Uncovering Magnetic Turbulence in Young Supernova Remnants with Polarized X-Ray Imaging
Observations of young supernova remnants (SNRs) in X-rays and γ-rays have provided conclusive evidence for particle acceleration to at least TeV energies. Analysis of high-spatial-resolution X-ray maps of young SNRs has indicated that the particle acceleration process is accompanied by strong nonadi...
Saved in:
Published in | The Astrophysical journal Vol. 899; no. 2; pp. 142 - 151 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
The American Astronomical Society
01.08.2020
IOP Publishing |
Subjects | |
Online Access | Get full text |
ISSN | 0004-637X 1538-4357 |
DOI | 10.3847/1538-4357/aba960 |
Cover
Abstract | Observations of young supernova remnants (SNRs) in X-rays and γ-rays have provided conclusive evidence for particle acceleration to at least TeV energies. Analysis of high-spatial-resolution X-ray maps of young SNRs has indicated that the particle acceleration process is accompanied by strong nonadiabatic amplification of magnetic fields. If Fermi acceleration is the mechanism producing the energetic cosmic rays (CRs), the amplified magnetic field must be turbulent, and CR-driven instabilities are among the most probable mechanisms for converting the shock ram pressure into magnetic turbulence. The development and evolution of strong magnetic turbulence in collisionless plasmas forming SNR shells are complicated phenomena which include the amplification of magnetic modes, anisotropic mode transformations at shocks, as well as the nonlinear physics of turbulent cascades. Polarized X-ray synchrotron radiation from ultrarelativistic electrons accelerated in the SNR shock is produced in a thin layer immediately behind the shock and is not subject to the Faraday depolarization effect. These factors open up possibilities to study some properties of magnetic turbulence, and here we present polarized X-ray synchrotron maps of SNR shells assuming different models of magnetic turbulence cascades. It is shown that different models of anisotropic turbulence can be distinguished by measuring the predominant polarization angle direction. We discuss the detection of these features in Tycho's SNR with the coming generation of X-ray polarimeters such as the Imaging X-ray Polarimetry Explorer. |
---|---|
AbstractList | Observations of young supernova remnants (SNRs) in X-rays and γ-rays have provided conclusive evidence for particle acceleration to at least TeV energies. Analysis of high-spatial-resolution X-ray maps of young SNRs has indicated that the particle acceleration process is accompanied by strong nonadiabatic amplification of magnetic fields. If Fermi acceleration is the mechanism producing the energetic cosmic rays (CRs), the amplified magnetic field must be turbulent, and CR-driven instabilities are among the most probable mechanisms for converting the shock ram pressure into magnetic turbulence. The development and evolution of strong magnetic turbulence in collisionless plasmas forming SNR shells are complicated phenomena which include the amplification of magnetic modes, anisotropic mode transformations at shocks, as well as the nonlinear physics of turbulent cascades. Polarized X-ray synchrotron radiation from ultrarelativistic electrons accelerated in the SNR shock is produced in a thin layer immediately behind the shock and is not subject to the Faraday depolarization effect. These factors open up possibilities to study some properties of magnetic turbulence, and here we present polarized X-ray synchrotron maps of SNR shells assuming different models of magnetic turbulence cascades. It is shown that different models of anisotropic turbulence can be distinguished by measuring the predominant polarization angle direction. We discuss the detection of these features in Tycho’s SNR with the coming generation of X-ray polarimeters such as the Imaging X-ray Polarimetry Explorer. Observations of young supernova remnants (SNRs) in X-rays and γ -rays have provided conclusive evidence for particle acceleration to at least TeV energies. Analysis of high-spatial-resolution X-ray maps of young SNRs has indicated that the particle acceleration process is accompanied by strong nonadiabatic amplification of magnetic fields. If Fermi acceleration is the mechanism producing the energetic cosmic rays (CRs), the amplified magnetic field must be turbulent, and CR-driven instabilities are among the most probable mechanisms for converting the shock ram pressure into magnetic turbulence. The development and evolution of strong magnetic turbulence in collisionless plasmas forming SNR shells are complicated phenomena which include the amplification of magnetic modes, anisotropic mode transformations at shocks, as well as the nonlinear physics of turbulent cascades. Polarized X-ray synchrotron radiation from ultrarelativistic electrons accelerated in the SNR shock is produced in a thin layer immediately behind the shock and is not subject to the Faraday depolarization effect. These factors open up possibilities to study some properties of magnetic turbulence, and here we present polarized X-ray synchrotron maps of SNR shells assuming different models of magnetic turbulence cascades. It is shown that different models of anisotropic turbulence can be distinguished by measuring the predominant polarization angle direction. We discuss the detection of these features in Tycho’s SNR with the coming generation of X-ray polarimeters such as the Imaging X-ray Polarimetry Explorer. |
Author | Bykov, Andrei M. Slane, Patrick Ellison, Donald C. Uvarov, Yury A. |
Author_xml | – sequence: 1 givenname: Andrei M. orcidid: 0000-0003-0037-2288 surname: Bykov fullname: Bykov, Andrei M. email: byk@astro.ioffe.ru organization: Ioffe Institute , 194021 St. Petersburg, Russia – sequence: 2 givenname: Yury A. surname: Uvarov fullname: Uvarov, Yury A. organization: Ioffe Institute , 194021 St. Petersburg, Russia – sequence: 3 givenname: Patrick orcidid: 0000-0002-6986-6756 surname: Slane fullname: Slane, Patrick email: slane@cfa.harvard.edu organization: Harvard-Smithsonian Center for Astrophysics , Cambridge MA 02138, USA – sequence: 4 givenname: Donald C. surname: Ellison fullname: Ellison, Donald C. email: ellison@ncsu.edu organization: North Carolina State University Physics Department, Box 8202, Raleigh, NC 27695, USA |
BookMark | eNp9kMtLxDAQxoOs4K569xgQb1bTJs3jKOJjYUXxgXoKSZquWXaTmraK_vW2VBREPQ0z832_Gb4JGPngLQA7KTrAnLDDNMc8IThnh0orQdEaGH-NRmCMECIJxexhA0zqetG3mRBjcH_nTXix0fk5vFBzbxtn4G0bdbu03ljoPHwMbbe8aSsbfXhR8NquvPJNDV9d8wSvwlJF924L-JBcqzc4Xal5B9sC66Va1nb7s26Cu9OT2-PzZHZ5Nj0-miUGc9QkTAhaIKUIpiQ3usBUG4ZIafOCUJMxLbTVBjFGiOaFYrzkJTMUCaFLmqYab4LdgVvF8NzaupGL0EbfnZRZBxUIc551KjSoTAx1HW0pq-hWKr7JFMk-PtlnJfus5BBfZ6E_LMY1qnHBN1G55X_GvcHoQvX9jKoWkgshM5mSTFZF2en2f9H9if0A2EyR1A |
CitedBy_id | crossref_primary_10_3847_1538_4357_acac88 crossref_primary_10_1103_PhysRevD_110_023041 crossref_primary_10_1038_d41586_022_04445_2 crossref_primary_10_3847_1538_4357_ac8b7b crossref_primary_10_3847_1538_4357_acf3e6 crossref_primary_10_3847_1538_4357_acfe11 crossref_primary_10_3847_1538_4357_ac96f0 crossref_primary_10_3847_2041_8213_ad8eb8 crossref_primary_10_1088_1742_6596_2103_1_012016 crossref_primary_10_1016_j_astropartphys_2021_102566 crossref_primary_10_3847_1538_4357_acb496 crossref_primary_10_3847_2041_8213_ad4a68 crossref_primary_10_3847_1538_4357_ac590f crossref_primary_10_3390_galaxies12050059 crossref_primary_10_1093_mnras_stad290 |
Cites_doi | 10.1088/0067-0049/212/2/25 10.1117/12.857357 10.1007/s11214-012-9919-8 10.1146/annurev.aa.03.090165.001501 10.1111/j.1365-2966.2004.08097.x 10.3847/2041-8213/aa94c4 10.1146/annurev.astro.46.060407.145237 10.1088/0004-637X/785/2/130 10.1086/344676 10.1016/0370-1573(87)90134-7 10.1103/PhysRevE.78.066301 10.1007/s11214-011-9775-y 10.1086/595868 10.1093/mnras/stx1222 10.1088/0004-637X/773/2/103 10.1007/s00159-011-0049-1 10.1088/0034-4885/79/4/046901 10.3847/1538-4357/ab837e 10.1086/380956 10.1086/427620 10.1146/annurev.aa.22.090184.000451 10.1007/s11214-013-9988-3 10.1088/0004-637X/697/1/535 10.1088/0034-4885/64/4/201 10.1086/158868 10.1038/nature06210 10.1111/j.1365-2966.2006.10739.x 10.1017/S0022377800000933 10.1093/mnras/stw551 10.1146/annurev.aa.15.090177.001135 10.1088/0004-637X/744/1/39 10.1086/174600 10.1086/345832 10.1086/324186 10.1103/PhysRev.46.76.2 10.1086/307452 10.1103/PhysRev.78.616 10.1086/115837 10.1007/978-94-009-8475-2_57 10.1086/304442 10.3847/1538-4357/ab1b1e 10.1111/j.1365-2966.2008.13059.x 10.1086/431902 10.1088/0004-637X/789/2/137 10.1086/177464 10.1086/304997 10.1086/588190 10.1038/257463a0 10.1007/s00159-015-0083-5 10.1088/0004-637X/799/2/238 10.1007/BF01206003 10.1016/B978-0-08-013526-7.50011-6 10.1103/PhysRevE.95.033207 10.3847/1538-4357/ab6a1a 10.1051/0004-6361:20064985 10.1088/2041-8205/728/2/L28 10.1142/S0218271814300134 10.1117/12.2235240 10.1007/s11214-012-9871-7 10.3847/1538-4357/aa6f60 10.3847/1538-4357/836/1/23 10.1086/309103 10.1016/j.astropartphys.2010.10.011 10.1111/j.1365-2966.2009.15348.x |
ContentType | Journal Article |
Copyright | 2020. The American Astronomical Society. All rights reserved. Copyright IOP Publishing Aug 01, 2020 |
Copyright_xml | – notice: 2020. The American Astronomical Society. All rights reserved. – notice: Copyright IOP Publishing Aug 01, 2020 |
DBID | AAYXX CITATION 7TG 8FD H8D KL. L7M |
DOI | 10.3847/1538-4357/aba960 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
DocumentTitleAlternate | Uncovering Magnetic Turbulence in Young Supernova Remnants with Polarized X-Ray Imaging |
EISSN | 1538-4357 |
ExternalDocumentID | 10_3847_1538_4357_aba960 apjaba960 |
GrantInformation_xml | – fundername: NASA grantid: NAS8-03060 |
GroupedDBID | -DZ -~X 123 1JI 23N 2FS 2WC 4.4 6J9 85S AAFWJ AAGCD AAJIO ABHWH ACBEA ACGFS ACHIP ACNCT ADACN AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 WH7 XSW AAYXX CITATION 7TG 8FD AEINN H8D KL. L7M |
ID | FETCH-LOGICAL-c380t-7996d0aa43645cbd36bc704fe5d46c27b9bebc07744b8da78f8f7c6099bf611b3 |
IEDL.DBID | IOP |
ISSN | 0004-637X |
IngestDate | Wed Aug 13 09:45:22 EDT 2025 Tue Jul 01 03:24:26 EDT 2025 Thu Apr 24 23:09:04 EDT 2025 Thu Jan 07 14:56:39 EST 2021 Wed Aug 21 03:33:35 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c380t-7996d0aa43645cbd36bc704fe5d46c27b9bebc07744b8da78f8f7c6099bf611b3 |
Notes | AAS24974 High-Energy Phenomena and Fundamental Physics ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-0037-2288 0000-0002-6986-6756 |
OpenAccessLink | https://iopscience.iop.org/article/10.3847/1538-4357/aba960/pdf |
PQID | 2436903882 |
PQPubID | 4562441 |
PageCount | 10 |
ParticipantIDs | proquest_journals_2436903882 crossref_primary_10_3847_1538_4357_aba960 iop_journals_10_3847_1538_4357_aba960 crossref_citationtrail_10_3847_1538_4357_aba960 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-08-01 |
PublicationDateYYYYMMDD | 2020-08-01 |
PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | The Astrophysical journal |
PublicationTitleAbbrev | APJ |
PublicationTitleAlternate | Astrophys. J |
PublicationYear | 2020 |
Publisher | The American Astronomical Society IOP Publishing |
Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
References | Sridhar (apjaba960bib56) 1994; 432 Slane (apjaba960bib55) 2015; 799 Parizot (apjaba960bib42) 2006; 453 Reville (apjaba960bib47) 2008; 386 Bykov (apjaba960bib18) 2008; 689 Jun (apjaba960bib35) 1996; 465 Ginzburg (apjaba960bib30) 1964 Shebalin (apjaba960bib54) 1983; 29 Bandiera (apjaba960bib8) 2016; 459 Lee (apjaba960bib37) 2019; 877 Strohmayer (apjaba960bib57) 2013; 773 Strom (apjaba960bib58) 1973; 25 Giacalone (apjaba960bib29) 1999; 520 Jones (apjaba960bib34) 1991; 58 Lithwick (apjaba960bib38) 2003; 582 Axford (apjaba960bib5) 1981 Uchiyama (apjaba960bib60) 2007; 449 Bell (apjaba960bib9) 2004; 353 Bykov (apjaba960bib14) 2000; 538 Zirakashvili (apjaba960bib67) 2014; 785 Bamba (apjaba960bib7) 2005; 621 Archambault (apjaba960bib4) 2017; 836 Bigot (apjaba960bib11) 2008; 78 Ellison (apjaba960bib25) 2012; 744 Amato (apjaba960bib2) 2014; 23 Marcowith (apjaba960bib40) 2016; 79 Alfvén (apjaba960bib1) 1950; 78 Duin (apjaba960bib24) 1975; 39 Petruk (apjaba960bib44) 2017; 470 Fabiani (apjaba960bib27) 2014; 212 Bykov (apjaba960bib13) 2013; 178 Weisskopf (apjaba960bib64) 2010; 7732 Weisskopf (apjaba960bib65) 2016; 9905 Baade (apjaba960bib6) 1934; 46 Pohl (apjaba960bib45) 2005; 626 Chevalier (apjaba960bib20) 1977; 15 Fürst (apjaba960bib28) 2004 Raymond (apjaba960bib46) 1984; 22 Dubner (apjaba960bib23) 2015; 23 Vink (apjaba960bib61) 2012; 20 Caprioli (apjaba960bib19) 2011; 34 Reynolds (apjaba960bib50) 2012; 166 Vink (apjaba960bib62) 2003; 584 Reynolds (apjaba960bib49) 1981; 245 Dickel (apjaba960bib22) 1991; 101 Eriksen (apjaba960bib26) 2011; 728 Patnaude (apjaba960bib43) 2009; 697 Reynoso (apjaba960bib51) 1997; 491 Sato (apjaba960bib52) 2017; 840 Helder (apjaba960bib33) 2012; 173 Okuno (apjaba960bib41) 2020; 894 Uchiyama (apjaba960bib59) 2008; 677 Goldreich (apjaba960bib32) 1997; 485 Reynolds (apjaba960bib48) 2008; 46 Schure (apjaba960bib53) 2012; 173 West (apjaba960bib66) 2017; 849 Lazendic (apjaba960bib36) 2004; 602 Bell (apjaba960bib10) 1975; 257 Bykov (apjaba960bib16) 2014; 789 Wang (apjaba960bib63) 2020; 890 Bykov (apjaba960bib15) 2017; 95 Bykov (apjaba960bib17) 2009; 399 Ginzburg (apjaba960bib31) 1965; 3 Amato (apjaba960bib3) 2006; 371 Blandford (apjaba960bib12) 1987; 154 Cho (apjaba960bib21) 2002; 564 Malkov (apjaba960bib39) 2001; 64 |
References_xml | – volume: 212 start-page: 25 year: 2014 ident: apjaba960bib27 publication-title: ApJS doi: 10.1088/0067-0049/212/2/25 – volume: 7732 start-page: 77320E year: 2010 ident: apjaba960bib64 publication-title: Proc. SPIE doi: 10.1117/12.857357 – volume: 173 start-page: 369 year: 2012 ident: apjaba960bib33 publication-title: SSRv doi: 10.1007/s11214-012-9919-8 – volume: 3 start-page: 297 year: 1965 ident: apjaba960bib31 publication-title: ARA&A doi: 10.1146/annurev.aa.03.090165.001501 – volume: 353 start-page: 550 year: 2004 ident: apjaba960bib9 publication-title: MNRAS doi: 10.1111/j.1365-2966.2004.08097.x – volume: 849 start-page: L22 year: 2017 ident: apjaba960bib66 publication-title: ApJL doi: 10.3847/2041-8213/aa94c4 – volume: 46 start-page: 89 year: 2008 ident: apjaba960bib48 publication-title: ARA&A doi: 10.1146/annurev.astro.46.060407.145237 – volume: 785 start-page: 130 year: 2014 ident: apjaba960bib67 publication-title: ApJ doi: 10.1088/0004-637X/785/2/130 – volume: 582 start-page: 1220 year: 2003 ident: apjaba960bib38 publication-title: ApJ doi: 10.1086/344676 – volume: 154 start-page: 1 year: 1987 ident: apjaba960bib12 publication-title: PhR doi: 10.1016/0370-1573(87)90134-7 – start-page: 141 year: 2004 ident: apjaba960bib28 – volume: 78 start-page: 066301 year: 2008 ident: apjaba960bib11 publication-title: PhRvE doi: 10.1103/PhysRevE.78.066301 – volume: 166 start-page: 231 year: 2012 ident: apjaba960bib50 publication-title: SSRv doi: 10.1007/s11214-011-9775-y – volume: 689 start-page: L133 year: 2008 ident: apjaba960bib18 publication-title: ApJL doi: 10.1086/595868 – volume: 470 start-page: 1156 year: 2017 ident: apjaba960bib44 publication-title: MNRAS doi: 10.1093/mnras/stx1222 – volume: 773 start-page: 103 year: 2013 ident: apjaba960bib57 publication-title: ApJ doi: 10.1088/0004-637X/773/2/103 – volume: 20 start-page: 49 year: 2012 ident: apjaba960bib61 publication-title: A&ARv doi: 10.1007/s00159-011-0049-1 – volume: 79 start-page: 046901 year: 2016 ident: apjaba960bib40 publication-title: RPPh doi: 10.1088/0034-4885/79/4/046901 – volume: 894 start-page: 50 year: 2020 ident: apjaba960bib41 publication-title: ApJ doi: 10.3847/1538-4357/ab837e – volume: 602 start-page: 271 year: 2004 ident: apjaba960bib36 publication-title: ApJ doi: 10.1086/380956 – volume: 621 start-page: 793 year: 2005 ident: apjaba960bib7 publication-title: ApJ doi: 10.1086/427620 – volume: 22 start-page: 75 year: 1984 ident: apjaba960bib46 publication-title: ARA&A doi: 10.1146/annurev.aa.22.090184.000451 – volume: 178 start-page: 201 year: 2013 ident: apjaba960bib13 publication-title: SSRv doi: 10.1007/s11214-013-9988-3 – volume: 697 start-page: 535 year: 2009 ident: apjaba960bib43 publication-title: ApJ doi: 10.1088/0004-637X/697/1/535 – volume: 64 start-page: 429 year: 2001 ident: apjaba960bib39 publication-title: RPPh doi: 10.1088/0034-4885/64/4/201 – volume: 245 start-page: 912 year: 1981 ident: apjaba960bib49 publication-title: ApJ doi: 10.1086/158868 – volume: 449 start-page: 576 year: 2007 ident: apjaba960bib60 publication-title: Natur doi: 10.1038/nature06210 – volume: 371 start-page: 1251 year: 2006 ident: apjaba960bib3 publication-title: MNRAS doi: 10.1111/j.1365-2966.2006.10739.x – volume: 29 start-page: 525 year: 1983 ident: apjaba960bib54 publication-title: JPlPh doi: 10.1017/S0022377800000933 – volume: 459 start-page: 178 year: 2016 ident: apjaba960bib8 publication-title: MNRAS doi: 10.1093/mnras/stw551 – volume: 15 start-page: 175 year: 1977 ident: apjaba960bib20 publication-title: ARA&A doi: 10.1146/annurev.aa.15.090177.001135 – volume: 744 start-page: 39 year: 2012 ident: apjaba960bib25 publication-title: ApJ doi: 10.1088/0004-637X/744/1/39 – volume: 432 start-page: 612 year: 1994 ident: apjaba960bib56 publication-title: ApJ doi: 10.1086/174600 – volume: 584 start-page: 758 year: 2003 ident: apjaba960bib62 publication-title: ApJ doi: 10.1086/345832 – volume: 564 start-page: 291 year: 2002 ident: apjaba960bib21 publication-title: ApJ doi: 10.1086/324186 – volume: 46 start-page: 76 year: 1934 ident: apjaba960bib6 publication-title: PhRv doi: 10.1103/PhysRev.46.76.2 – volume: 520 start-page: 204 year: 1999 ident: apjaba960bib29 publication-title: ApJ doi: 10.1086/307452 – volume: 39 start-page: 33 year: 1975 ident: apjaba960bib24 publication-title: A&A – volume: 78 start-page: 616 year: 1950 ident: apjaba960bib1 publication-title: PhRv doi: 10.1103/PhysRev.78.616 – volume: 101 start-page: 2151 year: 1991 ident: apjaba960bib22 publication-title: AJ doi: 10.1086/115837 – start-page: 339 year: 1981 ident: apjaba960bib5 doi: 10.1007/978-94-009-8475-2_57 – volume: 485 start-page: 680 year: 1997 ident: apjaba960bib32 publication-title: ApJ doi: 10.1086/304442 – volume: 877 start-page: 108 year: 2019 ident: apjaba960bib37 publication-title: ApJ doi: 10.3847/1538-4357/ab1b1e – volume: 386 start-page: 509 year: 2008 ident: apjaba960bib47 publication-title: MNRAS doi: 10.1111/j.1365-2966.2008.13059.x – volume: 626 start-page: L101 year: 2005 ident: apjaba960bib45 publication-title: ApJL doi: 10.1086/431902 – volume: 789 start-page: 137 year: 2014 ident: apjaba960bib16 publication-title: ApJ doi: 10.1088/0004-637X/789/2/137 – volume: 465 start-page: 800 year: 1996 ident: apjaba960bib35 publication-title: ApJ doi: 10.1086/177464 – volume: 491 start-page: 816 year: 1997 ident: apjaba960bib51 publication-title: ApJ doi: 10.1086/304997 – volume: 677 start-page: L105 year: 2008 ident: apjaba960bib59 publication-title: ApJL doi: 10.1086/588190 – volume: 257 start-page: 463 year: 1975 ident: apjaba960bib10 publication-title: Natur doi: 10.1038/257463a0 – volume: 23 start-page: 3 year: 2015 ident: apjaba960bib23 publication-title: A&ARv doi: 10.1007/s00159-015-0083-5 – volume: 799 start-page: 238 year: 2015 ident: apjaba960bib55 publication-title: ApJ doi: 10.1088/0004-637X/799/2/238 – volume: 58 start-page: 259 year: 1991 ident: apjaba960bib34 publication-title: SSRv doi: 10.1007/BF01206003 – year: 1964 ident: apjaba960bib30 doi: 10.1016/B978-0-08-013526-7.50011-6 – volume: 95 start-page: 033207 year: 2017 ident: apjaba960bib15 publication-title: PhRvE doi: 10.1103/PhysRevE.95.033207 – volume: 890 start-page: 70 year: 2020 ident: apjaba960bib63 publication-title: ApJ doi: 10.3847/1538-4357/ab6a1a – volume: 453 start-page: 387 year: 2006 ident: apjaba960bib42 publication-title: A&A doi: 10.1051/0004-6361:20064985 – volume: 728 start-page: L28 year: 2011 ident: apjaba960bib26 publication-title: ApJL doi: 10.1088/2041-8205/728/2/L28 – volume: 23 start-page: 1430013 year: 2014 ident: apjaba960bib2 publication-title: IJMPD doi: 10.1142/S0218271814300134 – volume: 9905 year: 2016 ident: apjaba960bib65 publication-title: Proc. SPIE doi: 10.1117/12.2235240 – volume: 173 start-page: 491 year: 2012 ident: apjaba960bib53 publication-title: SSRv doi: 10.1007/s11214-012-9871-7 – volume: 840 start-page: 112 year: 2017 ident: apjaba960bib52 publication-title: ApJ doi: 10.3847/1538-4357/aa6f60 – volume: 836 start-page: 23 year: 2017 ident: apjaba960bib4 publication-title: ApJ doi: 10.3847/1538-4357/836/1/23 – volume: 25 start-page: 351 year: 1973 ident: apjaba960bib58 publication-title: A&A – volume: 538 start-page: 203 year: 2000 ident: apjaba960bib14 publication-title: ApJ doi: 10.1086/309103 – volume: 34 start-page: 447 year: 2011 ident: apjaba960bib19 publication-title: APh doi: 10.1016/j.astropartphys.2010.10.011 – volume: 399 start-page: 1119 year: 2009 ident: apjaba960bib17 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.15348.x |
SSID | ssj0004299 |
Score | 2.4460022 |
Snippet | Observations of young supernova remnants (SNRs) in X-rays and γ-rays have provided conclusive evidence for particle acceleration to at least TeV energies.... Observations of young supernova remnants (SNRs) in X-rays and γ -rays have provided conclusive evidence for particle acceleration to at least TeV energies.... |
SourceID | proquest crossref iop |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 142 |
SubjectTerms | Amplification Anisotropic turbulence Astrophysics Cascades Collisionless plasmas Cosmic rays Depolarization High energy astrophysics Interstellar synchrotron emission Magnetic fields Magnetic properties Particle acceleration Particle astrophysics Plasma astrophysics Polarimeters Polarimetry Radiation Ram pressure Shocks Space plasmas Spatial analysis Starlight polarization Supernova Supernova remnants Synchrotron radiation Turbulence X ray imagery X-rays |
Title | Uncovering Magnetic Turbulence in Young Supernova Remnants with Polarized X-Ray Imaging |
URI | https://iopscience.iop.org/article/10.3847/1538-4357/aba960 https://www.proquest.com/docview/2436903882 |
Volume | 899 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7xUKVe2kJbsUCRD7QSh-xmHSdO1BOqiigSZQWs2EMly3YcBHSzEbt7gF_fGTsLoq1Q1Uvkw-Q19sx8Y88DYJdqihW6qFDEKxkJ3reRKV0a5RrhnMi40CVlIx9_zw6H4miUjpbg80MuzKRpVX8Xh6FQcGAhyXeCurTnZRStvOxpoxGAL8NqQp2UKHvvZPCYFMmLFvuKKEvkKJxR_vUJT2zSMr73D8Xsrc3Ba_ix-M4QZHLTnc9M197_VsLxP3_kDbxqUSjbD6RrsOTqddjYn9K--GR8xz4xPw7bHtN1eDEIo7dwMawtRX2ixWPH-rKmHEh2Pse58dlL7KpmXoGws3njbqnjKjt1Yx9tw2jPlw3Il766dyUbRaf6jn0b-z5J72B48PX8y2HUNmeIbJLHs0iio1TGWgs6x7SmTDJjZSwql5Yis1yawjhjY0SXwuSllnmVV9JmCEhNlfX7JnkPK_WkdhvAYmkM1SlErGmFzLWp6DQzdXkqhDQ660BvMT3KtpXLqYHGT4UeDHFSEScVcVIFTnZg7-GOJlTteIb2I06QakV3-gzdzhM63VwrdFYVR--Jq6asOrC9WDSPVBz5U1DFHb75j-_ZgpecfHofZLgNK7PbufuAwGdmdvwCx-tJcvELEgL7IA |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3db9MwED-xIRAvfAymFbbhB0DiIW3qOHHyODGqFdioxir65tmOMw1oGq3tw_bXc2enTAM0IfFmRZevO9_5d_Z9ALyimmKFLipU8UpGgvdtZEqXRrlGOCcyLnRJ2ciHR9nBWHyYpJO2z6nPhZk1renv4jAUCg4sJP1O0Jb2vI7iKi972mgE4L2mrNbgbopXSDOHn0fXiZG8aPGviLJETsI55V-fcmNdWsN3_2Gc_YozeASnq28NgSbfu8uF6dqr38o4_sfPPIaHLRple4H8Cdxx9QZs7c1pf3w2vWRvmB-H7Y_5BtwbhdFT-DquLUV_4srHDvVZTbmQ7GSJMvJZTOy8Zt6QsC_Lxl1Q51V27KY-6obR3i8bkU99fuVKNomO9SUbTn2_pGcwHrw_eXcQtU0aIpvk8SKS6DCVsdaCzjOtKZPMWBmLyqWlyCyXpjDO2BhRpjB5qWVe5ZW0GQJTU2X9vkk2Yb2e1W4LWCyNoXqFiDmtkLk2FZ1qpi5PhZBGZx3orUSkbFvBnBpp_FDoyRA3FXFTETdV4GYH3v66ownVO26hfY1CUq0Kz2-h271Bp5tvCp1WxdGL4grF14Ht1cS5puLIn4Iq7_Dn__iel3B_tD9Qn4ZHH1_AA05uvo873Ib1xcXS7SAWWphdP99_AkfZ_5A |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Uncovering+Magnetic+Turbulence+in+Young+Supernova+Remnants+with+Polarized+X-Ray+Imaging&rft.jtitle=The+Astrophysical+journal&rft.au=Bykov%2C+Andrei+M.&rft.au=Uvarov%2C+Yury+A.&rft.au=Slane%2C+Patrick&rft.au=Ellison%2C+Donald+C.&rft.date=2020-08-01&rft.pub=The+American+Astronomical+Society&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=899&rft.issue=2&rft_id=info:doi/10.3847%2F1538-4357%2Faba960&rft.externalDocID=apjaba960 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |