Assimilating Atmosphere Reanalysis in Coupled Data Assimilation
This paper tests the idea of substituting the atmospheric observations with atmospheric reanalysis when setting up a coupled data assimilation system.The paper focuses on the quantification of the effects on the oceanic analysis resulted from this substitution and designs four different assimilation...
        Saved in:
      
    
          | Published in | Acta meteorologica Sinica Vol. 30; no. 4; pp. 572 - 583 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | English | 
| Published | 
        Beijing
          The Chinese Meteorological Society
    
        01.06.2016
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2095-6037 0894-0525 2198-0934 2191-4788  | 
| DOI | 10.1007/s13351-016-6014-1 | 
Cover
| Abstract | This paper tests the idea of substituting the atmospheric observations with atmospheric reanalysis when setting up a coupled data assimilation system.The paper focuses on the quantification of the effects on the oceanic analysis resulted from this substitution and designs four different assimilation schemes for such a substitution.A coupled Lorenz96 system is constructed and an ensemble Kalman filter is adopted.The atmospheric reanalysis and oceanic observations are assimilated into the system and the analysis quality is compared to a benchmark experiment where both atmospheric and oceanic observations are assimilated.Four schemes are designed for assimilating the reanalysis and they differ in the generation of the perturbed observation ensemble and the representation of the error covariance matrix.The results show that when the reanalysis is assimilated directly as independent observations,the root-mean-square error increase of oceanic analysis relative to the benchmark is less than 16%in the perfect model framework;in the biased model case,the increase is less than 22%.This result is robust with sufficient ensemble size and reasonable atmospheric observation quality(e.g.,frequency,noisiness,and density).If the observation is overly noisy,infrequent,sparse,or the ensemble size is insufficiently small,the analysis deterioration caused by the substitution is less severe since the analysis quality of the benchmark also deteriorates significantly due to worse observations and undersampling.The results from different assimilation schemes highlight the importance of two factors:accurate representation of the error covariance of the reanalysis and the temporal coherence along each ensemble member,which are crucial for the analysis quality of the substitution experiment. | 
    
|---|---|
| AbstractList | This paper tests the idea of substituting the atmospheric observations with atmospheric reanalysis when setting up a coupled data assimilation system. The paper focuses on the quantification of the effects on the oceanic analysis resulted from this substitution and designs four different assimilation schemes for such a substitution. A coupled Lorenz96 system is constructed and an ensemble Kalman filter is adopted. The atmospheric reanalysis and oceanic observations are assimilated into the system and the analysis quality is compared to a benchmark experiment where both atmospheric and oceanic observations are assimilated. Four schemes are designed for assimilating the reanalysis and they differ in the generation of the perturbed observation ensemble and the representation of the error covariance matrix. The results show that when the reanalysis is assimilated directly as independent observations, the root-mean-square error increase of oceanic analysis relative to the benchmark is less than 16% in the perfect model framework; in the biased model case, the increase is less than 22%. This result is robust with sufficient ensemble size and reasonable atmospheric observation quality (e.g., frequency, noisiness, and density). If the observation is overly noisy, infrequent, sparse, or the ensemble size is insufficiently small, the analysis deterioration caused by the substitution is less severe since the analysis quality of the benchmark also deteriorates significantly due to worse observations and undersampling. The results from different assimilation schemes highlight the importance of two factors: accurate representation of the error covariance of the reanalysis and the temporal coherence along each ensemble member, which are crucial for the analysis quality of the substitution experiment. This paper tests the idea of substituting the atmospheric observations with atmospheric reanalysis when setting up a coupled data assimilation system.The paper focuses on the quantification of the effects on the oceanic analysis resulted from this substitution and designs four different assimilation schemes for such a substitution.A coupled Lorenz96 system is constructed and an ensemble Kalman filter is adopted.The atmospheric reanalysis and oceanic observations are assimilated into the system and the analysis quality is compared to a benchmark experiment where both atmospheric and oceanic observations are assimilated.Four schemes are designed for assimilating the reanalysis and they differ in the generation of the perturbed observation ensemble and the representation of the error covariance matrix.The results show that when the reanalysis is assimilated directly as independent observations,the root-mean-square error increase of oceanic analysis relative to the benchmark is less than 16%in the perfect model framework;in the biased model case,the increase is less than 22%.This result is robust with sufficient ensemble size and reasonable atmospheric observation quality(e.g.,frequency,noisiness,and density).If the observation is overly noisy,infrequent,sparse,or the ensemble size is insufficiently small,the analysis deterioration caused by the substitution is less severe since the analysis quality of the benchmark also deteriorates significantly due to worse observations and undersampling.The results from different assimilation schemes highlight the importance of two factors:accurate representation of the error covariance of the reanalysis and the temporal coherence along each ensemble member,which are crucial for the analysis quality of the substitution experiment.  | 
    
| Author | 刘华然 卢飞雨 刘征宇 刘赟 张绍晴 | 
    
| AuthorAffiliation | Department of Atmospheric Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, Madison 53706, USA Department of Atmospheric and Oceanic Science, University of Maryland, College Park 20742, USA Geophysical Fluid Dynamics Laboratory, NOAA, Princeton 08542, USA | 
    
| Author_xml | – sequence: 1 fullname: 刘华然 卢飞雨 刘征宇 刘赟 张绍晴  | 
    
| BookMark | eNp9kEtLxDAUhYMo-PwB7oob3VRvkrZJVjKMTxgQRNfhtqZjpJPMJB3Uf29qBwUXZpNAznfuPWefbDvvDCHHFM4pgLiIlPOS5kCrvAJa5HSL7DGqZA6KF9vpDapMP1zskqMY3wCAKVYKxvbI5SRGu7Ad9tbNs0m_8HH5aoLJHg067D6jjZl12dSvl515ya6wx-wX8e6Q7LTYRXO0uQ_I88310_Qunz3c3k8ns7zhEvpcoKJYmJJzRnkjZFOqRkosGoAiJahqqVpWo-BIX-pWioKrusaKYam-Dz8gp6PvO7oW3Vy_-XVIC0a9-viotWEp_GA1KM9G5TL41drEXi9sbEzXoTN-HTWVikrJREGTlI7SJvgYg2n1MtgFhk9NQQ_N6rFZncz10KweGPGHaWz_XUUf0Hb_kmwkY5ri5ib8ZvgPOtmMe_Vuvkrcz46VACi54sC_AKxqmBk | 
    
| CitedBy_id | crossref_primary_10_1175_JCLI_D_17_0849_1 crossref_primary_10_1007_s13351_019_8138_6 crossref_primary_10_1175_MWR_D_19_0304_1 crossref_primary_10_5194_npg_24_681_2017  | 
    
| Cites_doi | 10.1175/MWR3024.1 10.1175/MWR3466.1 10.1002/qj.49712555417 10.2151/jmsj.2015-001 10.1256/qj.04.176 10.1175/BAMS-83-11-1631 10.1175/JCLI-D-10-05003.1 10.1029/94JC00572 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2 10.1007/s00382-014-2390-3 10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2 10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2 10.1029/2008JC004741 10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2 10.1175/MWR-D-15-0088.1 10.1175/2010BAMS3001.1 10.1126/science.269.5231.1699 10.1002/qj.828 10.1175/2007JCLI1412.1 10.1029/2004GL020283 10.1175/JCLI-D-13-00236.1 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2 10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2 10.1029/1999GL900616 10.1007/s00376-013-2268-z  | 
    
| ContentType | Journal Article | 
    
| Copyright | The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2016 Copyright © Wanfang Data Co. Ltd. All Rights Reserved.  | 
    
| Copyright_xml | – notice: The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2016 – notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.  | 
    
| DBID | 2RA 92L CQIGP W94 ~WA AAYXX CITATION 7TG 7TN F1W H96 KL. L.G 2B. 4A8 92I 93N PSX TCJ  | 
    
| DOI | 10.1007/s13351-016-6014-1 | 
    
| DatabaseName | 维普期刊资源整合服务平台 中文科技期刊数据库-CALIS站点 维普中文期刊数据库 中文科技期刊数据库-自然科学 中文科技期刊数据库- 镜像站点 CrossRef Meteorological & Geoastrophysical Abstracts Oceanic Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Meteorological & Geoastrophysical Abstracts - Academic Aquatic Science & Fisheries Abstracts (ASFA) Professional Wanfang Data Journals - Hong Kong WANFANG Data Centre Wanfang Data Journals 万方数据期刊 - 香港版 China Online Journals (COJ) China Online Journals (COJ)  | 
    
| DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Meteorological & Geoastrophysical Abstracts Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Oceanic Abstracts Meteorological & Geoastrophysical Abstracts - Academic ASFA: Aquatic Sciences and Fisheries Abstracts  | 
    
| DatabaseTitleList | Aquatic Science & Fisheries Abstracts (ASFA) Professional | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Meteorology & Climatology | 
    
| DocumentTitleAlternate | Assimilating Atmosphere Reanalysis in Coupled Data Assimilation | 
    
| EISSN | 2198-0934 2191-4788  | 
    
| EndPage | 583 | 
    
| ExternalDocumentID | qxxb_e201604009 10_1007_s13351_016_6014_1 670053930  | 
    
| GrantInformation_xml | – fundername: the National (Key) Basic Research and Development (973) Program of China; National Natural Science Foundation of China funderid: (2012CB417201); (41375053)  | 
    
| GroupedDBID | -01 -0A -EM -SA -S~ 06D 2KG 2KM 2RA 4.4 406 5VR 5XA 5XB 5XL 92L 92M 96X 9D9 9DA AAAVM AAFGU AAHNG AAIAL AAJKR AANZL AARHV AARTL AATNV AAYFA AAYIU AAYQN AAZMS ABDZT ABECU ABFGW ABFTV ABJOX ABKAS ABKCH ABMQK ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABXPI ACAOD ACBMV ACBRV ACBYP ACGFS ACHSB ACIGE ACIPQ ACKNC ACMDZ ACMLO ACOKC ACTTH ACVWB ACWMK ACZOJ ADHIR ADMDM ADOXG ADRFC ADURQ ADYFF ADZKW AEBTG AEFTE AEGNC AEJHL AEJRE AENEX AEOHA AEPYU AESKC AESTI AETCA AEVLU AEVTX AEXYK AFLOW AFNRJ AFUIB AFZKB AGDGC AGGBP AGJBK AGMZJ AGQMX AGWZB AGYKE AHAVH AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AIMYW AITGF AJBLW AJDOV AKQUC ALFXC ALMA_UNASSIGNED_HOLDINGS AMKLP AMXSW ANMIH AOCGG ARMRJ ASPBG AVWKF AXYYD BGNMA CAJEA CAJUS CCEZO CCVFK CHBEP CQIGP DDRTE DNIVK DPUIP EBLON EBS EDH EIOEI EJD ESBYG FA0 FERAY FIGPU FINBP FNLPD FRRFC FSGXE FYJPI GGRSB GJIRD IKXTQ IWAJR J-C JUIAU JZLTJ KOV L8X LLZTM M4Y NPVJJ NQJWS NU0 O9J PT4 Q-- Q-0 R-A RLLFE RSV RT1 SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE T8Q TSG U1F U1G U5A U5K UG4 UOJIU UTJUX UZXMN VFIZW W48 W94 ZMTXR ~LG ~WA 0R~ AACDK AAJBT AASML AATVU AAUYE AAXDM AAYTO AAYZH ABAKF ABJNI ACDTI ACPIV ADINQ ADKNI AEFQL AEMSY AFBBN AFQWF AGAYW AGQEE AGRTI AHBYD AIGIU AMYLF GGCAI H13 IAO IEP IGS ITC OK1 ROL SJYHP AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION 0VY 23M 30V 408 5GY 67M 7TG 7TN 8TC 95. ACGOD AFRAH AFWTZ AJRNO CW9 DX2 F1W H96 HMJXF HRMNR I0C KL. L.G P2P R9I S27 S3B SCL SEV SHX T13 U2A ~A9 2B. 4A8 92I 93N PSX TCJ  | 
    
| ID | FETCH-LOGICAL-c380t-7a91a4e533213c78c59c88a4c0040076b89f2ba73a1dbf87439bba62a59999993 | 
    
| IEDL.DBID | AGYKE | 
    
| ISSN | 2095-6037 0894-0525  | 
    
| IngestDate | Thu May 29 04:06:29 EDT 2025 Fri Jul 11 02:49:45 EDT 2025 Wed Oct 01 01:45:11 EDT 2025 Thu Apr 24 22:51:19 EDT 2025 Fri Feb 21 02:40:29 EST 2025 Wed Feb 14 10:15:14 EST 2024  | 
    
| IsDoiOpenAccess | false | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Keywords | data assimilation reanalysis data ensemble Kalman filter  | 
    
| Language | English | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c380t-7a91a4e533213c78c59c88a4c0040076b89f2ba73a1dbf87439bba62a59999993 | 
    
| Notes | 11-2277/P This paper tests the idea of substituting the atmospheric observations with atmospheric reanalysis when setting up a coupled data assimilation system.The paper focuses on the quantification of the effects on the oceanic analysis resulted from this substitution and designs four different assimilation schemes for such a substitution.A coupled Lorenz96 system is constructed and an ensemble Kalman filter is adopted.The atmospheric reanalysis and oceanic observations are assimilated into the system and the analysis quality is compared to a benchmark experiment where both atmospheric and oceanic observations are assimilated.Four schemes are designed for assimilating the reanalysis and they differ in the generation of the perturbed observation ensemble and the representation of the error covariance matrix.The results show that when the reanalysis is assimilated directly as independent observations,the root-mean-square error increase of oceanic analysis relative to the benchmark is less than 16%in the perfect model framework;in the biased model case,the increase is less than 22%.This result is robust with sufficient ensemble size and reasonable atmospheric observation quality(e.g.,frequency,noisiness,and density).If the observation is overly noisy,infrequent,sparse,or the ensemble size is insufficiently small,the analysis deterioration caused by the substitution is less severe since the analysis quality of the benchmark also deteriorates significantly due to worse observations and undersampling.The results from different assimilation schemes highlight the importance of two factors:accurate representation of the error covariance of the reanalysis and the temporal coherence along each ensemble member,which are crucial for the analysis quality of the substitution experiment. LIU Huaran1,2, LU Feiyu2, LIU Zhengyu2 , LIU Yun3 ,ZHANG Shaoqing4 ( 1 Department of Atmospheric Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China; 2 Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, Madison 53706, USA ; 3 Department of Atmospheric and Oceanic Science, University of Maryland, College Park 20742, USA ; 4 Geophysical Fluid Dynamics Laboratory, NOAA, Princeton 08542, USA) data assimilation reanalysis data ensemble Kalman filter ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23  | 
    
| PQID | 1891882741 | 
    
| PQPubID | 23462 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | wanfang_journals_qxxb_e201604009 proquest_miscellaneous_1891882741 crossref_primary_10_1007_s13351_016_6014_1 crossref_citationtrail_10_1007_s13351_016_6014_1 springer_journals_10_1007_s13351_016_6014_1 chongqing_primary_670053930  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2016-06-01 | 
    
| PublicationDateYYYYMMDD | 2016-06-01 | 
    
| PublicationDate_xml | – month: 06 year: 2016 text: 2016-06-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Beijing | 
    
| PublicationPlace_xml | – name: Beijing | 
    
| PublicationTitle | Acta meteorologica Sinica | 
    
| PublicationTitleAbbrev | J Meteorol Res | 
    
| PublicationTitleAlternate | Acta Meteorologica Sinica | 
    
| PublicationYear | 2016 | 
    
| Publisher | The Chinese Meteorological Society | 
    
| Publisher_xml | – name: The Chinese Meteorological Society | 
    
| References | Kalnay, Kanamitsu, Kistler (CR13) 1996; 77 Kitoh, Arakawa (CR16) 1999; 26 Kobayashi, Ota, Harada (CR17) 2015; 93 Sugiura, Awaji, Masuda (CR23) 2008; 113 Han, Wu, Zhang (CR10) 2013; 26 Zhang, Harrison, Wittenberg (CR28) 2005; 133 Gottwald, Majda (CR8) 2013; 20 Saha, Moorthi, Pan (CR22) 2010; 91 Gaspari, Cohn (CR7) 1999; 125 Dee, Uppala, Simmons (CR5) 2011; 137 Chen, Zebiak, Busalacchi (CR4) 1995; 269 Kanamitsu, Ebisuzaki, Woollen (CR14) 2002; 83 Luo, Masson, Behera (CR21) 2008; 21 Liu, Wu, Zhang (CR18) 2013; 30 Hamill, Whitaker, Snyder (CR9) 2001; 129 Arakawa, Kitoh (CR2) 2004; 31 Lu, Liu, Zhang (CR20) 2015; 143 Iseries (CR12) 1996 Kistler, Collins, Saha (CR15) 2001; 82 Zhang, Harrison, Rosati (CR29) 2007; 135 Lorenz (CR19) 1996 Uppala, Kållberg, Simmons (CR25) 2005; 131 Houtekamer, Mitchell (CR11) 1998; 126 Zhang (CR26) 2011; 24 Zhang, Snyder, Sun (CR27) 2004; 132 Anderson (CR1) 2001; 129 Evensen (CR6) 1994; 99 Burgers, van Leeuwen, Evensen (CR3) 1998; 126 Tardif, Hakim, Snyder (CR24) 2015; 45 J. L. Anderson (6014_CR1) 2001; 129 D. P. Dee (6014_CR5) 2011; 137 O. Arakawa (6014_CR2) 2004; 31 T. M. Hamill (6014_CR9) 2001; 129 S. M. Uppala (6014_CR25) 2005; 131 R. Kistler (6014_CR15) 2001; 82 M. Kanamitsu (6014_CR14) 2002; 83 F. Zhang (6014_CR27) 2004; 132 G. J. Han (6014_CR10) 2013; 26 S. Kobayashi (6014_CR17) 2015; 93 Z. Liu (6014_CR18) 2013; 30 G. Evensen (6014_CR6) 1994; 99 E. N. Lorenz (6014_CR19) 1996 N. Sugiura (6014_CR23) 2008; 113 P. L. Houtekamer (6014_CR11) 1998; 126 J.-J. Luo (6014_CR21) 2008; 21 S. Zhang (6014_CR28) 2005; 133 S. Saha (6014_CR22) 2010; 91 A. Iseries (6014_CR12) 1996 G. Gaspari (6014_CR7) 1999; 125 F. Y. Lu (6014_CR20) 2015; 143 E. Kalnay (6014_CR13) 1996; 77 A. Kitoh (6014_CR16) 1999; 26 S. Zhang (6014_CR26) 2011; 24 R. Tardif (6014_CR24) 2015; 45 S. Zhang (6014_CR29) 2007; 135 G. A. Gottwald (6014_CR8) 2013; 20 G. Burgers (6014_CR3) 1998; 126 D. Chen (6014_CR4) 1995; 269  | 
    
| References_xml | – volume: 133 start-page: 3176 year: 2005 end-page: 3201 ident: CR28 article-title: Initialization of an ENSO forecast system using a parallelized ensemble filter publication-title: Mon. Wea. Rev. doi: 10.1175/MWR3024.1 – volume: 135 start-page: 3541 year: 2007 end-page: 3564 ident: CR29 article-title: System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies publication-title: Mon. Wea. Rev. doi: 10.1175/MWR3466.1 – volume: 125 start-page: 723 year: 1999 end-page: 757 ident: CR7 article-title: Construction of correlation functions in two and three dimensions publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.49712555417 – volume: 93 start-page: 5 year: 2015 end-page: 48 ident: CR17 article-title: The JRA-55 reanalysis: General specifications and basic characteristics publication-title: J. Meteor. Soc. Japan doi: 10.2151/jmsj.2015-001 – volume: 131 start-page: 2961 year: 2005 end-page: 3012 ident: CR25 article-title: The ERA-40 reanalysis publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1256/qj.04.176 – volume: 83 start-page: 1631 year: 2002 end-page: 1643 ident: CR14 article-title: NCEP-DOE AMIP-II reanalysis (R-2) publication-title: Bull. Amer. Meteor. Soc. doi: 10.1175/BAMS-83-11-1631 – volume: 24 start-page: 6210 year: 2011 end-page: 6226 ident: CR26 article-title: A study of impacts of coupled model initial shocks and state–parameter optimization on climate predictions using a simple pycnocline prediction model publication-title: J. Climate doi: 10.1175/JCLI-D-10-05003.1 – volume: 99 start-page: 10143 year: 1994 end-page: 10162 ident: CR6 article-title: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics publication-title: J. Geophys. Res. doi: 10.1029/94JC00572 – volume: 77 start-page: 437 year: 1996 end-page: 472 ident: CR13 article-title: The NCEP/NCAR 40-Year Reanalysis Project publication-title: Bull. Amer. Meteor. Soc. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 – volume: 126 start-page: 1719 year: 1998 end-page: 1724 ident: CR3 article-title: Analysis scheme in the ensemble Kalman filter publication-title: Mon. Wea. Rev. doi: 10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2 – volume: 45 start-page: 1415 year: 2015 end-page: 1427 ident: CR24 article-title: Coupled atmosphere–ocean data assimilation experiments with a low-order model and CMIP5 model data publication-title: Climate Dyn. doi: 10.1007/s00382-014-2390-3 – volume: 20 start-page: 705 year: 2013 end-page: 712 ident: CR8 article-title: A mechanism for catastrophic filter divergence in data assimilation for sparse observation networks. Nonlinear Process publication-title: Geophys. – volume: 132 start-page: 1238 year: 2004 end-page: 1253 ident: CR27 article-title: Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter publication-title: Mon. Wea. Rev. doi: 10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2 – volume: 129 start-page: 2776 year: 2001 end-page: 2790 ident: CR9 article-title: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter publication-title: Mon. Wea. Rev. doi: 10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2 – volume: 113 start-page: C10017 issue: C10 year: 2008 ident: CR23 article-title: Development of a four-dimensional variational coupled data assimilation system for enhanced analysis and prediction of seasonal to interannual climate variations publication-title: J. Geophys. Res. Ocean. doi: 10.1029/2008JC004741 – start-page: 447 year: 1996 ident: CR12 publication-title: A First Course in the Numerical Analysis of Differential Equations – volume: 82 start-page: 247 year: 2001 end-page: 267 ident: CR15 article-title: The NCEPNCAR 50-year reanalysis: Monthly means CD-ROM and documentation publication-title: Bull. Amer. Meteor. Soc. doi: 10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2 – volume: 143 start-page: 4645 year: 2015 end-page: 4659 ident: CR20 article-title: Strongly coupled data assimilation using leading averaged coupled covariance (LACC). Part II: CGCM experiments publication-title: Mon. Wea. Rev. doi: 10.1175/MWR-D-15-0088.1 – volume: 91 start-page: 1015 year: 2010 end-page: 1057 ident: CR22 article-title: The NCEP climate forecast system reanalysis publication-title: Bull. Amer. Meteor. Soc. doi: 10.1175/2010BAMS3001.1 – volume: 269 start-page: 1699 year: 1995 end-page: 1702 ident: CR4 article-title: An improved procedure for El Ni˜no forecasting: Implications for predictability publication-title: Science doi: 10.1126/science.269.5231.1699 – volume: 137 start-page: 553 year: 2011 end-page: 597 ident: CR5 article-title: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.828 – volume: 21 start-page: 84 year: 2008 end-page: 93 ident: CR21 article-title: Extended ENSO predictions using a fully coupled ocean–atmosphere model publication-title: J. Climate doi: 10.1175/2007JCLI1412.1 – volume: 31 start-page: L12206 year: 2004 ident: CR2 article-title: Comparison of local precipitation–SST relationship between the observation and a reanalysis dataset publication-title: Geophys. Res. Lett. doi: 10.1029/2004GL020283 – start-page: 1 year: 1996 end-page: 18 ident: CR19 publication-title: Predictability—A problem partly solved – volume: 26 start-page: 10218 year: 2013 end-page: 10231 ident: CR10 article-title: Error covariance estimation for coupled data assimilation using a Lorenz atmosphere and a simple pycnocline ocean model publication-title: J. Climate doi: 10.1175/JCLI-D-13-00236.1 – volume: 129 start-page: 2884 year: 2001 end-page: 2903 ident: CR1 article-title: An ensemble adjustment Kalman filter for data assimilation publication-title: Mon. Wea. Rev. doi: 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2 – volume: 126 start-page: 796 year: 1998 end-page: 811 ident: CR11 article-title: Data assimilation using an ensemble Kalman filter technique publication-title: Mon. Wea. Rev. doi: 10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2 – volume: 26 start-page: 2965 year: 1999 end-page: 2968 ident: CR16 article-title: On overestimation of tropical precipitation by an atmospheric GCM with prescribed SST publication-title: Geophys. Res. Lett. doi: 10.1029/1999GL900616 – volume: 30 start-page: 1235 year: 2013 end-page: 1248 ident: CR18 article-title: Ensemble data assimilation in a simple coupled climate model: The role of ocean–atmosphere interaction publication-title: Adv. Atmos. Sci. doi: 10.1007/s00376-013-2268-z – volume: 129 start-page: 2884 year: 2001 ident: 6014_CR1 publication-title: Mon. Wea. Rev. doi: 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2 – volume: 21 start-page: 84 year: 2008 ident: 6014_CR21 publication-title: J. Climate doi: 10.1175/2007JCLI1412.1 – volume: 77 start-page: 437 year: 1996 ident: 6014_CR13 publication-title: Bull. Amer. Meteor. Soc. doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2 – volume: 45 start-page: 1415 year: 2015 ident: 6014_CR24 publication-title: Climate Dyn. doi: 10.1007/s00382-014-2390-3 – volume: 83 start-page: 1631 year: 2002 ident: 6014_CR14 publication-title: Bull. Amer. Meteor. Soc. doi: 10.1175/BAMS-83-11-1631 – start-page: 447 volume-title: A First Course in the Numerical Analysis of Differential Equations year: 1996 ident: 6014_CR12 – volume: 31 start-page: L12206 year: 2004 ident: 6014_CR2 publication-title: Geophys. Res. Lett. doi: 10.1029/2004GL020283 – volume: 133 start-page: 3176 year: 2005 ident: 6014_CR28 publication-title: Mon. Wea. Rev. doi: 10.1175/MWR3024.1 – volume: 26 start-page: 10218 year: 2013 ident: 6014_CR10 publication-title: J. Climate doi: 10.1175/JCLI-D-13-00236.1 – volume: 26 start-page: 2965 year: 1999 ident: 6014_CR16 publication-title: Geophys. Res. Lett. doi: 10.1029/1999GL900616 – volume: 93 start-page: 5 year: 2015 ident: 6014_CR17 publication-title: J. Meteor. Soc. Japan doi: 10.2151/jmsj.2015-001 – volume: 30 start-page: 1235 year: 2013 ident: 6014_CR18 publication-title: Adv. Atmos. Sci. doi: 10.1007/s00376-013-2268-z – volume: 82 start-page: 247 year: 2001 ident: 6014_CR15 publication-title: Bull. Amer. Meteor. Soc. doi: 10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2 – volume: 126 start-page: 1719 year: 1998 ident: 6014_CR3 publication-title: Mon. Wea. Rev. doi: 10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2 – volume: 20 start-page: 705 year: 2013 ident: 6014_CR8 publication-title: Geophys. – volume: 113 start-page: C10017 issue: C10 year: 2008 ident: 6014_CR23 publication-title: J. Geophys. Res. Ocean. doi: 10.1029/2008JC004741 – volume: 91 start-page: 1015 year: 2010 ident: 6014_CR22 publication-title: Bull. Amer. Meteor. Soc. doi: 10.1175/2010BAMS3001.1 – volume: 137 start-page: 553 year: 2011 ident: 6014_CR5 publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.828 – volume: 99 start-page: 10143 year: 1994 ident: 6014_CR6 publication-title: J. Geophys. Res. doi: 10.1029/94JC00572 – start-page: 1 volume-title: Predictability—A problem partly solved year: 1996 ident: 6014_CR19 – volume: 24 start-page: 6210 year: 2011 ident: 6014_CR26 publication-title: J. Climate doi: 10.1175/JCLI-D-10-05003.1 – volume: 269 start-page: 1699 year: 1995 ident: 6014_CR4 publication-title: Science doi: 10.1126/science.269.5231.1699 – volume: 126 start-page: 796 year: 1998 ident: 6014_CR11 publication-title: Mon. Wea. Rev. doi: 10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2 – volume: 125 start-page: 723 year: 1999 ident: 6014_CR7 publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1002/qj.49712555417 – volume: 132 start-page: 1238 year: 2004 ident: 6014_CR27 publication-title: Mon. Wea. Rev. doi: 10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2 – volume: 129 start-page: 2776 year: 2001 ident: 6014_CR9 publication-title: Mon. Wea. Rev. doi: 10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2 – volume: 131 start-page: 2961 year: 2005 ident: 6014_CR25 publication-title: Quart. J. Roy. Meteor. Soc. doi: 10.1256/qj.04.176 – volume: 143 start-page: 4645 year: 2015 ident: 6014_CR20 publication-title: Mon. Wea. Rev. doi: 10.1175/MWR-D-15-0088.1 – volume: 135 start-page: 3541 year: 2007 ident: 6014_CR29 publication-title: Mon. Wea. Rev. doi: 10.1175/MWR3466.1  | 
    
| SSID | ssj0002925722 ssib060478651 ssj0037831 ssib060478603 ssib013581858  | 
    
| Score | 2.0346582 | 
    
| Snippet | This paper tests the idea of substituting the atmospheric observations with atmospheric reanalysis when setting up a coupled data assimilation system.The paper... This paper tests the idea of substituting the atmospheric observations with atmospheric reanalysis when setting up a coupled data assimilation system. The...  | 
    
| SourceID | wanfang proquest crossref springer chongqing  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| StartPage | 572 | 
    
| SubjectTerms | Atmospheric Protection/Air Quality Control/Air Pollution Atmospheric Sciences Earth and Environmental Science Earth Sciences Geophysics and Environmental Physics Meteorology 卡尔曼滤波器 基准误差 大气观测 替代试验 模型框架 海洋影响 观测质量 资料同化  | 
    
| Title | Assimilating Atmosphere Reanalysis in Coupled Data Assimilation | 
    
| URI | http://lib.cqvip.com/qk/88418X/201604/670053930.html https://link.springer.com/article/10.1007/s13351-016-6014-1 https://www.proquest.com/docview/1891882741 https://d.wanfangdata.com.cn/periodical/qxxb-e201604009  | 
    
| Volume | 30 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 2198-0934 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002925722 issn: 2095-6037 databaseCode: AFBBN dateStart: 20110201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 2198-0934 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002925722 issn: 2095-6037 databaseCode: AGYKE dateStart: 20110101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 2198-0934 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0037831 issn: 2095-6037 databaseCode: U2A dateStart: 20110201 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6V5dILFJWqWyhypZ5AQWs7D_tUrSoeatWeWImerHHiLCvAgW5WQvx6xtlkAwghkbM9kWfG8TeZmc8A30cJonDWRqXmJQUoBUaBEyQqSiWKNC5TbEr-__xNTyfxr_PkvO3jnnfV7l1KsvlS981uUiYh9E0jCiLiiEKe9YZuawDr45N_v_tfK0KTHzb5A0EAgkbLrMtnviQnsCpcVH56S-98ejr1kHOVJW16e3yJfvroGDrehLNuAcvqk8vDRW0P8_tn3I5vXOEH2GhhKRsv_WgL3jn_EX6Q7WbXs1At56cM6-tqHkgIHCOg2XKZsJlnebW4uXIFC8WmDFdTKr8Nk-Ojs5-nUXvhQpRLNaqjDDXH2BECFFzmmcoTnSuFcd5s9Sy1SpfCYiaRF7ZUIZaxFlOBiW4e-QkGvvLuM7BYIJ2JSHCC4rHwlynl1iXcocwIolk1hJ2V0s3NkljDhJahRGo5GsKoM4PJW67ycGXGlelZloOuTKhPC7oyfAj7qymdvFcGf-tsa2g7hRwJelct5oYrzSnoIJw1hIPOSqbd1_PXJLLWL_rBt3d31jgROPxIffrLmwTuwPswc1mVtguD-v_CfSX8U9u91t_3YG0ixg9CTPiK | 
    
| linkProvider | Springer Nature | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6h5dBeClVbdaEPI3EqClrbedinCqHSLa_TIsHJGifOdlVwoJuVUH99x9lkA1WFRM7ORJ4Zx994Zj4D7I4SROGsjUrNSwpQCowCJ0hUlEoUaVym2JT8n52n44v4-DK5bPu45121e5eSbP7UfbOblEkIfdOIgog4opBnPab4RAxg_eD71Ul_tCI0-WGTPxAEIGi0zLp85v_kBFaFn5Wf3tE3H-9OPeRcZUmb3h5fop8-2IaONmDSTWBZffJrf1Hb_fzPP9yOz5zhJrxqYSk7WPrRa1hz_g18JdvNbmahWs5PGdY31TyQEDhGQLPlMmEzz_JqcXvtChaKTRmuXqn8W7g4-jY5HEfthQtRLtWojjLUHGNHCFBwmWcqT3SuFMZ5s9Sz1CpdCouZRF7YUoVYxlpMBSa6eeQ7GPjKu_fAYoG0JyLBCYrHwilTyq1LuEOZEUSzagjbK6Wb2yWxhgktQ4nUcjSEUWcGk7dc5eHKjGvTsywHXZlQnxZ0ZfgQvqxe6eQ9MXins62h5RRyJOhdtZgbrjSnoINw1hD2OiuZdl3Pn5LIWr_oB9_d31vjRODwI_XprWcJ_AwvxpOzU3P64_xkG14GKcsKtQ8wqH8v3EfCQrX91Pr-Xwxc-oA | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQK1VceKgglkJxJU6gtGs7D_uEKui2UKg4UKmczDhxlhWts2WzUsWv70weG0BVJUTOzkT22PH3eWY-M_ZynABI71xUGlEiQSkgIk2QqCi1LNK4TKFJ-f90kh6dxh_OkrPuntNFn-3ehyTbmgZSaQr13rwo94bCN6USosFphIQijpD-rCMzyXCir-8ffj0ejlmkwTnZxBIkgglsrbI-tnmTHVJY-F6F6SV-_8-daoCfq4hpU-cTSgjT37akyX32re9Mm4nyY3dZu9381186j__R2wfsXgdX-X47vx6yOz5ssjfo09nFjLLowpRDfVEtSJzAcwSgncYJnwWeV8v5uS84JaFyWL1ShUfsdHLw5e1R1F3EEOVKj-soAyMg9ogMpVB5pvPE5FpDnDe_gCx12pTSQaZAFK7UxHGcg1RCYppHPWZroQr-CeOxBNwrAWEG8jQ6fUqF84nwoDKEbk6P2NbKAXbeCm5YKiVKlFHjERv3LrF5p2FOV2mc20F9mcbKUt4ajZUVI_Zq9Upv75bGO72fLS4zip1A8NVyYYU2AskI4q8Re917zHbrfXGbRd7NkaHx5dWVs16Sth8On3n6TwZfsI3P7yb24_uT4y12l4y0iWvP2Fr9c-mfI0Sq3Xa3DK4BYUEDcw | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assimilating+Atmosphere+Reanalysis+in+Coupled+Data+Assimilation&rft.jtitle=%E6%B0%94%E8%B1%A1%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=LIU+Huaran&rft.au=LU+Feiyu&rft.au=LIU+Zhengyu&rft.au=LIU+Yun&rft.date=2016-06-01&rft.issn=2095-6037&rft.volume=30&rft.issue=4&rft.spage=572&rft.epage=583&rft_id=info:doi/10.1007%2Fs13351-016-6014-1&rft.externalDocID=qxxb_e201604009 | 
    
| thumbnail_s | http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F88418X%2F88418X.jpg http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fqxxb-e%2Fqxxb-e.jpg  |