Uncovering Magnetic Turbulence in Young Supernova Remnants with Polarized X-Ray Imaging

Observations of young supernova remnants (SNRs) in X-rays and γ-rays have provided conclusive evidence for particle acceleration to at least TeV energies. Analysis of high-spatial-resolution X-ray maps of young SNRs has indicated that the particle acceleration process is accompanied by strong nonadi...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 899; no. 2; pp. 142 - 151
Main Authors Bykov, Andrei M., Uvarov, Yury A., Slane, Patrick, Ellison, Donald C.
Format Journal Article
LanguageEnglish
Published Philadelphia The American Astronomical Society 01.08.2020
IOP Publishing
Subjects
Online AccessGet full text
ISSN0004-637X
1538-4357
DOI10.3847/1538-4357/aba960

Cover

Abstract Observations of young supernova remnants (SNRs) in X-rays and γ-rays have provided conclusive evidence for particle acceleration to at least TeV energies. Analysis of high-spatial-resolution X-ray maps of young SNRs has indicated that the particle acceleration process is accompanied by strong nonadiabatic amplification of magnetic fields. If Fermi acceleration is the mechanism producing the energetic cosmic rays (CRs), the amplified magnetic field must be turbulent, and CR-driven instabilities are among the most probable mechanisms for converting the shock ram pressure into magnetic turbulence. The development and evolution of strong magnetic turbulence in collisionless plasmas forming SNR shells are complicated phenomena which include the amplification of magnetic modes, anisotropic mode transformations at shocks, as well as the nonlinear physics of turbulent cascades. Polarized X-ray synchrotron radiation from ultrarelativistic electrons accelerated in the SNR shock is produced in a thin layer immediately behind the shock and is not subject to the Faraday depolarization effect. These factors open up possibilities to study some properties of magnetic turbulence, and here we present polarized X-ray synchrotron maps of SNR shells assuming different models of magnetic turbulence cascades. It is shown that different models of anisotropic turbulence can be distinguished by measuring the predominant polarization angle direction. We discuss the detection of these features in Tycho's SNR with the coming generation of X-ray polarimeters such as the Imaging X-ray Polarimetry Explorer.
AbstractList Observations of young supernova remnants (SNRs) in X-rays and γ-rays have provided conclusive evidence for particle acceleration to at least TeV energies. Analysis of high-spatial-resolution X-ray maps of young SNRs has indicated that the particle acceleration process is accompanied by strong nonadiabatic amplification of magnetic fields. If Fermi acceleration is the mechanism producing the energetic cosmic rays (CRs), the amplified magnetic field must be turbulent, and CR-driven instabilities are among the most probable mechanisms for converting the shock ram pressure into magnetic turbulence. The development and evolution of strong magnetic turbulence in collisionless plasmas forming SNR shells are complicated phenomena which include the amplification of magnetic modes, anisotropic mode transformations at shocks, as well as the nonlinear physics of turbulent cascades. Polarized X-ray synchrotron radiation from ultrarelativistic electrons accelerated in the SNR shock is produced in a thin layer immediately behind the shock and is not subject to the Faraday depolarization effect. These factors open up possibilities to study some properties of magnetic turbulence, and here we present polarized X-ray synchrotron maps of SNR shells assuming different models of magnetic turbulence cascades. It is shown that different models of anisotropic turbulence can be distinguished by measuring the predominant polarization angle direction. We discuss the detection of these features in Tycho’s SNR with the coming generation of X-ray polarimeters such as the Imaging X-ray Polarimetry Explorer.
