Anomalous dewetting growth of Si on Ag(111)

We demonstrate the novel growth of silicene grown on Ag(111) using STM and reveal the mechanism with KMC simulation. Our STM study shows that after the complete formation of the first layer of silicene, it is transformed into bulk Si with the reappearance of the bare Ag surface. This dewetting (DW)...

Full description

Saved in:
Bibliographic Details
Published inNanoscale Vol. 14; no. 39; pp. 14623 - 14629
Main Authors Kawakami, Naoya, Arafune, Ryuichi, Minamitani, Emi, Kawahara, Kazuaki, Takagi, Noriaki, Lin, Chun-Liang
Format Journal Article
LanguageEnglish
Published Cambridge Royal Society of Chemistry 13.10.2022
Subjects
Online AccessGet full text
ISSN2040-3364
2040-3372
2040-3372
DOI10.1039/d2nr03409c

Cover

Abstract We demonstrate the novel growth of silicene grown on Ag(111) using STM and reveal the mechanism with KMC simulation. Our STM study shows that after the complete formation of the first layer of silicene, it is transformed into bulk Si with the reappearance of the bare Ag surface. This dewetting (DW) during the epitaxial growth is an exception in the conventional growth behavior. Our KMC simulation reproduces DW by taking into account the differences in the activation energies of Si atoms on Ag, silicene, and bulk Si. The growth modes change depending on the activation energy of the diffusion, temperature, and deposition rate, highlighting the importance of kinetics in growing metastable 2D materials. We demonstrate the novel growth of silicene grown on Ag(111) using STM and reveal the mechanism with KMC simulation.
AbstractList We demonstrate the novel growth of silicene grown on Ag(111) using STM and reveal the mechanism with KMC simulation. Our STM study shows that after the complete formation of the first layer of silicene, it is transformed into bulk Si with the reappearance of the bare Ag surface. This dewetting (DW) during the epitaxial growth is an exception in the conventional growth behavior. Our KMC simulation reproduces DW by taking into account the differences in the activation energies of Si atoms on Ag, silicene, and bulk Si. The growth modes change depending on the activation energy of the diffusion, temperature, and deposition rate, highlighting the importance of kinetics in growing metastable 2D materials.
We demonstrate the novel growth of silicene grown on Ag(111) using STM and reveal the mechanism with KMC simulation. Our STM study shows that after the complete formation of the first layer of silicene, it is transformed into bulk Si with the reappearance of the bare Ag surface. This dewetting (DW) during the epitaxial growth is an exception in the conventional growth behavior. Our KMC simulation reproduces DW by taking into account the differences in the activation energies of Si atoms on Ag, silicene, and bulk Si. The growth modes change depending on the activation energy of the diffusion, temperature, and deposition rate, highlighting the importance of kinetics in growing metastable 2D materials. We demonstrate the novel growth of silicene grown on Ag(111) using STM and reveal the mechanism with KMC simulation.
We demonstrate the novel growth of silicene grown on Ag(111) using STM and reveal the mechanism with KMC simulation. Our STM study shows that after the complete formation of the first layer of silicene, it is transformed into bulk Si with the reappearance of the bare Ag surface. This dewetting (DW) during the epitaxial growth is an exception in the conventional growth behavior. Our KMC simulation reproduces DW by taking into account the differences in the activation energies of Si atoms on Ag, silicene, and bulk Si. The growth modes change depending on the activation energy of the diffusion, temperature, and deposition rate, highlighting the importance of kinetics in growing metastable 2D materials.We demonstrate the novel growth of silicene grown on Ag(111) using STM and reveal the mechanism with KMC simulation. Our STM study shows that after the complete formation of the first layer of silicene, it is transformed into bulk Si with the reappearance of the bare Ag surface. This dewetting (DW) during the epitaxial growth is an exception in the conventional growth behavior. Our KMC simulation reproduces DW by taking into account the differences in the activation energies of Si atoms on Ag, silicene, and bulk Si. The growth modes change depending on the activation energy of the diffusion, temperature, and deposition rate, highlighting the importance of kinetics in growing metastable 2D materials.
