Anomalous dewetting growth of Si on Ag(111)
We demonstrate the novel growth of silicene grown on Ag(111) using STM and reveal the mechanism with KMC simulation. Our STM study shows that after the complete formation of the first layer of silicene, it is transformed into bulk Si with the reappearance of the bare Ag surface. This dewetting (DW)...
Saved in:
Published in | Nanoscale Vol. 14; no. 39; pp. 14623 - 14629 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Cambridge
Royal Society of Chemistry
13.10.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2040-3364 2040-3372 2040-3372 |
DOI | 10.1039/d2nr03409c |
Cover
Abstract | We demonstrate the novel growth of silicene grown on Ag(111) using STM and reveal the mechanism with KMC simulation. Our STM study shows that after the complete formation of the first layer of silicene, it is transformed into bulk Si with the reappearance of the bare Ag surface. This dewetting (DW) during the epitaxial growth is an exception in the conventional growth behavior. Our KMC simulation reproduces DW by taking into account the differences in the activation energies of Si atoms on Ag, silicene, and bulk Si. The growth modes change depending on the activation energy of the diffusion, temperature, and deposition rate, highlighting the importance of kinetics in growing metastable 2D materials.
We demonstrate the novel growth of silicene grown on Ag(111) using STM and reveal the mechanism with KMC simulation. |
---|---|
AbstractList | We demonstrate the novel growth of silicene grown on Ag(111) using STM and reveal the mechanism with KMC simulation. Our STM study shows that after the complete formation of the first layer of silicene, it is transformed into bulk Si with the reappearance of the bare Ag surface. This dewetting (DW) during the epitaxial growth is an exception in the conventional growth behavior. Our KMC simulation reproduces DW by taking into account the differences in the activation energies of Si atoms on Ag, silicene, and bulk Si. The growth modes change depending on the activation energy of the diffusion, temperature, and deposition rate, highlighting the importance of kinetics in growing metastable 2D materials. We demonstrate the novel growth of silicene grown on Ag(111) using STM and reveal the mechanism with KMC simulation. Our STM study shows that after the complete formation of the first layer of silicene, it is transformed into bulk Si with the reappearance of the bare Ag surface. This dewetting (DW) during the epitaxial growth is an exception in the conventional growth behavior. Our KMC simulation reproduces DW by taking into account the differences in the activation energies of Si atoms on Ag, silicene, and bulk Si. The growth modes change depending on the activation energy of the diffusion, temperature, and deposition rate, highlighting the importance of kinetics in growing metastable 2D materials. We demonstrate the novel growth of silicene grown on Ag(111) using STM and reveal the mechanism with KMC simulation. We demonstrate the novel growth of silicene grown on Ag(111) using STM and reveal the mechanism with KMC simulation. Our STM study shows that after the complete formation of the first layer of silicene, it is transformed into bulk Si with the reappearance of the bare Ag surface. This dewetting (DW) during the epitaxial growth is an exception in the conventional growth behavior. Our KMC simulation reproduces DW by taking into account the differences in the activation energies of Si atoms on Ag, silicene, and bulk Si. The growth modes change depending on the activation energy of the diffusion, temperature, and deposition rate, highlighting the importance of kinetics in growing metastable 2D materials.We demonstrate the novel growth of silicene grown on Ag(111) using STM and reveal the mechanism with KMC simulation. Our STM study shows that after the complete formation of the first layer of silicene, it is transformed into bulk Si with the reappearance of the bare Ag surface. This dewetting (DW) during the epitaxial growth is an exception in the conventional growth behavior. Our KMC simulation reproduces DW by taking into account the differences in the activation energies of Si atoms on Ag, silicene, and bulk Si. The growth modes change depending on the activation energy of the diffusion, temperature, and deposition rate, highlighting the importance of kinetics in growing metastable 2D materials. |
Author | Arafune, Ryuichi Takagi, Noriaki Kawahara, Kazuaki Kawakami, Naoya Minamitani, Emi Lin, Chun-Liang |
AuthorAffiliation | International Center for Materials Nanoarchitectonics Kyoto University Institute for Molecular Science National Institute for Materials Science The University of Tokyo Department of Electrophysics Institute of Engineering Innovation Graduate School of Human and Environmental Studies National Yang-Ming Chiao Tung University |
AuthorAffiliation_xml | – name: National Yang-Ming Chiao Tung University – name: Institute of Engineering Innovation – name: Graduate School of Human and Environmental Studies – name: Department of Electrophysics – name: The University of Tokyo – name: Kyoto University – name: International Center for Materials Nanoarchitectonics – name: National Institute for Materials Science – name: Institute for Molecular Science |
Author_xml | – sequence: 1 givenname: Naoya surname: Kawakami fullname: Kawakami, Naoya – sequence: 2 givenname: Ryuichi surname: Arafune fullname: Arafune, Ryuichi – sequence: 3 givenname: Emi surname: Minamitani fullname: Minamitani, Emi – sequence: 4 givenname: Kazuaki surname: Kawahara fullname: Kawahara, Kazuaki – sequence: 5 givenname: Noriaki surname: Takagi fullname: Takagi, Noriaki – sequence: 6 givenname: Chun-Liang surname: Lin fullname: Lin, Chun-Liang |
BookMark | eNpt0UtLAzEQAOAgFWyrF-_CgpeqrCaZ7CZ7XOoTioKP85Im2bplm9QkpfjvXa1UKJ5mDt8M8xignnXWIHRM8CXBUFxpaj0Ghgu1h_oUM5wCcNrb5jk7QIMQ5hjnBeTQRxeldQvZulVItFmbGBs7S2bereN74urkpUmcTcrZiBBydoj2a9kGc_Qbh-jt9uZ1fJ9Onu4exuUkVSBwTAUrZEG5KOS0kHpKcsgV10JwQQHzTElVM6YFzRQwRiiA0VqrDFgOGZkCwBCNNn2X3n2sTIjVognKtK20phu0opyInGFKWEdPd-jcrbztpusUZZTxbstO4Y1S3oXgTV2pJsrYOBu9bNqK4Or7etU1fXz-ud64KznfKVn6ZiH95__4ZIN9UFv39wr4AnRcdyg |
CitedBy_id | crossref_primary_10_1039_D2NA00808D crossref_primary_10_1021_acs_nanolett_4c00140 crossref_primary_10_1039_D3NR01581E |
Cites_doi | 10.1088/2053-1583/aacfc1 10.1016/j.apmt.2017.09.010 10.1103/PhysRevLett.96.086104 10.1103/PhysRevLett.108.245501 10.1103/PhysRevLett.102.236804 10.1007/s10820-006-9042-9 10.1021/nn503000w 10.1088/2053-1583/3/2/025034 10.1021/jp505602c 10.1103/PhysRevB.63.115415 10.1103/PhysRevLett.80.2873 10.1103/PhysRevMaterials.3.104002 10.1016/j.susc.2016.03.029 10.1021/acsnano.6b07593 10.1143/JPSJ.81.064705 10.1039/C7NR06833F 10.1063/1.4894871 10.1021/acsnano.6b06198 10.1103/PhysRevLett.95.226801 10.1016/j.susc.2005.12.030 10.1063/1.4802782 10.1103/PhysRevB.92.245127 10.3389/fchem.2019.00202 10.1063/1.3524215 10.1103/PhysRevB.68.144416 10.1088/2053-1583/4/1/015008 10.1063/1.1707904 10.1063/1.1726787 10.1021/acs.jpcc.9b04343 10.1126/science.1102896 10.1002/adma.202006043 10.1143/APEX.5.045802 10.1016/0042-207X(88)90004-8 10.1088/2053-1583/aa65b8 10.1002/adma.201304783 10.1103/PhysRevLett.115.026102 10.1016/j.rser.2018.09.044 10.1103/PhysRevLett.107.076802 10.1002/adma.201800865 10.1021/nl301047g 10.1103/PhysRevLett.100.186104 10.1002/adma.200701684 10.1103/PhysRevB.89.241403 10.1016/j.surfrep.2016.03.002 10.1002/adma.201904302 10.1021/nl304347w 10.1103/PhysRevLett.108.155501 10.1103/PhysRevB.92.045415 10.1021/acs.nanolett.6b04804 10.1063/1.4860964 10.1016/j.commatsci.2004.12.005 10.1103/PhysRevLett.109.055502 10.1021/acs.jpcc.6b00717 10.1103/PhysRevLett.81.4464 |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2022 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2022 |
DBID | AAYXX CITATION 7SR 7U5 8BQ 8FD F28 FR3 JG9 L7M 7X8 |
DOI | 10.1039/d2nr03409c |
DatabaseName | CrossRef Engineered Materials Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Materials Research Database Advanced Technologies Database with Aerospace MEDLINE - Academic |
DatabaseTitle | CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database Solid State and Superconductivity Abstracts Engineering Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database CrossRef MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2040-3372 |
EndPage | 14629 |
ExternalDocumentID | 10_1039_D2NR03409C d2nr03409c |
GroupedDBID | --- -JG 0-7 0R~ 29M 4.4 53G 705 7~J AAEMU AAGNR AAIWI AANOJ AAPBV ABASK ABDVN ABGFH ABRYZ ACGFS ACIWK ACLDK ADMRA ADSRN AENEX AFOGI AFVBQ AGRSR AGSTE ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV AZFZN BLAPV BSQNT C6K CAG DU5 EBS ECGLT EE0 EF- F5P HZ~ H~N J3I O-G O9- OK1 P2P RCNCU RNS RPMJG RRC RSCEA RVUXY AAJAE AARTK AAWGC AAXHV AAYXX ABEMK ABJNI ABPDG ABXOH AEFDR AENGV AESAV AETIL AFLYV AFRDS AFRZK AGEGJ AHGCF AKMSF ALUYA APEMP CITATION GGIMP H13 RAOCF 7SR 7U5 8BQ 8FD AKBGW F28 FR3 JG9 L7M 7X8 |
ID | FETCH-LOGICAL-c380t-849a92789ab9adb1636c7d887823075cacf44d825c3441233edddc5346351b333 |
ISSN | 2040-3364 2040-3372 |
IngestDate | Sat Sep 27 17:14:28 EDT 2025 Sun Jun 29 15:31:12 EDT 2025 Wed Oct 01 01:58:58 EDT 2025 Thu Apr 24 23:01:53 EDT 2025 Fri Oct 14 17:30:42 EDT 2022 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 39 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c380t-849a92789ab9adb1636c7d887823075cacf44d825c3441233edddc5346351b333 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-8781-3650 0000-0001-9500-5557 0000-0002-8003-6526 |
PQID | 2724247363 |
PQPubID | 2047485 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1039_D2NR03409C proquest_journals_2724247363 proquest_miscellaneous_2718640214 crossref_citationtrail_10_1039_D2NR03409C rsc_primary_d2nr03409c |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-13 |
PublicationDateYYYYMMDD | 2022-10-13 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-13 day: 13 |
PublicationDecade | 2020 |
PublicationPlace | Cambridge |
PublicationPlace_xml | – name: Cambridge |
PublicationTitle | Nanoscale |
PublicationYear | 2022 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Satta (D2NR03409C/cit48/1) 2015; 115 Bernard (D2NR03409C/cit47/1) 2015; 92 Liu (D2NR03409C/cit27/1) 2014; 2 Reinert (D2NR03409C/cit41/1) 2001; 63 Mahatha (D2NR03409C/cit29/1) 2015; 92 Feng (D2NR03409C/cit38/1) 2012; 12 Wulfhekel (D2NR03409C/cit35/1) 2003; 68 Acun (D2NR03409C/cit26/1) 2013; 103 Mannix (D2NR03409C/cit28/1) 2014; 8 Liu (D2NR03409C/cit11/1) 2011; 107 Cahangirov (D2NR03409C/cit10/1) 2009; 102 Dienel (D2NR03409C/cit34/1) 2008; 20 Thompson (D2NR03409C/cit31/1) 2012; 42 Huang (D2NR03409C/cit20/1) 2017; 17 Lin (D2NR03409C/cit25/1) 2016; 120 Andersen (D2NR03409C/cit43/1) 2019; 7 Schroeder (D2NR03409C/cit49/1) 1998; 80 Reichelt (D2NR03409C/cit51/1) 1988; 38 Leroy (D2NR03409C/cit32/1) 2016; 71 Chatterjee (D2NR03409C/cit56/1) 2007; 14 Curcella (D2NR03409C/cit53/1) 2018; 10 Onoda (D2NR03409C/cit39/1) 2019; 3 Geng (D2NR03409C/cit5/1) 2018; 30 Kawahara (D2NR03409C/cit24/1) 2016; 651 Silly (D2NR03409C/cit37/1) 2006; 96 Vogt (D2NR03409C/cit22/1) 2012; 108 Chiappe (D2NR03409C/cit18/1) 2014; 26 Novoselov (D2NR03409C/cit3/1) 2004; 306 Man (D2NR03409C/cit36/1) 2006; 600 Liu (D2NR03409C/cit50/1) 2016; 3 Burke (D2NR03409C/cit33/1) 2008; 100 Aizawa (D2NR03409C/cit17/1) 2014; 118 Haastrup (D2NR03409C/cit4/1) 2018; 5 Bae (D2NR03409C/cit7/1) 2021; 33 Ezawa (D2NR03409C/cit12/1) 2012; 81 Schmidt (D2NR03409C/cit44/1) 2005; 33 Lin (D2NR03409C/cit9/1) 2012; 5 Moras (D2NR03409C/cit30/1) 2014; 26 De Crescenzi (D2NR03409C/cit19/1) 2016; 10 Li (D2NR03409C/cit40/1) 1998; 81 Ezawa (D2NR03409C/cit13/1) 2012; 109 Curcella (D2NR03409C/cit54/1) 2017; 4 Lalmi (D2NR03409C/cit8/1) 2010; 97 Schwoebel (D2NR03409C/cit46/1) 1966; 37 Solonenko (D2NR03409C/cit55/1) 2016; 4 Walsh (D2NR03409C/cit6/1) 2017; 9 Sheverdyaeva (D2NR03409C/cit42/1) 2017; 11 Slate (D2NR03409C/cit2/1) 2019; 101 Shirai (D2NR03409C/cit23/1) 2014; 89 De Padova (D2NR03409C/cit52/1) 2013; 102 Glavin (D2NR03409C/cit1/1) 2020; 32 Meng (D2NR03409C/cit16/1) 2013; 13 Ehrlich (D2NR03409C/cit45/1) 1966; 44 Stepniak-Dybala (D2NR03409C/cit21/1) 2019; 123 Kane (D2NR03409C/cit14/1) 2005; 95 Fleurence (D2NR03409C/cit15/1) 2012; 108 |
References_xml | – issn: 2012 issue: 42 end-page: 399-434 publication-title: Annual Review of Materials Research, Vol 42 doi: Thompson – volume: 5 start-page: 042002 year: 2018 ident: D2NR03409C/cit4/1 publication-title: 2D Mater. doi: 10.1088/2053-1583/aacfc1 – volume: 9 start-page: 504 year: 2017 ident: D2NR03409C/cit6/1 publication-title: Appl. Mater. Today doi: 10.1016/j.apmt.2017.09.010 – volume: 96 start-page: 086104 year: 2006 ident: D2NR03409C/cit37/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.96.086104 – volume: 108 start-page: 245501 year: 2012 ident: D2NR03409C/cit15/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.245501 – volume: 102 start-page: 236804 year: 2009 ident: D2NR03409C/cit10/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.102.236804 – volume: 14 start-page: 253 year: 2007 ident: D2NR03409C/cit56/1 publication-title: J. Comput. Aided Mol. Des. doi: 10.1007/s10820-006-9042-9 – volume: 8 start-page: 7538 year: 2014 ident: D2NR03409C/cit28/1 publication-title: ACS Nano doi: 10.1021/nn503000w – volume: 3 start-page: 025034 year: 2016 ident: D2NR03409C/cit50/1 publication-title: 2D Mater. doi: 10.1088/2053-1583/3/2/025034 – volume: 118 start-page: 23049 year: 2014 ident: D2NR03409C/cit17/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp505602c – volume: 63 start-page: 115415 year: 2001 ident: D2NR03409C/cit41/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.63.115415 – volume: 80 start-page: 2873 year: 1998 ident: D2NR03409C/cit49/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.80.2873 – volume: 3 start-page: 104002 year: 2019 ident: D2NR03409C/cit39/1 publication-title: Phys. Rev. Mater. doi: 10.1103/PhysRevMaterials.3.104002 – volume: 26 start-page: 185001 year: 2014 ident: D2NR03409C/cit30/1 publication-title: J. Phys.: Condens. Matter – volume: 651 start-page: 70 year: 2016 ident: D2NR03409C/cit24/1 publication-title: Surf. Sci. doi: 10.1016/j.susc.2016.03.029 – volume: 11 start-page: 975 year: 2017 ident: D2NR03409C/cit42/1 publication-title: ACS Nano doi: 10.1021/acsnano.6b07593 – volume: 81 start-page: 064705 year: 2012 ident: D2NR03409C/cit12/1 publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.81.064705 – volume: 10 start-page: 2291 year: 2018 ident: D2NR03409C/cit53/1 publication-title: Nanoscale doi: 10.1039/C7NR06833F – volume: 2 start-page: 092513 year: 2014 ident: D2NR03409C/cit27/1 publication-title: APL Mater. doi: 10.1063/1.4894871 – volume: 10 start-page: 11163 year: 2016 ident: D2NR03409C/cit19/1 publication-title: ACS Nano doi: 10.1021/acsnano.6b06198 – volume: 95 start-page: 226801 year: 2005 ident: D2NR03409C/cit14/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.95.226801 – volume: 600 start-page: 1060 year: 2006 ident: D2NR03409C/cit36/1 publication-title: Surf. Sci. doi: 10.1016/j.susc.2005.12.030 – volume: 102 start-page: 163106 year: 2013 ident: D2NR03409C/cit52/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4802782 – volume: 92 start-page: 245127 year: 2015 ident: D2NR03409C/cit29/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.92.245127 – volume: 7 start-page: 202 year: 2019 ident: D2NR03409C/cit43/1 publication-title: Front. Chem. doi: 10.3389/fchem.2019.00202 – volume: 97 start-page: 223109 year: 2010 ident: D2NR03409C/cit8/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.3524215 – volume: 68 start-page: 144416 year: 2003 ident: D2NR03409C/cit35/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.68.144416 – volume: 4 start-page: 015008 year: 2016 ident: D2NR03409C/cit55/1 publication-title: 2D Mater. doi: 10.1088/2053-1583/4/1/015008 – volume: 37 start-page: 3682 year: 1966 ident: D2NR03409C/cit46/1 publication-title: J. Appl. Phys. doi: 10.1063/1.1707904 – volume: 44 start-page: 1039 year: 1966 ident: D2NR03409C/cit45/1 publication-title: J. Chem. Phys. doi: 10.1063/1.1726787 – volume: 123 start-page: 17019 year: 2019 ident: D2NR03409C/cit21/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.9b04343 – volume: 306 start-page: 666 year: 2004 ident: D2NR03409C/cit3/1 publication-title: Science doi: 10.1126/science.1102896 – volume: 33 start-page: 2006043 year: 2021 ident: D2NR03409C/cit7/1 publication-title: Adv. Mater. doi: 10.1002/adma.202006043 – volume: 5 start-page: 045802 year: 2012 ident: D2NR03409C/cit9/1 publication-title: Appl. Phys. Express doi: 10.1143/APEX.5.045802 – volume: 38 start-page: 1083 year: 1988 ident: D2NR03409C/cit51/1 publication-title: Vacuum doi: 10.1016/0042-207X(88)90004-8 – volume: 4 start-page: 025067 year: 2017 ident: D2NR03409C/cit54/1 publication-title: 2D Mater. doi: 10.1088/2053-1583/aa65b8 – volume: 26 start-page: 2096 year: 2014 ident: D2NR03409C/cit18/1 publication-title: Adv. Mater. doi: 10.1002/adma.201304783 – volume: 115 start-page: 026102 year: 2015 ident: D2NR03409C/cit48/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.026102 – volume: 101 start-page: 60 year: 2019 ident: D2NR03409C/cit2/1 publication-title: Renewable Sustainable Energy Rev. doi: 10.1016/j.rser.2018.09.044 – volume: 107 start-page: 076802 year: 2011 ident: D2NR03409C/cit11/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.107.076802 – volume: 30 start-page: 1800865 year: 2018 ident: D2NR03409C/cit5/1 publication-title: Adv. Mater. doi: 10.1002/adma.201800865 – volume: 12 start-page: 3507 year: 2012 ident: D2NR03409C/cit38/1 publication-title: Nano Lett. doi: 10.1021/nl301047g – volume: 100 start-page: 186104 year: 2008 ident: D2NR03409C/cit33/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.100.186104 – volume: 20 start-page: 959 year: 2008 ident: D2NR03409C/cit34/1 publication-title: Adv. Mater. doi: 10.1002/adma.200701684 – volume: 89 start-page: 241403(R) year: 2014 ident: D2NR03409C/cit23/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.89.241403 – volume: 71 start-page: 391 year: 2016 ident: D2NR03409C/cit32/1 publication-title: Surf. Sci. Rep. doi: 10.1016/j.surfrep.2016.03.002 – volume: 32 start-page: 1904302 year: 2020 ident: D2NR03409C/cit1/1 publication-title: Adv. Mater. doi: 10.1002/adma.201904302 – volume: 13 start-page: 685 year: 2013 ident: D2NR03409C/cit16/1 publication-title: Nano Lett. doi: 10.1021/nl304347w – volume: 108 start-page: 155501 year: 2012 ident: D2NR03409C/cit22/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.108.155501 – volume: 92 start-page: 045415 year: 2015 ident: D2NR03409C/cit47/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.92.045415 – volume: 17 start-page: 1161 year: 2017 ident: D2NR03409C/cit20/1 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04804 – volume: 42 start-page: 399 volume-title: Annual Review of Materials Research, Vol 42 year: 2012 ident: D2NR03409C/cit31/1 – volume: 103 start-page: 263119 year: 2013 ident: D2NR03409C/cit26/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4860964 – volume: 33 start-page: 375 year: 2005 ident: D2NR03409C/cit44/1 publication-title: Comput. Mater. Sci. doi: 10.1016/j.commatsci.2004.12.005 – volume: 109 start-page: 055502 year: 2012 ident: D2NR03409C/cit13/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.055502 – volume: 120 start-page: 6689 year: 2016 ident: D2NR03409C/cit25/1 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b00717 – volume: 81 start-page: 4464 year: 1998 ident: D2NR03409C/cit40/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.81.4464 |
SSID | ssj0069363 |
Score | 2.4082448 |
Snippet | We demonstrate the novel growth of silicene grown on Ag(111) using STM and reveal the mechanism with KMC simulation. Our STM study shows that after the... |
SourceID | proquest crossref rsc |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 14623 |
SubjectTerms | Activation energy Diffusion rate Drying Epitaxial growth Silicene Silicon Silver Two dimensional materials |
Title | Anomalous dewetting growth of Si on Ag(111) |
URI | https://www.proquest.com/docview/2724247363 https://www.proquest.com/docview/2718640214 |
Volume | 14 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAUL databaseName: Royal Society of Chemistry Gold Collection 2023 customDbUrl: https://pubs.rsc.org eissn: 2040-3372 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0069363 issn: 2040-3364 databaseCode: AETIL dateStart: 20090101 isFulltext: true titleUrlDefault: https://www.rsc.org/journals-books-databases/librarians-information/products-prices/#undefined providerName: Royal Society of Chemistry |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwELZY9wIPiF8ThYGCQIhpymhyjtM8VqPTgFKkkUp9ixw77SLWZHSppu2v5y7OL0QfBi9R5bpJ688932ff3cfYOxG7yHEgsReeP7A5UghbOsqxtQaN7mysHEn7Hd-m4nTGv8y9eaviWGaXFPGRut2aV_I_qGIb4kpZsv-AbHNTbMDXiC9eEWG83glj5O4reUFBrDq5TkwE8xJ5dXFe5qKkdBIwWlIpJjJYQdcRRauaXyE-Da5f5bX8KVepMbn5jWyngsTFr9z3PLvZpOo8bUBKSc2-MKpQh-NV2r0XFYI24Rq3G_RSu7sLSEwpWANaI-RSxCGAkdc5Sra01VaUd2aLqU9U2US0xSal-C9rPQAqdqrdbD0A5JmqXZPqc_jp9-hkNplE4Xgevr_8ZZNaGJ2qV9IpO2zX9YVwe2x3NA4_T-o1WARQaug137QuTAvBx_Zxf7oiLb_YWdfiL6WTET5iDyt2YI0M1I_ZvSR7wh50akY-ZYcN6FYDumVAt_KF9SO18swaLT8g5AfP2OxkHB6f2pXiha1gOCjsIQ9kQLnJMg6kjtFXFsrXuA7QcajvKakWnGsk9QrQjXUBEq218oCj2-jEALDHelmeJc-ZhW640H6M7F1p7ntSOqAXiivueSAEj_vsoP7xkarKwZMqyUVUhiVAEH1yp2flQB332dum76UpgrK11349hlH1J7mKXJ_yj3yEo8_eNG-jCaNzKZklOFrYxxkKTsX7-mwPx755RgvVizt8-CW7387gfdYr1pvkFXqMRfy6mh6_AQOXZw4 |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anomalous+dewetting+growth+of+Si+on+Ag%28111%29&rft.jtitle=Nanoscale&rft.au=Kawakami%2C+Naoya&rft.au=Arafune%2C+Ryuichi&rft.au=Minamitani%2C+Emi&rft.au=Kawahara%2C+Kazuaki&rft.date=2022-10-13&rft.issn=2040-3372&rft.eissn=2040-3372&rft.volume=14&rft.issue=39&rft.spage=14623&rft_id=info:doi/10.1039%2Fd2nr03409c&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2040-3364&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2040-3364&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2040-3364&client=summon |