Observations of young supernova remnants (SNRs) in X-rays and γ -rays have provided conclusive evidence for particle acceleration to at least TeV energies. Analysis of high-spatial-resolution X-ray maps of young SNRs has indicated that the particle acceleration process is accompanied by strong nonadiabatic amplification of magnetic fields. If Fermi acceleration is the mechanism producing the energetic cosmic rays (CRs), the amplified magnetic field must be turbulent, and CR-driven instabilities are among the most probable mechanisms for converting the shock ram pressure into magnetic turbulence. The development and evolution of strong magnetic turbulence in collisionless plasmas forming SNR shells are complicated phenomena which include the amplification of magnetic modes, anisotropic mode transformations at shocks, as well as the nonlinear physics of turbulent cascades. Polarized X-ray synchrotron radiation from ultrarelativistic electrons accelerated in the SNR shock is produced in a thin layer immediately behind the shock and is not subject to the Faraday depolarization effect. These factors open up possibilities to study some properties of magnetic turbulence, and here we present polarized X-ray synchrotron maps of SNR shells assuming different models of magnetic turbulence cascades. It is shown that different models of anisotropic turbulence can be distinguished by measuring the predominant polarization angle direction. We discuss the detection of these features in Tycho’s SNR with the coming generation of X-ray polarimeters such as the Imaging X-ray Polarimetry Explorer.
Author Bykov, Andrei M.
Slane, Patrick
Ellison, Donald C.
Uvarov, Yury A.
Author_xml – sequence: 1
  givenname: Andrei M.
  orcidid: 0000-0003-0037-2288
  surname: Bykov
  fullname: Bykov, Andrei M.
  email: byk@astro.ioffe.ru
  organization: Ioffe Institute , 194021 St. Petersburg, Russia
– sequence: 2
  givenname: Yury A.
  surname: Uvarov
  fullname: Uvarov, Yury A.
  organization: Ioffe Institute , 194021 St. Petersburg, Russia
– sequence: 3
  givenname: Patrick
  orcidid: 0000-0002-6986-6756
  surname: Slane
  fullname: Slane, Patrick
  email: slane@cfa.harvard.edu
  organization: Harvard-Smithsonian Center for Astrophysics , Cambridge MA 02138, USA
– sequence: 4
  givenname: Donald C.
  surname: Ellison
  fullname: Ellison, Donald C.
  email: ellison@ncsu.edu
  organization: North Carolina State University Physics Department, Box 8202, Raleigh, NC 27695, USA
BookMark eNp9kMtLxDAQxoOs4K569xgQb1bTJs3jKOJjYUXxgXoKSZquWXaTmraK_vW2VBREPQ0z832_Gb4JGPngLQA7KTrAnLDDNMc8IThnh0orQdEaGH-NRmCMECIJxexhA0zqetG3mRBjcH_nTXix0fk5vFBzbxtn4G0bdbu03ljoPHwMbbe8aSsbfXhR8NquvPJNDV9d8wSvwlJF924L-JBcqzc4Xal5B9sC66Va1nb7s26Cu9OT2-PzZHZ5Nj0-miUGc9QkTAhaIKUIpiQ3usBUG4ZIafOCUJMxLbTVBjFGiOaFYrzkJTMUCaFLmqYab4LdgVvF8NzaupGL0EbfnZRZBxUIc551KjSoTAx1HW0pq-hWKr7JFMk-PtlnJfus5BBfZ6E_LMY1qnHBN1G55X_GvcHoQvX9jKoWkgshM5mSTFZF2en2f9H9if0A2EyR1A
CitedBy_id crossref_primary_10_3847_1538_4357_acac88
crossref_primary_10_1103_PhysRevD_110_023041
crossref_primary_10_1038_d41586_022_04445_2
crossref_primary_10_3847_1538_4357_ac8b7b
crossref_primary_10_3847_1538_4357_acf3e6
crossref_primary_10_3847_1538_4357_acfe11
crossref_primary_10_3847_1538_4357_ac96f0
crossref_primary_10_3847_2041_8213_ad8eb8
crossref_primary_10_1088_1742_6596_2103_1_012016
crossref_primary_10_1016_j_astropartphys_2021_102566
crossref_primary_10_3847_1538_4357_acb496
crossref_primary_10_3847_2041_8213_ad4a68
crossref_primary_10_3847_1538_4357_ac590f
crossref_primary_10_3390_galaxies12050059
crossref_primary_10_1093_mnras_stad290
Cites_doi 10.1088/0067-0049/212/2/25
10.1117/12.857357
10.1007/s11214-012-9919-8
10.1146/annurev.aa.03.090165.001501
10.1111/j.1365-2966.2004.08097.x
10.3847/2041-8213/aa94c4
10.1146/annurev.astro.46.060407.145237
10.1088/0004-637X/785/2/130
10.1086/344676
10.1016/0370-1573(87)90134-7
10.1103/PhysRevE.78.066301
10.1007/s11214-011-9775-y
10.1086/595868
10.1093/mnras/stx1222
10.1088/0004-637X/773/2/103
10.1007/s00159-011-0049-1
10.1088/0034-4885/79/4/046901
10.3847/1538-4357/ab837e
10.1086/380956
10.1086/427620
10.1146/annurev.aa.22.090184.000451
10.1007/s11214-013-9988-3
10.1088/0004-637X/697/1/535
10.1088/0034-4885/64/4/201
10.1086/158868
10.1038/nature06210
10.1111/j.1365-2966.2006.10739.x
10.1017/S0022377800000933
10.1093/mnras/stw551
10.1146/annurev.aa.15.090177.001135
10.1088/0004-637X/744/1/39
10.1086/174600
10.1086/345832
10.1086/324186
10.1103/PhysRev.46.76.2
10.1086/307452
10.1103/PhysRev.78.616
10.1086/115837
10.1007/978-94-009-8475-2_57
10.1086/304442
10.3847/1538-4357/ab1b1e
10.1111/j.1365-2966.2008.13059.x
10.1086/431902
10.1088/0004-637X/789/2/137
10.1086/177464
10.1086/304997
10.1086/588190
10.1038/257463a0
10.1007/s00159-015-0083-5
10.1088/0004-637X/799/2/238
10.1007/BF01206003
10.1016/B978-0-08-013526-7.50011-6
10.1103/PhysRevE.95.033207
10.3847/1538-4357/ab6a1a
10.1051/0004-6361:20064985
10.1088/2041-8205/728/2/L28
10.1142/S0218271814300134
10.1117/12.2235240
10.1007/s11214-012-9871-7
10.3847/1538-4357/aa6f60
10.3847/1538-4357/836/1/23
10.1086/309103
10.1016/j.astropartphys.2010.10.011
10.1111/j.1365-2966.2009.15348.x
ContentType Journal Article
Copyright 2020. The American Astronomical Society. All rights reserved.
Copyright IOP Publishing Aug 01, 2020
Copyright_xml – notice: 2020. The American Astronomical Society. All rights reserved.
– notice: Copyright IOP Publishing Aug 01, 2020
DBID AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
DOI 10.3847/1538-4357/aba960
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
DocumentTitleAlternate Uncovering Magnetic Turbulence in Young Supernova Remnants with Polarized X-Ray Imaging
EISSN 1538-4357
ExternalDocumentID 10_3847_1538_4357_aba960
apjaba960
GrantInformation_xml – fundername: NASA
  grantid: NAS8-03060
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
2WC
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
WH7
XSW
AAYXX
CITATION
7TG
8FD
AEINN
H8D
KL.
L7M
ID FETCH-LOGICAL-c380t-7996d0aa43645cbd36bc704fe5d46c27b9bebc07744b8da78f8f7c6099bf611b3
IEDL.DBID IOP
ISSN 0004-637X
IngestDate Wed Aug 13 09:45:22 EDT 2025
Tue Jul 01 03:24:26 EDT 2025
Thu Apr 24 23:09:04 EDT 2025
Thu Jan 07 14:56:39 EST 2021
Wed Aug 21 03:33:35 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c380t-7996d0aa43645cbd36bc704fe5d46c27b9bebc07744b8da78f8f7c6099bf611b3
Notes AAS24974
High-Energy Phenomena and Fundamental Physics
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-0037-2288
0000-0002-6986-6756
OpenAccessLink https://iopscience.iop.org/article/10.3847/1538-4357/aba960/pdf
PQID 2436903882
PQPubID 4562441
PageCount 10
ParticipantIDs proquest_journals_2436903882
crossref_primary_10_3847_1538_4357_aba960
iop_journals_10_3847_1538_4357_aba960
crossref_citationtrail_10_3847_1538_4357_aba960
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2020
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Sridhar (apjaba960bib56) 1994; 432
Slane (apjaba960bib55) 2015; 799
Parizot (apjaba960bib42) 2006; 453
Reville (apjaba960bib47) 2008; 386
Bykov (apjaba960bib18) 2008; 689
Jun (apjaba960bib35) 1996; 465
Ginzburg (apjaba960bib30) 1964
Shebalin (apjaba960bib54) 1983; 29
Bandiera (apjaba960bib8) 2016; 459
Lee (apjaba960bib37) 2019; 877
Strohmayer (apjaba960bib57) 2013; 773
Strom (apjaba960bib58) 1973; 25
Giacalone (apjaba960bib29) 1999; 520
Jones (apjaba960bib34) 1991; 58
Lithwick (apjaba960bib38) 2003; 582
Axford (apjaba960bib5) 1981
Uchiyama (apjaba960bib60) 2007; 449
Bell (apjaba960bib9) 2004; 353
Bykov (apjaba960bib14) 2000; 538
Zirakashvili (apjaba960bib67) 2014; 785
Bamba (apjaba960bib7) 2005; 621
Archambault (apjaba960bib4) 2017; 836
Bigot (apjaba960bib11) 2008; 78
Ellison (apjaba960bib25) 2012; 744
Amato (apjaba960bib2) 2014; 23
Marcowith (apjaba960bib40) 2016; 79
Alfvén (apjaba960bib1) 1950; 78
Duin (apjaba960bib24) 1975; 39
Petruk (apjaba960bib44) 2017; 470
Fabiani (apjaba960bib27) 2014; 212
Bykov (apjaba960bib13) 2013; 178
Weisskopf (apjaba960bib64) 2010; 7732
Weisskopf (apjaba960bib65) 2016; 9905
Baade (apjaba960bib6) 1934; 46
Pohl (apjaba960bib45) 2005; 626
Chevalier (apjaba960bib20) 1977; 15
Fürst (apjaba960bib28) 2004
Raymond (apjaba960bib46) 1984; 22
Dubner (apjaba960bib23) 2015; 23
Vink (apjaba960bib61) 2012; 20
Caprioli (apjaba960bib19) 2011; 34
Reynolds (apjaba960bib50) 2012; 166
Vink (apjaba960bib62) 2003; 584
Reynolds (apjaba960bib49) 1981; 245
Dickel (apjaba960bib22) 1991; 101
Eriksen (apjaba960bib26) 2011; 728
Patnaude (apjaba960bib43) 2009; 697
Reynoso (apjaba960bib51) 1997; 491
Sato (apjaba960bib52) 2017; 840
Helder (apjaba960bib33) 2012; 173
Okuno (apjaba960bib41) 2020; 894
Uchiyama (apjaba960bib59) 2008; 677
Goldreich (apjaba960bib32) 1997; 485
Reynolds (apjaba960bib48) 2008; 46
Schure (apjaba960bib53) 2012; 173
West (apjaba960bib66) 2017; 849
Lazendic (apjaba960bib36) 2004; 602
Bell (apjaba960bib10) 1975; 257
Bykov (apjaba960bib16) 2014; 789
Wang (apjaba960bib63) 2020; 890
Bykov (apjaba960bib15) 2017; 95
Bykov (apjaba960bib17) 2009; 399
Ginzburg (apjaba960bib31) 1965; 3
Amato (apjaba960bib3) 2006; 371
Blandford (apjaba960bib12) 1987; 154
Cho (apjaba960bib21) 2002; 564
Malkov (apjaba960bib39) 2001; 64
References_xml – volume: 212
  start-page: 25
  year: 2014
  ident: apjaba960bib27
  publication-title: ApJS
  doi: 10.1088/0067-0049/212/2/25
– volume: 7732
  start-page: 77320E
  year: 2010
  ident: apjaba960bib64
  publication-title: Proc. SPIE
  doi: 10.1117/12.857357
– volume: 173
  start-page: 369
  year: 2012
  ident: apjaba960bib33
  publication-title: SSRv
  doi: 10.1007/s11214-012-9919-8
– volume: 3
  start-page: 297
  year: 1965
  ident: apjaba960bib31
  publication-title: ARA&A
  doi: 10.1146/annurev.aa.03.090165.001501
– volume: 353
  start-page: 550
  year: 2004
  ident: apjaba960bib9
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2004.08097.x
– volume: 849
  start-page: L22
  year: 2017
  ident: apjaba960bib66
  publication-title: ApJL
  doi: 10.3847/2041-8213/aa94c4
– volume: 46
  start-page: 89
  year: 2008
  ident: apjaba960bib48
  publication-title: ARA&A
  doi: 10.1146/annurev.astro.46.060407.145237
– volume: 785
  start-page: 130
  year: 2014
  ident: apjaba960bib67
  publication-title: ApJ
  doi: 10.1088/0004-637X/785/2/130
– volume: 582
  start-page: 1220
  year: 2003
  ident: apjaba960bib38
  publication-title: ApJ
  doi: 10.1086/344676
– volume: 154
  start-page: 1
  year: 1987
  ident: apjaba960bib12
  publication-title: PhR
  doi: 10.1016/0370-1573(87)90134-7
– start-page: 141
  year: 2004
  ident: apjaba960bib28
– volume: 78
  start-page: 066301
  year: 2008
  ident: apjaba960bib11
  publication-title: PhRvE
  doi: 10.1103/PhysRevE.78.066301
– volume: 166
  start-page: 231
  year: 2012
  ident: apjaba960bib50
  publication-title: SSRv
  doi: 10.1007/s11214-011-9775-y
– volume: 689
  start-page: L133
  year: 2008
  ident: apjaba960bib18
  publication-title: ApJL
  doi: 10.1086/595868
– volume: 470
  start-page: 1156
  year: 2017
  ident: apjaba960bib44
  publication-title: MNRAS
  doi: 10.1093/mnras/stx1222
– volume: 773
  start-page: 103
  year: 2013
  ident: apjaba960bib57
  publication-title: ApJ
  doi: 10.1088/0004-637X/773/2/103
– volume: 20
  start-page: 49
  year: 2012
  ident: apjaba960bib61
  publication-title: A&ARv
  doi: 10.1007/s00159-011-0049-1
– volume: 79
  start-page: 046901
  year: 2016
  ident: apjaba960bib40
  publication-title: RPPh
  doi: 10.1088/0034-4885/79/4/046901
– volume: 894
  start-page: 50
  year: 2020
  ident: apjaba960bib41
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab837e
– volume: 602
  start-page: 271
  year: 2004
  ident: apjaba960bib36
  publication-title: ApJ
  doi: 10.1086/380956
– volume: 621
  start-page: 793
  year: 2005
  ident: apjaba960bib7
  publication-title: ApJ
  doi: 10.1086/427620
– volume: 22
  start-page: 75
  year: 1984
  ident: apjaba960bib46
  publication-title: ARA&A
  doi: 10.1146/annurev.aa.22.090184.000451
– volume: 178
  start-page: 201
  year: 2013
  ident: apjaba960bib13
  publication-title: SSRv
  doi: 10.1007/s11214-013-9988-3
– volume: 697
  start-page: 535
  year: 2009
  ident: apjaba960bib43
  publication-title: ApJ
  doi: 10.1088/0004-637X/697/1/535
– volume: 64
  start-page: 429
  year: 2001
  ident: apjaba960bib39
  publication-title: RPPh
  doi: 10.1088/0034-4885/64/4/201
– volume: 245
  start-page: 912
  year: 1981
  ident: apjaba960bib49
  publication-title: ApJ
  doi: 10.1086/158868
– volume: 449
  start-page: 576
  year: 2007
  ident: apjaba960bib60
  publication-title: Natur
  doi: 10.1038/nature06210
– volume: 371
  start-page: 1251
  year: 2006
  ident: apjaba960bib3
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2006.10739.x
– volume: 29
  start-page: 525
  year: 1983
  ident: apjaba960bib54
  publication-title: JPlPh
  doi: 10.1017/S0022377800000933
– volume: 459
  start-page: 178
  year: 2016
  ident: apjaba960bib8
  publication-title: MNRAS
  doi: 10.1093/mnras/stw551
– volume: 15
  start-page: 175
  year: 1977
  ident: apjaba960bib20
  publication-title: ARA&A
  doi: 10.1146/annurev.aa.15.090177.001135
– volume: 744
  start-page: 39
  year: 2012
  ident: apjaba960bib25
  publication-title: ApJ
  doi: 10.1088/0004-637X/744/1/39
– volume: 432
  start-page: 612
  year: 1994
  ident: apjaba960bib56
  publication-title: ApJ
  doi: 10.1086/174600
– volume: 584
  start-page: 758
  year: 2003
  ident: apjaba960bib62
  publication-title: ApJ
  doi: 10.1086/345832
– volume: 564
  start-page: 291
  year: 2002
  ident: apjaba960bib21
  publication-title: ApJ
  doi: 10.1086/324186
– volume: 46
  start-page: 76
  year: 1934
  ident: apjaba960bib6
  publication-title: PhRv
  doi: 10.1103/PhysRev.46.76.2
– volume: 520
  start-page: 204
  year: 1999
  ident: apjaba960bib29
  publication-title: ApJ
  doi: 10.1086/307452
– volume: 39
  start-page: 33
  year: 1975
  ident: apjaba960bib24
  publication-title: A&A
– volume: 78
  start-page: 616
  year: 1950
  ident: apjaba960bib1
  publication-title: PhRv
  doi: 10.1103/PhysRev.78.616
– volume: 101
  start-page: 2151
  year: 1991
  ident: apjaba960bib22
  publication-title: AJ
  doi: 10.1086/115837
– start-page: 339
  year: 1981
  ident: apjaba960bib5
  doi: 10.1007/978-94-009-8475-2_57
– volume: 485
  start-page: 680
  year: 1997
  ident: apjaba960bib32
  publication-title: ApJ
  doi: 10.1086/304442
– volume: 877
  start-page: 108
  year: 2019
  ident: apjaba960bib37
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab1b1e
– volume: 386
  start-page: 509
  year: 2008
  ident: apjaba960bib47
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2008.13059.x
– volume: 626
  start-page: L101
  year: 2005
  ident: apjaba960bib45
  publication-title: ApJL
  doi: 10.1086/431902
– volume: 789
  start-page: 137
  year: 2014
  ident: apjaba960bib16
  publication-title: ApJ
  doi: 10.1088/0004-637X/789/2/137
– volume: 465
  start-page: 800
  year: 1996
  ident: apjaba960bib35
  publication-title: ApJ
  doi: 10.1086/177464
– volume: 491
  start-page: 816
  year: 1997
  ident: apjaba960bib51
  publication-title: ApJ
  doi: 10.1086/304997
– volume: 677
  start-page: L105
  year: 2008
  ident: apjaba960bib59
  publication-title: ApJL
  doi: 10.1086/588190
– volume: 257
  start-page: 463
  year: 1975
  ident: apjaba960bib10
  publication-title: Natur
  doi: 10.1038/257463a0
– volume: 23
  start-page: 3
  year: 2015
  ident: apjaba960bib23
  publication-title: A&ARv
  doi: 10.1007/s00159-015-0083-5
– volume: 799
  start-page: 238
  year: 2015
  ident: apjaba960bib55
  publication-title: ApJ
  doi: 10.1088/0004-637X/799/2/238
– volume: 58
  start-page: 259
  year: 1991
  ident: apjaba960bib34
  publication-title: SSRv
  doi: 10.1007/BF01206003
– year: 1964
  ident: apjaba960bib30
  doi: 10.1016/B978-0-08-013526-7.50011-6
– volume: 95
  start-page: 033207
  year: 2017
  ident: apjaba960bib15
  publication-title: PhRvE
  doi: 10.1103/PhysRevE.95.033207
– volume: 890
  start-page: 70
  year: 2020
  ident: apjaba960bib63
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab6a1a
– volume: 453
  start-page: 387
  year: 2006
  ident: apjaba960bib42
  publication-title: A&A
  doi: 10.1051/0004-6361:20064985
– volume: 728
  start-page: L28
  year: 2011
  ident: apjaba960bib26
  publication-title: ApJL
  doi: 10.1088/2041-8205/728/2/L28
– volume: 23
  start-page: 1430013
  year: 2014
  ident: apjaba960bib2
  publication-title: IJMPD
  doi: 10.1142/S0218271814300134
– volume: 9905
  year: 2016
  ident: apjaba960bib65
  publication-title: Proc. SPIE
  doi: 10.1117/12.2235240
– volume: 173
  start-page: 491
  year: 2012
  ident: apjaba960bib53
  publication-title: SSRv
  doi: 10.1007/s11214-012-9871-7
– volume: 840
  start-page: 112
  year: 2017
  ident: apjaba960bib52
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa6f60
– volume: 836
  start-page: 23
  year: 2017
  ident: apjaba960bib4
  publication-title: ApJ
  doi: 10.3847/1538-4357/836/1/23
– volume: 25
  start-page: 351
  year: 1973
  ident: apjaba960bib58
  publication-title: A&A
– volume: 538
  start-page: 203
  year: 2000
  ident: apjaba960bib14
  publication-title: ApJ
  doi: 10.1086/309103
– volume: 34
  start-page: 447
  year: 2011
  ident: apjaba960bib19
  publication-title: APh
  doi: 10.1016/j.astropartphys.2010.10.011
– volume: 399
  start-page: 1119
  year: 2009
  ident: apjaba960bib17
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2009.15348.x
SSID ssj0004299
Score 2.4460022
Snippet Observations of young supernova remnants (SNRs) in X-rays and γ-rays have provided conclusive evidence for particle acceleration to at least TeV energies....
Observations of young supernova remnants (SNRs) in X-rays and γ -rays have provided conclusive evidence for particle acceleration to at least TeV energies....
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 142
SubjectTerms Amplification
Anisotropic turbulence
Astrophysics
Cascades
Collisionless plasmas
Cosmic rays
Depolarization
High energy astrophysics
Interstellar synchrotron emission
Magnetic fields
Magnetic properties
Particle acceleration
Particle astrophysics
Plasma astrophysics
Polarimeters
Polarimetry
Radiation
Ram pressure
Shocks
Space plasmas
Spatial analysis
Starlight polarization
Supernova
Supernova remnants
Synchrotron radiation
Turbulence
X ray imagery
X-rays
Title Uncovering Magnetic Turbulence in Young Supernova Remnants with Polarized X-Ray Imaging
URI https://iopscience.iop.org/article/10.3847/1538-4357/aba960
https://www.proquest.com/docview/2436903882
Volume 899
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xUKVe2kJbsUCRD7QSh-xmHSdO1BOqiigSZQWs2EMly3YcBHSzEbt7gF_fGTsLoq1Q1Uvkw-Q19sx8Y88DYJdqihW6qFDEKxkJ3reRKV0a5RrhnMi40CVlIx9_zw6H4miUjpbg80MuzKRpVX8Xh6FQcGAhyXeCurTnZRStvOxpoxGAL8NqQp2UKHvvZPCYFMmLFvuKKEvkKJxR_vUJT2zSMr73D8Xsrc3Ba_ix-M4QZHLTnc9M197_VsLxP3_kDbxqUSjbD6RrsOTqddjYn9K--GR8xz4xPw7bHtN1eDEIo7dwMawtRX2ixWPH-rKmHEh2Pse58dlL7KpmXoGws3njbqnjKjt1Yx9tw2jPlw3Il766dyUbRaf6jn0b-z5J72B48PX8y2HUNmeIbJLHs0iio1TGWgs6x7SmTDJjZSwql5Yis1yawjhjY0SXwuSllnmVV9JmCEhNlfX7JnkPK_WkdhvAYmkM1SlErGmFzLWp6DQzdXkqhDQ660BvMT3KtpXLqYHGT4UeDHFSEScVcVIFTnZg7-GOJlTteIb2I06QakV3-gzdzhM63VwrdFYVR--Jq6asOrC9WDSPVBz5U1DFHb75j-_ZgpecfHofZLgNK7PbufuAwGdmdvwCx-tJcvELEgL7IA
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xIRAvfAymFbbhB0DiIW3qOHHyODGqFdioxir65tmOMw1oGq3tw_bXc2enTAM0IfFmRZevO9_5d_Z9ALyimmKFLipU8UpGgvdtZEqXRrlGOCcyLnRJ2ciHR9nBWHyYpJO2z6nPhZk1renv4jAUCg4sJP1O0Jb2vI7iKi972mgE4L2mrNbgbopXSDOHn0fXiZG8aPGviLJETsI55V-fcmNdWsN3_2Gc_YozeASnq28NgSbfu8uF6dqr38o4_sfPPIaHLRple4H8Cdxx9QZs7c1pf3w2vWRvmB-H7Y_5BtwbhdFT-DquLUV_4srHDvVZTbmQ7GSJMvJZTOy8Zt6QsC_Lxl1Q51V27KY-6obR3i8bkU99fuVKNomO9SUbTn2_pGcwHrw_eXcQtU0aIpvk8SKS6DCVsdaCzjOtKZPMWBmLyqWlyCyXpjDO2BhRpjB5qWVe5ZW0GQJTU2X9vkk2Yb2e1W4LWCyNoXqFiDmtkLk2FZ1qpi5PhZBGZx3orUSkbFvBnBpp_FDoyRA3FXFTETdV4GYH3v66ownVO26hfY1CUq0Kz2-h271Bp5tvCp1WxdGL4grF14Ht1cS5puLIn4Iq7_Dn__iel3B_tD9Qn4ZHH1_AA05uvo873Ib1xcXS7SAWWphdP99_AkfZ_5A
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncovering+Magnetic+Turbulence+in+Young+Supernova+Remnants+with+Polarized+X-Ray+Imaging&rft.jtitle=The+Astrophysical+journal&rft.au=Bykov%2C+Andrei+M.&rft.au=Uvarov%2C+Yury+A.&rft.au=Slane%2C+Patrick&rft.au=Ellison%2C+Donald+C.&rft.date=2020-08-01&rft.pub=The+American+Astronomical+Society&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=899&rft.issue=2&rft_id=info:doi/10.3847%2F1538-4357%2Faba960&rft.externalDocID=apjaba960
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon