KNN weighted reduced universum twin SVM for class imbalance learning
In real world problems, imbalance of data samples poses major challenge for the classification problems as the data samples of a particular class are dominating. Problems like fault and disease detection involve imbalance data and hence need attention to avoid the bias towards a particular class. Th...
Saved in:
| Published in | Knowledge-based systems Vol. 245; p. 108578 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Amsterdam
Elsevier B.V
07.06.2022
Elsevier Science Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0950-7051 1872-7409 1872-7409 |
| DOI | 10.1016/j.knosys.2022.108578 |
Cover
| Abstract | In real world problems, imbalance of data samples poses major challenge for the classification problems as the data samples of a particular class are dominating. Problems like fault and disease detection involve imbalance data and hence need attention to avoid the bias towards a particular class. The classification models like support vector machines (SVM) get biased to majority class samples and hence results in misclassification of the minority class samples. SVM suffers as no prior information related to the data is involved in the generation of hyperplanes. Also, local information of the neighbourhood is ignored in SVM samples and thus treats each sample equally for generating the hyperplanes. However, the data points may be contaminated and may mislead the generation of hyperplanes. Inspired by the idea of prior data information and local neighbourhood information, we propose K-nearest neighbour based weighted reduced universum twin SVM for class imbalance learning (KWRUTSVM-CIL). The proposed KWRUTSVM-CIL embodies the local neighbourhood information and uses universum data to balance the classes in class imbalance problems. Local neighbourhood information is incorporated via weight matrix in the objective function. In proposed KWRUTSVM-CIL model, weight vectors are used in the corresponding constraints of the objective functions to exploit the interclass information. The oversampling and undersampling approaches are followed to balance the data in class imbalance problems. Universum data gives prior information of the data. Twin SVM, universum twin SVM, and reduced universum twin SVM for class imbalance implement empirical risk minimization principle and thus may lead to overfitting. However, the proposed KWRUTSVM-CIL model embodies regularization term to maximize the margin and implement the structural risk minimization principle which is the marrow of statistical learning and overcomes the issues of overfitting. Experimental results and the statistical analysis signify that the generalization ability of proposed KWRUTSVM-CIL model is superior in comparison to other twin SVM based models. As an application, we use the proposed KWRUTSVM-CIL model for the diagnosis of Alzheimer’s disease and breast cancer disease. The proposed KWRUTSVM-CIL model showed better generalization performance compared to other twin SVM based models in biomedical datasets.
•To incorporate the local neighbourhood information, K nearest neighbourbased weights are used in the proposed KWRUTSVM-CIL.•Unlike RUTSVM-CIL, UTSVM, TSVM and FTWSVM models which implement the empirical risk minimization principle, the proposed KWRUTSVM-CIL model implements the structural risk minimization principle.•Similar to RUTSVM-CIL, the proposed KWRUTSVM-CIL model incorporates prior information about the data (universum data) to handle the class imbalance problem.•The matrices appearing in the Wolfe dual of the proposed KWRUTSVM-CIL are positive definite, while as the matrices in the Wolfe dual of RUTSVM-CIL, UTSVM, TSVM and FTWSVM are positive semi-definite.•Experimental results and statistical analysis show the efficacy of the proposed KWRUTSVM-CIL model. As an application, we use the proposed KWRUTSVM-CIL model for the classification of Alzheimer’s disease and breast cancer subjects. |
|---|---|
| AbstractList | In real world problems, imbalance of data samples poses major challenge for the classification problems as the data samples of a particular class are dominating. Problems like fault and disease detection involve imbalance data and hence need attention to avoid the bias towards a particular class. The classification models like support vector machines (SVM) get biased to majority class samples and hence results in misclassification of the minority class samples. SVM suffers as no prior information related to the data is involved in the generation of hyperplanes. Also, local information of the neighbourhood is ignored in SVM samples and thus treats each sample equally for generating the hyperplanes. However, the data points may be contaminated and may mislead the generation of hyperplanes. Inspired by the idea of prior data information and local neighbourhood information, we propose K-nearest neighbour based weighted reduced universum twin SVM for class imbalance learning (KWRUTSVM-CIL). The proposed KWRUTSVM-CIL embodies the local neighbourhood information and uses universum data to balance the classes in class imbalance problems. Local neighbourhood information is incorporated via weight matrix in the objective function. In proposed KWRUTSVM-CIL model, weight vectors are used in the corresponding constraints of the objective functions to exploit the interclass information. The oversampling and undersampling approaches are followed to balance the data in class imbalance problems. Universum data gives prior information of the data. Twin SVM, universum twin SVM, and reduced universum twin SVM for class imbalance implement empirical risk minimization principle and thus may lead to overfitting. However, the proposed KWRUTSVM-CIL model embodies regularization term to maximize the margin and implement the structural risk minimization principle which is the marrow of statistical learning and overcomes the issues of overfitting. Experimental results and the statistical analysis signify that the generalization ability of proposed KWRUTSVM-CIL model is superior in comparison to other twin SVM based models. As an application, we use the proposed KWRUTSVM-CIL model for the diagnosis of Alzheimer’s disease and breast cancer disease. The proposed KWRUTSVM-CIL model showed better generalization performance compared to other twin SVM based models in biomedical datasets.
•To incorporate the local neighbourhood information, K nearest neighbourbased weights are used in the proposed KWRUTSVM-CIL.•Unlike RUTSVM-CIL, UTSVM, TSVM and FTWSVM models which implement the empirical risk minimization principle, the proposed KWRUTSVM-CIL model implements the structural risk minimization principle.•Similar to RUTSVM-CIL, the proposed KWRUTSVM-CIL model incorporates prior information about the data (universum data) to handle the class imbalance problem.•The matrices appearing in the Wolfe dual of the proposed KWRUTSVM-CIL are positive definite, while as the matrices in the Wolfe dual of RUTSVM-CIL, UTSVM, TSVM and FTWSVM are positive semi-definite.•Experimental results and statistical analysis show the efficacy of the proposed KWRUTSVM-CIL model. As an application, we use the proposed KWRUTSVM-CIL model for the classification of Alzheimer’s disease and breast cancer subjects. In real world problems, imbalance of data samples poses major challenge for the classification problems as the data samples of a particular class are dominating. Problems like fault and disease detection involve imbalance data and hence need attention to avoid the bias towards a particular class. The classification models like support vector machines (SVM) get biased to majority class samples and hence results in misclassification of the minority class samples. SVM suffers as no prior information related to the data is involved in the generation of hyperplanes. Also, local information of the neighbourhood is ignored in SVM samples and thus treats each sample equally for generating the hyperplanes. However, the data points may be contaminated and may mislead the generation of hyperplanes. Inspired by the idea of prior data information and local neighbourhood information, we propose -nearest neighbour based weighted reduced universum twin SVM for class imbalance learning (KWRUTSVM-CIL). The proposed KWRUTSVM-CIL embodies the local neighbourhood information and uses universum data to balance the classes in class imbalance problems. Local neighbourhood information is incorporated via weight matrix in the objective function. In proposed KWRUTSVM-CIL model, weight vectors are used in the corresponding constraints of the objective functions to exploit the interclass information. The oversampling and undersampling approaches are followed to balance the data in class imbalance problems. Universum data gives prior information of the data. Twin SVM, universum twin SVM, and reduced universum twin SVM for class imbalance implement empirical risk minimization principle and thus may lead to overfitting. However, the proposed KWRUTSVM-CIL model embodies regularization term to maximize the margin and implement the structural risk minimization principle which is the marrow of statistical learning and overcomes the issues of overfitting. Experimental results and the statistical analysis signify that the generalization ability of proposed KWRUTSVM-CIL model is superior in comparison to other twin SVM based models. As an application, we use the proposed KWRUTSVM-CIL model for the diagnosis of Alzheimer's disease and breast cancer disease. The proposed KWRUTSVM-CIL model showed better generalization performance compared to other twin SVM based models in biomedical datasets. |
| ArticleNumber | 108578 |
| Author | Tanveer, M. Ganaie, M.A. |
| Author_xml | – sequence: 1 givenname: M.A. surname: Ganaie fullname: Ganaie, M.A. email: phd1901141006@iiti.ac.in – sequence: 2 givenname: M. orcidid: 0000-0002-5727-3697 surname: Tanveer fullname: Tanveer, M. email: mtanveer@iiti.ac.in |
| BookMark | eNqNkDtPwzAUhS0EEm3hHzBEYk6xnYcdBiRUnqKUgcdqOc5NcUmdYjut-u9xFSYGYDrS1fmOrr4h2jetAYROCB4TTPKzxfjDtG7rxhRTGk48Y3wPDQhnNGYpLvbRABcZjhnOyCEaOrfAODQJH6Crh9ks2oCev3uoIgtVp0J2Rq_Bum4Z-Y020fPbY1S3NlKNdC7Sy1I20iiIGpDWaDM_Qge1bBwcf-cIvd5cv0zu4unT7f3kchqrhGMfF0VGOQes0hQSWkKVc0lkWvG0wCnnkmGe17TijBCKc0llTkpeUsKSWiYZ0GSEsn63Myu53cimESurl9JuBcFip0IsRK9C7FSIXkXgTntuZdvPDpwXi7azJrwqaJ4zniWswKGV9i1lW-cs1P8dP_-BKe2l163xVurmL_iihyFoW2uwwikNwW2lLSgvqlb_PvAF8k2bYg |
| CitedBy_id | crossref_primary_10_1016_j_envres_2024_119526 crossref_primary_10_1007_s00530_024_01299_8 crossref_primary_10_1016_j_jhazmat_2024_136002 crossref_primary_10_1051_e3sconf_202344802057 crossref_primary_10_1016_j_aei_2024_102459 crossref_primary_10_3390_info13080386 crossref_primary_10_1007_s12559_023_10115_w crossref_primary_10_1007_s10489_025_06356_x crossref_primary_10_1007_s13042_022_01696_3 crossref_primary_10_1093_comjnl_bxaf020 crossref_primary_10_1007_s12652_024_04793_z crossref_primary_10_1109_ACCESS_2024_3365544 crossref_primary_10_1016_j_compeleceng_2024_109796 crossref_primary_10_1016_j_asoc_2023_110899 crossref_primary_10_1007_s13351_023_3020_y crossref_primary_10_3103_S0146411624700573 crossref_primary_10_1007_s10614_024_10801_3 crossref_primary_10_1016_j_eswa_2023_121331 crossref_primary_10_3390_a17120571 crossref_primary_10_1016_j_engappai_2024_107849 crossref_primary_10_1007_s10479_023_05401_7 crossref_primary_10_4018_IJeC_304373 crossref_primary_10_1016_j_neunet_2023_07_030 crossref_primary_10_1016_j_ins_2023_03_131 crossref_primary_10_1016_j_ins_2023_119478 crossref_primary_10_1109_ACCESS_2022_3185227 crossref_primary_10_1007_s10479_023_05369_4 crossref_primary_10_1007_s12145_024_01368_6 crossref_primary_10_1109_TIM_2023_3267379 crossref_primary_10_1186_s12967_025_06371_z crossref_primary_10_1088_1361_6501_ad21d7 crossref_primary_10_1109_TFUZZ_2024_3421638 crossref_primary_10_3390_info15040235 crossref_primary_10_1007_s10489_023_05260_6 crossref_primary_10_1016_j_engappai_2024_109450 crossref_primary_10_1016_j_asoc_2023_110489 crossref_primary_10_1109_TFUZZ_2024_3366936 crossref_primary_10_1016_j_neucom_2024_128258 crossref_primary_10_1109_TCDS_2023_3254209 crossref_primary_10_1016_j_eswa_2024_123480 crossref_primary_10_3390_machines10100879 crossref_primary_10_1016_j_neunet_2023_05_004 |
| Cites_doi | 10.1080/00207721.2015.1110212 10.1016/j.asoc.2015.08.060 10.1016/j.asoc.2018.11.046 10.1016/j.eswa.2015.10.031 10.1016/j.patcog.2020.107262 10.1016/j.ins.2010.06.039 10.1109/ACCESS.2018.2879052 10.1109/TPAMI.2007.1068 10.1016/j.eswa.2019.113072 10.1016/j.patcog.2014.03.008 10.1016/j.knosys.2014.08.008 10.1109/TNN.2006.883722 10.1016/j.neunet.2019.12.001 10.1016/j.patcog.2020.107442 10.1145/1143844.1143971 10.1016/j.knosys.2016.09.032 10.1109/TKDE.2008.239 10.1145/3387131 10.1016/j.ins.2021.07.010 10.1023/A:1022627411411 10.1016/j.asoc.2021.107322 10.1016/j.asoc.2021.107933 10.1109/TCYB.2017.2786719 10.1016/j.neunet.2018.07.011 10.1016/j.eswa.2018.03.053 10.1109/TPAMI.2018.2889096 10.1016/j.neucom.2020.02.132 10.1016/j.patcog.2018.03.008 10.1016/j.asoc.2018.07.003 10.1155/2017/8092691 10.1212/WNL.0b013e318253d5b3 10.1016/j.knosys.2015.08.009 10.1016/j.ins.2019.04.032 10.1007/s10489-014-0518-0 10.1023/A:1007452223027 10.1109/TIT.1967.1053964 10.1007/s10489-017-1129-3 10.1016/j.neuroimage.2012.04.056 10.1007/s13042-017-0720-6 10.1007/s10796-015-9551-8 10.1016/j.neunet.2019.01.016 10.1016/j.patcog.2017.09.035 10.1109/TSMCB.2008.2002909 10.1109/TKDE.2006.17 10.1109/TR.2013.2259203 10.1016/j.patcog.2019.107150 10.1016/j.neunet.2012.09.004 10.1016/j.patcog.2021.108069 10.1613/jair.953 10.1016/j.neunet.2012.06.010 10.1016/j.asoc.2020.106305 10.1007/s10796-008-9131-2 10.1016/j.neucom.2016.04.024 10.1016/j.neucom.2012.10.012 10.1016/j.neuroimage.2012.02.084 10.1016/j.eswa.2008.09.066 10.1016/j.knosys.2015.12.005 10.1109/TFUZZ.2010.2042721 10.1007/s10115-009-0198-y 10.1016/j.neucom.2010.11.003 10.1016/j.patcog.2017.02.011 10.1109/TBME.2015.2496264 10.1109/TNNLS.2017.2751612 10.1142/S0218001407005703 10.1016/j.bspc.2020.101903 |
| ContentType | Journal Article |
| Copyright | 2022 Elsevier B.V. Copyright Elsevier Science Ltd. Jun 7, 2022 |
| Copyright_xml | – notice: 2022 Elsevier B.V. – notice: Copyright Elsevier Science Ltd. Jun 7, 2022 |
| CorporateAuthor | Alzheimer’s Disease Neuroimaging Initiative |
| CorporateAuthor_xml | – name: Alzheimer’s Disease Neuroimaging Initiative |
| DBID | AAYXX CITATION 7SC 8FD E3H F2A JQ2 L7M L~C L~D ADTOC UNPAY |
| DOI | 10.1016/j.knosys.2022.108578 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Technology Research Database Library & Information Sciences Abstracts (LISA) Library & Information Science Abstracts (LISA) ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Library and Information Science Abstracts (LISA) ProQuest Computer Science Collection Computer and Information Systems Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
| DatabaseTitleList | Technology Research Database |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science |
| EISSN | 1872-7409 |
| ExternalDocumentID | 10.1016/j.knosys.2022.108578 10_1016_j_knosys_2022_108578 S0950705122002581 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 77K 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO AAYFN ABAOU ABBOA ABIVO ABJNI ABMAC ABYKQ ACAZW ACDAQ ACGFS ACRLP ACZNC ADBBV ADEZE ADGUI ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR AXJTR BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA GBOLZ IHE J1W JJJVA KOM LG9 LY7 M41 MHUIS MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PQQKQ Q38 ROL RPZ SDF SDG SDP SES SPC SPCBC SST SSV SSW SSZ T5K WH7 XPP ZMT ~02 ~G- 29L 77I AAQXK AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADJOM ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB G-2 HLZ HVGLF HZ~ R2- SBC SET SEW UHS WUQ ~HD 7SC 8FD AFXIZ AGCQF AGRNS BNPGV E3H F2A JQ2 L7M L~C L~D SSH ADTOC UNPAY |
| ID | FETCH-LOGICAL-c380t-995288e0c44e32bed68a1a4d8490488a7086f2d8711206a2a61b8b2173fa35e23 |
| IEDL.DBID | .~1 |
| ISSN | 0950-7051 1872-7409 |
| IngestDate | Wed Oct 01 16:05:09 EDT 2025 Fri Jul 25 06:48:24 EDT 2025 Thu Apr 24 22:59:03 EDT 2025 Sat Oct 25 05:10:48 EDT 2025 Fri Feb 23 02:40:59 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Universum Imbalance ratio Rectangular kernel Class imbalance Twin support vector machine KNN weighted |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c380t-995288e0c44e32bed68a1a4d8490488a7086f2d8711206a2a61b8b2173fa35e23 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0000-0002-5727-3697 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.sciencedirect.com/science/article/am/pii/S0950705122002581?via%3Dihub |
| PQID | 2667853790 |
| PQPubID | 2035257 |
| ParticipantIDs | unpaywall_primary_10_1016_j_knosys_2022_108578 proquest_journals_2667853790 crossref_primary_10_1016_j_knosys_2022_108578 crossref_citationtrail_10_1016_j_knosys_2022_108578 elsevier_sciencedirect_doi_10_1016_j_knosys_2022_108578 |
| PublicationCentury | 2000 |
| PublicationDate | 2022-06-07 |
| PublicationDateYYYYMMDD | 2022-06-07 |
| PublicationDate_xml | – month: 06 year: 2022 text: 2022-06-07 day: 07 |
| PublicationDecade | 2020 |
| PublicationPlace | Amsterdam |
| PublicationPlace_xml | – name: Amsterdam |
| PublicationTitle | Knowledge-based systems |
| PublicationYear | 2022 |
| Publisher | Elsevier B.V Elsevier Science Ltd |
| Publisher_xml | – name: Elsevier B.V – name: Elsevier Science Ltd |
| References | Yuan, Li, Guan, Xu (b7) 2010; 12 Batuwita, Palade (b26) 2010; 18 F.H. Sinz, O. Chapelle, A. Agarwal, B. Schölkopf, An analysis of inference with the universum, in: NIPS, Vol. 7, 2007, p. 1. Nekooeimehr, Lai-Yuen (b72) 2016; 46 Yang, Song, Wang (b74) 2007; 21 Chawla, Bowyer, Hall, Kegelmeyer (b30) 2002; 16 Tang, Zhang, Chawla, Krasser (b35) 2008; 39 Buda, Maki, Mazurowski (b64) 2018; 106 Ganaie, Tanveer, Beheshti (b42) 2022 Singh, Chadha, Ahuja, Chandra (b46) 2011; 74 Parvin, Minaei-Bidgoli, Alizadeh (b62) 2011 Shen, Wang, Da Xu, Ma, Chaudhry, He (b5) 2016; 18 Tomar, Agarwal (b25) 2015; 2015 Richhariya, Tanveer (b3) 2018; 106 Ganaie, Tanveer (b57) 2020; 93 Richhariya, Tanveer (b71) 2020; 102 Ye, Zhao, Gao, Zheng (b49) 2012; 35 Yan, Ye, Zhang, Yu, Yuan, Xu, Fu (b14) 2018; 74 Tanveer, Rajani, Rastogi, Shao, Ganaie (b59) 2022 Richhariya, Tanveer, Rashid, Initiative (b4) 2020; 59 Lee, Mangasarian (b45) 2001 Xu, Wang (b51) 2014; 41 Richhariya, Tanveer (b23) 2021 Demšar (b86) 2006; 7 Reuter, Schmansky, Rosas, Fischl (b83) 2012; 61 Wang, Japkowicz (b28) 2010; 25 Shao, Chen, Zhang, Wang, Deng (b75) 2014; 47 Xu, Zhang, Zhao, Yang, Pan (b41) 2019; 10 Xu, Chen, Li (b22) 2016; 47 Alcalá-Fdez, Fernández, Luengo, Derrac, García, Sánchez, Herrera (b79) 2011; 17 Qi, Tian, Shi (b21) 2012; 36 Lo, Jagust (b81) 2012; 78 Zhao, Ye, Naiem, Fu (b15) 2018; 7 Ganaie, Tanveer (b38) 2021 Cortes, Vapnik (b1) 1995; 20 Zhang, Jiang, Han, Wang, Yang, Yang (b2) 2017; 2017 Mathew, Pang, Luo, Leong (b33) 2017; 29 Xu (b52) 2016; 205 Cover, Hart (b48) 1967; 13 Richhariya, Tanveer (b36) 2018; 71 Lee, Huang (b47) 2007; 18 Xie (b18) 2018; 48 Kubat, Holte, Matwin (b65) 1998; 30 Rezvani, Wang (b76) 2021; 578 Jimenez-Castaño, Alvarez-Meza, Orozco-Gutierrez (b77) 2020; 107 Sun, Xie, Dong (b17) 2018; 49 Ganaie, Tanveer, Beheshti (b43) 2022 Liu, Wu, Zhou (b31) 2008; 39 Tanveer, Ganaie, Suganthan (b58) 2021; 107 Ding, Zhang, An, Xue (b19) 2017; 67 Ganaie, Tanveer, Initiative (b67) 2021; 113 Spanhol, Oliveira, Petitjean, Heutte (b84) 2015; 63 Wang, Chen, Bi (b8) 2015; 2 Yu, Hu, Tang, Shen, Yang, Yang (b32) 2013; 104 Beheshti, Ganaie, Paliwal, Rastogi, Razzak, Tanveer (b44) 2021 Wang, Ye, Luo, Ye, Fu (b13) 2019; 114 Ganaie, Tanveer, Suganthan (b56) 2020; 143 Koziarski (b70) 2020; 102 Li, Ma (b27) 2013; 2 Tanveer, Sharma, Suganthan (b54) 2021; 459 Richhariya, Tanveer (b60) 2021; 21 Zhou, Liu (b73) 2005; 18 Das, Datta, Chaudhuri (b68) 2018; 81 Xu, Yu, Zhang (b50) 2014; 71 Kumar, Gopal (b11) 2009; 36 Ganaie, Hu, Malik, Tanveer, Suganthan (b55) 2021 Pan, Luo, Xu (b53) 2015; 88 Westman, Muehlboeck, Simmons (b82) 2012; 62 Richhariya, Gupta (b6) 2019; 76 Yang, Yu, Chen, Cao, Wong, You, Han (b69) 2021 Raghuwanshi, Shukla (b34) 2021 He, Garcia (b61) 2009; 21 Xu, Yang, Zhang, Pan, Wang (b40) 2016; 95 Krawczyk, Galar, Jeleń, Herrera (b66) 2016; 38 Gautam, Mishra, Tiwari, Richhariya, Pandey, Wang, Tanveer, Initiative (b85) 2020; 123 Tanveer, Tiwari, Choudhary, Ganaie (b39) 2021 Peng (b12) 2010; 180 Ding, He, Yuan, Pan, Wang, Ros (b9) 2021; 23 Fan, Wang, Li, Gao, Zha (b29) 2017; 115 Dua, Graff (b78) 2017 J. Weston, R. Collobert, F. Sinz, L. Bottou, V. Vapnik, Inference with the universum, in: Proceedings of the 23rd International Conference on Machine Learning, 2006, pp. 1009–1016. Rezvani-KhorashadiZadeh, Reza (b16) 2015 Wang, Yao (b63) 2013; 62 Lian, Liu, Zhang, Shen (b80) 2018; 42 Jayadeva, Khemchandani, Chandra (b10) 2007; 29 Tanveer, Sharma, Suganthan (b37) 2019; 494 Kumar (10.1016/j.knosys.2022.108578_b11) 2009; 36 Richhariya (10.1016/j.knosys.2022.108578_b3) 2018; 106 Kubat (10.1016/j.knosys.2022.108578_b65) 1998; 30 Xu (10.1016/j.knosys.2022.108578_b41) 2019; 10 Batuwita (10.1016/j.knosys.2022.108578_b26) 2010; 18 Xu (10.1016/j.knosys.2022.108578_b22) 2016; 47 Gautam (10.1016/j.knosys.2022.108578_b85) 2020; 123 Shen (10.1016/j.knosys.2022.108578_b5) 2016; 18 Tanveer (10.1016/j.knosys.2022.108578_b58) 2021; 107 Zhao (10.1016/j.knosys.2022.108578_b15) 2018; 7 Cortes (10.1016/j.knosys.2022.108578_b1) 1995; 20 Ding (10.1016/j.knosys.2022.108578_b9) 2021; 23 10.1016/j.knosys.2022.108578_b20 10.1016/j.knosys.2022.108578_b24 Yu (10.1016/j.knosys.2022.108578_b32) 2013; 104 Cover (10.1016/j.knosys.2022.108578_b48) 1967; 13 Alcalá-Fdez (10.1016/j.knosys.2022.108578_b79) 2011; 17 Ganaie (10.1016/j.knosys.2022.108578_b67) 2021; 113 Yang (10.1016/j.knosys.2022.108578_b74) 2007; 21 Richhariya (10.1016/j.knosys.2022.108578_b4) 2020; 59 Yuan (10.1016/j.knosys.2022.108578_b7) 2010; 12 Ye (10.1016/j.knosys.2022.108578_b49) 2012; 35 Xie (10.1016/j.knosys.2022.108578_b18) 2018; 48 Tanveer (10.1016/j.knosys.2022.108578_b37) 2019; 494 Liu (10.1016/j.knosys.2022.108578_b31) 2008; 39 Westman (10.1016/j.knosys.2022.108578_b82) 2012; 62 Pan (10.1016/j.knosys.2022.108578_b53) 2015; 88 Jimenez-Castaño (10.1016/j.knosys.2022.108578_b77) 2020; 107 Richhariya (10.1016/j.knosys.2022.108578_b23) 2021 Sun (10.1016/j.knosys.2022.108578_b17) 2018; 49 Wang (10.1016/j.knosys.2022.108578_b63) 2013; 62 Ganaie (10.1016/j.knosys.2022.108578_b43) 2022 Yang (10.1016/j.knosys.2022.108578_b69) 2021 Krawczyk (10.1016/j.knosys.2022.108578_b66) 2016; 38 Ganaie (10.1016/j.knosys.2022.108578_b38) 2021 Koziarski (10.1016/j.knosys.2022.108578_b70) 2020; 102 Yan (10.1016/j.knosys.2022.108578_b14) 2018; 74 Parvin (10.1016/j.knosys.2022.108578_b62) 2011 Zhang (10.1016/j.knosys.2022.108578_b2) 2017; 2017 Mathew (10.1016/j.knosys.2022.108578_b33) 2017; 29 Ganaie (10.1016/j.knosys.2022.108578_b55) 2021 He (10.1016/j.knosys.2022.108578_b61) 2009; 21 Buda (10.1016/j.knosys.2022.108578_b64) 2018; 106 Ding (10.1016/j.knosys.2022.108578_b19) 2017; 67 Shao (10.1016/j.knosys.2022.108578_b75) 2014; 47 Lian (10.1016/j.knosys.2022.108578_b80) 2018; 42 Peng (10.1016/j.knosys.2022.108578_b12) 2010; 180 Tanveer (10.1016/j.knosys.2022.108578_b39) 2021 Xu (10.1016/j.knosys.2022.108578_b51) 2014; 41 Tanveer (10.1016/j.knosys.2022.108578_b59) 2022 Wang (10.1016/j.knosys.2022.108578_b8) 2015; 2 Xu (10.1016/j.knosys.2022.108578_b52) 2016; 205 Xu (10.1016/j.knosys.2022.108578_b50) 2014; 71 Beheshti (10.1016/j.knosys.2022.108578_b44) 2021 Richhariya (10.1016/j.knosys.2022.108578_b36) 2018; 71 Ganaie (10.1016/j.knosys.2022.108578_b56) 2020; 143 Tang (10.1016/j.knosys.2022.108578_b35) 2008; 39 Raghuwanshi (10.1016/j.knosys.2022.108578_b34) 2021 Lo (10.1016/j.knosys.2022.108578_b81) 2012; 78 Spanhol (10.1016/j.knosys.2022.108578_b84) 2015; 63 Reuter (10.1016/j.knosys.2022.108578_b83) 2012; 61 Qi (10.1016/j.knosys.2022.108578_b21) 2012; 36 Chawla (10.1016/j.knosys.2022.108578_b30) 2002; 16 Nekooeimehr (10.1016/j.knosys.2022.108578_b72) 2016; 46 Singh (10.1016/j.knosys.2022.108578_b46) 2011; 74 Fan (10.1016/j.knosys.2022.108578_b29) 2017; 115 Dua (10.1016/j.knosys.2022.108578_b78) 2017 Lee (10.1016/j.knosys.2022.108578_b47) 2007; 18 Tomar (10.1016/j.knosys.2022.108578_b25) 2015; 2015 Ganaie (10.1016/j.knosys.2022.108578_b57) 2020; 93 Jayadeva (10.1016/j.knosys.2022.108578_b10) 2007; 29 Richhariya (10.1016/j.knosys.2022.108578_b60) 2021; 21 Richhariya (10.1016/j.knosys.2022.108578_b71) 2020; 102 Tanveer (10.1016/j.knosys.2022.108578_b54) 2021; 459 Demšar (10.1016/j.knosys.2022.108578_b86) 2006; 7 Das (10.1016/j.knosys.2022.108578_b68) 2018; 81 Lee (10.1016/j.knosys.2022.108578_b45) 2001 Ganaie (10.1016/j.knosys.2022.108578_b42) 2022 Zhou (10.1016/j.knosys.2022.108578_b73) 2005; 18 Rezvani-KhorashadiZadeh (10.1016/j.knosys.2022.108578_b16) 2015 Rezvani (10.1016/j.knosys.2022.108578_b76) 2021; 578 Richhariya (10.1016/j.knosys.2022.108578_b6) 2019; 76 Li (10.1016/j.knosys.2022.108578_b27) 2013; 2 Wang (10.1016/j.knosys.2022.108578_b13) 2019; 114 Wang (10.1016/j.knosys.2022.108578_b28) 2010; 25 Xu (10.1016/j.knosys.2022.108578_b40) 2016; 95 |
| References_xml | – volume: 74 start-page: 434 year: 2018 end-page: 447 ident: b14 article-title: Least squares twin bounded support vector machines based on publication-title: Pattern Recognit. – volume: 107 year: 2021 ident: b58 article-title: Ensemble of classification models with weighted functional link network publication-title: Appl. Soft Comput. – volume: 2 start-page: 22 year: 2015 end-page: 34 ident: b8 article-title: Support vector machine and ROC curves for modeling of aircraft fuel consumption publication-title: J. Manag. Anal. – volume: 106 start-page: 249 year: 2018 end-page: 259 ident: b64 article-title: A systematic study of the class imbalance problem in convolutional neural networks publication-title: Neural Netw. – volume: 21 start-page: 961 year: 2007 end-page: 976 ident: b74 article-title: A weighted support vector machine for data classification publication-title: Int. J. Pattern Recognit. Artif. Intell. – volume: 23 year: 2021 ident: b9 article-title: The first step towards intelligent wire arc additive manufacturing: An automatic bead modelling system using machine learning through industrial information integration publication-title: J. Ind. Inf. Integr. – volume: 143 year: 2020 ident: b56 article-title: Oblique decision tree ensemble via twin bounded SVM publication-title: Expert Syst. Appl. – volume: 113 year: 2021 ident: b67 article-title: Fuzzy least squares projection twin support vector machines for class imbalance learning publication-title: Appl. Soft Comput. – volume: 7 start-page: 3275 year: 2018 end-page: 3286 ident: b15 article-title: Robust publication-title: IEEE Access – volume: 104 start-page: 180 year: 2013 end-page: 190 ident: b32 article-title: Improving protein-ATP binding residues prediction by boosting SVMs with random under-sampling publication-title: Neurocomputing – volume: 46 start-page: 405 year: 2016 end-page: 416 ident: b72 article-title: Adaptive semi-unsupervised weighted oversampling (a-SUWO) for imbalanced datasets publication-title: Expert Syst. Appl. – year: 2021 ident: b55 article-title: Ensemble deep learning: A review – volume: 20 start-page: 273 year: 1995 end-page: 297 ident: b1 article-title: Support-vector networks publication-title: Mach. Learn. – start-page: 376 year: 2011 end-page: 381 ident: b62 article-title: Detection of cancer patients using an innovative method for learning at imbalanced datasets publication-title: International Conference on Rough Sets and Knowledge Technology – year: 2022 ident: b43 article-title: Brain age prediction with improved least squares twin SVR publication-title: IEEE J. Biomed. Health Inf. – volume: 71 start-page: 303 year: 2014 end-page: 313 ident: b50 article-title: KNN-based weighted rough publication-title: Knowl.-Based Syst. – volume: 21 year: 2021 ident: b60 article-title: An efficient angle-based universum least squares twin support vector machine for classification publication-title: ACM Trans. Internet Technol. – volume: 18 start-page: 558 year: 2010 end-page: 571 ident: b26 article-title: FSVM-CIL: fuzzy support vector machines for class imbalance learning publication-title: IEEE Trans. Fuzzy Syst. – start-page: 103 year: 2021 end-page: 125 ident: b38 article-title: Robust general twin support vector machine with pinball loss function publication-title: Machine Learning for Intelligent Multimedia Analytics – volume: 61 start-page: 1402 year: 2012 end-page: 1418 ident: b83 article-title: Within-subject template estimation for unbiased longitudinal image analysis publication-title: Neuroimage – start-page: 1 year: 2022 end-page: 11 ident: b42 article-title: Brain age prediction using improved twin SVR publication-title: Neural Comput. Appl. – volume: 17 year: 2011 ident: b79 article-title: Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework publication-title: J. Mult.-Valued Logic Soft Comput. – start-page: 1 year: 2021 end-page: 24 ident: b39 article-title: Large-scale pinball twin support vector machines publication-title: Mach. Learn. – volume: 62 start-page: 434 year: 2013 end-page: 443 ident: b63 article-title: Using class imbalance learning for software defect prediction publication-title: IEEE Trans. Reliab. – volume: 2017 year: 2017 ident: b2 article-title: Rotating machinery fault diagnosis for imbalanced data based on fast clustering algorithm and support vector machine publication-title: J. Sensors – volume: 49 start-page: 688 year: 2018 end-page: 697 ident: b17 article-title: Multiview learning with generalized eigenvalue proximal support vector machines publication-title: IEEE Trans. Cybern. – volume: 95 start-page: 75 year: 2016 end-page: 85 ident: b40 article-title: A maximum margin and minimum volume hyper-spheres machine with pinball loss for imbalanced data classification publication-title: Knowl.-Based Syst. – volume: 2015 year: 2015 ident: b25 article-title: Hybrid feature selection based weighted least squares twin support vector machine approach for diagnosing breast cancer, hepatitis, and diabetes publication-title: Adv. Artif. Neural Syst. – volume: 36 start-page: 112 year: 2012 end-page: 119 ident: b21 article-title: Twin support vector machine with universum data publication-title: Neural Netw. – volume: 7 start-page: 1 year: 2006 end-page: 30 ident: b86 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. Learn. Res. – volume: 102 year: 2020 ident: b70 article-title: Radial-based undersampling for imbalanced data classification publication-title: Pattern Recognit. – start-page: 1 year: 2001 end-page: 17 ident: b45 article-title: RSVM: Reduced support vector machines publication-title: Proceedings of the 2001 SIAM International Conference on Data Mining – volume: 38 start-page: 714 year: 2016 end-page: 726 ident: b66 article-title: Evolutionary undersampling boosting for imbalanced classification of breast cancer malignancy publication-title: Appl. Soft Comput. – volume: 59 year: 2020 ident: b4 article-title: Diagnosis of Alzheimer’s disease using universum support vector machine based recursive feature elimination (USVM-RFE) publication-title: Biomed. Signal Process. Control – volume: 180 start-page: 3863 year: 2010 end-page: 3875 ident: b12 article-title: A publication-title: Inform. Sci. – volume: 93 year: 2020 ident: b57 article-title: LSTSVM classifier with enhanced features from pre-trained functional link network publication-title: Appl. Soft Comput. – volume: 71 start-page: 418 year: 2018 end-page: 432 ident: b36 article-title: A robust fuzzy least squares twin support vector machine for class imbalance learning publication-title: Appl. Soft Comput. – reference: J. Weston, R. Collobert, F. Sinz, L. Bottou, V. Vapnik, Inference with the universum, in: Proceedings of the 23rd International Conference on Machine Learning, 2006, pp. 1009–1016. – volume: 25 start-page: 1 year: 2010 end-page: 20 ident: b28 article-title: Boosting support vector machines for imbalanced data sets publication-title: Knowl. Inf. Syst. – volume: 12 start-page: 149 year: 2010 end-page: 156 ident: b7 article-title: An SVM-based machine learning method for accurate internet traffic classification publication-title: Inf. Syst. Front. – volume: 16 start-page: 321 year: 2002 end-page: 357 ident: b30 article-title: SMOTE: synthetic minority over-sampling technique publication-title: J. Artificial Intelligence Res. – year: 2021 ident: b44 article-title: Predicting brain age using machine learning algorithms: A comprehensive evaluation publication-title: IEEE J. Biomed. Health Inf. – volume: 18 start-page: 1 year: 2007 end-page: 13 ident: b47 article-title: Reduced support vector machines: A statistical theory publication-title: IEEE Trans. Neural Netw. – volume: 115 start-page: 87 year: 2017 end-page: 99 ident: b29 article-title: Entropy-based fuzzy support vector machine for imbalanced datasets publication-title: Knowl.-Based Syst. – volume: 29 start-page: 4065 year: 2017 end-page: 4076 ident: b33 article-title: Classification of imbalanced data by oversampling in kernel space of support vector machines publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 30 start-page: 195 year: 1998 end-page: 215 ident: b65 article-title: Machine learning for the detection of oil spills in satellite radar images publication-title: Mach. Learn. – volume: 107 year: 2020 ident: b77 article-title: Enhanced automatic twin support vector machine for imbalanced data classification publication-title: Pattern Recognit. – volume: 36 start-page: 7535 year: 2009 end-page: 7543 ident: b11 article-title: Least squares twin support vector machines for pattern classification publication-title: Expert Syst. Appl. – volume: 74 start-page: 1474 year: 2011 end-page: 1477 ident: b46 article-title: Reduced twin support vector regression publication-title: Neurocomputing – volume: 106 start-page: 169 year: 2018 end-page: 182 ident: b3 article-title: EEG signal classification using universum support vector machine publication-title: Expert Syst. Appl. – volume: 2 start-page: 459 year: 2013 end-page: 465 ident: b27 article-title: A fuzzy twin support vector machine algorithm publication-title: Int. J. Appl. Innov. Eng. Manag. (IJAIEM) – start-page: 1 year: 2021 end-page: 12 ident: b23 article-title: A fuzzy universum least squares twin support vector machine (FULSTSVM) publication-title: Neural Comput. Appl. – volume: 35 start-page: 31 year: 2012 end-page: 39 ident: b49 article-title: Weighted twin support vector machines with local information and its application publication-title: Neural Netw. – volume: 42 start-page: 880 year: 2018 end-page: 893 ident: b80 article-title: Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 114 start-page: 47 year: 2019 end-page: 59 ident: b13 article-title: Robust capped publication-title: Neural Netw. – volume: 88 start-page: 34 year: 2015 end-page: 44 ident: b53 article-title: K-nearest neighbor based structural twin support vector machine publication-title: Knowl.-Based Syst. – volume: 62 start-page: 229 year: 2012 end-page: 238 ident: b82 article-title: Combining MRI and CSF measures for classification of alzheimer’s disease and prediction of mild cognitive impairment conversion publication-title: Neuroimage – year: 2021 ident: b69 article-title: Progressive hybrid classifier ensemble for imbalanced data publication-title: IEEE Trans. Syst. Man Cybern.: Syst. – volume: 205 start-page: 430 year: 2016 end-page: 438 ident: b52 article-title: K-nearest neighbor-based weighted multi-class twin support vector machine publication-title: Neurocomputing – volume: 67 start-page: 32 year: 2017 end-page: 46 ident: b19 article-title: Weighted linear loss multiple birth support vector machine based on information granulation for multi-class classification publication-title: Pattern Recognit. – start-page: 170 year: 2015 end-page: 175 ident: b16 article-title: WS-TWSVM: weighted structural twin support vector machine by local and global information publication-title: 2015 5th International Conference on Computer and Knowledge Engineering – volume: 63 start-page: 1455 year: 2015 end-page: 1462 ident: b84 article-title: A dataset for breast cancer histopathological image classification publication-title: IEEE Trans. Biomed. Eng. – volume: 102 year: 2020 ident: b71 article-title: A reduced universum twin support vector machine for class imbalance learning publication-title: Pattern Recognit. – volume: 18 start-page: 63 year: 2005 end-page: 77 ident: b73 article-title: Training cost-sensitive neural networks with methods addressing the class imbalance problem publication-title: IEEE Trans. Knowl. Data Eng. – volume: 18 start-page: 711 year: 2016 end-page: 716 ident: b5 article-title: Identity management based on PCA and SVM publication-title: Inf. Syst. Front. – year: 2022 ident: b59 article-title: Comprehensive review on twin support vector machines publication-title: Ann. Oper. Res. – volume: 459 start-page: 454 year: 2021 end-page: 464 ident: b54 article-title: Least squares KNN-based weighted multiclass twin SVM publication-title: Neurocomputing – year: 2017 ident: b78 article-title: UCI machine learning repository – volume: 29 start-page: 905 year: 2007 end-page: 910 ident: b10 article-title: Twin support vector machines for pattern classification publication-title: IEEE Trans. Pattern Anal. Mach. Intell. – volume: 10 start-page: 357 year: 2019 end-page: 368 ident: b41 article-title: KNN-based maximum margin and minimum volume hyper-sphere machine for imbalanced data classification publication-title: Int. J. Mach. Learn. Cybern. – volume: 47 start-page: 3158 year: 2014 end-page: 3167 ident: b75 article-title: An efficient weighted Lagrangian twin support vector machine for imbalanced data classification publication-title: Pattern Recognit. – volume: 39 start-page: 281 year: 2008 end-page: 288 ident: b35 article-title: SVMS modeling for highly imbalanced classification publication-title: IEEE Trans. Syst. Man Cybern. B – volume: 494 start-page: 311 year: 2019 end-page: 327 ident: b37 article-title: General twin support vector machine with pinball loss function publication-title: Inform. Sci. – volume: 47 start-page: 3637 year: 2016 end-page: 3645 ident: b22 article-title: Least squares twin support vector machine with universum data for classification publication-title: Internat. J. Systems Sci. – volume: 21 start-page: 1263 year: 2009 end-page: 1284 ident: b61 article-title: Learning from imbalanced data publication-title: IEEE Trans. Knowl. Data Eng. – volume: 123 start-page: 191 year: 2020 end-page: 216 ident: b85 article-title: Minimum variance-embedded deep kernel regularized least squares method for one-class classification and its applications to biomedical data publication-title: Neural Netw. – volume: 578 start-page: 659 year: 2021 end-page: 682 ident: b76 article-title: Class imbalance learning using fuzzy ART and intuitionistic fuzzy twin support vector machines publication-title: Inform. Sci. – volume: 78 start-page: 1376 year: 2012 end-page: 1382 ident: b81 article-title: Predicting missing biomarker data in a longitudinal study of Alzheimer disease publication-title: Neurology – volume: 13 start-page: 21 year: 1967 end-page: 27 ident: b48 article-title: Nearest neighbor pattern classification publication-title: IEEE Trans. Inform. Theory – volume: 81 start-page: 674 year: 2018 end-page: 693 ident: b68 article-title: Handling data irregularities in classification: Foundations, trends, and future challenges publication-title: Pattern Recognit. – reference: F.H. Sinz, O. Chapelle, A. Agarwal, B. Schölkopf, An analysis of inference with the universum, in: NIPS, Vol. 7, 2007, p. 1. – volume: 39 start-page: 539 year: 2008 end-page: 550 ident: b31 article-title: Exploratory undersampling for class-imbalance learning publication-title: IEEE Trans. Syst. Man Cybern. B – year: 2021 ident: b34 article-title: Minimum variance-embedded kernelized extension of extreme learning machine for imbalance learning publication-title: Pattern Recognit. – volume: 41 start-page: 299 year: 2014 end-page: 309 ident: b51 article-title: K-nearest neighbor-based weighted twin support vector regression publication-title: Appl. Intell. – volume: 76 start-page: 53 year: 2019 end-page: 67 ident: b6 article-title: Facial expression recognition using iterative universum twin support vector machine publication-title: Appl. Soft Comput. – volume: 48 start-page: 3108 year: 2018 end-page: 3115 ident: b18 article-title: Regularized multi-view least squares twin support vector machines publication-title: Appl. Intell. – volume: 47 start-page: 3637 issue: 15 year: 2016 ident: 10.1016/j.knosys.2022.108578_b22 article-title: Least squares twin support vector machine with universum data for classification publication-title: Internat. J. Systems Sci. doi: 10.1080/00207721.2015.1110212 – volume: 38 start-page: 714 year: 2016 ident: 10.1016/j.knosys.2022.108578_b66 article-title: Evolutionary undersampling boosting for imbalanced classification of breast cancer malignancy publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2015.08.060 – volume: 76 start-page: 53 year: 2019 ident: 10.1016/j.knosys.2022.108578_b6 article-title: Facial expression recognition using iterative universum twin support vector machine publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.11.046 – start-page: 1 year: 2021 ident: 10.1016/j.knosys.2022.108578_b23 article-title: A fuzzy universum least squares twin support vector machine (FULSTSVM) publication-title: Neural Comput. Appl. – volume: 46 start-page: 405 year: 2016 ident: 10.1016/j.knosys.2022.108578_b72 article-title: Adaptive semi-unsupervised weighted oversampling (a-SUWO) for imbalanced datasets publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2015.10.031 – volume: 102 year: 2020 ident: 10.1016/j.knosys.2022.108578_b70 article-title: Radial-based undersampling for imbalanced data classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107262 – volume: 180 start-page: 3863 issue: 20 year: 2010 ident: 10.1016/j.knosys.2022.108578_b12 article-title: A ν-twin support vector machine (ν-TSVM) classifier and its geometric algorithms publication-title: Inform. Sci. doi: 10.1016/j.ins.2010.06.039 – volume: 7 start-page: 3275 year: 2018 ident: 10.1016/j.knosys.2022.108578_b15 article-title: Robust L2,1 -norm distance enhanced multi-weight vector projection support vector machine publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2879052 – year: 2022 ident: 10.1016/j.knosys.2022.108578_b59 article-title: Comprehensive review on twin support vector machines publication-title: Ann. Oper. Res. – volume: 29 start-page: 905 issue: 5 year: 2007 ident: 10.1016/j.knosys.2022.108578_b10 article-title: Twin support vector machines for pattern classification publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2007.1068 – volume: 143 year: 2020 ident: 10.1016/j.knosys.2022.108578_b56 article-title: Oblique decision tree ensemble via twin bounded SVM publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2019.113072 – volume: 47 start-page: 3158 issue: 9 year: 2014 ident: 10.1016/j.knosys.2022.108578_b75 article-title: An efficient weighted Lagrangian twin support vector machine for imbalanced data classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2014.03.008 – volume: 71 start-page: 303 year: 2014 ident: 10.1016/j.knosys.2022.108578_b50 article-title: KNN-based weighted rough ν-twin support vector machine publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2014.08.008 – year: 2017 ident: 10.1016/j.knosys.2022.108578_b78 – volume: 18 start-page: 1 issue: 1 year: 2007 ident: 10.1016/j.knosys.2022.108578_b47 article-title: Reduced support vector machines: A statistical theory publication-title: IEEE Trans. Neural Netw. doi: 10.1109/TNN.2006.883722 – volume: 2 start-page: 22 issue: 1 year: 2015 ident: 10.1016/j.knosys.2022.108578_b8 article-title: Support vector machine and ROC curves for modeling of aircraft fuel consumption publication-title: J. Manag. Anal. – volume: 123 start-page: 191 year: 2020 ident: 10.1016/j.knosys.2022.108578_b85 article-title: Minimum variance-embedded deep kernel regularized least squares method for one-class classification and its applications to biomedical data publication-title: Neural Netw. doi: 10.1016/j.neunet.2019.12.001 – volume: 23 year: 2021 ident: 10.1016/j.knosys.2022.108578_b9 article-title: The first step towards intelligent wire arc additive manufacturing: An automatic bead modelling system using machine learning through industrial information integration publication-title: J. Ind. Inf. Integr. – volume: 107 year: 2020 ident: 10.1016/j.knosys.2022.108578_b77 article-title: Enhanced automatic twin support vector machine for imbalanced data classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2020.107442 – ident: 10.1016/j.knosys.2022.108578_b20 doi: 10.1145/1143844.1143971 – volume: 115 start-page: 87 year: 2017 ident: 10.1016/j.knosys.2022.108578_b29 article-title: Entropy-based fuzzy support vector machine for imbalanced datasets publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2016.09.032 – volume: 21 start-page: 1263 issue: 9 year: 2009 ident: 10.1016/j.knosys.2022.108578_b61 article-title: Learning from imbalanced data publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2008.239 – volume: 21 issue: 3 year: 2021 ident: 10.1016/j.knosys.2022.108578_b60 article-title: An efficient angle-based universum least squares twin support vector machine for classification publication-title: ACM Trans. Internet Technol. doi: 10.1145/3387131 – volume: 578 start-page: 659 year: 2021 ident: 10.1016/j.knosys.2022.108578_b76 article-title: Class imbalance learning using fuzzy ART and intuitionistic fuzzy twin support vector machines publication-title: Inform. Sci. doi: 10.1016/j.ins.2021.07.010 – year: 2021 ident: 10.1016/j.knosys.2022.108578_b55 – volume: 20 start-page: 273 issue: 3 year: 1995 ident: 10.1016/j.knosys.2022.108578_b1 article-title: Support-vector networks publication-title: Mach. Learn. doi: 10.1023/A:1022627411411 – volume: 107 year: 2021 ident: 10.1016/j.knosys.2022.108578_b58 article-title: Ensemble of classification models with weighted functional link network publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107322 – volume: 113 year: 2021 ident: 10.1016/j.knosys.2022.108578_b67 article-title: Fuzzy least squares projection twin support vector machines for class imbalance learning publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2021.107933 – year: 2022 ident: 10.1016/j.knosys.2022.108578_b43 article-title: Brain age prediction with improved least squares twin SVR publication-title: IEEE J. Biomed. Health Inf. – volume: 49 start-page: 688 issue: 2 year: 2018 ident: 10.1016/j.knosys.2022.108578_b17 article-title: Multiview learning with generalized eigenvalue proximal support vector machines publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2017.2786719 – start-page: 170 year: 2015 ident: 10.1016/j.knosys.2022.108578_b16 article-title: WS-TWSVM: weighted structural twin support vector machine by local and global information – volume: 106 start-page: 249 year: 2018 ident: 10.1016/j.knosys.2022.108578_b64 article-title: A systematic study of the class imbalance problem in convolutional neural networks publication-title: Neural Netw. doi: 10.1016/j.neunet.2018.07.011 – start-page: 376 year: 2011 ident: 10.1016/j.knosys.2022.108578_b62 article-title: Detection of cancer patients using an innovative method for learning at imbalanced datasets – volume: 106 start-page: 169 year: 2018 ident: 10.1016/j.knosys.2022.108578_b3 article-title: EEG signal classification using universum support vector machine publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.03.053 – volume: 42 start-page: 880 issue: 4 year: 2018 ident: 10.1016/j.knosys.2022.108578_b80 article-title: Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI publication-title: IEEE Trans. Pattern Anal. Mach. Intell. doi: 10.1109/TPAMI.2018.2889096 – start-page: 103 year: 2021 ident: 10.1016/j.knosys.2022.108578_b38 article-title: Robust general twin support vector machine with pinball loss function – volume: 459 start-page: 454 year: 2021 ident: 10.1016/j.knosys.2022.108578_b54 article-title: Least squares KNN-based weighted multiclass twin SVM publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.02.132 – volume: 81 start-page: 674 year: 2018 ident: 10.1016/j.knosys.2022.108578_b68 article-title: Handling data irregularities in classification: Foundations, trends, and future challenges publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2018.03.008 – volume: 71 start-page: 418 year: 2018 ident: 10.1016/j.knosys.2022.108578_b36 article-title: A robust fuzzy least squares twin support vector machine for class imbalance learning publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2018.07.003 – volume: 2017 year: 2017 ident: 10.1016/j.knosys.2022.108578_b2 article-title: Rotating machinery fault diagnosis for imbalanced data based on fast clustering algorithm and support vector machine publication-title: J. Sensors doi: 10.1155/2017/8092691 – volume: 78 start-page: 1376 issue: 18 year: 2012 ident: 10.1016/j.knosys.2022.108578_b81 article-title: Predicting missing biomarker data in a longitudinal study of Alzheimer disease publication-title: Neurology doi: 10.1212/WNL.0b013e318253d5b3 – volume: 88 start-page: 34 year: 2015 ident: 10.1016/j.knosys.2022.108578_b53 article-title: K-nearest neighbor based structural twin support vector machine publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.08.009 – volume: 494 start-page: 311 year: 2019 ident: 10.1016/j.knosys.2022.108578_b37 article-title: General twin support vector machine with pinball loss function publication-title: Inform. Sci. doi: 10.1016/j.ins.2019.04.032 – volume: 41 start-page: 299 issue: 1 year: 2014 ident: 10.1016/j.knosys.2022.108578_b51 article-title: K-nearest neighbor-based weighted twin support vector regression publication-title: Appl. Intell. doi: 10.1007/s10489-014-0518-0 – volume: 2 start-page: 459 issue: 3 year: 2013 ident: 10.1016/j.knosys.2022.108578_b27 article-title: A fuzzy twin support vector machine algorithm publication-title: Int. J. Appl. Innov. Eng. Manag. (IJAIEM) – volume: 39 start-page: 539 issue: 2 year: 2008 ident: 10.1016/j.knosys.2022.108578_b31 article-title: Exploratory undersampling for class-imbalance learning publication-title: IEEE Trans. Syst. Man Cybern. B – volume: 30 start-page: 195 issue: 2 year: 1998 ident: 10.1016/j.knosys.2022.108578_b65 article-title: Machine learning for the detection of oil spills in satellite radar images publication-title: Mach. Learn. doi: 10.1023/A:1007452223027 – volume: 13 start-page: 21 issue: 1 year: 1967 ident: 10.1016/j.knosys.2022.108578_b48 article-title: Nearest neighbor pattern classification publication-title: IEEE Trans. Inform. Theory doi: 10.1109/TIT.1967.1053964 – volume: 48 start-page: 3108 issue: 9 year: 2018 ident: 10.1016/j.knosys.2022.108578_b18 article-title: Regularized multi-view least squares twin support vector machines publication-title: Appl. Intell. doi: 10.1007/s10489-017-1129-3 – start-page: 1 year: 2022 ident: 10.1016/j.knosys.2022.108578_b42 article-title: Brain age prediction using improved twin SVR publication-title: Neural Comput. Appl. – volume: 62 start-page: 229 issue: 1 year: 2012 ident: 10.1016/j.knosys.2022.108578_b82 article-title: Combining MRI and CSF measures for classification of alzheimer’s disease and prediction of mild cognitive impairment conversion publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.04.056 – start-page: 1 year: 2021 ident: 10.1016/j.knosys.2022.108578_b39 article-title: Large-scale pinball twin support vector machines publication-title: Mach. Learn. – volume: 10 start-page: 357 issue: 2 year: 2019 ident: 10.1016/j.knosys.2022.108578_b41 article-title: KNN-based maximum margin and minimum volume hyper-sphere machine for imbalanced data classification publication-title: Int. J. Mach. Learn. Cybern. doi: 10.1007/s13042-017-0720-6 – volume: 18 start-page: 711 issue: 4 year: 2016 ident: 10.1016/j.knosys.2022.108578_b5 article-title: Identity management based on PCA and SVM publication-title: Inf. Syst. Front. doi: 10.1007/s10796-015-9551-8 – volume: 114 start-page: 47 year: 2019 ident: 10.1016/j.knosys.2022.108578_b13 article-title: Robust capped L1-norm twin support vector machine publication-title: Neural Netw. doi: 10.1016/j.neunet.2019.01.016 – volume: 74 start-page: 434 year: 2018 ident: 10.1016/j.knosys.2022.108578_b14 article-title: Least squares twin bounded support vector machines based on L1-norm distance metric for classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.09.035 – volume: 39 start-page: 281 issue: 1 year: 2008 ident: 10.1016/j.knosys.2022.108578_b35 article-title: SVMS modeling for highly imbalanced classification publication-title: IEEE Trans. Syst. Man Cybern. B doi: 10.1109/TSMCB.2008.2002909 – volume: 18 start-page: 63 issue: 1 year: 2005 ident: 10.1016/j.knosys.2022.108578_b73 article-title: Training cost-sensitive neural networks with methods addressing the class imbalance problem publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2006.17 – volume: 62 start-page: 434 issue: 2 year: 2013 ident: 10.1016/j.knosys.2022.108578_b63 article-title: Using class imbalance learning for software defect prediction publication-title: IEEE Trans. Reliab. doi: 10.1109/TR.2013.2259203 – volume: 102 year: 2020 ident: 10.1016/j.knosys.2022.108578_b71 article-title: A reduced universum twin support vector machine for class imbalance learning publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2019.107150 – volume: 36 start-page: 112 year: 2012 ident: 10.1016/j.knosys.2022.108578_b21 article-title: Twin support vector machine with universum data publication-title: Neural Netw. doi: 10.1016/j.neunet.2012.09.004 – year: 2021 ident: 10.1016/j.knosys.2022.108578_b34 article-title: Minimum variance-embedded kernelized extension of extreme learning machine for imbalance learning publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2021.108069 – volume: 17 year: 2011 ident: 10.1016/j.knosys.2022.108578_b79 article-title: Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework publication-title: J. Mult.-Valued Logic Soft Comput. – ident: 10.1016/j.knosys.2022.108578_b24 – volume: 16 start-page: 321 year: 2002 ident: 10.1016/j.knosys.2022.108578_b30 article-title: SMOTE: synthetic minority over-sampling technique publication-title: J. Artificial Intelligence Res. doi: 10.1613/jair.953 – volume: 35 start-page: 31 year: 2012 ident: 10.1016/j.knosys.2022.108578_b49 article-title: Weighted twin support vector machines with local information and its application publication-title: Neural Netw. doi: 10.1016/j.neunet.2012.06.010 – volume: 93 year: 2020 ident: 10.1016/j.knosys.2022.108578_b57 article-title: LSTSVM classifier with enhanced features from pre-trained functional link network publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2020.106305 – volume: 12 start-page: 149 issue: 2 year: 2010 ident: 10.1016/j.knosys.2022.108578_b7 article-title: An SVM-based machine learning method for accurate internet traffic classification publication-title: Inf. Syst. Front. doi: 10.1007/s10796-008-9131-2 – volume: 205 start-page: 430 year: 2016 ident: 10.1016/j.knosys.2022.108578_b52 article-title: K-nearest neighbor-based weighted multi-class twin support vector machine publication-title: Neurocomputing doi: 10.1016/j.neucom.2016.04.024 – volume: 104 start-page: 180 year: 2013 ident: 10.1016/j.knosys.2022.108578_b32 article-title: Improving protein-ATP binding residues prediction by boosting SVMs with random under-sampling publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.10.012 – volume: 7 start-page: 1 year: 2006 ident: 10.1016/j.knosys.2022.108578_b86 article-title: Statistical comparisons of classifiers over multiple data sets publication-title: J. Mach. Learn. Res. – year: 2021 ident: 10.1016/j.knosys.2022.108578_b69 article-title: Progressive hybrid classifier ensemble for imbalanced data publication-title: IEEE Trans. Syst. Man Cybern.: Syst. – volume: 61 start-page: 1402 issue: 4 year: 2012 ident: 10.1016/j.knosys.2022.108578_b83 article-title: Within-subject template estimation for unbiased longitudinal image analysis publication-title: Neuroimage doi: 10.1016/j.neuroimage.2012.02.084 – volume: 36 start-page: 7535 issue: 4 year: 2009 ident: 10.1016/j.knosys.2022.108578_b11 article-title: Least squares twin support vector machines for pattern classification publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2008.09.066 – volume: 95 start-page: 75 year: 2016 ident: 10.1016/j.knosys.2022.108578_b40 article-title: A maximum margin and minimum volume hyper-spheres machine with pinball loss for imbalanced data classification publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2015.12.005 – year: 2021 ident: 10.1016/j.knosys.2022.108578_b44 article-title: Predicting brain age using machine learning algorithms: A comprehensive evaluation publication-title: IEEE J. Biomed. Health Inf. – start-page: 1 year: 2001 ident: 10.1016/j.knosys.2022.108578_b45 article-title: RSVM: Reduced support vector machines – volume: 18 start-page: 558 issue: 3 year: 2010 ident: 10.1016/j.knosys.2022.108578_b26 article-title: FSVM-CIL: fuzzy support vector machines for class imbalance learning publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2010.2042721 – volume: 25 start-page: 1 issue: 1 year: 2010 ident: 10.1016/j.knosys.2022.108578_b28 article-title: Boosting support vector machines for imbalanced data sets publication-title: Knowl. Inf. Syst. doi: 10.1007/s10115-009-0198-y – volume: 74 start-page: 1474 issue: 9 year: 2011 ident: 10.1016/j.knosys.2022.108578_b46 article-title: Reduced twin support vector regression publication-title: Neurocomputing doi: 10.1016/j.neucom.2010.11.003 – volume: 67 start-page: 32 year: 2017 ident: 10.1016/j.knosys.2022.108578_b19 article-title: Weighted linear loss multiple birth support vector machine based on information granulation for multi-class classification publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2017.02.011 – volume: 63 start-page: 1455 issue: 7 year: 2015 ident: 10.1016/j.knosys.2022.108578_b84 article-title: A dataset for breast cancer histopathological image classification publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2015.2496264 – volume: 29 start-page: 4065 issue: 9 year: 2017 ident: 10.1016/j.knosys.2022.108578_b33 article-title: Classification of imbalanced data by oversampling in kernel space of support vector machines publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2017.2751612 – volume: 21 start-page: 961 issue: 05 year: 2007 ident: 10.1016/j.knosys.2022.108578_b74 article-title: A weighted support vector machine for data classification publication-title: Int. J. Pattern Recognit. Artif. Intell. doi: 10.1142/S0218001407005703 – volume: 59 year: 2020 ident: 10.1016/j.knosys.2022.108578_b4 article-title: Diagnosis of Alzheimer’s disease using universum support vector machine based recursive feature elimination (USVM-RFE) publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2020.101903 – volume: 2015 year: 2015 ident: 10.1016/j.knosys.2022.108578_b25 article-title: Hybrid feature selection based weighted least squares twin support vector machine approach for diagnosing breast cancer, hepatitis, and diabetes publication-title: Adv. Artif. Neural Syst. |
| SSID | ssj0002218 |
| Score | 2.5508225 |
| Snippet | In real world problems, imbalance of data samples poses major challenge for the classification problems as the data samples of a particular class are... |
| SourceID | unpaywall proquest crossref elsevier |
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 108578 |
| SubjectTerms | Alzheimer's disease Class imbalance Classification Data points Empirical analysis Hyperplanes Imbalance ratio KNN weighted Learning Mathematical analysis Neighborhoods Optimization Oversampling Principles Rectangular kernel Regularization Statistical analysis Statistical methods Support vector machines Twin support vector machine Universum |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6V7QEubXmJ7QP5AEfvJvEjzqmqKFUF6gpUFpVTZMcOhO6mqyVhVX49441TFYRUkDhFeYwS53Nmvok-zwC8UA7DHAYSajNnKRdK08yWERWxi7V1ymjlFyefTeTplL-5EBcb8L5fC-NllcH3dz597a3DkXF4m2M9Hy-qanyO_ACnLN7KSw2Eig-_V_olO66-tOYebEqB9HwAm9PJu6NPXc29iPrLfRKmUmSWmNz0y-nWmq_L-urbtS_inSRefCd887U_h6tbdPR-Wy_09UrPZrci08k2LPsxdYKUy1HbmFHx47dyj_910DuwFXgsOeqsHsKGqx_Bdt8jggSX8RiO304mZLX-_-osWfpCsbhtOzlIOyfNqqrJ-cczguSZFJ7Kk2puvN6ycCS0tPj8BKYnrz-8OqWhcwMtmIoammUiUcpFBeeOJcZZqXSsuVU88x5Dp5hIlYnFZC1OIqkTLWOjDGZHrNRMuIQ9hUF9VbtnQJjJElsaLqzIuFbWxLEsrdQImJG8YENgPUB5Ecqa--4as7zXr33NO1hzD2vewToEemO16Mp63HF92mOf_4JUjpHnDsv9fqrkwT3geYkcQbA0i4Ywupk-f_Uku_9qsAcP_N5a3pbuw6BZtu4AiVRjnodP4yclcRs4 priority: 102 providerName: Unpaywall |
| Title | KNN weighted reduced universum twin SVM for class imbalance learning |
| URI | https://dx.doi.org/10.1016/j.knosys.2022.108578 https://www.proquest.com/docview/2667853790 https://www.sciencedirect.com/science/article/am/pii/S0950705122002581?via%3Dihub |
| UnpaywallVersion | publishedVersion |
| Volume | 245 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection customDbUrl: eissn: 1872-7409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-7409 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002218 issn: 0950-7051 databaseCode: AKRWK dateStart: 19871201 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA-iB734LU6n5OA1rs1Hmx7HdExlRdDJPJWkSWW61aEbYxf_dpM21QnCxFNo-0LDy8v7CL_3HgBnXBszZwwJUpFWiDIuUKQyDzFf-0JpLgW3ycndOOj06HWf9VdAq8qFsbBKp_tLnV5oa_em4bjZGA8GjTvjHBh5Nf-xOANWpF9TGtouBucf3zAPjIs7PkuMLHWVPldgvF7y1_e5LdqNsQXbMdts7XfztOB-rk_zsZjPxHC4YIna22DTuZCwWa5yB6zofBdsVe0ZoDute-DiJo7hrLj61Aq-2RqtZpyWSIzpCE5mgxzePXSh8Vthar1oOBhJC3VMNXTdJJ72Qa99ed_qINc0AaWEexMURQxzrr2UUk2w1CrgwhdUcRrZwypCE8NkWJk4ycdeILAIfMmlCUxIJgjTmByA1fw114cAEhlhlUnKFIuo4Er6fpCpQBjeyYCmpAZIxaskdRXFbWOLYVJBx56TksOJ5XBScrgG0NescVlRYwl9WG1D8kMyEqP0l8ysV7uWuJNpvgfGPDMSRl4NnH_t5J9WcvTvlRyDDftUQMzCOlidvE31iXFmJvK0kNZTsNa8uunEZuzFt83HTxwS9Gs |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA6iB724i-Oag9c4bZY2PYoL4zJzccFbSJpURsc66AyDF3-7eW3qAoLiqZCFhpe3hu-9h9CedN7MeUNCbOYs4UJqktkiIiJ2sbZOGi0hObnbSzrX_OxW3E6hwyYXBmCVQffXOr3S1mGkHajZHvb77UvvHHh-9f8BnIGA9OsZLmgKEdj-2yfOg9LqkQ9WE1je5M9VIK-H8unlFap2UwpoOwHd1n62T1_8z9lxOdSvEz0YfDFFJ4toPviQ-KA-5hKacuUyWmj6M-Agrivo6LzXw5Pq7dNZ_AxFWv13XEMxxo94NOmX-PKmi73jinNwo3H_0QDWMXc4tJO4W0XXJ8dXhx0SuiaQnMloRLJMUCldlHPuGDXOJlLHmlvJM5BWnfogpqDWB0oxjRJNdRIbaXxkwgrNhKNsDU2XT6VbR5iZjNrCcGFFxrW0Jo6Twiba084kPGctxBpaqTyUFIfOFgPVYMfuVU1hBRRWNYVbiHzsGtYlNX5ZnzbXoL6xhvJa_5edW82tqSCafj7x9lmwNItaaP_jJv90ko1_n2QXzXauuhfq4rR3vonmYKbCm6VbaHr0PHbb3rMZmZ2Kc98BIcj0UA |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6V7QEubXmJ7QP5AEfvJvEjzqmqKFUF6gpUFpVTZMcOhO6mqyVhVX49441TFYRUkDhFeYwS53Nmvok-zwC8UA7DHAYSajNnKRdK08yWERWxi7V1ymjlFyefTeTplL-5EBcb8L5fC-NllcH3dz597a3DkXF4m2M9Hy-qanyO_ACnLN7KSw2Eig-_V_olO66-tOYebEqB9HwAm9PJu6NPXc29iPrLfRKmUmSWmNz0y-nWmq_L-urbtS_inSRefCd887U_h6tbdPR-Wy_09UrPZrci08k2LPsxdYKUy1HbmFHx47dyj_910DuwFXgsOeqsHsKGqx_Bdt8jggSX8RiO304mZLX-_-osWfpCsbhtOzlIOyfNqqrJ-cczguSZFJ7Kk2puvN6ycCS0tPj8BKYnrz-8OqWhcwMtmIoammUiUcpFBeeOJcZZqXSsuVU88x5Dp5hIlYnFZC1OIqkTLWOjDGZHrNRMuIQ9hUF9VbtnQJjJElsaLqzIuFbWxLEsrdQImJG8YENgPUB5Ecqa--4as7zXr33NO1hzD2vewToEemO16Mp63HF92mOf_4JUjpHnDsv9fqrkwT3geYkcQbA0i4Ywupk-f_Uku_9qsAcP_N5a3pbuw6BZtu4AiVRjnodP4yclcRs4 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=KNN+weighted+reduced+universum+twin+SVM+for+class+imbalance+learning&rft.jtitle=Knowledge-based+systems&rft.au=Ganaie%2C+M.A.&rft.au=Tanveer%2C+M.&rft.date=2022-06-07&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=245&rft_id=info:doi/10.1016%2Fj.knosys.2022.108578&rft.externalDocID=S0950705122002581 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon |