KNN weighted reduced universum twin SVM for class imbalance learning

In real world problems, imbalance of data samples poses major challenge for the classification problems as the data samples of a particular class are dominating. Problems like fault and disease detection involve imbalance data and hence need attention to avoid the bias towards a particular class. Th...

Full description

Saved in:
Bibliographic Details
Published inKnowledge-based systems Vol. 245; p. 108578
Main Authors Ganaie, M.A., Tanveer, M.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 07.06.2022
Elsevier Science Ltd
Subjects
Online AccessGet full text
ISSN0950-7051
1872-7409
1872-7409
DOI10.1016/j.knosys.2022.108578

Cover

Abstract In real world problems, imbalance of data samples poses major challenge for the classification problems as the data samples of a particular class are dominating. Problems like fault and disease detection involve imbalance data and hence need attention to avoid the bias towards a particular class. The classification models like support vector machines (SVM) get biased to majority class samples and hence results in misclassification of the minority class samples. SVM suffers as no prior information related to the data is involved in the generation of hyperplanes. Also, local information of the neighbourhood is ignored in SVM samples and thus treats each sample equally for generating the hyperplanes. However, the data points may be contaminated and may mislead the generation of hyperplanes. Inspired by the idea of prior data information and local neighbourhood information, we propose K-nearest neighbour based weighted reduced universum twin SVM for class imbalance learning (KWRUTSVM-CIL). The proposed KWRUTSVM-CIL embodies the local neighbourhood information and uses universum data to balance the classes in class imbalance problems. Local neighbourhood information is incorporated via weight matrix in the objective function. In proposed KWRUTSVM-CIL model, weight vectors are used in the corresponding constraints of the objective functions to exploit the interclass information. The oversampling and undersampling approaches are followed to balance the data in class imbalance problems. Universum data gives prior information of the data. Twin SVM, universum twin SVM, and reduced universum twin SVM for class imbalance implement empirical risk minimization principle and thus may lead to overfitting. However, the proposed KWRUTSVM-CIL model embodies regularization term to maximize the margin and implement the structural risk minimization principle which is the marrow of statistical learning and overcomes the issues of overfitting. Experimental results and the statistical analysis signify that the generalization ability of proposed KWRUTSVM-CIL model is superior in comparison to other twin SVM based models. As an application, we use the proposed KWRUTSVM-CIL model for the diagnosis of Alzheimer’s disease and breast cancer disease. The proposed KWRUTSVM-CIL model showed better generalization performance compared to other twin SVM based models in biomedical datasets. •To incorporate the local neighbourhood information, K nearest neighbourbased weights are used in the proposed KWRUTSVM-CIL.•Unlike RUTSVM-CIL, UTSVM, TSVM and FTWSVM models which implement the empirical risk minimization principle, the proposed KWRUTSVM-CIL model implements the structural risk minimization principle.•Similar to RUTSVM-CIL, the proposed KWRUTSVM-CIL model incorporates prior information about the data (universum data) to handle the class imbalance problem.•The matrices appearing in the Wolfe dual of the proposed KWRUTSVM-CIL are positive definite, while as the matrices in the Wolfe dual of RUTSVM-CIL, UTSVM, TSVM and FTWSVM are positive semi-definite.•Experimental results and statistical analysis show the efficacy of the proposed KWRUTSVM-CIL model. As an application, we use the proposed KWRUTSVM-CIL model for the classification of Alzheimer’s disease and breast cancer subjects.
AbstractList In real world problems, imbalance of data samples poses major challenge for the classification problems as the data samples of a particular class are dominating. Problems like fault and disease detection involve imbalance data and hence need attention to avoid the bias towards a particular class. The classification models like support vector machines (SVM) get biased to majority class samples and hence results in misclassification of the minority class samples. SVM suffers as no prior information related to the data is involved in the generation of hyperplanes. Also, local information of the neighbourhood is ignored in SVM samples and thus treats each sample equally for generating the hyperplanes. However, the data points may be contaminated and may mislead the generation of hyperplanes. Inspired by the idea of prior data information and local neighbourhood information, we propose K-nearest neighbour based weighted reduced universum twin SVM for class imbalance learning (KWRUTSVM-CIL). The proposed KWRUTSVM-CIL embodies the local neighbourhood information and uses universum data to balance the classes in class imbalance problems. Local neighbourhood information is incorporated via weight matrix in the objective function. In proposed KWRUTSVM-CIL model, weight vectors are used in the corresponding constraints of the objective functions to exploit the interclass information. The oversampling and undersampling approaches are followed to balance the data in class imbalance problems. Universum data gives prior information of the data. Twin SVM, universum twin SVM, and reduced universum twin SVM for class imbalance implement empirical risk minimization principle and thus may lead to overfitting. However, the proposed KWRUTSVM-CIL model embodies regularization term to maximize the margin and implement the structural risk minimization principle which is the marrow of statistical learning and overcomes the issues of overfitting. Experimental results and the statistical analysis signify that the generalization ability of proposed KWRUTSVM-CIL model is superior in comparison to other twin SVM based models. As an application, we use the proposed KWRUTSVM-CIL model for the diagnosis of Alzheimer’s disease and breast cancer disease. The proposed KWRUTSVM-CIL model showed better generalization performance compared to other twin SVM based models in biomedical datasets. •To incorporate the local neighbourhood information, K nearest neighbourbased weights are used in the proposed KWRUTSVM-CIL.•Unlike RUTSVM-CIL, UTSVM, TSVM and FTWSVM models which implement the empirical risk minimization principle, the proposed KWRUTSVM-CIL model implements the structural risk minimization principle.•Similar to RUTSVM-CIL, the proposed KWRUTSVM-CIL model incorporates prior information about the data (universum data) to handle the class imbalance problem.•The matrices appearing in the Wolfe dual of the proposed KWRUTSVM-CIL are positive definite, while as the matrices in the Wolfe dual of RUTSVM-CIL, UTSVM, TSVM and FTWSVM are positive semi-definite.•Experimental results and statistical analysis show the efficacy of the proposed KWRUTSVM-CIL model. As an application, we use the proposed KWRUTSVM-CIL model for the classification of Alzheimer’s disease and breast cancer subjects.
In real world problems, imbalance of data samples poses major challenge for the classification problems as the data samples of a particular class are dominating. Problems like fault and disease detection involve imbalance data and hence need attention to avoid the bias towards a particular class. The classification models like support vector machines (SVM) get biased to majority class samples and hence results in misclassification of the minority class samples. SVM suffers as no prior information related to the data is involved in the generation of hyperplanes. Also, local information of the neighbourhood is ignored in SVM samples and thus treats each sample equally for generating the hyperplanes. However, the data points may be contaminated and may mislead the generation of hyperplanes. Inspired by the idea of prior data information and local neighbourhood information, we propose -nearest neighbour based weighted reduced universum twin SVM for class imbalance learning (KWRUTSVM-CIL). The proposed KWRUTSVM-CIL embodies the local neighbourhood information and uses universum data to balance the classes in class imbalance problems. Local neighbourhood information is incorporated via weight matrix in the objective function. In proposed KWRUTSVM-CIL model, weight vectors are used in the corresponding constraints of the objective functions to exploit the interclass information. The oversampling and undersampling approaches are followed to balance the data in class imbalance problems. Universum data gives prior information of the data. Twin SVM, universum twin SVM, and reduced universum twin SVM for class imbalance implement empirical risk minimization principle and thus may lead to overfitting. However, the proposed KWRUTSVM-CIL model embodies regularization term to maximize the margin and implement the structural risk minimization principle which is the marrow of statistical learning and overcomes the issues of overfitting. Experimental results and the statistical analysis signify that the generalization ability of proposed KWRUTSVM-CIL model is superior in comparison to other twin SVM based models. As an application, we use the proposed KWRUTSVM-CIL model for the diagnosis of Alzheimer's disease and breast cancer disease. The proposed KWRUTSVM-CIL model showed better generalization performance compared to other twin SVM based models in biomedical datasets.
ArticleNumber 108578
Author Tanveer, M.
Ganaie, M.A.
