Assimilating Atmosphere Reanalysis in Coupled Data Assimilation

This paper tests the idea of substituting the atmospheric observations with atmospheric reanalysis when setting up a coupled data assimilation system.The paper focuses on the quantification of the effects on the oceanic analysis resulted from this substitution and designs four different assimilation...

Full description

Saved in:
Bibliographic Details
Published inActa meteorologica Sinica Vol. 30; no. 4; pp. 572 - 583
Main Author 刘华然 卢飞雨 刘征宇 刘赟 张绍晴
Format Journal Article
LanguageEnglish
Published Beijing The Chinese Meteorological Society 01.06.2016
Subjects
Online AccessGet full text
ISSN2095-6037
0894-0525
2198-0934
2191-4788
DOI10.1007/s13351-016-6014-1

Cover

Abstract This paper tests the idea of substituting the atmospheric observations with atmospheric reanalysis when setting up a coupled data assimilation system.The paper focuses on the quantification of the effects on the oceanic analysis resulted from this substitution and designs four different assimilation schemes for such a substitution.A coupled Lorenz96 system is constructed and an ensemble Kalman filter is adopted.The atmospheric reanalysis and oceanic observations are assimilated into the system and the analysis quality is compared to a benchmark experiment where both atmospheric and oceanic observations are assimilated.Four schemes are designed for assimilating the reanalysis and they differ in the generation of the perturbed observation ensemble and the representation of the error covariance matrix.The results show that when the reanalysis is assimilated directly as independent observations,the root-mean-square error increase of oceanic analysis relative to the benchmark is less than 16%in the perfect model framework;in the biased model case,the increase is less than 22%.This result is robust with sufficient ensemble size and reasonable atmospheric observation quality(e.g.,frequency,noisiness,and density).If the observation is overly noisy,infrequent,sparse,or the ensemble size is insufficiently small,the analysis deterioration caused by the substitution is less severe since the analysis quality of the benchmark also deteriorates significantly due to worse observations and undersampling.The results from different assimilation schemes highlight the importance of two factors:accurate representation of the error covariance of the reanalysis and the temporal coherence along each ensemble member,which are crucial for the analysis quality of the substitution experiment.
AbstractList This paper tests the idea of substituting the atmospheric observations with atmospheric reanalysis when setting up a coupled data assimilation system. The paper focuses on the quantification of the effects on the oceanic analysis resulted from this substitution and designs four different assimilation schemes for such a substitution. A coupled Lorenz96 system is constructed and an ensemble Kalman filter is adopted. The atmospheric reanalysis and oceanic observations are assimilated into the system and the analysis quality is compared to a benchmark experiment where both atmospheric and oceanic observations are assimilated. Four schemes are designed for assimilating the reanalysis and they differ in the generation of the perturbed observation ensemble and the representation of the error covariance matrix. The results show that when the reanalysis is assimilated directly as independent observations, the root-mean-square error increase of oceanic analysis relative to the benchmark is less than 16% in the perfect model framework; in the biased model case, the increase is less than 22%. This result is robust with sufficient ensemble size and reasonable atmospheric observation quality (e.g., frequency, noisiness, and density). If the observation is overly noisy, infrequent, sparse, or the ensemble size is insufficiently small, the analysis deterioration caused by the substitution is less severe since the analysis quality of the benchmark also deteriorates significantly due to worse observations and undersampling. The results from different assimilation schemes highlight the importance of two factors: accurate representation of the error covariance of the reanalysis and the temporal coherence along each ensemble member, which are crucial for the analysis quality of the substitution experiment.
This paper tests the idea of substituting the atmospheric observations with atmospheric reanalysis when setting up a coupled data assimilation system.The paper focuses on the quantification of the effects on the oceanic analysis resulted from this substitution and designs four different assimilation schemes for such a substitution.A coupled Lorenz96 system is constructed and an ensemble Kalman filter is adopted.The atmospheric reanalysis and oceanic observations are assimilated into the system and the analysis quality is compared to a benchmark experiment where both atmospheric and oceanic observations are assimilated.Four schemes are designed for assimilating the reanalysis and they differ in the generation of the perturbed observation ensemble and the representation of the error covariance matrix.The results show that when the reanalysis is assimilated directly as independent observations,the root-mean-square error increase of oceanic analysis relative to the benchmark is less than 16%in the perfect model framework;in the biased model case,the increase is less than 22%.This result is robust with sufficient ensemble size and reasonable atmospheric observation quality(e.g.,frequency,noisiness,and density).If the observation is overly noisy,infrequent,sparse,or the ensemble size is insufficiently small,the analysis deterioration caused by the substitution is less severe since the analysis quality of the benchmark also deteriorates significantly due to worse observations and undersampling.The results from different assimilation schemes highlight the importance of two factors:accurate representation of the error covariance of the reanalysis and the temporal coherence along each ensemble member,which are crucial for the analysis quality of the substitution experiment.