Author Arafune, Ryuichi
Takagi, Noriaki
Kawahara, Kazuaki
Kawakami, Naoya
Minamitani, Emi
Lin, Chun-Liang
AuthorAffiliation International Center for Materials Nanoarchitectonics
Kyoto University
Institute for Molecular Science
National Institute for Materials Science
The University of Tokyo
Department of Electrophysics
Institute of Engineering Innovation
Graduate School of Human and Environmental Studies
National Yang-Ming Chiao Tung University
AuthorAffiliation_xml – name: National Yang-Ming Chiao Tung University
– name: Institute of Engineering Innovation
– name: Graduate School of Human and Environmental Studies
– name: Department of Electrophysics
– name: The University of Tokyo
– name: Kyoto University
– name: International Center for Materials Nanoarchitectonics
– name: National Institute for Materials Science
– name: Institute for Molecular Science
Author_xml – sequence: 1
  givenname: Naoya
  surname: Kawakami
  fullname: Kawakami, Naoya
– sequence: 2
  givenname: Ryuichi
  surname: Arafune
  fullname: Arafune, Ryuichi
– sequence: 3
  givenname: Emi
  surname: Minamitani
  fullname: Minamitani, Emi
– sequence: 4
  givenname: Kazuaki
  surname: Kawahara
  fullname: Kawahara, Kazuaki
– sequence: 5
  givenname: Noriaki
  surname: Takagi
  fullname: Takagi, Noriaki
– sequence: 6
  givenname: Chun-Liang
  surname: Lin
  fullname: Lin, Chun-Liang
BookMark eNpt0UtLAzEQAOAgFWyrF-_CgpeqrCaZ7CZ7XOoTioKP85Im2bplm9QkpfjvXa1UKJ5mDt8M8xignnXWIHRM8CXBUFxpaj0Ghgu1h_oUM5wCcNrb5jk7QIMQ5hjnBeTQRxeldQvZulVItFmbGBs7S2bereN74urkpUmcTcrZiBBydoj2a9kGc_Qbh-jt9uZ1fJ9Onu4exuUkVSBwTAUrZEG5KOS0kHpKcsgV10JwQQHzTElVM6YFzRQwRiiA0VqrDFgOGZkCwBCNNn2X3n2sTIjVognKtK20phu0opyInGFKWEdPd-jcrbztpusUZZTxbstO4Y1S3oXgTV2pJsrYOBu9bNqK4Or7etU1fXz-ud64KznfKVn6ZiH95__4ZIN9UFv39wr4AnRcdyg
CitedBy_id crossref_primary_10_1039_D2NA00808D
crossref_primary_10_1021_acs_nanolett_4c00140
crossref_primary_10_1039_D3NR01581E
Cites_doi 10.1088/2053-1583/aacfc1
10.1016/j.apmt.2017.09.010
10.1103/PhysRevLett.96.086104
10.1103/PhysRevLett.108.245501
10.1103/PhysRevLett.102.236804
10.1007/s10820-006-9042-9
10.1021/nn503000w
10.1088/2053-1583/3/2/025034
10.1021/jp505602c
10.1103/PhysRevB.63.115415
10.1103/PhysRevLett.80.2873
10.1103/PhysRevMaterials.3.104002
10.1016/j.susc.2016.03.029
10.1021/acsnano.6b07593
10.1143/JPSJ.81.064705
10.1039/C7NR06833F
10.1063/1.4894871
10.1021/acsnano.6b06198
10.1103/PhysRevLett.95.226801
10.1016/j.susc.2005.12.030
10.1063/1.4802782
10.1103/PhysRevB.92.245127
10.3389/fchem.2019.00202
10.1063/1.3524215
10.1103/PhysRevB.68.144416
10.1088/2053-1583/4/1/015008
10.1063/1.1707904
10.1063/1.1726787
10.1021/acs.jpcc.9b04343
10.1126/science.1102896
10.1002/adma.202006043
10.1143/APEX.5.045802
10.1016/0042-207X(88)90004-8
10.1088/2053-1583/aa65b8
10.1002/adma.201304783
10.1103/PhysRevLett.115.026102
10.1016/j.rser.2018.09.044
10.1103/PhysRevLett.107.076802
10.1002/adma.201800865
10.1021/nl301047g
10.1103/PhysRevLett.100.186104
10.1002/adma.200701684
10.1103/PhysRevB.89.241403
10.1016/j.surfrep.2016.03.002
10.1002/adma.201904302
10.1021/nl304347w
10.1103/PhysRevLett.108.155501
10.1103/PhysRevB.92.045415
10.1021/acs.nanolett.6b04804
10.1063/1.4860964
10.1016/j.commatsci.2004.12.005
10.1103/PhysRevLett.109.055502
10.1021/acs.jpcc.6b00717
10.1103/PhysRevLett.81.4464
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2022
Copyright_xml – notice: Copyright Royal Society of Chemistry 2022
DBID AAYXX
CITATION
7SR
7U5
8BQ
8FD
F28
FR3
JG9
L7M
7X8
DOI 10.1039/d2nr03409c
DatabaseName CrossRef
Engineered Materials Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Materials Research Database
Advanced Technologies Database with Aerospace
MEDLINE - Academic
DatabaseTitle CrossRef
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
Solid State and Superconductivity Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
METADEX
MEDLINE - Academic
DatabaseTitleList Materials Research Database

CrossRef
MEDLINE - Academic
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2040-3372
EndPage 14629
ExternalDocumentID 10_1039_D2NR03409C
d2nr03409c
GroupedDBID ---
-JG
0-7
0R~
29M
4.4
53G
705
7~J
AAEMU
AAGNR
AAIWI
AANOJ
AAPBV
ABASK
ABDVN
ABGFH
ABRYZ
ACGFS
ACIWK
ACLDK
ADMRA
ADSRN
AENEX
AFOGI
AFVBQ
AGRSR
AGSTE
ALMA_UNASSIGNED_HOLDINGS
ANUXI
ASKNT
AUDPV
AZFZN
BLAPV
BSQNT
C6K
CAG
DU5
EBS
ECGLT
EE0
EF-
F5P
HZ~
H~N
J3I
O-G
O9-
OK1
P2P
RCNCU
RNS
RPMJG
RRC
RSCEA
RVUXY
AAJAE
AARTK
AAWGC
AAXHV
AAYXX
ABEMK
ABJNI
ABPDG
ABXOH
AEFDR
AENGV
AESAV
AETIL
AFLYV
AFRDS
AFRZK
AGEGJ
AHGCF
AKMSF
ALUYA
APEMP
CITATION
GGIMP
H13
RAOCF
7SR
7U5
8BQ
8FD
AKBGW
F28
FR3
JG9
L7M
7X8
ID FETCH-LOGICAL-c380t-849a92789ab9adb1636c7d887823075cacf44d825c3441233edddc5346351b333
ISSN 2040-3364
2040-3372
IngestDate Sat Sep 27 17:14:28 EDT 2025
Sun Jun 29 15:31:12 EDT 2025
Wed Oct 01 01:58:58 EDT 2025
Thu Apr 24 23:01:53 EDT 2025
Fri Oct 14 17:30:42 EDT 2022
IsPeerReviewed true
IsScholarly true
Issue 39
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c380t-849a92789ab9adb1636c7d887823075cacf44d825c3441233edddc5346351b333
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-8781-3650
0000-0001-9500-5557
0000-0002-8003-6526
PQID 2724247363
PQPubID 2047485
PageCount 7
ParticipantIDs crossref_primary_10_1039_D2NR03409C
proquest_journals_2724247363
proquest_miscellaneous_2718640214
crossref_citationtrail_10_1039_D2NR03409C
rsc_primary_d2nr03409c
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-13
PublicationDateYYYYMMDD 2022-10-13
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-13
  day: 13
PublicationDecade 2020
PublicationPlace Cambridge
PublicationPlace_xml – name: Cambridge
PublicationTitle Nanoscale
PublicationYear 2022
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Satta (D2NR03409C/cit48/1) 2015; 115
Bernard (D2NR03409C/cit47/1) 2015; 92
Liu (D2NR03409C/cit27/1) 2014; 2
Reinert (D2NR03409C/cit41/1) 2001; 63
Mahatha (D2NR03409C/cit29/1) 2015; 92
Feng (D2NR03409C/cit38/1) 2012; 12
Wulfhekel (D2NR03409C/cit35/1) 2003; 68
Acun (D2NR03409C/cit26/1) 2013; 103
Mannix (D2NR03409C/cit28/1) 2014; 8
Liu (D2NR03409C/cit11/1) 2011; 107
Cahangirov (D2NR03409C/cit10/1) 2009; 102
Dienel (D2NR03409C/cit34/1) 2008; 20
Thompson (D2NR03409C/cit31/1) 2012; 42
Huang (D2NR03409C/cit20/1) 2017; 17
Lin (D2NR03409C/cit25/1) 2016; 120
Andersen (D2NR03409C/cit43/1) 2019; 7
Schroeder (D2NR03409C/cit49/1) 1998; 80
Reichelt (D2NR03409C/cit51/1) 1988; 38
Leroy (D2NR03409C/cit32/1) 2016; 71
Chatterjee (D2NR03409C/cit56/1) 2007; 14
Curcella (D2NR03409C/cit53/1) 2018; 10
Onoda (D2NR03409C/cit39/1) 2019; 3
Geng (D2NR03409C/cit5/1) 2018; 30
Kawahara (D2NR03409C/cit24/1) 2016; 651
Silly (D2NR03409C/cit37/1) 2006; 96
Vogt (D2NR03409C/cit22/1) 2012; 108
Chiappe (D2NR03409C/cit18/1) 2014; 26
Novoselov (D2NR03409C/cit3/1) 2004; 306
Man (D2NR03409C/cit36/1) 2006; 600
Liu (D2NR03409C/cit50/1) 2016; 3
Burke (D2NR03409C/cit33/1) 2008; 100
Aizawa (D2NR03409C/cit17/1) 2014; 118
Haastrup (D2NR03409C/cit4/1) 2018; 5
Bae (D2NR03409C/cit7/1) 2021; 33
Ezawa (D2NR03409C/cit12/1) 2012; 81
Schmidt (D2NR03409C/cit44/1) 2005; 33
Lin (D2NR03409C/cit9/1) 2012; 5
Moras (D2NR03409C/cit30/1) 2014; 26
De Crescenzi (D2NR03409C/cit19/1) 2016; 10
Li (D2NR03409C/cit40/1) 1998; 81
Ezawa (D2NR03409C/cit13/1) 2012; 109
Curcella (D2NR03409C/cit54/1) 2017; 4
Lalmi (D2NR03409C/cit8/1) 2010; 97
Schwoebel (D2NR03409C/cit46/1) 1966; 37
Solonenko (D2NR03409C/cit55/1) 2016; 4
Walsh (D2NR03409C/cit6/1) 2017; 9
Sheverdyaeva (D2NR03409C/cit42/1) 2017; 11
Slate (D2NR03409C/cit2/1) 2019; 101
Shirai (D2NR03409C/cit23/1) 2014; 89
De Padova (D2NR03409C/cit52/1) 2013; 102
Glavin (D2NR03409C/cit1/1) 2020; 32
Meng (D2NR03409C/cit16/1) 2013; 13
Ehrlich (D2NR03409C/cit45/1) 1966; 44
Stepniak-Dybala (D2NR03409C/cit21/1) 2019; 123
Kane (D2NR03409C/cit14/1) 2005; 95
Fleurence (D2NR03409C/cit15/1) 2012; 108
References_xml – issn: 2012
  issue: 42
  end-page: 399-434
  publication-title: Annual Review of Materials Research, Vol 42
  doi: Thompson
– volume: 5
  start-page: 042002
  year: 2018
  ident: D2NR03409C/cit4/1
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/aacfc1
– volume: 9
  start-page: 504
  year: 2017
  ident: D2NR03409C/cit6/1
  publication-title: Appl. Mater. Today
  doi: 10.1016/j.apmt.2017.09.010
– volume: 96
  start-page: 086104
  year: 2006
  ident: D2NR03409C/cit37/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.96.086104
– volume: 108
  start-page: 245501
  year: 2012
  ident: D2NR03409C/cit15/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.245501
– volume: 102
  start-page: 236804
  year: 2009
  ident: D2NR03409C/cit10/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.102.236804
– volume: 14
  start-page: 253
  year: 2007
  ident: D2NR03409C/cit56/1
  publication-title: J. Comput. Aided Mol. Des.
  doi: 10.1007/s10820-006-9042-9
– volume: 8
  start-page: 7538
  year: 2014
  ident: D2NR03409C/cit28/1
  publication-title: ACS Nano
  doi: 10.1021/nn503000w
– volume: 3
  start-page: 025034
  year: 2016
  ident: D2NR03409C/cit50/1
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/3/2/025034
– volume: 118
  start-page: 23049
  year: 2014
  ident: D2NR03409C/cit17/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp505602c
– volume: 63
  start-page: 115415
  year: 2001
  ident: D2NR03409C/cit41/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.63.115415
– volume: 80
  start-page: 2873
  year: 1998
  ident: D2NR03409C/cit49/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.2873
– volume: 3
  start-page: 104002
  year: 2019
  ident: D2NR03409C/cit39/1
  publication-title: Phys. Rev. Mater.
  doi: 10.1103/PhysRevMaterials.3.104002
– volume: 26
  start-page: 185001
  year: 2014
  ident: D2NR03409C/cit30/1
  publication-title: J. Phys.: Condens. Matter
– volume: 651
  start-page: 70
  year: 2016
  ident: D2NR03409C/cit24/1
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2016.03.029
– volume: 11
  start-page: 975
  year: 2017
  ident: D2NR03409C/cit42/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b07593
– volume: 81
  start-page: 064705
  year: 2012
  ident: D2NR03409C/cit12/1
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.81.064705
– volume: 10
  start-page: 2291
  year: 2018
  ident: D2NR03409C/cit53/1
  publication-title: Nanoscale
  doi: 10.1039/C7NR06833F
– volume: 2
  start-page: 092513
  year: 2014
  ident: D2NR03409C/cit27/1
  publication-title: APL Mater.
  doi: 10.1063/1.4894871
– volume: 10
  start-page: 11163
  year: 2016
  ident: D2NR03409C/cit19/1
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b06198
– volume: 95
  start-page: 226801
  year: 2005
  ident: D2NR03409C/cit14/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.95.226801
– volume: 600
  start-page: 1060
  year: 2006
  ident: D2NR03409C/cit36/1
  publication-title: Surf. Sci.
  doi: 10.1016/j.susc.2005.12.030
– volume: 102
  start-page: 163106
  year: 2013
  ident: D2NR03409C/cit52/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4802782
– volume: 92
  start-page: 245127
  year: 2015
  ident: D2NR03409C/cit29/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.92.245127
– volume: 7
  start-page: 202
  year: 2019
  ident: D2NR03409C/cit43/1
  publication-title: Front. Chem.
  doi: 10.3389/fchem.2019.00202
– volume: 97
  start-page: 223109
  year: 2010
  ident: D2NR03409C/cit8/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3524215
– volume: 68
  start-page: 144416
  year: 2003
  ident: D2NR03409C/cit35/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.68.144416
– volume: 4
  start-page: 015008
  year: 2016
  ident: D2NR03409C/cit55/1
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/4/1/015008
– volume: 37
  start-page: 3682
  year: 1966
  ident: D2NR03409C/cit46/1
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.1707904
– volume: 44
  start-page: 1039
  year: 1966
  ident: D2NR03409C/cit45/1
  publication-title: J. Chem. Phys.
  doi: 10.1063/1.1726787
– volume: 123
  start-page: 17019
  year: 2019
  ident: D2NR03409C/cit21/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.9b04343
– volume: 306
  start-page: 666
  year: 2004
  ident: D2NR03409C/cit3/1
  publication-title: Science
  doi: 10.1126/science.1102896
– volume: 33
  start-page: 2006043
  year: 2021
  ident: D2NR03409C/cit7/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202006043
– volume: 5
  start-page: 045802
  year: 2012
  ident: D2NR03409C/cit9/1
  publication-title: Appl. Phys. Express
  doi: 10.1143/APEX.5.045802
– volume: 38
  start-page: 1083
  year: 1988
  ident: D2NR03409C/cit51/1
  publication-title: Vacuum
  doi: 10.1016/0042-207X(88)90004-8
– volume: 4
  start-page: 025067
  year: 2017
  ident: D2NR03409C/cit54/1
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/aa65b8
– volume: 26
  start-page: 2096
  year: 2014
  ident: D2NR03409C/cit18/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201304783
– volume: 115
  start-page: 026102
  year: 2015
  ident: D2NR03409C/cit48/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.115.026102
– volume: 101
  start-page: 60
  year: 2019
  ident: D2NR03409C/cit2/1
  publication-title: Renewable Sustainable Energy Rev.
  doi: 10.1016/j.rser.2018.09.044
– volume: 107
  start-page: 076802
  year: 2011
  ident: D2NR03409C/cit11/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.107.076802
– volume: 30
  start-page: 1800865
  year: 2018
  ident: D2NR03409C/cit5/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201800865
– volume: 12
  start-page: 3507
  year: 2012
  ident: D2NR03409C/cit38/1
  publication-title: Nano Lett.
  doi: 10.1021/nl301047g
– volume: 100
  start-page: 186104
  year: 2008
  ident: D2NR03409C/cit33/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.100.186104
– volume: 20
  start-page: 959
  year: 2008
  ident: D2NR03409C/cit34/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200701684
– volume: 89
  start-page: 241403(R)
  year: 2014
  ident: D2NR03409C/cit23/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.89.241403
– volume: 71
  start-page: 391
  year: 2016
  ident: D2NR03409C/cit32/1
  publication-title: Surf. Sci. Rep.
  doi: 10.1016/j.surfrep.2016.03.002
– volume: 32
  start-page: 1904302
  year: 2020
  ident: D2NR03409C/cit1/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904302
– volume: 13
  start-page: 685
  year: 2013
  ident: D2NR03409C/cit16/1
  publication-title: Nano Lett.
  doi: 10.1021/nl304347w
– volume: 108
  start-page: 155501
  year: 2012
  ident: D2NR03409C/cit22/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.108.155501
– volume: 92
  start-page: 045415
  year: 2015
  ident: D2NR03409C/cit47/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.92.045415
– volume: 17
  start-page: 1161
  year: 2017
  ident: D2NR03409C/cit20/1
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04804
– volume: 42
  start-page: 399
  volume-title: Annual Review of Materials Research, Vol 42
  year: 2012
  ident: D2NR03409C/cit31/1
– volume: 103
  start-page: 263119
  year: 2013
  ident: D2NR03409C/cit26/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4860964
– volume: 33
  start-page: 375
  year: 2005
  ident: D2NR03409C/cit44/1
  publication-title: Comput. Mater. Sci.
  doi: 10.1016/j.commatsci.2004.12.005
– volume: 109
  start-page: 055502
  year: 2012
  ident: D2NR03409C/cit13/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.055502
– volume: 120
  start-page: 6689
  year: 2016
  ident: D2NR03409C/cit25/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b00717
– volume: 81
  start-page: 4464
  year: 1998
  ident: D2NR03409C/cit40/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.81.4464
SSID ssj0069363
Score 2.4082448
Snippet We demonstrate the novel growth of silicene grown on Ag(111) using STM and reveal the mechanism with KMC simulation. Our STM study shows that after the...
SourceID proquest
crossref
rsc
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 14623
SubjectTerms Activation energy
Diffusion rate
Drying
Epitaxial growth
Silicene
Silicon
Silver
Two dimensional materials
Title Anomalous dewetting growth of Si on Ag(111)
URI https://www.proquest.com/docview/2724247363
https://www.proquest.com/docview/2718640214
Volume 14
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAUL
  databaseName: Royal Society of Chemistry Gold Collection 2023
  customDbUrl: https://pubs.rsc.org
  eissn: 2040-3372
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0069363
  issn: 2040-3364
  databaseCode: AETIL
  dateStart: 20090101
  isFulltext: true
  titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined
  providerName: Royal Society of Chemistry
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZY9wIPiF8ThYGCQIhpymhyjtM8VqPTgFKkkUp9ixw77SLWZHSppu2v5y7OL0QfBi9R5bpJ688932ff3cfYOxG7yHEgsReeP7A5UghbOsqxtQaN7mysHEn7Hd-m4nTGv8y9eaviWGaXFPGRut2aV_I_qGIb4kpZsv-AbHNTbMDXiC9eEWG83glj5O4reUFBrDq5TkwE8xJ5dXFe5qKkdBIwWlIpJjJYQdcRRauaXyE-Da5f5bX8KVepMbn5jWyngsTFr9z3PLvZpOo8bUBKSc2-MKpQh-NV2r0XFYI24Rq3G_RSu7sLSEwpWANaI-RSxCGAkdc5Sra01VaUd2aLqU9U2US0xSal-C9rPQAqdqrdbD0A5JmqXZPqc_jp9-hkNplE4Xgevr_8ZZNaGJ2qV9IpO2zX9YVwe2x3NA4_T-o1WARQaug137QuTAvBx_Zxf7oiLb_YWdfiL6WTET5iDyt2YI0M1I_ZvSR7wh50akY-ZYcN6FYDumVAt_KF9SO18swaLT8g5AfP2OxkHB6f2pXiha1gOCjsIQ9kQLnJMg6kjtFXFsrXuA7QcajvKakWnGsk9QrQjXUBEq218oCj2-jEALDHelmeJc-ZhW640H6M7F1p7ntSOqAXiivueSAEj_vsoP7xkarKwZMqyUVUhiVAEH1yp2flQB332dum76UpgrK11349hlH1J7mKXJ_yj3yEo8_eNG-jCaNzKZklOFrYxxkKTsX7-mwPx755RgvVizt8-CW7387gfdYr1pvkFXqMRfy6mh6_AQOXZw4
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anomalous+dewetting+growth+of+Si+on+Ag%28111%29&rft.jtitle=Nanoscale&rft.au=Kawakami%2C+Naoya&rft.au=Arafune%2C+Ryuichi&rft.au=Minamitani%2C+Emi&rft.au=Kawahara%2C+Kazuaki&rft.date=2022-10-13&rft.issn=2040-3372&rft.eissn=2040-3372&rft.volume=14&rft.issue=39&rft.spage=14623&rft_id=info:doi/10.1039%2Fd2nr03409c&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon