmEnviron Monit Assess20211931111410.1007/s10661-021-09495-z MilanSGRoozbahaniAAzarNAJavadiSDevelopment of adaptive neuro fuzzy inference system–evolutionary algorithms hybrid models (ANFIS-EA) for prediction of optimal groundwater exploitationJ Hydrol202159810.1016/j.jhydrol.2021.126258 SivakumarBGlobal climate change and its impacts on water resources planning and management: assessment and challengesStoch Env Res Risk Assess201125458360010.1007/s00477-010-0423-y Diaz-NietoJWilbyRLA comparison of statistical downscaling and climate change factor methods: impacts on low flows in the River Thames United KingdomClimatic Change200569224526810.1007/s10584-005-1157-6 KoukouliPGeorgiouPEKarpouzosDKEvaluation of climate change impacts on reference evapotranspiration under RCPs scenarios in Northern GreeceGlobal NEST J20192145195291:CAS:528:DC%2BB3cXhtVSlsbnE HeidariAAMirjaliliSFarisHAljarahIMafarjaMChenHHarris hawks optimization: algorithm and applicationsFutur Gener Comput Syst20199784987210.1016/j.future.2019.02.028 Paryani S, Neshat A, Pradhan B (2021b) Improvement of landslide spatial modeling using machine learning methods and two Harris hawks and bat algorithms. The Egyptian Journal of Remote Sensing and Space Science. AllawiMFBinti OthmanFAfanHAAhmedANHossainMFaiCMEl-ShafieAReservoir evaporation prediction modeling based on artificial intelligence methodsWater2019116122610.3390/w11061226 Salih SQ, Allawi MF, Yousif AA, Armanuos AM, Saggi MK, Ali M, ..., Chau KW (2019) Viability of the advanced adaptive neuro-fuzzy inference system model on reservoir evaporation process simulation: case study of Nasser Lake in Egypt. Eng Appl Comput Fluid Mech 13(1):878-891 Arya Azar N, Kardan N, Ghordoyee Milan S (2021b) Developing the artificial neural network–evolutionary algorithms hybrid models (ANN–EA) to predict the daily evaporation from dam reservoirs. Eng Comput 1–19 Pallavi K, Rajeev S (2016) Predicting reservoir evaporation using artificial neural network. International Journal of Innovative Research in Science, Engineering and Technology,(An ISO 3297: 2007 Certified Organization) Vol, 5 EmamiFKochMModeling the impact of climate change on water availability in the Zarrine River Basin and inflow to the Boukan Dam IranClimate2019745110.3390/cli7040051 NouraniVRouzegariNMolajouABaghanamAHAn integrated simulation-optimization framework to optimize the reservoir operation adapted to climate change scenariosJ Hydrol202058710.1016/j.jhydrol.2020.125018 Asefpour VakilianKMassahJA fuzzy-based decision making software for enzymatic electrochemical nitrate biosensorsChemom Intell Lab Syst201817755631:CAS:528:DC%2BC1cXot1yjsrY%3D10.1016/j.chemolab.2018.04.016 SebbarAHeddamSDjemiliLKernel extreme learning machines (KELM): a new approach for modeling monthly evaporation (EP) from dams reservoirsPhys Geogr202142435137310.1080/02723646.2020.1776087 GoodarziEDastoraniMTalebiAEvaluation of the change-factor and LARS-WG methods of downscaling for simulation of climatic variables in the future (Case study: Herat Azam Watershed, Yazd-Iran)Ecopersia201531833846 KwartengEAGyamfiCAnyemeduFOKAdjeiKAAnornuGKCoupling SWAT and bathymetric data in modelling reservoir catchment hydrologySpat Inf Res2021291556910.1007/s41324-020-00337-7 VapnikVThe nature of statistical learning theory1995New YorkSpringer10.1007/978-1-4757-2440-0 ShehabeldeenTAAbd ElazizMElsheikhAHZhouJModeling of friction stir welding process using adaptive neuro-fuzzy inference system integrated with harris hawks optimizerJ Market Res201986588258921:CAS:528:DC%2BC1MXhvFymsb7N AshoftehPSHaddadOBMariñoAM. Climate change impact on reservoir performance indexes in agricultural water supplyJ Irrig Drain Eng20131392859710.1061/(ASCE)IR.1943-4774.0000496 AllawiMFAidanIAEl-ShafieAEnhancing the performance of data-driven models for monthly reservoir evaporation predictionEnviron Sci Pollut Res20212878281829510.1007/s11356-020-11062-x Wubneh MA, Worku TA, Fikadie FT, Aman TF, Kifelew MS (2022) Climate change impact on Lake Tana water storage, Upper Blue Nile Basin, Ethiopia. Geocarto International 1–23 Gupta PK, Yadav BK, Sharma D (2022) Impacts of climatic variability on subsurface water resources. In Advances in Remediation Techniques for Polluted Soils and Groundwater (pp. 171–189). Elsevier GhorbaniMADeoRCYaseenZMKashaniMHMohammadiBPan evaporation prediction using a hybrid multilayer perceptron-firefly algorithm (MLP-FFA) model: case study in North IranTheoret Appl Climatol201813331119113110.1007/s00704-017-2244-0 SammenSSGhorbaniMAMalikATikhamarineYAmirRahmaniMAl-AnsariNChauKWEnhanced artificial neural network with Harris hawks optimization for predicting scour depth downstream of ski-jump spillwayAppl Sci2020101551601:CAS:528:DC%2BB3cXhslGgsbfL10.3390/app10155160 ZhongWGuoJChenLZhouJZhangJWangDFuture hydropower generation prediction of large-scale reservoirs in the upper Yangtze River basin under climate changeJ Hydrol202058810.1016/j.jhydrol.2020.125013 AllawiMFEl-ShafieAUtilizing RBF-NN and ANFIS methods for multi-lead ahead prediction model of evaporation from reservoirWater Resour Manage201630134773478810.1007/s11269-016-1452-1 JangJSANFIS: adaptive-network-based fuzzy inference systemIEEE Trans Syst Man Cybern199323366568510.1109/21.256541 Halik G, Anwar N, Santosa B (2015) Reservoir inflow prediction under GCM scenario downscaled by wavelet transform and support vector machine hybrid models. Adv Civil Eng 2015 Althoff D, Dias SHB, Filgueiras R, Rodrigues LN (2020) ETo‐Brazil: a daily gridded reference evapotranspiration data set for Brazil (2000–2018). Water Resour Res 56(7):e2020WR027562 MF Allawi (23899_CR6) 2021; 28 M Hulme (23899_CR22) 1994; 83 S Paryani (23899_CR31) 2021; 24 23899_CR19 23899_CR18 23899_CR12 23899_CR37 23899_CR9 JS Jang (23899_CR23) 1993; 23 23899_CR30 23899_CR7 N Arya Azar (23899_CR8) 2021; 193 F Emami (23899_CR15) 2019; 7 V Nourani (23899_CR29) 2020; 587 23899_CR33 23899_CR32 E Goodarzi (23899_CR17) 2015; 3 JA Suykens (23899_CR40) 1999; 9 K Asefpour Vakilian (23899_CR10) 2018; 177 PS Ashofteh (23899_CR11) 2013; 139 W Zhong (23899_CR44) 2020; 588 B Sivakumar (23899_CR39) 2011; 25 Z Kayhomayoon (23899_CR24) 2021; 296 EA Kwarteng (23899_CR27) 2021; 29 P Koukouli (23899_CR26) 2019; 21 J Diaz-Nieto (23899_CR14) 2005; 69 W Chen (23899_CR13) 2017; 157 23899_CR25 A Sebbar (23899_CR36) 2021; 42 SS Sammen (23899_CR34) 2020; 10 MF Allawi (23899_CR5) 2019; 11 23899_CR21 23899_CR43 AA Heidari (23899_CR20) 2019; 97 23899_CR1 SVR Termeh (23899_CR41) 2019; 27 TA Shehabeldeen (23899_CR38) 2019; 8 L Abualigah (23899_CR3) 2021; 376 MA Ghorbani (23899_CR16) 2018; 133 A Sebbar (23899_CR35) 2019; 6 SG Milan (23899_CR28) 2021; 598 V Vapnik (23899_CR42) 1995 MF Allawi (23899_CR4) 2016; 30 ALE Abreu (23899_CR2) 2018; 16 |
| References_xml | – reference: EmamiFKochMModeling the impact of climate change on water availability in the Zarrine River Basin and inflow to the Boukan Dam IranClimate2019745110.3390/cli7040051 – reference: GhorbaniMADeoRCYaseenZMKashaniMHMohammadiBPan evaporation prediction using a hybrid multilayer perceptron-firefly algorithm (MLP-FFA) model: case study in North IranTheoret Appl Climatol201813331119113110.1007/s00704-017-2244-0 – reference: SebbarAHeddamSDjemiliLKernel extreme learning machines (KELM): a new approach for modeling monthly evaporation (EP) from dams reservoirsPhys Geogr202142435137310.1080/02723646.2020.1776087 – reference: HulmeMJonesPDGlobal climate change in the instrumental periodEnviron Pollut1994831–223361:STN:280:DC%2BD2c7psFOntA%3D%3D10.1016/0269-7491(94)90019-1 – reference: KwartengEAGyamfiCAnyemeduFOKAdjeiKAAnornuGKCoupling SWAT and bathymetric data in modelling reservoir catchment hydrologySpat Inf Res2021291556910.1007/s41324-020-00337-7 – reference: VapnikVThe nature of statistical learning theory1995New YorkSpringer10.1007/978-1-4757-2440-0 – reference: AllawiMFBinti OthmanFAfanHAAhmedANHossainMFaiCMEl-ShafieAReservoir evaporation prediction modeling based on artificial intelligence methodsWater2019116122610.3390/w11061226 – reference: JangJSANFIS: adaptive-network-based fuzzy inference systemIEEE Trans Syst Man Cybern199323366568510.1109/21.256541 – reference: Diaz-NietoJWilbyRLA comparison of statistical downscaling and climate change factor methods: impacts on low flows in the River Thames United KingdomClimatic Change200569224526810.1007/s10584-005-1157-6 – reference: AbualigahLDiabatAMirjaliliSAbd ElazizMGandomiAHThe arithmetic optimization algorithmComput Methods Appl Mech Eng202137610.1016/j.cma.2020.113609 – reference: SuykensJAVandewalleJLeast squares support vector machine classifiersNeural Process Lett19999329330010.1023/A:1018628609742 – reference: Kondo T (1998) GMDH neural network algorithm using the heuristic self-organization method and its application to the pattern identification problem. In Proceedings of the 37th SICE Annual Conference. International Session Papers (pp. 1143–1148). IEEE – reference: KoukouliPGeorgiouPEKarpouzosDKEvaluation of climate change impacts on reference evapotranspiration under RCPs scenarios in Northern GreeceGlobal NEST J20192145195291:CAS:528:DC%2BB3cXhtVSlsbnE – reference: Arya Azar N, Kardan N, Ghordoyee Milan S (2021b) Developing the artificial neural network–evolutionary algorithms hybrid models (ANN–EA) to predict the daily evaporation from dam reservoirs. Eng Comput 1–19 – reference: Halik G, Anwar N, Santosa B (2015) Reservoir inflow prediction under GCM scenario downscaled by wavelet transform and support vector machine hybrid models. Adv Civil Eng 2015 – reference: Paryani S, Neshat A, Pradhan B (2021b) Improvement of landslide spatial modeling using machine learning methods and two Harris hawks and bat algorithms. The Egyptian Journal of Remote Sensing and Space Science. – reference: AllawiMFEl-ShafieAUtilizing RBF-NN and ANFIS methods for multi-lead ahead prediction model of evaporation from reservoirWater Resour Manage201630134773478810.1007/s11269-016-1452-1 – reference: AllawiMFAidanIAEl-ShafieAEnhancing the performance of data-driven models for monthly reservoir evaporation predictionEnviron Sci Pollut Res20212878281829510.1007/s11356-020-11062-x – reference: SammenSSGhorbaniMAMalikATikhamarineYAmirRahmaniMAl-AnsariNChauKWEnhanced artificial neural network with Harris hawks optimization for predicting scour depth downstream of ski-jump spillwayAppl Sci2020101551601:CAS:528:DC%2BB3cXhslGgsbfL10.3390/app10155160 – reference: Bac BH, Nguyen H, Thao NTT, Hanh VT, Duyen LT, Dung NT,..., Hiep NH (2021) Estimating heavy metals absorption efficiency in an aqueous solution using nanotube-type halloysite from weathered pegmatites and a novel Harris hawks optimization-based multiple layers perceptron neural network. Eng Comput 1–16 – reference: SebbarAHeddamSDjemiliLPredicting daily pan evaporation (E pan) from dam reservoirs in the Mediterranean regions of Algeria: OPELM vs OSELMEnvironmental Processes20196130931910.1007/s40710-019-00353-2 – reference: ChenWPanahiMPourghasemiHRPerformance evaluation of GIS-based new ensemble data mining techniques of adaptive neuro-fuzzy inference system (ANFIS) with genetic algorithm (GA), differential evolution (DE), and particle swarm optimization (PSO) for landslide spatial modellingCATENA201715731032410.1016/j.catena.2017.05.034 – reference: Abbaspour KC, Faramarzi M, Ghasemi SS, Yang H (2009) Assessing the impact of climate change on water resources in Iran. Water Resour Res 45(10). – reference: SivakumarBGlobal climate change and its impacts on water resources planning and management: assessment and challengesStoch Env Res Risk Assess201125458360010.1007/s00477-010-0423-y – reference: NouraniVRouzegariNMolajouABaghanamAHAn integrated simulation-optimization framework to optimize the reservoir operation adapted to climate change scenariosJ Hydrol202058710.1016/j.jhydrol.2020.125018 – reference: ZhongWGuoJChenLZhouJZhangJWangDFuture hydropower generation prediction of large-scale reservoirs in the upper Yangtze River basin under climate changeJ Hydrol202058810.1016/j.jhydrol.2020.125013 – reference: Shamim MA, Hassan M, Ahmad S, Zeeshan M (2016) A comparison of artificial neural networks (ANN) and local linear regression (LLR) techniques for predicting monthly reservoir levels. KSCE J Civ Eng 20:971–977. https://doi.org/10.1007/s12205-015-0298-z – reference: ShehabeldeenTAAbd ElazizMElsheikhAHZhouJModeling of friction stir welding process using adaptive neuro-fuzzy inference system integrated with harris hawks optimizerJ Market Res201986588258921:CAS:528:DC%2BC1MXhvFymsb7N – reference: Asefpour VakilianKMassahJA fuzzy-based decision making software for enzymatic electrochemical nitrate biosensorsChemom Intell Lab Syst201817755631:CAS:528:DC%2BC1cXot1yjsrY%3D10.1016/j.chemolab.2018.04.016 – reference: ParyaniSNeshatAPradhanBImprovement of landslide spatial modeling using machine learning methods and two Harris hawks and bat algorithmsThe Egyptian Journal of Remote Sensing and Space Science202124384585510.1016/j.ejrs.2021.08.006 – reference: Salih SQ, Allawi MF, Yousif AA, Armanuos AM, Saggi MK, Ali M, ..., Chau KW (2019) Viability of the advanced adaptive neuro-fuzzy inference system model on reservoir evaporation process simulation: case study of Nasser Lake in Egypt. Eng Appl Comput Fluid Mech 13(1):878-891 – reference: Arya AzarNGhordoyee MilanSKayhomayoonZPredicting monthly evaporation from dam reservoirs using LS-SVR and ANFIS optimized by Harris hawks optimization algorithmEnviron Monit Assess20211931111410.1007/s10661-021-09495-z – reference: TermehSVRKhosraviKSartajMKeesstraSDTsaiFTCDijksmaRPhamBTOptimization of an adaptive neuro-fuzzy inference system for groundwater potential mappingHydrogeol J20192772511253410.1007/s10040-019-02017-9 – reference: HeidariAAMirjaliliSFarisHAljarahIMafarjaMChenHHarris hawks optimization: algorithm and applicationsFutur Gener Comput Syst20199784987210.1016/j.future.2019.02.028 – reference: Hughes A, Mansour M, Ward R, Kieboom N, Allen S, Seccombe D, ..., Prudhomme C (2021) The impact of climate change on groundwater recharge: national-scale assessment for the British mainland. J Hydrol 598:126336 – reference: AbreuALENetoACMachine learning model for predicting evaporation losses in reservoirsIEEE Lat Am Trans20181672040204410.1109/TLA.2018.8447374 – reference: GoodarziEDastoraniMTalebiAEvaluation of the change-factor and LARS-WG methods of downscaling for simulation of climatic variables in the future (Case study: Herat Azam Watershed, Yazd-Iran)Ecopersia201531833846 – reference: MilanSGRoozbahaniAAzarNAJavadiSDevelopment of adaptive neuro fuzzy inference system–evolutionary algorithms hybrid models (ANFIS-EA) for prediction of optimal groundwater exploitationJ Hydrol202159810.1016/j.jhydrol.2021.126258 – reference: Althoff D, Dias SHB, Filgueiras R, Rodrigues LN (2020) ETo‐Brazil: a daily gridded reference evapotranspiration data set for Brazil (2000–2018). Water Resour Res 56(7):e2020WR027562 – reference: Wubneh MA, Worku TA, Fikadie FT, Aman TF, Kifelew MS (2022) Climate change impact on Lake Tana water storage, Upper Blue Nile Basin, Ethiopia. Geocarto International 1–23 – reference: Gupta PK, Yadav BK, Sharma D (2022) Impacts of climatic variability on subsurface water resources. In Advances in Remediation Techniques for Polluted Soils and Groundwater (pp. 171–189). Elsevier – reference: KayhomayoonZAzarNAMilanSGMoghaddamHKBerndtssonRNovel approach for predicting groundwater storage loss using machine learningJ Environ Manage202129610.1016/j.jenvman.2021.113237 – reference: Pallavi K, Rajeev S (2016) Predicting reservoir evaporation using artificial neural network. International Journal of Innovative Research in Science, Engineering and Technology,(An ISO 3297: 2007 Certified Organization) Vol, 5 – reference: AshoftehPSHaddadOBMariñoAM. Climate change impact on reservoir performance indexes in agricultural water supplyJ Irrig Drain Eng20131392859710.1061/(ASCE)IR.1943-4774.0000496 – ident: 23899_CR43 doi: 10.21203/rs.3.rs-927576/v1 – ident: 23899_CR30 – volume: 133 start-page: 1119 issue: 3 year: 2018 ident: 23899_CR16 publication-title: Theoret Appl Climatol doi: 10.1007/s00704-017-2244-0 – volume: 16 start-page: 2040 issue: 7 year: 2018 ident: 23899_CR2 publication-title: IEEE Lat Am Trans doi: 10.1109/TLA.2018.8447374 – ident: 23899_CR7 doi: 10.1029/2020WR027562 – volume-title: The nature of statistical learning theory year: 1995 ident: 23899_CR42 doi: 10.1007/978-1-4757-2440-0 – volume: 24 start-page: 845 issue: 3 year: 2021 ident: 23899_CR31 publication-title: The Egyptian Journal of Remote Sensing and Space Science doi: 10.1016/j.ejrs.2021.08.006 – volume: 3 start-page: 833 issue: 1 year: 2015 ident: 23899_CR17 publication-title: Ecopersia – volume: 21 start-page: 519 issue: 4 year: 2019 ident: 23899_CR26 publication-title: Global NEST J – volume: 23 start-page: 665 issue: 3 year: 1993 ident: 23899_CR23 publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/21.256541 – ident: 23899_CR12 doi: 10.1007/s00366-021-01459-8 – volume: 588 year: 2020 ident: 23899_CR44 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2020.125013 – ident: 23899_CR25 doi: 10.1109/SICE.1998.742993 – volume: 598 year: 2021 ident: 23899_CR28 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2021.126258 – ident: 23899_CR33 doi: 10.1080/19942060.2019.1647879 – volume: 83 start-page: 23 issue: 1–2 year: 1994 ident: 23899_CR22 publication-title: Environ Pollut doi: 10.1016/0269-7491(94)90019-1 – volume: 376 year: 2021 ident: 23899_CR3 publication-title: Comput Methods Appl Mech Eng doi: 10.1016/j.cma.2020.113609 – ident: 23899_CR18 doi: 10.1016/B978-0-12-823830-1.00003-1 – ident: 23899_CR1 doi: 10.1029/2008WR007615 – ident: 23899_CR37 doi: 10.1007/s12205-015-0298-z – volume: 10 start-page: 5160 issue: 15 year: 2020 ident: 23899_CR34 publication-title: Appl Sci doi: 10.3390/app10155160 – volume: 587 year: 2020 ident: 23899_CR29 publication-title: J Hydrol doi: 10.1016/j.jhydrol.2020.125018 – volume: 193 start-page: 1 issue: 11 year: 2021 ident: 23899_CR8 publication-title: Environ Monit Assess doi: 10.1007/s10661-021-09495-z – ident: 23899_CR21 doi: 10.1016/j.jhydrol.2021.126336 – volume: 25 start-page: 583 issue: 4 year: 2011 ident: 23899_CR39 publication-title: Stoch Env Res Risk Assess doi: 10.1007/s00477-010-0423-y – ident: 23899_CR19 doi: 10.1155/2015/515376 – volume: 9 start-page: 293 issue: 3 year: 1999 ident: 23899_CR40 publication-title: Neural Process Lett doi: 10.1023/A:1018628609742 – volume: 69 start-page: 245 issue: 2 year: 2005 ident: 23899_CR14 publication-title: Climatic Change doi: 10.1007/s10584-005-1157-6 – volume: 6 start-page: 309 issue: 1 year: 2019 ident: 23899_CR35 publication-title: Environmental Processes doi: 10.1007/s40710-019-00353-2 – volume: 177 start-page: 55 year: 2018 ident: 23899_CR10 publication-title: Chemom Intell Lab Syst doi: 10.1016/j.chemolab.2018.04.016 – volume: 28 start-page: 8281 issue: 7 year: 2021 ident: 23899_CR6 publication-title: Environ Sci Pollut Res doi: 10.1007/s11356-020-11062-x – volume: 29 start-page: 55 issue: 1 year: 2021 ident: 23899_CR27 publication-title: Spat Inf Res doi: 10.1007/s41324-020-00337-7 – volume: 11 start-page: 1226 issue: 6 year: 2019 ident: 23899_CR5 publication-title: Water doi: 10.3390/w11061226 – volume: 7 start-page: 51 issue: 4 year: 2019 ident: 23899_CR15 publication-title: Climate doi: 10.3390/cli7040051 – ident: 23899_CR32 doi: 10.1016/j.ejrs.2021.08.006 – ident: 23899_CR9 doi: 10.1007/s00366-021-01523-3 – volume: 139 start-page: 85 issue: 2 year: 2013 ident: 23899_CR11 publication-title: J Irrig Drain Eng doi: 10.1061/(ASCE)IR.1943-4774.0000496 – volume: 27 start-page: 2511 issue: 7 year: 2019 ident: 23899_CR41 publication-title: Hydrogeol J doi: 10.1007/s10040-019-02017-9 – volume: 97 start-page: 849 year: 2019 ident: 23899_CR20 publication-title: Futur Gener Comput Syst doi: 10.1016/j.future.2019.02.028 – volume: 8 start-page: 5882 issue: 6 year: 2019 ident: 23899_CR38 publication-title: J Market Res – volume: 157 start-page: 310 year: 2017 ident: 23899_CR13 publication-title: CATENA doi: 10.1016/j.catena.2017.05.034 – volume: 296 year: 2021 ident: 23899_CR24 publication-title: J Environ Manage doi: 10.1016/j.jenvman.2021.113237 – volume: 42 start-page: 351 issue: 4 year: 2021 ident: 23899_CR36 publication-title: Phys Geogr doi: 10.1080/02723646.2020.1776087 – volume: 30 start-page: 4773 issue: 13 year: 2016 ident: 23899_CR4 publication-title: Water Resour Manage doi: 10.1007/s11269-016-1452-1 |
| SSID | ssj0020927 |
| Score | 2.4344182 |
| Snippet | This study aimed to predict evaporation from dam reservoirs using artificial intelligence considering climate change. Mahabad Dam, near Lake Urmia, in... |
| SourceID | proquest pubmed crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 27912 |
| SubjectTerms | Algorithms Aquatic Pollution arithmetics Artificial Intelligence Atmospheric Protection/Air Quality Control/Air Pollution Climate Change Earth and Environmental Science Ecotoxicology Environment Environmental Chemistry Environmental Health evaporation Fuzzy Logic Iran lakes Machine Learning observational studies prediction regression analysis Research Article temperature Waste Water Technology Water Management Water Pollution Control |
| Title | Prediction of evaporation from dam reservoirs under climate change using soft computing techniques |
| URI | https://link.springer.com/article/10.1007/s11356-022-23899-5 https://www.ncbi.nlm.nih.gov/pubmed/36385346 https://www.proquest.com/docview/2737466889 https://www.proquest.com/docview/2887605689 |
| Volume | 30 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1614-7499 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020927 issn: 1614-7499 databaseCode: AFBBN dateStart: 19970301 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: Public Health Database customDbUrl: eissn: 1614-7499 dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0020927 issn: 1614-7499 databaseCode: 8C1 dateStart: 20190101 isFulltext: true titleUrlDefault: https://search.proquest.com/publichealth providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1614-7499 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0020927 issn: 1614-7499 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1614-7499 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0020927 issn: 1614-7499 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEB7UXryIb-ujrOBNA8km2d0ci7SKoniwoKew2d1IQVtJqr_fmTxapFLwFEJmSdhvd_ItM98MwEViOUfWYb3YKjyg5LHyMqG5l0dGa5K9q4y0ww-P4nYU3b3EL40orGyz3duQZOWpF2K3IIwpYZZ7nIrCefE6dGIq54WreMT782OWn3DZyGP-Hvf7F7TEK5diotWvZrgNWw1HZP0a1B1Yc5NdOBgsJGn4sNmT5R5kTwUFW2iC2TRn7lt_NrAy0o4wqz8YaYyK7-m4KBmJxgpm3sdIVR2rdb-Mst_fWIkumZmqzQPdzsu7lvswGg6er2-9pnOCZ0LlzzxjfYSGS6OSLBIcL75RgUMuEhiDFEpS2h7udCtcyA03Mhc8D7RUmRWB5iI8gI3JdOKOgCWRzH0lM-eUi5IMJ1eoJBfSSBto3-ouBO1kpqYpK07dLd7TRUFkAiBFANIKgDTuwuV8zGddVGOl9XmLUYprnwIaeuKmX2WK1EtGQiiVrLBBL4pHNkE2hzXA83eG6HziMBJduGoRT5stXK74oOP_mZ_AJvWor1O9T2FjVny5M2Qys6wH6-o66EGnf_N6P-hVy_gHIYXugw |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6V5QAXnoUuLdRIvdGgxEls54iqpdvyUA-sBCfLryAE3UXJLgd-fccbZ1dAtRKnKMpYSTzj8Tea-cYA3wpLKaIOG-VWYIBS5iLSTNGozIxSnvYutOcOX1yy_iD7fZ1fB1JY3Va7tynJqaeek92SNPcFszSivilclC_BcoYBCu3A8snPm7PeLNCKC8oDQeb_I19uQm-Q5Zus6HSzOV2HQfuZTY3J_fFkrI_N86sOju_9jw1YC-iTnDTmsgkf3HALdnpzshs-DKu93gb9p_JpHK86MiqJe1KPwWCIZ6UQq_4Sz16qnkZ3VU08Ha0i5uEOQbAjDaOY-Lr6W1KjsydmeoCEv501jq0_wuC0d_WjH4UzGSKTingcGRuj0ik3otAZo3iJjUgcopzEGARn3BcEog-xzKXUUMNLRstEcaEtSxRl6Q50hqOh-wSkyHgZC66dEy4rNCqNiaJk3HCbqNiqLiStkqQJDcv9uRkPct5q2U-lxKmU06mUeReOZmMem3YdC6UPW91LXFU-VaKGbjSpJYI6njEmRLFABv0zBoPMy-w2hjN7Z4puLU8z1oXvrRHI4BzqBR-09z7xr7DSv7o4l-e_Ls8-wypF_NUUlH-BzriauH3ES2N9EJbHPxD8DB0 |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEA4-QLyIb9dnBG9abNM2SY-iu_jGgwt7C2mSiqDdpd3d3-9M291VlAVPpXRCS75M-oWZb4aQs8QyBqzDerGVcEDJYumlXDMvi4zWKHuXKWqHn575bTe678W9byr-Ktt9EpKsNQ1YpSkfXg5sdjkTvgVhjMmzzGNYIM6LF8lyhIUSYEV32dX0yOUnTDRSmb_H_fwd_eKYv-Kj1W-ns07WGr5Ir2qAN8iCyzfJTnsmT4OHjX-WWyR9KTDwgpNN-xl1Yz1oIKaoI6FWf1LUGxXj_ntRUhSQFdR8vANtdbTWAFPMhH-jJWzP1FQtH_B2Wuq13CbdTvv1-tZruih4JpT-0DPWB5iYMDJJI87g4hsZOOAlgTFApwSm8IHXW-5CZpgRGWdZoIVMLQ804-EOWcr7udsjNIlE5kuROiddlKQwuVwmGRdG2ED7VrdIMJlMZZoS49jp4kPNiiMjAAoAUBUAKm6R8-mYQV1gY6716QQjBX6AwQ2du_6oVEDDRMS5lMkcG9hR4fjG0Wa3Bnj6zhA2ojiMeItcTBBXjTuXcz5o_3_mJ2Tl5aajHu-eHw7IKraurzPAD8nSsBi5IyA4w_S4WsNfCKnzSg |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Prediction+of+evaporation+from+dam+reservoirs+under+climate+change+using+soft+computing+techniques&rft.jtitle=Environmental+science+and+pollution+research+international&rft.au=Kayhomayoon%2C+Zahra&rft.au=Naghizadeh%2C+Fariba&rft.au=Malekpoor%2C+Mohammadreza&rft.au=Arya+Azar%2C+Naser&rft.date=2023-02-01&rft.issn=1614-7499&rft.eissn=1614-7499&rft.volume=30&rft.issue=10&rft.spage=27912&rft.epage=27935&rft_id=info:doi/10.1007%2Fs11356-022-23899-5&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11356_022_23899_5 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1614-7499&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1614-7499&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1614-7499&client=summon |