Author_xml – sequence: 1
  givenname: M.A.
  surname: Ganaie
  fullname: Ganaie, M.A.
  email: phd1901141006@iiti.ac.in
– sequence: 2
  givenname: M.
  orcidid: 0000-0002-5727-3697
  surname: Tanveer
  fullname: Tanveer, M.
  email: mtanveer@iiti.ac.in
BookMark eNqNkDtPwzAUhS0EEm3hHzBEYk6xnYcdBiRUnqKUgcdqOc5NcUmdYjut-u9xFSYGYDrS1fmOrr4h2jetAYROCB4TTPKzxfjDtG7rxhRTGk48Y3wPDQhnNGYpLvbRABcZjhnOyCEaOrfAODQJH6Crh9ks2oCev3uoIgtVp0J2Rq_Bum4Z-Y020fPbY1S3NlKNdC7Sy1I20iiIGpDWaDM_Qge1bBwcf-cIvd5cv0zu4unT7f3kchqrhGMfF0VGOQes0hQSWkKVc0lkWvG0wCnnkmGe17TijBCKc0llTkpeUsKSWiYZ0GSEsn63Myu53cimESurl9JuBcFip0IsRK9C7FSIXkXgTntuZdvPDpwXi7azJrwqaJ4zniWswKGV9i1lW-cs1P8dP_-BKe2l163xVurmL_iihyFoW2uwwikNwW2lLSgvqlb_PvAF8k2bYg
CitedBy_id crossref_primary_10_1016_j_envres_2024_119526
crossref_primary_10_1007_s00530_024_01299_8
crossref_primary_10_1016_j_jhazmat_2024_136002
crossref_primary_10_1051_e3sconf_202344802057
crossref_primary_10_1016_j_aei_2024_102459
crossref_primary_10_3390_info13080386
crossref_primary_10_1007_s12559_023_10115_w
crossref_primary_10_1007_s10489_025_06356_x
crossref_primary_10_1007_s13042_022_01696_3
crossref_primary_10_1093_comjnl_bxaf020
crossref_primary_10_1007_s12652_024_04793_z
crossref_primary_10_1109_ACCESS_2024_3365544
crossref_primary_10_1016_j_compeleceng_2024_109796
crossref_primary_10_1016_j_asoc_2023_110899
crossref_primary_10_1007_s13351_023_3020_y
crossref_primary_10_3103_S0146411624700573
crossref_primary_10_1007_s10614_024_10801_3
crossref_primary_10_1016_j_eswa_2023_121331
crossref_primary_10_3390_a17120571
crossref_primary_10_1016_j_engappai_2024_107849
crossref_primary_10_1007_s10479_023_05401_7
crossref_primary_10_4018_IJeC_304373
crossref_primary_10_1016_j_neunet_2023_07_030
crossref_primary_10_1016_j_ins_2023_03_131
crossref_primary_10_1016_j_ins_2023_119478
crossref_primary_10_1109_ACCESS_2022_3185227
crossref_primary_10_1007_s10479_023_05369_4
crossref_primary_10_1007_s12145_024_01368_6
crossref_primary_10_1109_TIM_2023_3267379
crossref_primary_10_1186_s12967_025_06371_z
crossref_primary_10_1088_1361_6501_ad21d7
crossref_primary_10_1109_TFUZZ_2024_3421638
crossref_primary_10_3390_info15040235
crossref_primary_10_1007_s10489_023_05260_6
crossref_primary_10_1016_j_engappai_2024_109450
crossref_primary_10_1016_j_asoc_2023_110489
crossref_primary_10_1109_TFUZZ_2024_3366936
crossref_primary_10_1016_j_neucom_2024_128258
crossref_primary_10_1109_TCDS_2023_3254209
crossref_primary_10_1016_j_eswa_2024_123480
crossref_primary_10_3390_machines10100879
crossref_primary_10_1016_j_neunet_2023_05_004
Cites_doi 10.1080/00207721.2015.1110212
10.1016/j.asoc.2015.08.060
10.1016/j.asoc.2018.11.046
10.1016/j.eswa.2015.10.031
10.1016/j.patcog.2020.107262
10.1016/j.ins.2010.06.039
10.1109/ACCESS.2018.2879052
10.1109/TPAMI.2007.1068
10.1016/j.eswa.2019.113072
10.1016/j.patcog.2014.03.008
10.1016/j.knosys.2014.08.008
10.1109/TNN.2006.883722
10.1016/j.neunet.2019.12.001
10.1016/j.patcog.2020.107442
10.1145/1143844.1143971
10.1016/j.knosys.2016.09.032
10.1109/TKDE.2008.239
10.1145/3387131
10.1016/j.ins.2021.07.010
10.1023/A:1022627411411
10.1016/j.asoc.2021.107322
10.1016/j.asoc.2021.107933
10.1109/TCYB.2017.2786719
10.1016/j.neunet.2018.07.011
10.1016/j.eswa.2018.03.053
10.1109/TPAMI.2018.2889096
10.1016/j.neucom.2020.02.132
10.1016/j.patcog.2018.03.008
10.1016/j.asoc.2018.07.003
10.1155/2017/8092691
10.1212/WNL.0b013e318253d5b3
10.1016/j.knosys.2015.08.009
10.1016/j.ins.2019.04.032
10.1007/s10489-014-0518-0
10.1023/A:1007452223027
10.1109/TIT.1967.1053964
10.1007/s10489-017-1129-3
10.1016/j.neuroimage.2012.04.056
10.1007/s13042-017-0720-6
10.1007/s10796-015-9551-8
10.1016/j.neunet.2019.01.016
10.1016/j.patcog.2017.09.035
10.1109/TSMCB.2008.2002909
10.1109/TKDE.2006.17
10.1109/TR.2013.2259203
10.1016/j.patcog.2019.107150
10.1016/j.neunet.2012.09.004
10.1016/j.patcog.2021.108069
10.1613/jair.953
10.1016/j.neunet.2012.06.010
10.1016/j.asoc.2020.106305
10.1007/s10796-008-9131-2
10.1016/j.neucom.2016.04.024
10.1016/j.neucom.2012.10.012
10.1016/j.neuroimage.2012.02.084
10.1016/j.eswa.2008.09.066
10.1016/j.knosys.2015.12.005
10.1109/TFUZZ.2010.2042721
10.1007/s10115-009-0198-y
10.1016/j.neucom.2010.11.003
10.1016/j.patcog.2017.02.011
10.1109/TBME.2015.2496264
10.1109/TNNLS.2017.2751612
10.1142/S0218001407005703
10.1016/j.bspc.2020.101903
ContentType Journal Article
Copyright 2022 Elsevier B.V.
Copyright Elsevier Science Ltd. Jun 7, 2022
Copyright_xml – notice: 2022 Elsevier B.V.
– notice: Copyright Elsevier Science Ltd. Jun 7, 2022
CorporateAuthor Alzheimer’s Disease Neuroimaging Initiative
CorporateAuthor_xml – name: Alzheimer’s Disease Neuroimaging Initiative
DBID AAYXX
CITATION
7SC
8FD
E3H
F2A
JQ2
L7M
L~C
L~D
ADTOC
UNPAY
DOI 10.1016/j.knosys.2022.108578
DatabaseName CrossRef
Computer and Information Systems Abstracts
Technology Research Database
Library & Information Sciences Abstracts (LISA)
Library & Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Library and Information Science Abstracts (LISA)
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList
Technology Research Database
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1872-7409
ExternalDocumentID 10.1016/j.knosys.2022.108578
10_1016_j_knosys_2022_108578
S0950705122002581
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
77K
8P~
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
AAYFN
ABAOU
ABBOA
ABIVO
ABJNI
ABMAC
ABYKQ
ACAZW
ACDAQ
ACGFS
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
AXJTR
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
GBOLZ
IHE
J1W
JJJVA
KOM
LG9
LY7
M41
MHUIS
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
PQQKQ
Q38
ROL
RPZ
SDF
SDG
SDP
SES
SPC
SPCBC
SST
SSV
SSW
SSZ
T5K
WH7
XPP
ZMT
~02
~G-
29L
77I
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADJOM
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
G-2
HLZ
HVGLF
HZ~
R2-
SBC
SET
SEW
UHS
WUQ
~HD
7SC
8FD
AFXIZ
AGCQF
AGRNS
BNPGV
E3H
F2A
JQ2
L7M
L~C
L~D
SSH
ADTOC
UNPAY
ID FETCH-LOGICAL-c380t-995288e0c44e32bed68a1a4d8490488a7086f2d8711206a2a61b8b2173fa35e23
IEDL.DBID .~1
ISSN 0950-7051
1872-7409
IngestDate Wed Oct 01 16:05:09 EDT 2025
Fri Jul 25 06:48:24 EDT 2025
Thu Apr 24 22:59:03 EDT 2025
Sat Oct 25 05:10:48 EDT 2025
Fri Feb 23 02:40:59 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Universum
Imbalance ratio
Rectangular kernel
Class imbalance
Twin support vector machine
KNN weighted
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c380t-995288e0c44e32bed68a1a4d8490488a7086f2d8711206a2a61b8b2173fa35e23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5727-3697
OpenAccessLink https://proxy.k.utb.cz/login?url=https://www.sciencedirect.com/science/article/am/pii/S0950705122002581?via%3Dihub
PQID 2667853790
PQPubID 2035257
ParticipantIDs unpaywall_primary_10_1016_j_knosys_2022_108578
proquest_journals_2667853790
crossref_primary_10_1016_j_knosys_2022_108578
crossref_citationtrail_10_1016_j_knosys_2022_108578
elsevier_sciencedirect_doi_10_1016_j_knosys_2022_108578
PublicationCentury 2000
PublicationDate 2022-06-07
PublicationDateYYYYMMDD 2022-06-07
PublicationDate_xml – month: 06
  year: 2022
  text: 2022-06-07
  day: 07
PublicationDecade 2020
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Knowledge-based systems
PublicationYear 2022
Publisher Elsevier B.V
Elsevier Science Ltd
Publisher_xml – name: Elsevier B.V
– name: Elsevier Science Ltd
References Yuan, Li, Guan, Xu (b7) 2010; 12
Batuwita, Palade (b26) 2010; 18
F.H. Sinz, O. Chapelle, A. Agarwal, B. Schölkopf, An analysis of inference with the universum, in: NIPS, Vol. 7, 2007, p. 1.
Nekooeimehr, Lai-Yuen (b72) 2016; 46
Yang, Song, Wang (b74) 2007; 21
Chawla, Bowyer, Hall, Kegelmeyer (b30) 2002; 16
Tang, Zhang, Chawla, Krasser (b35) 2008; 39
Buda, Maki, Mazurowski (b64) 2018; 106
Ganaie, Tanveer, Beheshti (b42) 2022
Singh, Chadha, Ahuja, Chandra (b46) 2011; 74
Parvin, Minaei-Bidgoli, Alizadeh (b62) 2011
Shen, Wang, Da Xu, Ma, Chaudhry, He (b5) 2016; 18
Tomar, Agarwal (b25) 2015; 2015
Richhariya, Tanveer (b3) 2018; 106
Ganaie, Tanveer (b57) 2020; 93
Richhariya, Tanveer (b71) 2020; 102
Ye, Zhao, Gao, Zheng (b49) 2012; 35
Yan, Ye, Zhang, Yu, Yuan, Xu, Fu (b14) 2018; 74
Tanveer, Rajani, Rastogi, Shao, Ganaie (b59) 2022
Richhariya, Tanveer, Rashid, Initiative (b4) 2020; 59
Lee, Mangasarian (b45) 2001
Xu, Wang (b51) 2014; 41
Richhariya, Tanveer (b23) 2021
Demšar (b86) 2006; 7
Reuter, Schmansky, Rosas, Fischl (b83) 2012; 61
Wang, Japkowicz (b28) 2010; 25
Shao, Chen, Zhang, Wang, Deng (b75) 2014; 47
Xu, Zhang, Zhao, Yang, Pan (b41) 2019; 10
Xu, Chen, Li (b22) 2016; 47
Alcalá-Fdez, Fernández, Luengo, Derrac, García, Sánchez, Herrera (b79) 2011; 17
Qi, Tian, Shi (b21) 2012; 36
Lo, Jagust (b81) 2012; 78
Zhao, Ye, Naiem, Fu (b15) 2018; 7
Ganaie, Tanveer (b38) 2021
Cortes, Vapnik (b1) 1995; 20
Zhang, Jiang, Han, Wang, Yang, Yang (b2) 2017; 2017
Mathew, Pang, Luo, Leong (b33) 2017; 29
Xu (b52) 2016; 205
Cover, Hart (b48) 1967; 13
Richhariya, Tanveer (b36) 2018; 71
Lee, Huang (b47) 2007; 18
Xie (b18) 2018; 48
Kubat, Holte, Matwin (b65) 1998; 30
Rezvani, Wang (b76) 2021; 578
Jimenez-Castaño, Alvarez-Meza, Orozco-Gutierrez (b77) 2020; 107
Sun, Xie, Dong (b17) 2018; 49
Ganaie, Tanveer, Beheshti (b43) 2022
Liu, Wu, Zhou (b31) 2008; 39
Tanveer, Ganaie, Suganthan (b58) 2021; 107
Ding, Zhang, An, Xue (b19) 2017; 67
Ganaie, Tanveer, Initiative (b67) 2021; 113
Spanhol, Oliveira, Petitjean, Heutte (b84) 2015; 63
Wang, Chen, Bi (b8) 2015; 2
Yu, Hu, Tang, Shen, Yang, Yang (b32) 2013; 104
Beheshti, Ganaie, Paliwal, Rastogi, Razzak, Tanveer (b44) 2021
Wang, Ye, Luo, Ye, Fu (b13) 2019; 114
Ganaie, Tanveer, Suganthan (b56) 2020; 143
Koziarski (b70) 2020; 102
Li, Ma (b27) 2013; 2
Tanveer, Sharma, Suganthan (b54) 2021; 459
Richhariya, Tanveer (b60) 2021; 21
Zhou, Liu (b73) 2005; 18
Das, Datta, Chaudhuri (b68) 2018; 81
Xu, Yu, Zhang (b50) 2014; 71
Kumar, Gopal (b11) 2009; 36
Ganaie, Hu, Malik, Tanveer, Suganthan (b55) 2021
Pan, Luo, Xu (b53) 2015; 88
Westman, Muehlboeck, Simmons (b82) 2012; 62
Richhariya, Gupta (b6) 2019; 76
Yang, Yu, Chen, Cao, Wong, You, Han (b69) 2021
Raghuwanshi, Shukla (b34) 2021
He, Garcia (b61) 2009; 21
Xu, Yang, Zhang, Pan, Wang (b40) 2016; 95
Krawczyk, Galar, Jeleń, Herrera (b66) 2016; 38
Gautam, Mishra, Tiwari, Richhariya, Pandey, Wang, Tanveer, Initiative (b85) 2020; 123
Tanveer, Tiwari, Choudhary, Ganaie (b39) 2021
Peng (b12) 2010; 180
Ding, He, Yuan, Pan, Wang, Ros (b9) 2021; 23
Fan, Wang, Li, Gao, Zha (b29) 2017; 115
Dua, Graff (b78) 2017
J. Weston, R. Collobert, F. Sinz, L. Bottou, V. Vapnik, Inference with the universum, in: Proceedings of the 23rd International Conference on Machine Learning, 2006, pp. 1009–1016.
Rezvani-KhorashadiZadeh, Reza (b16) 2015
Wang, Yao (b63) 2013; 62
Lian, Liu, Zhang, Shen (b80) 2018; 42
Jayadeva, Khemchandani, Chandra (b10) 2007; 29
Tanveer, Sharma, Suganthan (b37) 2019; 494
Kumar (10.1016/j.knosys.2022.108578_b11) 2009; 36
Richhariya (10.1016/j.knosys.2022.108578_b3) 2018; 106
Kubat (10.1016/j.knosys.2022.108578_b65) 1998; 30
Xu (10.1016/j.knosys.2022.108578_b41) 2019; 10
Batuwita (10.1016/j.knosys.2022.108578_b26) 2010; 18
Xu (10.1016/j.knosys.2022.108578_b22) 2016; 47
Gautam (10.1016/j.knosys.2022.108578_b85) 2020; 123
Shen (10.1016/j.knosys.2022.108578_b5) 2016; 18
Tanveer (10.1016/j.knosys.2022.108578_b58) 2021; 107
Zhao (10.1016/j.knosys.2022.108578_b15) 2018; 7
Cortes (10.1016/j.knosys.2022.108578_b1) 1995; 20
Ding (10.1016/j.knosys.2022.108578_b9) 2021; 23
10.1016/j.knosys.2022.108578_b20
10.1016/j.knosys.2022.108578_b24
Yu (10.1016/j.knosys.2022.108578_b32) 2013; 104
Cover (10.1016/j.knosys.2022.108578_b48) 1967; 13
Alcalá-Fdez (10.1016/j.knosys.2022.108578_b79) 2011; 17
Ganaie (10.1016/j.knosys.2022.108578_b67) 2021; 113
Yang (10.1016/j.knosys.2022.108578_b74) 2007; 21
Richhariya (10.1016/j.knosys.2022.108578_b4) 2020; 59
Yuan (10.1016/j.knosys.2022.108578_b7) 2010; 12
Ye (10.1016/j.knosys.2022.108578_b49) 2012; 35
Xie (10.1016/j.knosys.2022.108578_b18) 2018; 48
Tanveer (10.1016/j.knosys.2022.108578_b37) 2019; 494
Liu (10.1016/j.knosys.2022.108578_b31) 2008; 39
Westman (10.1016/j.knosys.2022.108578_b82) 2012; 62
Pan (10.1016/j.knosys.2022.108578_b53) 2015; 88
Jimenez-Castaño (10.1016/j.knosys.2022.108578_b77) 2020; 107
Richhariya (10.1016/j.knosys.2022.108578_b23) 2021
Sun (10.1016/j.knosys.2022.108578_b17) 2018; 49
Wang (10.1016/j.knosys.2022.108578_b63) 2013; 62
Ganaie (10.1016/j.knosys.2022.108578_b43) 2022
Yang (10.1016/j.knosys.2022.108578_b69) 2021
Krawczyk (10.1016/j.knosys.2022.108578_b66) 2016; 38
Ganaie (10.1016/j.knosys.2022.108578_b38) 2021
Koziarski (10.1016/j.knosys.2022.108578_b70) 2020; 102
Yan (10.1016/j.knosys.2022.108578_b14) 2018; 74
Parvin (10.1016/j.knosys.2022.108578_b62) 2011
Zhang (10.1016/j.knosys.2022.108578_b2) 2017; 2017
Mathew (10.1016/j.knosys.2022.108578_b33) 2017; 29
Ganaie (10.1016/j.knosys.2022.108578_b55) 2021
He (10.1016/j.knosys.2022.108578_b61) 2009; 21
Buda (10.1016/j.knosys.2022.108578_b64) 2018; 106
Ding (10.1016/j.knosys.2022.108578_b19) 2017; 67
Shao (10.1016/j.knosys.2022.108578_b75) 2014; 47
Lian (10.1016/j.knosys.2022.108578_b80) 2018; 42
Peng (10.1016/j.knosys.2022.108578_b12) 2010; 180
Tanveer (10.1016/j.knosys.2022.108578_b39) 2021
Xu (10.1016/j.knosys.2022.108578_b51) 2014; 41
Tanveer (10.1016/j.knosys.2022.108578_b59) 2022
Wang (10.1016/j.knosys.2022.108578_b8) 2015; 2
Xu (10.1016/j.knosys.2022.108578_b52) 2016; 205
Xu (10.1016/j.knosys.2022.108578_b50) 2014; 71
Beheshti (10.1016/j.knosys.2022.108578_b44) 2021
Richhariya (10.1016/j.knosys.2022.108578_b36) 2018; 71
Ganaie (10.1016/j.knosys.2022.108578_b56) 2020; 143
Tang (10.1016/j.knosys.2022.108578_b35) 2008; 39
Raghuwanshi (10.1016/j.knosys.2022.108578_b34) 2021
Lo (10.1016/j.knosys.2022.108578_b81) 2012; 78
Spanhol (10.1016/j.knosys.2022.108578_b84) 2015; 63
Reuter (10.1016/j.knosys.2022.108578_b83) 2012; 61
Qi (10.1016/j.knosys.2022.108578_b21) 2012; 36
Chawla (10.1016/j.knosys.2022.108578_b30) 2002; 16
Nekooeimehr (10.1016/j.knosys.2022.108578_b72) 2016; 46
Singh (10.1016/j.knosys.2022.108578_b46) 2011; 74
Fan (10.1016/j.knosys.2022.108578_b29) 2017; 115
Dua (10.1016/j.knosys.2022.108578_b78) 2017
Lee (10.1016/j.knosys.2022.108578_b47) 2007; 18
Tomar (10.1016/j.knosys.2022.108578_b25) 2015; 2015
Ganaie (10.1016/j.knosys.2022.108578_b57) 2020; 93
Jayadeva (10.1016/j.knosys.2022.108578_b10) 2007; 29
Richhariya (10.1016/j.knosys.2022.108578_b60) 2021; 21
Richhariya (10.1016/j.knosys.2022.108578_b71) 2020; 102
Tanveer (10.1016/j.knosys.2022.108578_b54) 2021; 459
Demšar (10.1016/j.knosys.2022.108578_b86) 2006; 7
Das (10.1016/j.knosys.2022.108578_b68) 2018; 81
Lee (10.1016/j.knosys.2022.108578_b45) 2001
Ganaie (10.1016/j.knosys.2022.108578_b42) 2022
Zhou (10.1016/j.knosys.2022.108578_b73) 2005; 18
Rezvani-KhorashadiZadeh (10.1016/j.knosys.2022.108578_b16) 2015
Rezvani (10.1016/j.knosys.2022.108578_b76) 2021; 578
Richhariya (10.1016/j.knosys.2022.108578_b6) 2019; 76
Li (10.1016/j.knosys.2022.108578_b27) 2013; 2
Wang (10.1016/j.knosys.2022.108578_b13) 2019; 114
Wang (10.1016/j.knosys.2022.108578_b28) 2010; 25
Xu (10.1016/j.knosys.2022.108578_b40) 2016; 95
References_xml – volume: 74
  start-page: 434
  year: 2018
  end-page: 447
  ident: b14
  article-title: Least squares twin bounded support vector machines based on
  publication-title: Pattern Recognit.
– volume: 107
  year: 2021
  ident: b58
  article-title: Ensemble of classification models with weighted functional link network
  publication-title: Appl. Soft Comput.
– volume: 2
  start-page: 22
  year: 2015
  end-page: 34
  ident: b8
  article-title: Support vector machine and ROC curves for modeling of aircraft fuel consumption
  publication-title: J. Manag. Anal.
– volume: 106
  start-page: 249
  year: 2018
  end-page: 259
  ident: b64
  article-title: A systematic study of the class imbalance problem in convolutional neural networks
  publication-title: Neural Netw.
– volume: 21
  start-page: 961
  year: 2007
  end-page: 976
  ident: b74
  article-title: A weighted support vector machine for data classification
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
– volume: 23
  year: 2021
  ident: b9
  article-title: The first step towards intelligent wire arc additive manufacturing: An automatic bead modelling system using machine learning through industrial information integration
  publication-title: J. Ind. Inf. Integr.
– volume: 143
  year: 2020
  ident: b56
  article-title: Oblique decision tree ensemble via twin bounded SVM
  publication-title: Expert Syst. Appl.
– volume: 113
  year: 2021
  ident: b67
  article-title: Fuzzy least squares projection twin support vector machines for class imbalance learning
  publication-title: Appl. Soft Comput.
– volume: 7
  start-page: 3275
  year: 2018
  end-page: 3286
  ident: b15
  article-title: Robust
  publication-title: IEEE Access
– volume: 104
  start-page: 180
  year: 2013
  end-page: 190
  ident: b32
  article-title: Improving protein-ATP binding residues prediction by boosting SVMs with random under-sampling
  publication-title: Neurocomputing
– volume: 46
  start-page: 405
  year: 2016
  end-page: 416
  ident: b72
  article-title: Adaptive semi-unsupervised weighted oversampling (a-SUWO) for imbalanced datasets
  publication-title: Expert Syst. Appl.
– year: 2021
  ident: b55
  article-title: Ensemble deep learning: A review
– volume: 20
  start-page: 273
  year: 1995
  end-page: 297
  ident: b1
  article-title: Support-vector networks
  publication-title: Mach. Learn.
– start-page: 376
  year: 2011
  end-page: 381
  ident: b62
  article-title: Detection of cancer patients using an innovative method for learning at imbalanced datasets
  publication-title: International Conference on Rough Sets and Knowledge Technology
– year: 2022
  ident: b43
  article-title: Brain age prediction with improved least squares twin SVR
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 71
  start-page: 303
  year: 2014
  end-page: 313
  ident: b50
  article-title: KNN-based weighted rough
  publication-title: Knowl.-Based Syst.
– volume: 21
  year: 2021
  ident: b60
  article-title: An efficient angle-based universum least squares twin support vector machine for classification
  publication-title: ACM Trans. Internet Technol.
– volume: 18
  start-page: 558
  year: 2010
  end-page: 571
  ident: b26
  article-title: FSVM-CIL: fuzzy support vector machines for class imbalance learning
  publication-title: IEEE Trans. Fuzzy Syst.
– start-page: 103
  year: 2021
  end-page: 125
  ident: b38
  article-title: Robust general twin support vector machine with pinball loss function
  publication-title: Machine Learning for Intelligent Multimedia Analytics
– volume: 61
  start-page: 1402
  year: 2012
  end-page: 1418
  ident: b83
  article-title: Within-subject template estimation for unbiased longitudinal image analysis
  publication-title: Neuroimage
– start-page: 1
  year: 2022
  end-page: 11
  ident: b42
  article-title: Brain age prediction using improved twin SVR
  publication-title: Neural Comput. Appl.
– volume: 17
  year: 2011
  ident: b79
  article-title: Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework
  publication-title: J. Mult.-Valued Logic Soft Comput.
– start-page: 1
  year: 2021
  end-page: 24
  ident: b39
  article-title: Large-scale pinball twin support vector machines
  publication-title: Mach. Learn.
– volume: 62
  start-page: 434
  year: 2013
  end-page: 443
  ident: b63
  article-title: Using class imbalance learning for software defect prediction
  publication-title: IEEE Trans. Reliab.
– volume: 2017
  year: 2017
  ident: b2
  article-title: Rotating machinery fault diagnosis for imbalanced data based on fast clustering algorithm and support vector machine
  publication-title: J. Sensors
– volume: 49
  start-page: 688
  year: 2018
  end-page: 697
  ident: b17
  article-title: Multiview learning with generalized eigenvalue proximal support vector machines
  publication-title: IEEE Trans. Cybern.
– volume: 95
  start-page: 75
  year: 2016
  end-page: 85
  ident: b40
  article-title: A maximum margin and minimum volume hyper-spheres machine with pinball loss for imbalanced data classification
  publication-title: Knowl.-Based Syst.
– volume: 2015
  year: 2015
  ident: b25
  article-title: Hybrid feature selection based weighted least squares twin support vector machine approach for diagnosing breast cancer, hepatitis, and diabetes
  publication-title: Adv. Artif. Neural Syst.
– volume: 36
  start-page: 112
  year: 2012
  end-page: 119
  ident: b21
  article-title: Twin support vector machine with universum data
  publication-title: Neural Netw.
– volume: 7
  start-page: 1
  year: 2006
  end-page: 30
  ident: b86
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– volume: 102
  year: 2020
  ident: b70
  article-title: Radial-based undersampling for imbalanced data classification
  publication-title: Pattern Recognit.
– start-page: 1
  year: 2001
  end-page: 17
  ident: b45
  article-title: RSVM: Reduced support vector machines
  publication-title: Proceedings of the 2001 SIAM International Conference on Data Mining
– volume: 38
  start-page: 714
  year: 2016
  end-page: 726
  ident: b66
  article-title: Evolutionary undersampling boosting for imbalanced classification of breast cancer malignancy
  publication-title: Appl. Soft Comput.
– volume: 59
  year: 2020
  ident: b4
  article-title: Diagnosis of Alzheimer’s disease using universum support vector machine based recursive feature elimination (USVM-RFE)
  publication-title: Biomed. Signal Process. Control
– volume: 180
  start-page: 3863
  year: 2010
  end-page: 3875
  ident: b12
  article-title: A
  publication-title: Inform. Sci.
– volume: 93
  year: 2020
  ident: b57
  article-title: LSTSVM classifier with enhanced features from pre-trained functional link network
  publication-title: Appl. Soft Comput.
– volume: 71
  start-page: 418
  year: 2018
  end-page: 432
  ident: b36
  article-title: A robust fuzzy least squares twin support vector machine for class imbalance learning
  publication-title: Appl. Soft Comput.
– reference: J. Weston, R. Collobert, F. Sinz, L. Bottou, V. Vapnik, Inference with the universum, in: Proceedings of the 23rd International Conference on Machine Learning, 2006, pp. 1009–1016.
– volume: 25
  start-page: 1
  year: 2010
  end-page: 20
  ident: b28
  article-title: Boosting support vector machines for imbalanced data sets
  publication-title: Knowl. Inf. Syst.
– volume: 12
  start-page: 149
  year: 2010
  end-page: 156
  ident: b7
  article-title: An SVM-based machine learning method for accurate internet traffic classification
  publication-title: Inf. Syst. Front.
– volume: 16
  start-page: 321
  year: 2002
  end-page: 357
  ident: b30
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J. Artificial Intelligence Res.
– year: 2021
  ident: b44
  article-title: Predicting brain age using machine learning algorithms: A comprehensive evaluation
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 18
  start-page: 1
  year: 2007
  end-page: 13
  ident: b47
  article-title: Reduced support vector machines: A statistical theory
  publication-title: IEEE Trans. Neural Netw.
– volume: 115
  start-page: 87
  year: 2017
  end-page: 99
  ident: b29
  article-title: Entropy-based fuzzy support vector machine for imbalanced datasets
  publication-title: Knowl.-Based Syst.
– volume: 29
  start-page: 4065
  year: 2017
  end-page: 4076
  ident: b33
  article-title: Classification of imbalanced data by oversampling in kernel space of support vector machines
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
– volume: 30
  start-page: 195
  year: 1998
  end-page: 215
  ident: b65
  article-title: Machine learning for the detection of oil spills in satellite radar images
  publication-title: Mach. Learn.
– volume: 107
  year: 2020
  ident: b77
  article-title: Enhanced automatic twin support vector machine for imbalanced data classification
  publication-title: Pattern Recognit.
– volume: 36
  start-page: 7535
  year: 2009
  end-page: 7543
  ident: b11
  article-title: Least squares twin support vector machines for pattern classification
  publication-title: Expert Syst. Appl.
– volume: 74
  start-page: 1474
  year: 2011
  end-page: 1477
  ident: b46
  article-title: Reduced twin support vector regression
  publication-title: Neurocomputing
– volume: 106
  start-page: 169
  year: 2018
  end-page: 182
  ident: b3
  article-title: EEG signal classification using universum support vector machine
  publication-title: Expert Syst. Appl.
– volume: 2
  start-page: 459
  year: 2013
  end-page: 465
  ident: b27
  article-title: A fuzzy twin support vector machine algorithm
  publication-title: Int. J. Appl. Innov. Eng. Manag. (IJAIEM)
– start-page: 1
  year: 2021
  end-page: 12
  ident: b23
  article-title: A fuzzy universum least squares twin support vector machine (FULSTSVM)
  publication-title: Neural Comput. Appl.
– volume: 35
  start-page: 31
  year: 2012
  end-page: 39
  ident: b49
  article-title: Weighted twin support vector machines with local information and its application
  publication-title: Neural Netw.
– volume: 42
  start-page: 880
  year: 2018
  end-page: 893
  ident: b80
  article-title: Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 114
  start-page: 47
  year: 2019
  end-page: 59
  ident: b13
  article-title: Robust capped
  publication-title: Neural Netw.
– volume: 88
  start-page: 34
  year: 2015
  end-page: 44
  ident: b53
  article-title: K-nearest neighbor based structural twin support vector machine
  publication-title: Knowl.-Based Syst.
– volume: 62
  start-page: 229
  year: 2012
  end-page: 238
  ident: b82
  article-title: Combining MRI and CSF measures for classification of alzheimer’s disease and prediction of mild cognitive impairment conversion
  publication-title: Neuroimage
– year: 2021
  ident: b69
  article-title: Progressive hybrid classifier ensemble for imbalanced data
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
– volume: 205
  start-page: 430
  year: 2016
  end-page: 438
  ident: b52
  article-title: K-nearest neighbor-based weighted multi-class twin support vector machine
  publication-title: Neurocomputing
– volume: 67
  start-page: 32
  year: 2017
  end-page: 46
  ident: b19
  article-title: Weighted linear loss multiple birth support vector machine based on information granulation for multi-class classification
  publication-title: Pattern Recognit.
– start-page: 170
  year: 2015
  end-page: 175
  ident: b16
  article-title: WS-TWSVM: weighted structural twin support vector machine by local and global information
  publication-title: 2015 5th International Conference on Computer and Knowledge Engineering
– volume: 63
  start-page: 1455
  year: 2015
  end-page: 1462
  ident: b84
  article-title: A dataset for breast cancer histopathological image classification
  publication-title: IEEE Trans. Biomed. Eng.
– volume: 102
  year: 2020
  ident: b71
  article-title: A reduced universum twin support vector machine for class imbalance learning
  publication-title: Pattern Recognit.
– volume: 18
  start-page: 63
  year: 2005
  end-page: 77
  ident: b73
  article-title: Training cost-sensitive neural networks with methods addressing the class imbalance problem
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 18
  start-page: 711
  year: 2016
  end-page: 716
  ident: b5
  article-title: Identity management based on PCA and SVM
  publication-title: Inf. Syst. Front.
– year: 2022
  ident: b59
  article-title: Comprehensive review on twin support vector machines
  publication-title: Ann. Oper. Res.
– volume: 459
  start-page: 454
  year: 2021
  end-page: 464
  ident: b54
  article-title: Least squares KNN-based weighted multiclass twin SVM
  publication-title: Neurocomputing
– year: 2017
  ident: b78
  article-title: UCI machine learning repository
– volume: 29
  start-page: 905
  year: 2007
  end-page: 910
  ident: b10
  article-title: Twin support vector machines for pattern classification
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 10
  start-page: 357
  year: 2019
  end-page: 368
  ident: b41
  article-title: KNN-based maximum margin and minimum volume hyper-sphere machine for imbalanced data classification
  publication-title: Int. J. Mach. Learn. Cybern.
– volume: 47
  start-page: 3158
  year: 2014
  end-page: 3167
  ident: b75
  article-title: An efficient weighted Lagrangian twin support vector machine for imbalanced data classification
  publication-title: Pattern Recognit.
– volume: 39
  start-page: 281
  year: 2008
  end-page: 288
  ident: b35
  article-title: SVMS modeling for highly imbalanced classification
  publication-title: IEEE Trans. Syst. Man Cybern. B
– volume: 494
  start-page: 311
  year: 2019
  end-page: 327
  ident: b37
  article-title: General twin support vector machine with pinball loss function
  publication-title: Inform. Sci.
– volume: 47
  start-page: 3637
  year: 2016
  end-page: 3645
  ident: b22
  article-title: Least squares twin support vector machine with universum data for classification
  publication-title: Internat. J. Systems Sci.
– volume: 21
  start-page: 1263
  year: 2009
  end-page: 1284
  ident: b61
  article-title: Learning from imbalanced data
  publication-title: IEEE Trans. Knowl. Data Eng.
– volume: 123
  start-page: 191
  year: 2020
  end-page: 216
  ident: b85
  article-title: Minimum variance-embedded deep kernel regularized least squares method for one-class classification and its applications to biomedical data
  publication-title: Neural Netw.
– volume: 578
  start-page: 659
  year: 2021
  end-page: 682
  ident: b76
  article-title: Class imbalance learning using fuzzy ART and intuitionistic fuzzy twin support vector machines
  publication-title: Inform. Sci.
– volume: 78
  start-page: 1376
  year: 2012
  end-page: 1382
  ident: b81
  article-title: Predicting missing biomarker data in a longitudinal study of Alzheimer disease
  publication-title: Neurology
– volume: 13
  start-page: 21
  year: 1967
  end-page: 27
  ident: b48
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans. Inform. Theory
– volume: 81
  start-page: 674
  year: 2018
  end-page: 693
  ident: b68
  article-title: Handling data irregularities in classification: Foundations, trends, and future challenges
  publication-title: Pattern Recognit.
– reference: F.H. Sinz, O. Chapelle, A. Agarwal, B. Schölkopf, An analysis of inference with the universum, in: NIPS, Vol. 7, 2007, p. 1.
– volume: 39
  start-page: 539
  year: 2008
  end-page: 550
  ident: b31
  article-title: Exploratory undersampling for class-imbalance learning
  publication-title: IEEE Trans. Syst. Man Cybern. B
– year: 2021
  ident: b34
  article-title: Minimum variance-embedded kernelized extension of extreme learning machine for imbalance learning
  publication-title: Pattern Recognit.
– volume: 41
  start-page: 299
  year: 2014
  end-page: 309
  ident: b51
  article-title: K-nearest neighbor-based weighted twin support vector regression
  publication-title: Appl. Intell.
– volume: 76
  start-page: 53
  year: 2019
  end-page: 67
  ident: b6
  article-title: Facial expression recognition using iterative universum twin support vector machine
  publication-title: Appl. Soft Comput.
– volume: 48
  start-page: 3108
  year: 2018
  end-page: 3115
  ident: b18
  article-title: Regularized multi-view least squares twin support vector machines
  publication-title: Appl. Intell.
– volume: 47
  start-page: 3637
  issue: 15
  year: 2016
  ident: 10.1016/j.knosys.2022.108578_b22
  article-title: Least squares twin support vector machine with universum data for classification
  publication-title: Internat. J. Systems Sci.
  doi: 10.1080/00207721.2015.1110212
– volume: 38
  start-page: 714
  year: 2016
  ident: 10.1016/j.knosys.2022.108578_b66
  article-title: Evolutionary undersampling boosting for imbalanced classification of breast cancer malignancy
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2015.08.060
– volume: 76
  start-page: 53
  year: 2019
  ident: 10.1016/j.knosys.2022.108578_b6
  article-title: Facial expression recognition using iterative universum twin support vector machine
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.11.046
– start-page: 1
  year: 2021
  ident: 10.1016/j.knosys.2022.108578_b23
  article-title: A fuzzy universum least squares twin support vector machine (FULSTSVM)
  publication-title: Neural Comput. Appl.
– volume: 46
  start-page: 405
  year: 2016
  ident: 10.1016/j.knosys.2022.108578_b72
  article-title: Adaptive semi-unsupervised weighted oversampling (a-SUWO) for imbalanced datasets
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2015.10.031
– volume: 102
  year: 2020
  ident: 10.1016/j.knosys.2022.108578_b70
  article-title: Radial-based undersampling for imbalanced data classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107262
– volume: 180
  start-page: 3863
  issue: 20
  year: 2010
  ident: 10.1016/j.knosys.2022.108578_b12
  article-title: A ν-twin support vector machine (ν-TSVM) classifier and its geometric algorithms
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2010.06.039
– volume: 7
  start-page: 3275
  year: 2018
  ident: 10.1016/j.knosys.2022.108578_b15
  article-title: Robust L2,1 -norm distance enhanced multi-weight vector projection support vector machine
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2879052
– year: 2022
  ident: 10.1016/j.knosys.2022.108578_b59
  article-title: Comprehensive review on twin support vector machines
  publication-title: Ann. Oper. Res.
– volume: 29
  start-page: 905
  issue: 5
  year: 2007
  ident: 10.1016/j.knosys.2022.108578_b10
  article-title: Twin support vector machines for pattern classification
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2007.1068
– volume: 143
  year: 2020
  ident: 10.1016/j.knosys.2022.108578_b56
  article-title: Oblique decision tree ensemble via twin bounded SVM
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2019.113072
– volume: 47
  start-page: 3158
  issue: 9
  year: 2014
  ident: 10.1016/j.knosys.2022.108578_b75
  article-title: An efficient weighted Lagrangian twin support vector machine for imbalanced data classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2014.03.008
– volume: 71
  start-page: 303
  year: 2014
  ident: 10.1016/j.knosys.2022.108578_b50
  article-title: KNN-based weighted rough ν-twin support vector machine
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2014.08.008
– year: 2017
  ident: 10.1016/j.knosys.2022.108578_b78
– volume: 18
  start-page: 1
  issue: 1
  year: 2007
  ident: 10.1016/j.knosys.2022.108578_b47
  article-title: Reduced support vector machines: A statistical theory
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/TNN.2006.883722
– volume: 2
  start-page: 22
  issue: 1
  year: 2015
  ident: 10.1016/j.knosys.2022.108578_b8
  article-title: Support vector machine and ROC curves for modeling of aircraft fuel consumption
  publication-title: J. Manag. Anal.
– volume: 123
  start-page: 191
  year: 2020
  ident: 10.1016/j.knosys.2022.108578_b85
  article-title: Minimum variance-embedded deep kernel regularized least squares method for one-class classification and its applications to biomedical data
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.12.001
– volume: 23
  year: 2021
  ident: 10.1016/j.knosys.2022.108578_b9
  article-title: The first step towards intelligent wire arc additive manufacturing: An automatic bead modelling system using machine learning through industrial information integration
  publication-title: J. Ind. Inf. Integr.
– volume: 107
  year: 2020
  ident: 10.1016/j.knosys.2022.108578_b77
  article-title: Enhanced automatic twin support vector machine for imbalanced data classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2020.107442
– ident: 10.1016/j.knosys.2022.108578_b20
  doi: 10.1145/1143844.1143971
– volume: 115
  start-page: 87
  year: 2017
  ident: 10.1016/j.knosys.2022.108578_b29
  article-title: Entropy-based fuzzy support vector machine for imbalanced datasets
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2016.09.032
– volume: 21
  start-page: 1263
  issue: 9
  year: 2009
  ident: 10.1016/j.knosys.2022.108578_b61
  article-title: Learning from imbalanced data
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2008.239
– volume: 21
  issue: 3
  year: 2021
  ident: 10.1016/j.knosys.2022.108578_b60
  article-title: An efficient angle-based universum least squares twin support vector machine for classification
  publication-title: ACM Trans. Internet Technol.
  doi: 10.1145/3387131
– volume: 578
  start-page: 659
  year: 2021
  ident: 10.1016/j.knosys.2022.108578_b76
  article-title: Class imbalance learning using fuzzy ART and intuitionistic fuzzy twin support vector machines
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2021.07.010
– year: 2021
  ident: 10.1016/j.knosys.2022.108578_b55
– volume: 20
  start-page: 273
  issue: 3
  year: 1995
  ident: 10.1016/j.knosys.2022.108578_b1
  article-title: Support-vector networks
  publication-title: Mach. Learn.
  doi: 10.1023/A:1022627411411
– volume: 107
  year: 2021
  ident: 10.1016/j.knosys.2022.108578_b58
  article-title: Ensemble of classification models with weighted functional link network
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107322
– volume: 113
  year: 2021
  ident: 10.1016/j.knosys.2022.108578_b67
  article-title: Fuzzy least squares projection twin support vector machines for class imbalance learning
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2021.107933
– year: 2022
  ident: 10.1016/j.knosys.2022.108578_b43
  article-title: Brain age prediction with improved least squares twin SVR
  publication-title: IEEE J. Biomed. Health Inf.
– volume: 49
  start-page: 688
  issue: 2
  year: 2018
  ident: 10.1016/j.knosys.2022.108578_b17
  article-title: Multiview learning with generalized eigenvalue proximal support vector machines
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2017.2786719
– start-page: 170
  year: 2015
  ident: 10.1016/j.knosys.2022.108578_b16
  article-title: WS-TWSVM: weighted structural twin support vector machine by local and global information
– volume: 106
  start-page: 249
  year: 2018
  ident: 10.1016/j.knosys.2022.108578_b64
  article-title: A systematic study of the class imbalance problem in convolutional neural networks
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2018.07.011
– start-page: 376
  year: 2011
  ident: 10.1016/j.knosys.2022.108578_b62
  article-title: Detection of cancer patients using an innovative method for learning at imbalanced datasets
– volume: 106
  start-page: 169
  year: 2018
  ident: 10.1016/j.knosys.2022.108578_b3
  article-title: EEG signal classification using universum support vector machine
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.03.053
– volume: 42
  start-page: 880
  issue: 4
  year: 2018
  ident: 10.1016/j.knosys.2022.108578_b80
  article-title: Hierarchical fully convolutional network for joint atrophy localization and Alzheimer’s disease diagnosis using structural MRI
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
  doi: 10.1109/TPAMI.2018.2889096
– start-page: 103
  year: 2021
  ident: 10.1016/j.knosys.2022.108578_b38
  article-title: Robust general twin support vector machine with pinball loss function
– volume: 459
  start-page: 454
  year: 2021
  ident: 10.1016/j.knosys.2022.108578_b54
  article-title: Least squares KNN-based weighted multiclass twin SVM
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.02.132
– volume: 81
  start-page: 674
  year: 2018
  ident: 10.1016/j.knosys.2022.108578_b68
  article-title: Handling data irregularities in classification: Foundations, trends, and future challenges
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2018.03.008
– volume: 71
  start-page: 418
  year: 2018
  ident: 10.1016/j.knosys.2022.108578_b36
  article-title: A robust fuzzy least squares twin support vector machine for class imbalance learning
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2018.07.003
– volume: 2017
  year: 2017
  ident: 10.1016/j.knosys.2022.108578_b2
  article-title: Rotating machinery fault diagnosis for imbalanced data based on fast clustering algorithm and support vector machine
  publication-title: J. Sensors
  doi: 10.1155/2017/8092691
– volume: 78
  start-page: 1376
  issue: 18
  year: 2012
  ident: 10.1016/j.knosys.2022.108578_b81
  article-title: Predicting missing biomarker data in a longitudinal study of Alzheimer disease
  publication-title: Neurology
  doi: 10.1212/WNL.0b013e318253d5b3
– volume: 88
  start-page: 34
  year: 2015
  ident: 10.1016/j.knosys.2022.108578_b53
  article-title: K-nearest neighbor based structural twin support vector machine
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.08.009
– volume: 494
  start-page: 311
  year: 2019
  ident: 10.1016/j.knosys.2022.108578_b37
  article-title: General twin support vector machine with pinball loss function
  publication-title: Inform. Sci.
  doi: 10.1016/j.ins.2019.04.032
– volume: 41
  start-page: 299
  issue: 1
  year: 2014
  ident: 10.1016/j.knosys.2022.108578_b51
  article-title: K-nearest neighbor-based weighted twin support vector regression
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-014-0518-0
– volume: 2
  start-page: 459
  issue: 3
  year: 2013
  ident: 10.1016/j.knosys.2022.108578_b27
  article-title: A fuzzy twin support vector machine algorithm
  publication-title: Int. J. Appl. Innov. Eng. Manag. (IJAIEM)
– volume: 39
  start-page: 539
  issue: 2
  year: 2008
  ident: 10.1016/j.knosys.2022.108578_b31
  article-title: Exploratory undersampling for class-imbalance learning
  publication-title: IEEE Trans. Syst. Man Cybern. B
– volume: 30
  start-page: 195
  issue: 2
  year: 1998
  ident: 10.1016/j.knosys.2022.108578_b65
  article-title: Machine learning for the detection of oil spills in satellite radar images
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007452223027
– volume: 13
  start-page: 21
  issue: 1
  year: 1967
  ident: 10.1016/j.knosys.2022.108578_b48
  article-title: Nearest neighbor pattern classification
  publication-title: IEEE Trans. Inform. Theory
  doi: 10.1109/TIT.1967.1053964
– volume: 48
  start-page: 3108
  issue: 9
  year: 2018
  ident: 10.1016/j.knosys.2022.108578_b18
  article-title: Regularized multi-view least squares twin support vector machines
  publication-title: Appl. Intell.
  doi: 10.1007/s10489-017-1129-3
– start-page: 1
  year: 2022
  ident: 10.1016/j.knosys.2022.108578_b42
  article-title: Brain age prediction using improved twin SVR
  publication-title: Neural Comput. Appl.
– volume: 62
  start-page: 229
  issue: 1
  year: 2012
  ident: 10.1016/j.knosys.2022.108578_b82
  article-title: Combining MRI and CSF measures for classification of alzheimer’s disease and prediction of mild cognitive impairment conversion
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.04.056
– start-page: 1
  year: 2021
  ident: 10.1016/j.knosys.2022.108578_b39
  article-title: Large-scale pinball twin support vector machines
  publication-title: Mach. Learn.
– volume: 10
  start-page: 357
  issue: 2
  year: 2019
  ident: 10.1016/j.knosys.2022.108578_b41
  article-title: KNN-based maximum margin and minimum volume hyper-sphere machine for imbalanced data classification
  publication-title: Int. J. Mach. Learn. Cybern.
  doi: 10.1007/s13042-017-0720-6
– volume: 18
  start-page: 711
  issue: 4
  year: 2016
  ident: 10.1016/j.knosys.2022.108578_b5
  article-title: Identity management based on PCA and SVM
  publication-title: Inf. Syst. Front.
  doi: 10.1007/s10796-015-9551-8
– volume: 114
  start-page: 47
  year: 2019
  ident: 10.1016/j.knosys.2022.108578_b13
  article-title: Robust capped L1-norm twin support vector machine
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2019.01.016
– volume: 74
  start-page: 434
  year: 2018
  ident: 10.1016/j.knosys.2022.108578_b14
  article-title: Least squares twin bounded support vector machines based on L1-norm distance metric for classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.09.035
– volume: 39
  start-page: 281
  issue: 1
  year: 2008
  ident: 10.1016/j.knosys.2022.108578_b35
  article-title: SVMS modeling for highly imbalanced classification
  publication-title: IEEE Trans. Syst. Man Cybern. B
  doi: 10.1109/TSMCB.2008.2002909
– volume: 18
  start-page: 63
  issue: 1
  year: 2005
  ident: 10.1016/j.knosys.2022.108578_b73
  article-title: Training cost-sensitive neural networks with methods addressing the class imbalance problem
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2006.17
– volume: 62
  start-page: 434
  issue: 2
  year: 2013
  ident: 10.1016/j.knosys.2022.108578_b63
  article-title: Using class imbalance learning for software defect prediction
  publication-title: IEEE Trans. Reliab.
  doi: 10.1109/TR.2013.2259203
– volume: 102
  year: 2020
  ident: 10.1016/j.knosys.2022.108578_b71
  article-title: A reduced universum twin support vector machine for class imbalance learning
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2019.107150
– volume: 36
  start-page: 112
  year: 2012
  ident: 10.1016/j.knosys.2022.108578_b21
  article-title: Twin support vector machine with universum data
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2012.09.004
– year: 2021
  ident: 10.1016/j.knosys.2022.108578_b34
  article-title: Minimum variance-embedded kernelized extension of extreme learning machine for imbalance learning
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2021.108069
– volume: 17
  year: 2011
  ident: 10.1016/j.knosys.2022.108578_b79
  article-title: Keel data-mining software tool: data set repository, integration of algorithms and experimental analysis framework
  publication-title: J. Mult.-Valued Logic Soft Comput.
– ident: 10.1016/j.knosys.2022.108578_b24
– volume: 16
  start-page: 321
  year: 2002
  ident: 10.1016/j.knosys.2022.108578_b30
  article-title: SMOTE: synthetic minority over-sampling technique
  publication-title: J. Artificial Intelligence Res.
  doi: 10.1613/jair.953
– volume: 35
  start-page: 31
  year: 2012
  ident: 10.1016/j.knosys.2022.108578_b49
  article-title: Weighted twin support vector machines with local information and its application
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2012.06.010
– volume: 93
  year: 2020
  ident: 10.1016/j.knosys.2022.108578_b57
  article-title: LSTSVM classifier with enhanced features from pre-trained functional link network
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2020.106305
– volume: 12
  start-page: 149
  issue: 2
  year: 2010
  ident: 10.1016/j.knosys.2022.108578_b7
  article-title: An SVM-based machine learning method for accurate internet traffic classification
  publication-title: Inf. Syst. Front.
  doi: 10.1007/s10796-008-9131-2
– volume: 205
  start-page: 430
  year: 2016
  ident: 10.1016/j.knosys.2022.108578_b52
  article-title: K-nearest neighbor-based weighted multi-class twin support vector machine
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2016.04.024
– volume: 104
  start-page: 180
  year: 2013
  ident: 10.1016/j.knosys.2022.108578_b32
  article-title: Improving protein-ATP binding residues prediction by boosting SVMs with random under-sampling
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.10.012
– volume: 7
  start-page: 1
  year: 2006
  ident: 10.1016/j.knosys.2022.108578_b86
  article-title: Statistical comparisons of classifiers over multiple data sets
  publication-title: J. Mach. Learn. Res.
– year: 2021
  ident: 10.1016/j.knosys.2022.108578_b69
  article-title: Progressive hybrid classifier ensemble for imbalanced data
  publication-title: IEEE Trans. Syst. Man Cybern.: Syst.
– volume: 61
  start-page: 1402
  issue: 4
  year: 2012
  ident: 10.1016/j.knosys.2022.108578_b83
  article-title: Within-subject template estimation for unbiased longitudinal image analysis
  publication-title: Neuroimage
  doi: 10.1016/j.neuroimage.2012.02.084
– volume: 36
  start-page: 7535
  issue: 4
  year: 2009
  ident: 10.1016/j.knosys.2022.108578_b11
  article-title: Least squares twin support vector machines for pattern classification
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2008.09.066
– volume: 95
  start-page: 75
  year: 2016
  ident: 10.1016/j.knosys.2022.108578_b40
  article-title: A maximum margin and minimum volume hyper-spheres machine with pinball loss for imbalanced data classification
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2015.12.005
– year: 2021
  ident: 10.1016/j.knosys.2022.108578_b44
  article-title: Predicting brain age using machine learning algorithms: A comprehensive evaluation
  publication-title: IEEE J. Biomed. Health Inf.
– start-page: 1
  year: 2001
  ident: 10.1016/j.knosys.2022.108578_b45
  article-title: RSVM: Reduced support vector machines
– volume: 18
  start-page: 558
  issue: 3
  year: 2010
  ident: 10.1016/j.knosys.2022.108578_b26
  article-title: FSVM-CIL: fuzzy support vector machines for class imbalance learning
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2010.2042721
– volume: 25
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.knosys.2022.108578_b28
  article-title: Boosting support vector machines for imbalanced data sets
  publication-title: Knowl. Inf. Syst.
  doi: 10.1007/s10115-009-0198-y
– volume: 74
  start-page: 1474
  issue: 9
  year: 2011
  ident: 10.1016/j.knosys.2022.108578_b46
  article-title: Reduced twin support vector regression
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2010.11.003
– volume: 67
  start-page: 32
  year: 2017
  ident: 10.1016/j.knosys.2022.108578_b19
  article-title: Weighted linear loss multiple birth support vector machine based on information granulation for multi-class classification
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2017.02.011
– volume: 63
  start-page: 1455
  issue: 7
  year: 2015
  ident: 10.1016/j.knosys.2022.108578_b84
  article-title: A dataset for breast cancer histopathological image classification
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2015.2496264
– volume: 29
  start-page: 4065
  issue: 9
  year: 2017
  ident: 10.1016/j.knosys.2022.108578_b33
  article-title: Classification of imbalanced data by oversampling in kernel space of support vector machines
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2017.2751612
– volume: 21
  start-page: 961
  issue: 05
  year: 2007
  ident: 10.1016/j.knosys.2022.108578_b74
  article-title: A weighted support vector machine for data classification
  publication-title: Int. J. Pattern Recognit. Artif. Intell.
  doi: 10.1142/S0218001407005703
– volume: 59
  year: 2020
  ident: 10.1016/j.knosys.2022.108578_b4
  article-title: Diagnosis of Alzheimer’s disease using universum support vector machine based recursive feature elimination (USVM-RFE)
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2020.101903
– volume: 2015
  year: 2015
  ident: 10.1016/j.knosys.2022.108578_b25
  article-title: Hybrid feature selection based weighted least squares twin support vector machine approach for diagnosing breast cancer, hepatitis, and diabetes
  publication-title: Adv. Artif. Neural Syst.
SSID ssj0002218
Score 2.5508225
Snippet In real world problems, imbalance of data samples poses major challenge for the classification problems as the data samples of a particular class are...
SourceID unpaywall
proquest
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 108578
SubjectTerms Alzheimer's disease
Class imbalance
Classification
Data points
Empirical analysis
Hyperplanes
Imbalance ratio
KNN weighted
Learning
Mathematical analysis
Neighborhoods
Optimization
Oversampling
Principles
Rectangular kernel
Regularization
Statistical analysis
Statistical methods
Support vector machines
Twin support vector machine
Universum
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6V7QEubXmJ7QP5AEfvJvEjzqmqKFUF6gpUFpVTZMcOhO6mqyVhVX49441TFYRUkDhFeYwS53Nmvok-zwC8UA7DHAYSajNnKRdK08yWERWxi7V1ymjlFyefTeTplL-5EBcb8L5fC-NllcH3dz597a3DkXF4m2M9Hy-qanyO_ACnLN7KSw2Eig-_V_olO66-tOYebEqB9HwAm9PJu6NPXc29iPrLfRKmUmSWmNz0y-nWmq_L-urbtS_inSRefCd887U_h6tbdPR-Wy_09UrPZrci08k2LPsxdYKUy1HbmFHx47dyj_910DuwFXgsOeqsHsKGqx_Bdt8jggSX8RiO304mZLX-_-osWfpCsbhtOzlIOyfNqqrJ-cczguSZFJ7Kk2puvN6ycCS0tPj8BKYnrz-8OqWhcwMtmIoammUiUcpFBeeOJcZZqXSsuVU88x5Dp5hIlYnFZC1OIqkTLWOjDGZHrNRMuIQ9hUF9VbtnQJjJElsaLqzIuFbWxLEsrdQImJG8YENgPUB5Ecqa--4as7zXr33NO1hzD2vewToEemO16Mp63HF92mOf_4JUjpHnDsv9fqrkwT3geYkcQbA0i4Ywupk-f_Uku_9qsAcP_N5a3pbuw6BZtu4AiVRjnodP4yclcRs4
  priority: 102
  providerName: Unpaywall
Title KNN weighted reduced universum twin SVM for class imbalance learning
URI https://dx.doi.org/10.1016/j.knosys.2022.108578
https://www.proquest.com/docview/2667853790
https://www.sciencedirect.com/science/article/am/pii/S0950705122002581?via%3Dihub
UnpaywallVersion publishedVersion
Volume 245
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier ScienceDirect
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection
  customDbUrl:
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-7409
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002218
  issn: 0950-7051
  databaseCode: AKRWK
  dateStart: 19871201
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3NS8MwFA-iB734LU6n5OA1rs1Hmx7HdExlRdDJPJWkSWW61aEbYxf_dpM21QnCxFNo-0LDy8v7CL_3HgBnXBszZwwJUpFWiDIuUKQyDzFf-0JpLgW3ycndOOj06HWf9VdAq8qFsbBKp_tLnV5oa_em4bjZGA8GjTvjHBh5Nf-xOANWpF9TGtouBucf3zAPjIs7PkuMLHWVPldgvF7y1_e5LdqNsQXbMdts7XfztOB-rk_zsZjPxHC4YIna22DTuZCwWa5yB6zofBdsVe0ZoDute-DiJo7hrLj61Aq-2RqtZpyWSIzpCE5mgxzePXSh8Vthar1oOBhJC3VMNXTdJJ72Qa99ed_qINc0AaWEexMURQxzrr2UUk2w1CrgwhdUcRrZwypCE8NkWJk4ycdeILAIfMmlCUxIJgjTmByA1fw114cAEhlhlUnKFIuo4Er6fpCpQBjeyYCmpAZIxaskdRXFbWOLYVJBx56TksOJ5XBScrgG0NescVlRYwl9WG1D8kMyEqP0l8ysV7uWuJNpvgfGPDMSRl4NnH_t5J9WcvTvlRyDDftUQMzCOlidvE31iXFmJvK0kNZTsNa8uunEZuzFt83HTxwS9Gs
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JS8QwFA6iB724i-Oag9c4bZY2PYoL4zJzccFbSJpURsc66AyDF3-7eW3qAoLiqZCFhpe3hu-9h9CedN7MeUNCbOYs4UJqktkiIiJ2sbZOGi0hObnbSzrX_OxW3E6hwyYXBmCVQffXOr3S1mGkHajZHvb77UvvHHh-9f8BnIGA9OsZLmgKEdj-2yfOg9LqkQ9WE1je5M9VIK-H8unlFap2UwpoOwHd1n62T1_8z9lxOdSvEz0YfDFFJ4toPviQ-KA-5hKacuUyWmj6M-Agrivo6LzXw5Pq7dNZ_AxFWv13XEMxxo94NOmX-PKmi73jinNwo3H_0QDWMXc4tJO4W0XXJ8dXhx0SuiaQnMloRLJMUCldlHPuGDXOJlLHmlvJM5BWnfogpqDWB0oxjRJNdRIbaXxkwgrNhKNsDU2XT6VbR5iZjNrCcGFFxrW0Jo6Twiba084kPGctxBpaqTyUFIfOFgPVYMfuVU1hBRRWNYVbiHzsGtYlNX5ZnzbXoL6xhvJa_5edW82tqSCafj7x9lmwNItaaP_jJv90ko1_n2QXzXauuhfq4rR3vonmYKbCm6VbaHr0PHbb3rMZmZ2Kc98BIcj0UA
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Lb9QwEB6V7QEubXmJ7QP5AEfvJvEjzqmqKFUF6gpUFpVTZMcOhO6mqyVhVX49441TFYRUkDhFeYwS53Nmvok-zwC8UA7DHAYSajNnKRdK08yWERWxi7V1ymjlFyefTeTplL-5EBcb8L5fC-NllcH3dz597a3DkXF4m2M9Hy-qanyO_ACnLN7KSw2Eig-_V_olO66-tOYebEqB9HwAm9PJu6NPXc29iPrLfRKmUmSWmNz0y-nWmq_L-urbtS_inSRefCd887U_h6tbdPR-Wy_09UrPZrci08k2LPsxdYKUy1HbmFHx47dyj_910DuwFXgsOeqsHsKGqx_Bdt8jggSX8RiO304mZLX-_-osWfpCsbhtOzlIOyfNqqrJ-cczguSZFJ7Kk2puvN6ycCS0tPj8BKYnrz-8OqWhcwMtmIoammUiUcpFBeeOJcZZqXSsuVU88x5Dp5hIlYnFZC1OIqkTLWOjDGZHrNRMuIQ9hUF9VbtnQJjJElsaLqzIuFbWxLEsrdQImJG8YENgPUB5Ecqa--4as7zXr33NO1hzD2vewToEemO16Mp63HF92mOf_4JUjpHnDsv9fqrkwT3geYkcQbA0i4Ywupk-f_Uku_9qsAcP_N5a3pbuw6BZtu4AiVRjnodP4yclcRs4
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=KNN+weighted+reduced+universum+twin+SVM+for+class+imbalance+learning&rft.jtitle=Knowledge-based+systems&rft.au=Ganaie%2C+M.A.&rft.au=Tanveer%2C+M.&rft.date=2022-06-07&rft.pub=Elsevier+B.V&rft.issn=0950-7051&rft.eissn=1872-7409&rft.volume=245&rft_id=info:doi/10.1016%2Fj.knosys.2022.108578&rft.externalDocID=S0950705122002581
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0950-7051&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0950-7051&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0950-7051&client=summon