Author 刘华然 卢飞雨 刘征宇 刘赟 张绍晴
AuthorAffiliation Department of Atmospheric Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, Madison 53706, USA Department of Atmospheric and Oceanic Science, University of Maryland, College Park 20742, USA Geophysical Fluid Dynamics Laboratory, NOAA, Princeton 08542, USA
Author_xml – sequence: 1
  fullname: 刘华然 卢飞雨 刘征宇 刘赟 张绍晴
BookMark eNp9kEtLxDAUhYMo-PwB7oob3VRvkrZJVjKMTxgQRNfhtqZjpJPMJB3Uf29qBwUXZpNAznfuPWefbDvvDCHHFM4pgLiIlPOS5kCrvAJa5HSL7DGqZA6KF9vpDapMP1zskqMY3wCAKVYKxvbI5SRGu7Ad9tbNs0m_8HH5aoLJHg067D6jjZl12dSvl515ya6wx-wX8e6Q7LTYRXO0uQ_I88310_Qunz3c3k8ns7zhEvpcoKJYmJJzRnkjZFOqRkosGoAiJahqqVpWo-BIX-pWioKrusaKYam-Dz8gp6PvO7oW3Vy_-XVIC0a9-viotWEp_GA1KM9G5TL41drEXi9sbEzXoTN-HTWVikrJREGTlI7SJvgYg2n1MtgFhk9NQQ_N6rFZncz10KweGPGHaWz_XUUf0Hb_kmwkY5ri5ib8ZvgPOtmMe_Vuvkrcz46VACi54sC_AKxqmBk
CitedBy_id crossref_primary_10_1175_JCLI_D_17_0849_1
crossref_primary_10_1007_s13351_019_8138_6
crossref_primary_10_1175_MWR_D_19_0304_1
crossref_primary_10_5194_npg_24_681_2017
Cites_doi 10.1175/MWR3024.1
10.1175/MWR3466.1
10.1002/qj.49712555417
10.2151/jmsj.2015-001
10.1256/qj.04.176
10.1175/BAMS-83-11-1631
10.1175/JCLI-D-10-05003.1
10.1029/94JC00572
10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2
10.1007/s00382-014-2390-3
10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2
10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2
10.1029/2008JC004741
10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2
10.1175/MWR-D-15-0088.1
10.1175/2010BAMS3001.1
10.1126/science.269.5231.1699
10.1002/qj.828
10.1175/2007JCLI1412.1
10.1029/2004GL020283
10.1175/JCLI-D-13-00236.1
10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2
10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2
10.1029/1999GL900616
10.1007/s00376-013-2268-z
ContentType Journal Article
Copyright The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2016
Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
Copyright_xml – notice: The Chinese Meteorological Society and Springer-Verlag Berlin Heidelberg 2016
– notice: Copyright © Wanfang Data Co. Ltd. All Rights Reserved.
DBID 2RA
92L
CQIGP
W94
~WA
AAYXX
CITATION
7TG
7TN
F1W
H96
KL.
L.G
2B.
4A8
92I
93N
PSX
TCJ
DOI 10.1007/s13351-016-6014-1
DatabaseName 维普期刊资源整合服务平台
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-自然科学
中文科技期刊数据库- 镜像站点
CrossRef
Meteorological & Geoastrophysical Abstracts
Oceanic Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Meteorological & Geoastrophysical Abstracts - Academic
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Wanfang Data Journals - Hong Kong
WANFANG Data Centre
Wanfang Data Journals
万方数据期刊 - 香港版
China Online Journals (COJ)
China Online Journals (COJ)
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Meteorological & Geoastrophysical Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Oceanic Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
ASFA: Aquatic Sciences and Fisheries Abstracts
DatabaseTitleList Aquatic Science & Fisheries Abstracts (ASFA) Professional



DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
DocumentTitleAlternate Assimilating Atmosphere Reanalysis in Coupled Data Assimilation
EISSN 2198-0934
2191-4788
EndPage 583
ExternalDocumentID qxxb_e201604009
10_1007_s13351_016_6014_1
670053930
GrantInformation_xml – fundername: the National (Key) Basic Research and Development (973) Program of China; National Natural Science Foundation of China
  funderid: (2012CB417201); (41375053)
GroupedDBID -01
-0A
-EM
-SA
-S~
06D
2KG
2KM
2RA
4.4
406
5VR
5XA
5XB
5XL
92L
92M
96X
9D9
9DA
AAAVM
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AAYFA
AAYIU
AAYQN
AAZMS
ABDZT
ABECU
ABFGW
ABFTV
ABJOX
ABKAS
ABKCH
ABMQK
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABXPI
ACAOD
ACBMV
ACBRV
ACBYP
ACGFS
ACHSB
ACIGE
ACIPQ
ACKNC
ACMDZ
ACMLO
ACOKC
ACTTH
ACVWB
ACWMK
ACZOJ
ADHIR
ADMDM
ADOXG
ADRFC
ADURQ
ADYFF
ADZKW
AEBTG
AEFTE
AEGNC
AEJHL
AEJRE
AENEX
AEOHA
AEPYU
AESKC
AESTI
AETCA
AEVLU
AEVTX
AEXYK
AFLOW
AFNRJ
AFUIB
AFZKB
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWZB
AGYKE
AHAVH
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AKQUC
ALFXC
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMXSW
ANMIH
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
BGNMA
CAJEA
CAJUS
CCEZO
CCVFK
CHBEP
CQIGP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EDH
EIOEI
EJD
ESBYG
FA0
FERAY
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FYJPI
GGRSB
GJIRD
IKXTQ
IWAJR
J-C
JUIAU
JZLTJ
KOV
L8X
LLZTM
M4Y
NPVJJ
NQJWS
NU0
O9J
PT4
Q--
Q-0
R-A
RLLFE
RSV
RT1
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
T8Q
TSG
U1F
U1G
U5A
U5K
UG4
UOJIU
UTJUX
UZXMN
VFIZW
W48
W94
ZMTXR
~LG
~WA
0R~
AACDK
AAJBT
AASML
AATVU
AAUYE
AAXDM
AAYTO
AAYZH
ABAKF
ABJNI
ACDTI
ACPIV
ADINQ
ADKNI
AEFQL
AEMSY
AFBBN
AFQWF
AGAYW
AGQEE
AGRTI
AHBYD
AIGIU
AMYLF
GGCAI
H13
IAO
IEP
IGS
ITC
OK1
ROL
SJYHP
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
0VY
23M
30V
408
5GY
67M
7TG
7TN
8TC
95.
ACGOD
AFRAH
AFWTZ
AJRNO
CW9
DX2
F1W
H96
HMJXF
HRMNR
I0C
KL.
L.G
P2P
R9I
S27
S3B
SCL
SEV
SHX
T13
U2A
~A9
2B.
4A8
92I
93N
PSX
TCJ
ID FETCH-LOGICAL-c380t-7a91a4e533213c78c59c88a4c0040076b89f2ba73a1dbf87439bba62a59999993
IEDL.DBID AGYKE
ISSN 2095-6037
0894-0525
IngestDate Thu May 29 04:06:29 EDT 2025
Fri Jul 11 02:49:45 EDT 2025
Wed Oct 01 01:45:11 EDT 2025
Thu Apr 24 22:51:19 EDT 2025
Fri Feb 21 02:40:29 EST 2025
Wed Feb 14 10:15:14 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords data assimilation
reanalysis data
ensemble Kalman filter
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c380t-7a91a4e533213c78c59c88a4c0040076b89f2ba73a1dbf87439bba62a59999993
Notes 11-2277/P
This paper tests the idea of substituting the atmospheric observations with atmospheric reanalysis when setting up a coupled data assimilation system.The paper focuses on the quantification of the effects on the oceanic analysis resulted from this substitution and designs four different assimilation schemes for such a substitution.A coupled Lorenz96 system is constructed and an ensemble Kalman filter is adopted.The atmospheric reanalysis and oceanic observations are assimilated into the system and the analysis quality is compared to a benchmark experiment where both atmospheric and oceanic observations are assimilated.Four schemes are designed for assimilating the reanalysis and they differ in the generation of the perturbed observation ensemble and the representation of the error covariance matrix.The results show that when the reanalysis is assimilated directly as independent observations,the root-mean-square error increase of oceanic analysis relative to the benchmark is less than 16%in the perfect model framework;in the biased model case,the increase is less than 22%.This result is robust with sufficient ensemble size and reasonable atmospheric observation quality(e.g.,frequency,noisiness,and density).If the observation is overly noisy,infrequent,sparse,or the ensemble size is insufficiently small,the analysis deterioration caused by the substitution is less severe since the analysis quality of the benchmark also deteriorates significantly due to worse observations and undersampling.The results from different assimilation schemes highlight the importance of two factors:accurate representation of the error covariance of the reanalysis and the temporal coherence along each ensemble member,which are crucial for the analysis quality of the substitution experiment.
LIU Huaran1,2, LU Feiyu2, LIU Zhengyu2 , LIU Yun3 ,ZHANG Shaoqing4 ( 1 Department of Atmospheric Sciences, Nanjing University of Information Science & Technology, Nanjing 210044, China; 2 Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, Madison 53706, USA ; 3 Department of Atmospheric and Oceanic Science, University of Maryland, College Park 20742, USA ; 4 Geophysical Fluid Dynamics Laboratory, NOAA, Princeton 08542, USA)
data assimilation reanalysis data ensemble Kalman filter
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1891882741
PQPubID 23462
PageCount 12
ParticipantIDs wanfang_journals_qxxb_e201604009
proquest_miscellaneous_1891882741
crossref_primary_10_1007_s13351_016_6014_1
crossref_citationtrail_10_1007_s13351_016_6014_1
springer_journals_10_1007_s13351_016_6014_1
chongqing_primary_670053930
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-06-01
PublicationDateYYYYMMDD 2016-06-01
PublicationDate_xml – month: 06
  year: 2016
  text: 2016-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Beijing
PublicationPlace_xml – name: Beijing
PublicationTitle Acta meteorologica Sinica
PublicationTitleAbbrev J Meteorol Res
PublicationTitleAlternate Acta Meteorologica Sinica
PublicationYear 2016
Publisher The Chinese Meteorological Society
Publisher_xml – name: The Chinese Meteorological Society
References Kalnay, Kanamitsu, Kistler (CR13) 1996; 77
Kitoh, Arakawa (CR16) 1999; 26
Kobayashi, Ota, Harada (CR17) 2015; 93
Sugiura, Awaji, Masuda (CR23) 2008; 113
Han, Wu, Zhang (CR10) 2013; 26
Zhang, Harrison, Wittenberg (CR28) 2005; 133
Gottwald, Majda (CR8) 2013; 20
Saha, Moorthi, Pan (CR22) 2010; 91
Gaspari, Cohn (CR7) 1999; 125
Dee, Uppala, Simmons (CR5) 2011; 137
Chen, Zebiak, Busalacchi (CR4) 1995; 269
Kanamitsu, Ebisuzaki, Woollen (CR14) 2002; 83
Luo, Masson, Behera (CR21) 2008; 21
Liu, Wu, Zhang (CR18) 2013; 30
Hamill, Whitaker, Snyder (CR9) 2001; 129
Arakawa, Kitoh (CR2) 2004; 31
Lu, Liu, Zhang (CR20) 2015; 143
Iseries (CR12) 1996
Kistler, Collins, Saha (CR15) 2001; 82
Zhang, Harrison, Rosati (CR29) 2007; 135
Lorenz (CR19) 1996
Uppala, Kållberg, Simmons (CR25) 2005; 131
Houtekamer, Mitchell (CR11) 1998; 126
Zhang (CR26) 2011; 24
Zhang, Snyder, Sun (CR27) 2004; 132
Anderson (CR1) 2001; 129
Evensen (CR6) 1994; 99
Burgers, van Leeuwen, Evensen (CR3) 1998; 126
Tardif, Hakim, Snyder (CR24) 2015; 45
J. L. Anderson (6014_CR1) 2001; 129
D. P. Dee (6014_CR5) 2011; 137
O. Arakawa (6014_CR2) 2004; 31
T. M. Hamill (6014_CR9) 2001; 129
S. M. Uppala (6014_CR25) 2005; 131
R. Kistler (6014_CR15) 2001; 82
M. Kanamitsu (6014_CR14) 2002; 83
F. Zhang (6014_CR27) 2004; 132
G. J. Han (6014_CR10) 2013; 26
S. Kobayashi (6014_CR17) 2015; 93
Z. Liu (6014_CR18) 2013; 30
G. Evensen (6014_CR6) 1994; 99
E. N. Lorenz (6014_CR19) 1996
N. Sugiura (6014_CR23) 2008; 113
P. L. Houtekamer (6014_CR11) 1998; 126
J.-J. Luo (6014_CR21) 2008; 21
S. Zhang (6014_CR28) 2005; 133
S. Saha (6014_CR22) 2010; 91
A. Iseries (6014_CR12) 1996
G. Gaspari (6014_CR7) 1999; 125
F. Y. Lu (6014_CR20) 2015; 143
E. Kalnay (6014_CR13) 1996; 77
A. Kitoh (6014_CR16) 1999; 26
S. Zhang (6014_CR26) 2011; 24
R. Tardif (6014_CR24) 2015; 45
S. Zhang (6014_CR29) 2007; 135
G. A. Gottwald (6014_CR8) 2013; 20
G. Burgers (6014_CR3) 1998; 126
D. Chen (6014_CR4) 1995; 269
References_xml – volume: 133
  start-page: 3176
  year: 2005
  end-page: 3201
  ident: CR28
  article-title: Initialization of an ENSO forecast system using a parallelized ensemble filter
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/MWR3024.1
– volume: 135
  start-page: 3541
  year: 2007
  end-page: 3564
  ident: CR29
  article-title: System design and evaluation of coupled ensemble data assimilation for global oceanic climate studies
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/MWR3466.1
– volume: 125
  start-page: 723
  year: 1999
  end-page: 757
  ident: CR7
  article-title: Construction of correlation functions in two and three dimensions
  publication-title: Quart. J. Roy. Meteor. Soc.
  doi: 10.1002/qj.49712555417
– volume: 93
  start-page: 5
  year: 2015
  end-page: 48
  ident: CR17
  article-title: The JRA-55 reanalysis: General specifications and basic characteristics
  publication-title: J. Meteor. Soc. Japan
  doi: 10.2151/jmsj.2015-001
– volume: 131
  start-page: 2961
  year: 2005
  end-page: 3012
  ident: CR25
  article-title: The ERA-40 reanalysis
  publication-title: Quart. J. Roy. Meteor. Soc.
  doi: 10.1256/qj.04.176
– volume: 83
  start-page: 1631
  year: 2002
  end-page: 1643
  ident: CR14
  article-title: NCEP-DOE AMIP-II reanalysis (R-2)
  publication-title: Bull. Amer. Meteor. Soc.
  doi: 10.1175/BAMS-83-11-1631
– volume: 24
  start-page: 6210
  year: 2011
  end-page: 6226
  ident: CR26
  article-title: A study of impacts of coupled model initial shocks and state–parameter optimization on climate predictions using a simple pycnocline prediction model
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-10-05003.1
– volume: 99
  start-page: 10143
  year: 1994
  end-page: 10162
  ident: CR6
  article-title: Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics
  publication-title: J. Geophys. Res.
  doi: 10.1029/94JC00572
– volume: 77
  start-page: 437
  year: 1996
  end-page: 472
  ident: CR13
  article-title: The NCEP/NCAR 40-Year Reanalysis Project
  publication-title: Bull. Amer. Meteor. Soc.
  doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
– volume: 126
  start-page: 1719
  year: 1998
  end-page: 1724
  ident: CR3
  article-title: Analysis scheme in the ensemble Kalman filter
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2
– volume: 45
  start-page: 1415
  year: 2015
  end-page: 1427
  ident: CR24
  article-title: Coupled atmosphere–ocean data assimilation experiments with a low-order model and CMIP5 model data
  publication-title: Climate Dyn.
  doi: 10.1007/s00382-014-2390-3
– volume: 20
  start-page: 705
  year: 2013
  end-page: 712
  ident: CR8
  article-title: A mechanism for catastrophic filter divergence in data assimilation for sparse observation networks. Nonlinear Process
  publication-title: Geophys.
– volume: 132
  start-page: 1238
  year: 2004
  end-page: 1253
  ident: CR27
  article-title: Impacts of initial estimate and observation availability on convective-scale data assimilation with an ensemble Kalman filter
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2
– volume: 129
  start-page: 2776
  year: 2001
  end-page: 2790
  ident: CR9
  article-title: Distance-dependent filtering of background error covariance estimates in an ensemble Kalman filter
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2
– volume: 113
  start-page: C10017
  issue: C10
  year: 2008
  ident: CR23
  article-title: Development of a four-dimensional variational coupled data assimilation system for enhanced analysis and prediction of seasonal to interannual climate variations
  publication-title: J. Geophys. Res. Ocean.
  doi: 10.1029/2008JC004741
– start-page: 447
  year: 1996
  ident: CR12
  publication-title: A First Course in the Numerical Analysis of Differential Equations
– volume: 82
  start-page: 247
  year: 2001
  end-page: 267
  ident: CR15
  article-title: The NCEPNCAR 50-year reanalysis: Monthly means CD-ROM and documentation
  publication-title: Bull. Amer. Meteor. Soc.
  doi: 10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2
– volume: 143
  start-page: 4645
  year: 2015
  end-page: 4659
  ident: CR20
  article-title: Strongly coupled data assimilation using leading averaged coupled covariance (LACC). Part II: CGCM experiments
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/MWR-D-15-0088.1
– volume: 91
  start-page: 1015
  year: 2010
  end-page: 1057
  ident: CR22
  article-title: The NCEP climate forecast system reanalysis
  publication-title: Bull. Amer. Meteor. Soc.
  doi: 10.1175/2010BAMS3001.1
– volume: 269
  start-page: 1699
  year: 1995
  end-page: 1702
  ident: CR4
  article-title: An improved procedure for El Ni˜no forecasting: Implications for predictability
  publication-title: Science
  doi: 10.1126/science.269.5231.1699
– volume: 137
  start-page: 553
  year: 2011
  end-page: 597
  ident: CR5
  article-title: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system
  publication-title: Quart. J. Roy. Meteor. Soc.
  doi: 10.1002/qj.828
– volume: 21
  start-page: 84
  year: 2008
  end-page: 93
  ident: CR21
  article-title: Extended ENSO predictions using a fully coupled ocean–atmosphere model
  publication-title: J. Climate
  doi: 10.1175/2007JCLI1412.1
– volume: 31
  start-page: L12206
  year: 2004
  ident: CR2
  article-title: Comparison of local precipitation–SST relationship between the observation and a reanalysis dataset
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2004GL020283
– start-page: 1
  year: 1996
  end-page: 18
  ident: CR19
  publication-title: Predictability—A problem partly solved
– volume: 26
  start-page: 10218
  year: 2013
  end-page: 10231
  ident: CR10
  article-title: Error covariance estimation for coupled data assimilation using a Lorenz atmosphere and a simple pycnocline ocean model
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-13-00236.1
– volume: 129
  start-page: 2884
  year: 2001
  end-page: 2903
  ident: CR1
  article-title: An ensemble adjustment Kalman filter for data assimilation
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2
– volume: 126
  start-page: 796
  year: 1998
  end-page: 811
  ident: CR11
  article-title: Data assimilation using an ensemble Kalman filter technique
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2
– volume: 26
  start-page: 2965
  year: 1999
  end-page: 2968
  ident: CR16
  article-title: On overestimation of tropical precipitation by an atmospheric GCM with prescribed SST
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/1999GL900616
– volume: 30
  start-page: 1235
  year: 2013
  end-page: 1248
  ident: CR18
  article-title: Ensemble data assimilation in a simple coupled climate model: The role of ocean–atmosphere interaction
  publication-title: Adv. Atmos. Sci.
  doi: 10.1007/s00376-013-2268-z
– volume: 129
  start-page: 2884
  year: 2001
  ident: 6014_CR1
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/1520-0493(2001)129<2884:AEAKFF>2.0.CO;2
– volume: 21
  start-page: 84
  year: 2008
  ident: 6014_CR21
  publication-title: J. Climate
  doi: 10.1175/2007JCLI1412.1
– volume: 77
  start-page: 437
  year: 1996
  ident: 6014_CR13
  publication-title: Bull. Amer. Meteor. Soc.
  doi: 10.1175/1520-0477(1996)077<0437:TNYRP>2.0.CO;2
– volume: 45
  start-page: 1415
  year: 2015
  ident: 6014_CR24
  publication-title: Climate Dyn.
  doi: 10.1007/s00382-014-2390-3
– volume: 83
  start-page: 1631
  year: 2002
  ident: 6014_CR14
  publication-title: Bull. Amer. Meteor. Soc.
  doi: 10.1175/BAMS-83-11-1631
– start-page: 447
  volume-title: A First Course in the Numerical Analysis of Differential Equations
  year: 1996
  ident: 6014_CR12
– volume: 31
  start-page: L12206
  year: 2004
  ident: 6014_CR2
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/2004GL020283
– volume: 133
  start-page: 3176
  year: 2005
  ident: 6014_CR28
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/MWR3024.1
– volume: 26
  start-page: 10218
  year: 2013
  ident: 6014_CR10
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-13-00236.1
– volume: 26
  start-page: 2965
  year: 1999
  ident: 6014_CR16
  publication-title: Geophys. Res. Lett.
  doi: 10.1029/1999GL900616
– volume: 93
  start-page: 5
  year: 2015
  ident: 6014_CR17
  publication-title: J. Meteor. Soc. Japan
  doi: 10.2151/jmsj.2015-001
– volume: 30
  start-page: 1235
  year: 2013
  ident: 6014_CR18
  publication-title: Adv. Atmos. Sci.
  doi: 10.1007/s00376-013-2268-z
– volume: 82
  start-page: 247
  year: 2001
  ident: 6014_CR15
  publication-title: Bull. Amer. Meteor. Soc.
  doi: 10.1175/1520-0477(2001)082<0247:TNNYRM>2.3.CO;2
– volume: 126
  start-page: 1719
  year: 1998
  ident: 6014_CR3
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/1520-0493(1998)126<1719:ASITEK>2.0.CO;2
– volume: 20
  start-page: 705
  year: 2013
  ident: 6014_CR8
  publication-title: Geophys.
– volume: 113
  start-page: C10017
  issue: C10
  year: 2008
  ident: 6014_CR23
  publication-title: J. Geophys. Res. Ocean.
  doi: 10.1029/2008JC004741
– volume: 91
  start-page: 1015
  year: 2010
  ident: 6014_CR22
  publication-title: Bull. Amer. Meteor. Soc.
  doi: 10.1175/2010BAMS3001.1
– volume: 137
  start-page: 553
  year: 2011
  ident: 6014_CR5
  publication-title: Quart. J. Roy. Meteor. Soc.
  doi: 10.1002/qj.828
– volume: 99
  start-page: 10143
  year: 1994
  ident: 6014_CR6
  publication-title: J. Geophys. Res.
  doi: 10.1029/94JC00572
– start-page: 1
  volume-title: Predictability—A problem partly solved
  year: 1996
  ident: 6014_CR19
– volume: 24
  start-page: 6210
  year: 2011
  ident: 6014_CR26
  publication-title: J. Climate
  doi: 10.1175/JCLI-D-10-05003.1
– volume: 269
  start-page: 1699
  year: 1995
  ident: 6014_CR4
  publication-title: Science
  doi: 10.1126/science.269.5231.1699
– volume: 126
  start-page: 796
  year: 1998
  ident: 6014_CR11
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/1520-0493(1998)126<0796:DAUAEK>2.0.CO;2
– volume: 125
  start-page: 723
  year: 1999
  ident: 6014_CR7
  publication-title: Quart. J. Roy. Meteor. Soc.
  doi: 10.1002/qj.49712555417
– volume: 132
  start-page: 1238
  year: 2004
  ident: 6014_CR27
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/1520-0493(2004)132<1238:IOIEAO>2.0.CO;2
– volume: 129
  start-page: 2776
  year: 2001
  ident: 6014_CR9
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/1520-0493(2001)129<2776:DDFOBE>2.0.CO;2
– volume: 131
  start-page: 2961
  year: 2005
  ident: 6014_CR25
  publication-title: Quart. J. Roy. Meteor. Soc.
  doi: 10.1256/qj.04.176
– volume: 143
  start-page: 4645
  year: 2015
  ident: 6014_CR20
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/MWR-D-15-0088.1
– volume: 135
  start-page: 3541
  year: 2007
  ident: 6014_CR29
  publication-title: Mon. Wea. Rev.
  doi: 10.1175/MWR3466.1
SSID ssj0002925722
ssib060478651
ssj0037831
ssib060478603
ssib013581858
Score 2.0346582
Snippet This paper tests the idea of substituting the atmospheric observations with atmospheric reanalysis when setting up a coupled data assimilation system.The paper...
This paper tests the idea of substituting the atmospheric observations with atmospheric reanalysis when setting up a coupled data assimilation system. The...
SourceID wanfang
proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 572
SubjectTerms Atmospheric Protection/Air Quality Control/Air Pollution
Atmospheric Sciences
Earth and Environmental Science
Earth Sciences
Geophysics and Environmental Physics
Meteorology
卡尔曼滤波器
基准误差
大气观测
替代试验
模型框架
海洋影响
观测质量
资料同化
Title Assimilating Atmosphere Reanalysis in Coupled Data Assimilation
URI http://lib.cqvip.com/qk/88418X/201604/670053930.html
https://link.springer.com/article/10.1007/s13351-016-6014-1
https://www.proquest.com/docview/1891882741
https://d.wanfangdata.com.cn/periodical/qxxb-e201604009
Volume 30
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 2198-0934
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002925722
  issn: 2095-6037
  databaseCode: AFBBN
  dateStart: 20110201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 2198-0934
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002925722
  issn: 2095-6037
  databaseCode: AGYKE
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 2198-0934
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0037831
  issn: 2095-6037
  databaseCode: U2A
  dateStart: 20110201
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6V5dILFJWqWyhypZ5AQWs7D_tUrSoeatWeWImerHHiLCvAgW5WQvx6xtlkAwghkbM9kWfG8TeZmc8A30cJonDWRqXmJQUoBUaBEyQqSiWKNC5TbEr-__xNTyfxr_PkvO3jnnfV7l1KsvlS981uUiYh9E0jCiLiiEKe9YZuawDr45N_v_tfK0KTHzb5A0EAgkbLrMtnviQnsCpcVH56S-98ejr1kHOVJW16e3yJfvroGDrehLNuAcvqk8vDRW0P8_tn3I5vXOEH2GhhKRsv_WgL3jn_EX6Q7WbXs1At56cM6-tqHkgIHCOg2XKZsJlnebW4uXIFC8WmDFdTKr8Nk-Ojs5-nUXvhQpRLNaqjDDXH2BECFFzmmcoTnSuFcd5s9Sy1SpfCYiaRF7ZUIZaxFlOBiW4e-QkGvvLuM7BYIJ2JSHCC4rHwlynl1iXcocwIolk1hJ2V0s3NkljDhJahRGo5GsKoM4PJW67ycGXGlelZloOuTKhPC7oyfAj7qymdvFcGf-tsa2g7hRwJelct5oYrzSnoIJw1hIPOSqbd1_PXJLLWL_rBt3d31jgROPxIffrLmwTuwPswc1mVtguD-v_CfSX8U9u91t_3YG0ixg9CTPiK
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB6h5dBeClVbdaEPI3EqClrbedinCqHSLa_TIsHJGifOdlVwoJuVUH99x9lkA1WFRM7ORJ4Zx994Zj4D7I4SROGsjUrNSwpQCowCJ0hUlEoUaVym2JT8n52n44v4-DK5bPu45121e5eSbP7UfbOblEkIfdOIgog4opBnPab4RAxg_eD71Ul_tCI0-WGTPxAEIGi0zLp85v_kBFaFn5Wf3tE3H-9OPeRcZUmb3h5fop8-2IaONmDSTWBZffJrf1Hb_fzPP9yOz5zhJrxqYSk7WPrRa1hz_g18JdvNbmahWs5PGdY31TyQEDhGQLPlMmEzz_JqcXvtChaKTRmuXqn8W7g4-jY5HEfthQtRLtWojjLUHGNHCFBwmWcqT3SuFMZ5s9Sz1CpdCouZRF7YUoVYxlpMBSa6eeQ7GPjKu_fAYoG0JyLBCYrHwilTyq1LuEOZEUSzagjbK6Wb2yWxhgktQ4nUcjSEUWcGk7dc5eHKjGvTsywHXZlQnxZ0ZfgQvqxe6eQ9MXins62h5RRyJOhdtZgbrjSnoINw1hD2OiuZdl3Pn5LIWr_oB9_d31vjRODwI_XprWcJ_AwvxpOzU3P64_xkG14GKcsKtQ8wqH8v3EfCQrX91Pr-Xwxc-oA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELZQK1VceKgglkJxJU6gtGs7D_uEKui2UKg4UKmczDhxlhWts2WzUsWv70weG0BVJUTOzkT22PH3eWY-M_ZynABI71xUGlEiQSkgIk2QqCi1LNK4TKFJ-f90kh6dxh_OkrPuntNFn-3ehyTbmgZSaQr13rwo94bCN6USosFphIQijpD-rCMzyXCir-8ffj0ejlmkwTnZxBIkgglsrbI-tnmTHVJY-F6F6SV-_8-daoCfq4hpU-cTSgjT37akyX32re9Mm4nyY3dZu9381186j__R2wfsXgdX-X47vx6yOz5ssjfo09nFjLLowpRDfVEtSJzAcwSgncYJnwWeV8v5uS84JaFyWL1ShUfsdHLw5e1R1F3EEOVKj-soAyMg9ogMpVB5pvPE5FpDnDe_gCx12pTSQaZAFK7UxHGcg1RCYppHPWZroQr-CeOxBNwrAWEG8jQ6fUqF84nwoDKEbk6P2NbKAXbeCm5YKiVKlFHjERv3LrF5p2FOV2mc20F9mcbKUt4ajZUVI_Zq9Upv75bGO72fLS4zip1A8NVyYYU2AskI4q8Re917zHbrfXGbRd7NkaHx5dWVs16Sth8On3n6TwZfsI3P7yb24_uT4y12l4y0iWvP2Fr9c-mfI0Sq3Xa3DK4BYUEDcw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Assimilating+Atmosphere+Reanalysis+in+Coupled+Data+Assimilation&rft.jtitle=%E6%B0%94%E8%B1%A1%E5%AD%A6%E6%8A%A5%EF%BC%88%E8%8B%B1%E6%96%87%E7%89%88%EF%BC%89&rft.au=LIU+Huaran&rft.au=LU+Feiyu&rft.au=LIU+Zhengyu&rft.au=LIU+Yun&rft.date=2016-06-01&rft.issn=2095-6037&rft.volume=30&rft.issue=4&rft.spage=572&rft.epage=583&rft_id=info:doi/10.1007%2Fs13351-016-6014-1&rft.externalDocID=qxxb_e201604009
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F88418X%2F88418X.jpg
http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fwww.wanfangdata.com.cn%2Fimages%2FPeriodicalImages%2Fqxxb-e%2Fqxxb-e.jpg