Numerical simulation of unsteady cavitating flows around a transient pitching hydrofoil

The objective of this paper is to improve the understanding of the influence of multiphase flow on the turbulent closure model, the interplay between vorticity fields and cavity dynamics around a pitching hydrofoil. The effects of pitching rate on the sub- cavitating and cavitating response of the p...

Full description

Saved in:
Bibliographic Details
Published inScience China. Technological sciences Vol. 57; no. 1; pp. 101 - 116
Main Authors Huang, Biao, Wu, Qin, Wang, GuoYu
Format Journal Article
LanguageEnglish
Published Berlin/Heidelberg Springer Berlin Heidelberg 2014
Subjects
Online AccessGet full text
ISSN1674-7321
1869-1900
DOI10.1007/s11431-013-5423-y

Cover

Abstract The objective of this paper is to improve the understanding of the influence of multiphase flow on the turbulent closure model, the interplay between vorticity fields and cavity dynamics around a pitching hydrofoil. The effects of pitching rate on the sub- cavitating and cavitating response of the pitching hydrofoil are also investigated. In particular, we focus on the interactions between cavity inception, growth, and shedding and the vortex flow structures, and their impacts on the hydrofoil performance. The calculations are 2-D and performed by solving the incompressible, multiphase Unsteady Reynolds Averaged Navier Stokes (URANS) equations via the commercial CFD code CFX. The k-co SST (Shear Stress Transport) turbulence model is used along with the transport equation-based cavitation models. The density correction function is considered to reduce the eddy viscosity according to the computed local fluid mixture density. The calculation results are validated with experiments conducted by Ducoin et al. (see Computational and experimental investigation of flow over a transient pitching hydrofoil, Eur J Mech/B Fluids, 2009, 28:728-743 and An experimental analysis of fluid structure interaction of a flexible hydrofoil in vari- ous flow regimes including cavitating flow, Eur J Mech B/fluids, 2012, 36: 63-74). Results are shown for a NACA66 hydro- foil subject to slow (quasi static, t2=6~/s, &* =0.18) and fast (dynamic, &=63~/s, dr" =1.89) pitching motions from a =0~ to a =15~. Both subcavitaing (or =8.0) and cavitating (cr=3.0) flows are considered. For subcavitating flow (or=8.0), low frequency fluctuations have been observed when the leading edge vortex shedding occurs during stall, and delay of stall is ob- served with increasing pitching velocity. For cavitating flow (tr=3.0), small leading edge cavities are observed with the slow pitching case, which significantly modified the vortex dynamics at high angles of attack, leading to high frequency fluctuations of the hydrodynamic coefficients and different stall behaviors compared to the subcavitating flow at the same pitching rate. On the other hand, for the fast pitching case at or=3.0, large-scale sheet/cloud cavitation is observed, the cavity behavior is un- steady and has a strong impact on the hydrodynamic response, which leads to high amplitude fluctuations of the hydrodynamic coefficients, as well as significant changes in the stall and post-stall behavior. The numerical results also show that the local density modification helps to reduce turbulent eddy viscosity in the cavitating region, which significantly modifies the cavity lengths and shedding frequencies, particularly for the fast pitching case. In general, compared with the experimental visualiza- tions, the numerical results with local density correction have been found to agree well with experimental measurements and observations for both slow and fast transient pitching cases.
AbstractList The objective of this paper is to improve the understanding of the influence of multiphase flow on the turbulent closure model, the interplay between vorticity fields and cavity dynamics around a pitching hydrofoil. The effects of pitching rate on the subcavitating and cavitating response of the pitching hydrofoil are also investigated. In particular, we focus on the interactions between cavity inception, growth, and shedding and the vortex flow structures, and their impacts on the hydrofoil performance. The calculations are 2-D and performed by solving the incompressible, multiphase Unsteady Reynolds Averaged Navier Stokes (URANS) equations via the commercial CFD code CFX. The k - ω SST (Shear Stress Transport) turbulence model is used along with the transport equation-based cavitation models. The density correction function is considered to reduce the eddy viscosity according to the computed local fluid mixture density. The calculation results are validated with experiments conducted by Ducoin et al. (see Computational and experimental investigation of flow over a transient pitching hydrofoil, Eur J Mech/B Fluids, 2009, 28: 728–743 and An experimental analysis of fluid structure interaction of a flexible hydrofoil in various flow regimes including cavitating flow, Eur J Mech B/fluids, 2012, 36: 63–74). Results are shown for a NACA66 hydrofoil subject to slow (quasi static, , ) and fast (dynamic, , ) pitching motions from α = 0° to α = 15°. Both subcavitaing ( σ =8.0) and cavitating ( σ =3.0) flows are considered. For subcavitating flow ( σ =8.0), low frequency fluctuations have been observed when the leading edge vortex shedding occurs during stall, and delay of stall is observed with increasing pitching velocity. For cavitating flow ( σ =3.0), small leading edge cavities are observed with the slow pitching case, which significantly modified the vortex dynamics at high angles of attack, leading to high frequency fluctuations of the hydrodynamic coefficients and different stall behaviors compared to the subcavitating flow at the same pitching rate. On the other hand, for the fast pitching case at σ =3.0, large-scale sheet/cloud cavitation is observed, the cavity behavior is unsteady and has a strong impact on the hydrodynamic response, which leads to high amplitude fluctuations of the hydrodynamic coefficients, as well as significant changes in the stall and post-stall behavior. The numerical results also show that the local density modification helps to reduce turbulent eddy viscosity in the cavitating region, which significantly modifies the cavity lengths and shedding frequencies, particularly for the fast pitching case. In general, compared with the experimental visualizations, the numerical results with local density correction have been found to agree well with experimental measurements and observations for both slow and fast transient pitching cases.
The objective of this paper is to improve the understanding of the influence of multiphase flow on the turbulent closure model, the interplay between vorticity fields and cavity dynamics around a pitching hydrofoil. The effects of pitching rate on the sub-cavitating and cavitating response of the pitching hydrofoil are also investigated. In particular, we focus on the interactions between cavity inception, growth, and shedding and the vortex flow structures, and their impacts on the hydrofoil performance. The calculations are 2-D and performed by solving the incompressible, multiphase Unsteady Reynolds Averaged Navier Stokes (URANS) equations via the commercial CFD code CFX.
The objective of this paper is to improve the understanding of the influence of multiphase flow on the turbulent closure model, the interplay between vorticity fields and cavity dynamics around a pitching hydrofoil. The effects of pitching rate on the sub- cavitating and cavitating response of the pitching hydrofoil are also investigated. In particular, we focus on the interactions between cavity inception, growth, and shedding and the vortex flow structures, and their impacts on the hydrofoil performance. The calculations are 2-D and performed by solving the incompressible, multiphase Unsteady Reynolds Averaged Navier Stokes (URANS) equations via the commercial CFD code CFX. The k-co SST (Shear Stress Transport) turbulence model is used along with the transport equation-based cavitation models. The density correction function is considered to reduce the eddy viscosity according to the computed local fluid mixture density. The calculation results are validated with experiments conducted by Ducoin et al. (see Computational and experimental investigation of flow over a transient pitching hydrofoil, Eur J Mech/B Fluids, 2009, 28:728-743 and An experimental analysis of fluid structure interaction of a flexible hydrofoil in vari- ous flow regimes including cavitating flow, Eur J Mech B/fluids, 2012, 36: 63-74). Results are shown for a NACA66 hydro- foil subject to slow (quasi static, t2=6~/s, &* =0.18) and fast (dynamic, &=63~/s, dr" =1.89) pitching motions from a =0~ to a =15~. Both subcavitaing (or =8.0) and cavitating (cr=3.0) flows are considered. For subcavitating flow (or=8.0), low frequency fluctuations have been observed when the leading edge vortex shedding occurs during stall, and delay of stall is ob- served with increasing pitching velocity. For cavitating flow (tr=3.0), small leading edge cavities are observed with the slow pitching case, which significantly modified the vortex dynamics at high angles of attack, leading to high frequency fluctuations of the hydrodynamic coefficients and different stall behaviors compared to the subcavitating flow at the same pitching rate. On the other hand, for the fast pitching case at or=3.0, large-scale sheet/cloud cavitation is observed, the cavity behavior is un- steady and has a strong impact on the hydrodynamic response, which leads to high amplitude fluctuations of the hydrodynamic coefficients, as well as significant changes in the stall and post-stall behavior. The numerical results also show that the local density modification helps to reduce turbulent eddy viscosity in the cavitating region, which significantly modifies the cavity lengths and shedding frequencies, particularly for the fast pitching case. In general, compared with the experimental visualiza- tions, the numerical results with local density correction have been found to agree well with experimental measurements and observations for both slow and fast transient pitching cases.
Author HUANG Biao WU Qin WANG GuoYu
AuthorAffiliation School of Mechanical and Vehicular Engineering, Beijing Institute of Technology, Beijing 100081, China
Author_xml – sequence: 1
  givenname: Biao
  surname: Huang
  fullname: Huang, Biao
  email: huangbiao@bit.edu.cn
  organization: School of Mechanical and Vehicular Engineering, Beijing Institute of Technology
– sequence: 2
  givenname: Qin
  surname: Wu
  fullname: Wu, Qin
  organization: School of Mechanical and Vehicular Engineering, Beijing Institute of Technology
– sequence: 3
  givenname: GuoYu
  surname: Wang
  fullname: Wang, GuoYu
  organization: School of Mechanical and Vehicular Engineering, Beijing Institute of Technology
BookMark eNqFkD1PBCEQhonRRD39AXbY2awyCyxLaYxfidFGY0mQhTvMHpywq9l_L-cZCwulgSHvM5N59tF2iMEidATkFAgRZxmAUagI0IqzmlbTFtqDtpEVSEK2y7sRrBK0hl10mPMrKYe2kgDbQ8_349Imb3SPs1-OvR58DDg6PIY8WN1N2Oh3P5TvMMeujx8Z6xTH0GGNh6RD9jYMeOUHs1gnFlOXoou-P0A7TvfZHn7fM_R0dfl4cVPdPVzfXpzfVYa2ZKi4bF44o5yCeXEdM0QI0E1rWduAlJaDdcY1UhBqBacdsa7WopRaFoZJS2foZNN3leLbaPOglj4b2_c62DhmVVYXUlIq6_-jnAMRdU1ZiYpN1KSYc7JOmS8HMZSdfa-AqLV4tRGvini1Fq-mQsIvcpX8UqfpT6beMLlkw9wm9RrHFIq2P6Hj70GLGOZvhfuZxFomW85a-gngc6NL
CitedBy_id crossref_primary_10_1016_j_oceaneng_2023_116547
crossref_primary_10_1063_5_0189068
crossref_primary_10_1016_j_oceaneng_2019_04_028
crossref_primary_10_1007_s10409_018_0782_z
crossref_primary_10_1007_s11431_015_5957_2
crossref_primary_10_1007_s42241_019_0050_0
crossref_primary_10_1088_1755_1315_163_1_012017
crossref_primary_10_3390_jmse7110398
crossref_primary_10_1007_s11431_015_5827_y
crossref_primary_10_1063_5_0124388
crossref_primary_10_1155_2014_808034
crossref_primary_10_1016_j_renene_2020_01_006
crossref_primary_10_1007_s10409_015_0484_8
crossref_primary_10_1016_j_renene_2020_07_080
crossref_primary_10_1007_s11431_015_5842_z
Cites_doi 10.1017/S0022112090001483
10.1016/j.euromechflu.2009.06.001
10.1016/j.ijmultiphaseflow.2012.02.006
10.1016/S1001-6058(10)60084-4
10.1007/s00348-003-0622-0
10.1007/s11431-013-5315-1
10.1017/S0022112088002101
10.1016/j.euromechflu.2012.03.009
10.1017/S0022112004009851
10.1146/annurev.fl.14.010182.001441
10.1115/1.4023650
10.1115/1.4006416
10.1017/S0022112001005420
10.2514/3.45534
10.1115/1.3243624
10.1007/s11431-011-4369-1
10.1006/jfls.1993.1012
10.2514/3.9982
10.1115/1.1486223
10.1299/jsmeb.49.797
10.1016/j.ijheatmasstransfer.2012.06.065
10.1146/annurev.fl.13.010181.001421
10.1016/j.apm.2005.11.019
10.1016/S0045-7930(99)00039-0
10.1016/j.ijmultiphaseflow.2012.11.008
10.1115/1.1524584
10.2514/3.45507
10.2514/3.45621
10.1103/PhysRevE.51.R1649
10.1016/S1001-6058(11)60390-X
10.1016/j.jfluidstructs.2010.11.013
10.1006/jcph.2002.6992
10.2514/3.10246
10.1016/S0376-0421(01)00014-8
10.1002/fld.1047
10.1088/0256-307X/28/2/026401
10.1016/j.jfluidstructs.2011.08.004
ContentType Journal Article
Copyright Science China Press and Springer-Verlag Berlin Heidelberg 2013
Copyright_xml – notice: Science China Press and Springer-Verlag Berlin Heidelberg 2013
DBID 2RA
92L
CQIGP
W92
~WA
AAYXX
CITATION
F1W
H96
L.G
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
DOI 10.1007/s11431-013-5423-y
DatabaseName 维普_期刊
中文科技期刊数据库-CALIS站点
维普中文期刊数据库
中文科技期刊数据库-工程技术
中文科技期刊数据库- 镜像站点
CrossRef
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Engineered Materials Abstracts
Mechanical & Transportation Engineering Abstracts
METADEX
Technology Research Database
Engineering Research Database
Materials Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ASFA: Aquatic Sciences and Fisheries Abstracts
Materials Research Database
Civil Engineering Abstracts
Engineered Materials Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Engineering Research Database
METADEX
DatabaseTitleList
Materials Research Database

Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
DocumentTitleAlternate Numerical simulation of unsteady cavitating flows around a transient pitching hydrofoil
EISSN 1869-1900
EndPage 116
ExternalDocumentID 10_1007_s11431_013_5423_y
48498548
GroupedDBID -5B
-5G
-BR
-EM
-Y2
-~C
.VR
06D
0VY
1N0
29~
2B.
2C.
2J2
2JN
2JY
2KG
2KM
2LR
2RA
2VQ
2~H
30V
4.4
406
40D
40E
5VR
5VS
8TC
8UJ
92E
92I
92L
92Q
93N
95-
95.
96X
AAAVM
AABHQ
AAFGU
AAHNG
AAIAL
AAJKR
AANZL
AARHV
AARTL
AATNV
AATVU
AAUYE
AAWCG
AAYFA
AAYIU
AAYQN
AAYTO
ABBBX
ABDZT
ABECU
ABFGW
ABFTD
ABFTV
ABHQN
ABJNI
ABJOX
ABKAS
ABKCH
ABKTR
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBMV
ACBRV
ACBXY
ACBYP
ACGFS
ACHSB
ACHXU
ACIGE
ACIPQ
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACTTH
ACVWB
ACWMK
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADMDM
ADOXG
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADZKW
AEBTG
AEFTE
AEGAL
AEGNC
AEJHL
AEJRE
AEOHA
AEPYU
AESKC
AESTI
AETLH
AEVLU
AEVTX
AEXYK
AFLOW
AFNRJ
AFQWF
AFUIB
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGBP
AGJBK
AGMZJ
AGQMX
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AIMYW
AITGF
AJBLW
AJDOV
AJRNO
AJZVZ
AKQUC
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AOCGG
ARMRJ
ASPBG
AVWKF
AXYYD
AZFZN
B-.
BDATZ
CAG
CCEZO
CEKLB
CHBEP
COF
CQIGP
CSCUP
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HG6
HMJXF
HRMNR
HVGLF
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~Z
J-C
JBSCW
JZLTJ
KOV
LLZTM
MA-
N2Q
NB0
NPVJJ
NQJWS
O9J
P9P
PF0
PT4
QOS
R89
RIG
ROL
RSV
S16
S3B
SAP
SCL
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
TCJ
TGP
TR2
TSG
TUC
U2A
UG4
UNUBA
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
W92
WK8
YLTOR
Z5O
Z7R
Z7S
Z7V
Z7X
Z7Y
Z7Z
Z83
Z85
Z88
ZMTXR
~A9
~WA
-SC
-S~
0R~
AACDK
AAJBT
AASML
AAXDM
AAYZH
ABAKF
ABQSL
ACDTI
ACPIV
AEFQL
AEMSY
AGQEE
AGRTI
AIGIU
BSONS
CAJEC
CJPJV
H13
Q--
U1G
U5M
AAPKM
AAYXX
ABBRH
ABDBE
ABRTQ
ADHKG
AFDZB
AFOHR
AGQPQ
AHPBZ
ATHPR
AYFIA
CITATION
F1W
H96
L.G
7SR
7TB
8BQ
8FD
FR3
JG9
KR7
ID FETCH-LOGICAL-c380t-596b543531cbfd4c0771a68e486199e51efcf69703e753d0ef2a7970a935349e3
IEDL.DBID U2A
ISSN 1674-7321
IngestDate Fri Sep 05 12:43:21 EDT 2025
Thu Sep 04 19:03:15 EDT 2025
Wed Oct 01 04:05:15 EDT 2025
Thu Apr 24 22:55:19 EDT 2025
Fri Feb 21 02:33:07 EST 2025
Wed Feb 14 10:38:27 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords pitching hydrofoil
turbulence model
unsteady cavitating flow
Language English
License http://www.springer.com/tdm
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c380t-596b543531cbfd4c0771a68e486199e51efcf69703e753d0ef2a7970a935349e3
Notes The objective of this paper is to improve the understanding of the influence of multiphase flow on the turbulent closure model, the interplay between vorticity fields and cavity dynamics around a pitching hydrofoil. The effects of pitching rate on the sub- cavitating and cavitating response of the pitching hydrofoil are also investigated. In particular, we focus on the interactions between cavity inception, growth, and shedding and the vortex flow structures, and their impacts on the hydrofoil performance. The calculations are 2-D and performed by solving the incompressible, multiphase Unsteady Reynolds Averaged Navier Stokes (URANS) equations via the commercial CFD code CFX. The k-co SST (Shear Stress Transport) turbulence model is used along with the transport equation-based cavitation models. The density correction function is considered to reduce the eddy viscosity according to the computed local fluid mixture density. The calculation results are validated with experiments conducted by Ducoin et al. (see Computational and experimental investigation of flow over a transient pitching hydrofoil, Eur J Mech/B Fluids, 2009, 28:728-743 and An experimental analysis of fluid structure interaction of a flexible hydrofoil in vari- ous flow regimes including cavitating flow, Eur J Mech B/fluids, 2012, 36: 63-74). Results are shown for a NACA66 hydro- foil subject to slow (quasi static, t2=6~/s, &* =0.18) and fast (dynamic, &=63~/s, dr" =1.89) pitching motions from a =0~ to a =15~. Both subcavitaing (or =8.0) and cavitating (cr=3.0) flows are considered. For subcavitating flow (or=8.0), low frequency fluctuations have been observed when the leading edge vortex shedding occurs during stall, and delay of stall is ob- served with increasing pitching velocity. For cavitating flow (tr=3.0), small leading edge cavities are observed with the slow pitching case, which significantly modified the vortex dynamics at high angles of attack, leading to high frequency fluctuations of the hydrodynamic coefficients and different stall behaviors compared to the subcavitating flow at the same pitching rate. On the other hand, for the fast pitching case at or=3.0, large-scale sheet/cloud cavitation is observed, the cavity behavior is un- steady and has a strong impact on the hydrodynamic response, which leads to high amplitude fluctuations of the hydrodynamic coefficients, as well as significant changes in the stall and post-stall behavior. The numerical results also show that the local density modification helps to reduce turbulent eddy viscosity in the cavitating region, which significantly modifies the cavity lengths and shedding frequencies, particularly for the fast pitching case. In general, compared with the experimental visualiza- tions, the numerical results with local density correction have been found to agree well with experimental measurements and observations for both slow and fast transient pitching cases.
unsteady cavitating flow, pitching hydrofoil, turbulence model
11-5845/TH
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1551072234
PQPubID 23462
PageCount 16
ParticipantIDs proquest_miscellaneous_1677993392
proquest_miscellaneous_1551072234
crossref_citationtrail_10_1007_s11431_013_5423_y
crossref_primary_10_1007_s11431_013_5423_y
springer_journals_10_1007_s11431_013_5423_y
chongqing_primary_48498548
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014
20140100
2014-1-00
20140101
PublicationDateYYYYMMDD 2014-01-01
PublicationDate_xml – year: 2014
  text: 2014
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
PublicationTitle Science China. Technological sciences
PublicationTitleAbbrev Sci. China Technol. Sci
PublicationTitleAlternate SCIENCE CHINA Technological Sciences
PublicationYear 2014
Publisher Springer Berlin Heidelberg
Publisher_xml – name: Springer Berlin Heidelberg
References Carr (CR6) 1988; 25
Wang, Ostoja-Starzewski (CR34) 2007; 31
Shen, Peterson (CR35) 1978
Kato, Dan, Matsudaira (CR39) 2006; 49
Menter (CR44) 1992; 34
Ohmi, Coutanceau, Loc (CR8) 1990; 211
Huang, Ducoin, Young (CR43) 2012
Coutier-Delgosha, Fortes-Patella, Reboud (CR26) 2003; 125
Stutz, Legoupil (CR22) 2003; 35
Carr, McCroskey (CR7) 1992
Joseph (CR17) 1995; 51
Kubota, Kato, Yamaguchi (CR30) 1989; 111
Ji, Luo, Wu (CR46) 2013; 51
Shen, Peterson (CR36) 1980
Singhal, Athavale, Li (CR25) 2002; 124
Wang, Senocak, Shyy (CR20) 2001; 37
Merkle, Feng, Buelow (CR42) 1998
Wu, Wang, Shyy (CR33) 2005; 49
Senocak, Shyy (CR27) 2002; 176
Ji, Luo, Peng (CR3) 2012; 43
Callenaere, Franc, Michel (CR19) 2001; 444
Huang, Wang, Zhao (CR31) 2013; 56
Knapp, Daily, Hammitt (CR18) 1970
Lee, Gerontakos (CR13) 2004; 512
Huang, Wang (CR47) 2011; 28
Triantafyllou, Triantafyllou, Grosenbaugh (CR14) 1993; 7
McCroskey (CR5) 1982; 14
Liu, Young (CR4) 2011; 27
Kim, Brewton (CR28) 2008
Huang, Wang (CR21) 2011; 54
Freymuth (CR10) 1988; 26
Ji, Luo, Wu (CR48) 2012; 55
Foeth (CR23) 2008
Huang, Young, Wang (CR45) 2013; 135
Ducoin, Astolfi, Deniset (CR16) 2009; 28
Luo, Ji, Peng (CR2) 2012; 134
Kunz, Boger, Stinebring (CR24) 2000; 29
Oshima, Natsume (CR9) 1980
CR29
Jumper, Schreck, Dimnick (CR15) 1987; 24
Huang, Wang (CR49) 2011; 23
Franc, Michel (CR37) 1988; 193
Ji, Luo, Peng (CR32) 2013; 25
Ducoin, Astolfi, Sigrist (CR41) 2012; 36
Lorber, Carta (CR12) 1988; 25
Uchiyama (CR40) 2003; 217
Arndt (CR1) 1981; 13
Hart, Brennen, Acosta (CR38) 1990
Koochesfahani (CR11) 1989; 27
B Huang (5423_CR31) 2013; 56
A Kubota (5423_CR30) 1989; 111
B Ji (5423_CR3) 2012; 43
G Wang (5423_CR20) 2001; 37
B Ji (5423_CR46) 2013; 51
Y Oshima (5423_CR9) 1980
G S Triantafyllou (5423_CR14) 1993; 7
I Senocak (5423_CR27) 2002; 176
B Huang (5423_CR43) 2012
T Lee (5423_CR13) 2004; 512
K Kato (5423_CR39) 2006; 49
P Freymuth (5423_CR10) 1988; 26
A Ducoin (5423_CR41) 2012; 36
T Uchiyama (5423_CR40) 2003; 217
R E A Arndt (5423_CR1) 1981; 13
B Huang (5423_CR47) 2011; 28
O Coutier-Delgosha (5423_CR26) 2003; 125
C L Merkle (5423_CR42) 1998
L W Carr (5423_CR6) 1988; 25
X W Luo (5423_CR2) 2012; 134
B Ji (5423_CR32) 2013; 25
Y T Shen (5423_CR35) 1978
R F Kunz (5423_CR24) 2000; 29
Z Liu (5423_CR4) 2011; 27
L W Carr (5423_CR7) 1992
B Stutz (5423_CR22) 2003; 35
A K Singhal (5423_CR25) 2002; 124
J P Franc (5423_CR37) 1988; 193
F R Menter (5423_CR44) 1992; 34
P F Lorber (5423_CR12) 1988; 25
W J McCroskey (5423_CR5) 1982; 14
A Ducoin (5423_CR16) 2009; 28
B Huang (5423_CR49) 2011; 23
D D Joseph (5423_CR17) 1995; 51
B Huang (5423_CR45) 2013; 135
E J Jumper (5423_CR15) 1987; 24
J Wu (5423_CR33) 2005; 49
E J Foeth (5423_CR23) 2008
M M Koochesfahani (5423_CR11) 1989; 27
B Huang (5423_CR21) 2011; 54
D P Hart (5423_CR38) 1990
S Kim (5423_CR28) 2008
K Ohmi (5423_CR8) 1990; 211
5423_CR29
G Wang (5423_CR34) 2007; 31
B Ji (5423_CR48) 2012; 55
R T Knapp (5423_CR18) 1970
M Callenaere (5423_CR19) 2001; 444
Y T Shen (5423_CR36) 1980
References_xml – year: 1970
  ident: CR18
  publication-title: Cavitation
– year: 1980
  ident: CR36
  article-title: The influence of hydrofoil oscillation on boundary layer transition and cavitation noise
  publication-title: Proceedings of 13th Symp on Naval Hydrodynamics, Tokyo
– volume: 211
  start-page: 37
  year: 1990
  end-page: 60
  ident: CR8
  article-title: Vortex formation around an oscillating and translating airfoil at large incidences
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112090001483
– volume: 28
  start-page: 728
  year: 2009
  end-page: 743
  ident: CR16
  article-title: Computational and experimental investigation of flow over a transient pitching hydrofoil
  publication-title: Eur J Mech/B Fluids Elsevier
  doi: 10.1016/j.euromechflu.2009.06.001
– volume: 43
  start-page: 13
  year: 2012
  end-page: 21
  ident: CR3
  article-title: Numerical analysis of cavitation evolution and excited pressure fluctuation around a propeller in non-uniform wake
  publication-title: Int J Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2012.02.006
– ident: CR29
– year: 1992
  ident: CR7
  article-title: A review of recent advances in computation and experimental analysis of dynamic stall
  publication-title: International Union of Theoretical and Applied Mechanics on Fluid Dynamics at High Angle of Attack, Tokyo
– volume: 23
  start-page: 26
  issue: 1
  year: 2011
  end-page: 33
  ident: CR49
  article-title: Partial averaged Navier-Stokes method for time-dependent turbulent cavitating flows
  publication-title: J Hydrodyn
  doi: 10.1016/S1001-6058(10)60084-4
– volume: 35
  start-page: 130
  year: 2003
  end-page: 138
  ident: CR22
  article-title: X-ray measurements within unsteady cavitations
  publication-title: Exp Fluids
  doi: 10.1007/s00348-003-0622-0
– volume: 56
  start-page: 2207
  issue: 9
  year: 2013
  end-page: 2218
  ident: CR31
  article-title: Physical and numerical investigation on transient cavitating flows
  publication-title: Sci China Tech Sci
  doi: 10.1007/s11431-013-5315-1
– year: 2008
  ident: CR28
  article-title: A multiphase approach to turbulent cavitating flows
  publication-title: Proceedings of 27th Symposium on Naval Hydrodynamics, Seoul
– volume: 193
  start-page: 171
  year: 1988
  end-page: 189
  ident: CR37
  article-title: Unsteady attached cavitation on an oscillating hydrofoil
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112088002101
– year: 1980
  ident: CR9
  article-title: Flow field around an oscillating foil
  publication-title: 2nd Int Symp on Flow Visualization, Bochum
– volume: 36
  start-page: 63
  year: 2012
  end-page: 74
  ident: CR41
  article-title: An experimental analysis of fluid structure interaction of a flexible hydrofoil in various flow regimes including cavitating flow
  publication-title: Eur J Mech B/Fluids
  doi: 10.1016/j.euromechflu.2012.03.009
– volume: 512
  start-page: 313
  year: 2004
  end-page: 341
  ident: CR13
  article-title: Investigate of flow over an oscillating airfoil
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112004009851
– volume: 14
  start-page: 285
  year: 1982
  end-page: 311
  ident: CR5
  article-title: Unsteady airfoils
  publication-title: Ann Rev Fluid Mech
  doi: 10.1146/annurev.fl.14.010182.001441
– volume: 135
  start-page: 071301
  year: 2013
  ident: CR45
  article-title: Combined experimental and computational investigation of unsteady structure of sheet/cloud cavitation
  publication-title: J Fluids Eng
  doi: 10.1115/1.4023650
– volume: 134
  start-page: 041202
  issue: 4
  year: 2012
  ident: CR2
  article-title: Numerical simulation of cavity shedding from a three-dimensional twisted hydrofoil and induced pressure fluctuation by large-eddy simulation
  publication-title: J Fluids Eng
  doi: 10.1115/1.4006416
– volume: 217
  start-page: 811
  year: 2003
  end-page: 816
  ident: CR40
  article-title: Numerical study on bubbly flow around a hydrofoil in pitching and heaving motions
  publication-title: Proc Institute Mech Eng
– volume: 444
  start-page: 223
  year: 2001
  end-page: 256
  ident: CR19
  article-title: The cavitation instability induced by the development of a re-entrant jet
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112001005420
– volume: 34
  start-page: 103975
  year: 1992
  ident: CR44
  article-title: Improved two-equation turbulence models for aerodynamic flows
  publication-title: NASA Tech Memorandu
– volume: 25
  start-page: 6
  year: 1988
  end-page: 17
  ident: CR6
  article-title: Progress in analysis and prediction of dynamic stall
  publication-title: J Aircr
  doi: 10.2514/3.45534
– volume: 111
  start-page: 204
  issue: 2
  year: 1989
  end-page: 210
  ident: CR30
  article-title: Unsteady structure measurement of cloud cavitation on a foil section using conditional sampling technique
  publication-title: J Fluids Eng
  doi: 10.1115/1.3243624
– volume: 54
  start-page: 1801
  year: 2011
  end-page: 1812
  ident: CR21
  article-title: Experimental and numerical investigation of unsteady cavitating flows through a 2D hydrofoil
  publication-title: Sci China Tech Sci
  doi: 10.1007/s11431-011-4369-1
– year: 1978
  ident: CR35
  article-title: Unsteady cavitation on an oscillating hydrofoil
  publication-title: Proceedings of 12th Symp on Naval Hydrodynamics, Washington D C
– volume: 7
  start-page: 205
  year: 1993
  end-page: 224
  ident: CR14
  article-title: Optimal thrust development in oscillating foils with application to fish propulsion
  publication-title: J Fluids Struct
  doi: 10.1006/jfls.1993.1012
– volume: 26
  start-page: 881
  year: 1988
  end-page: 883
  ident: CR10
  article-title: Propulsive vortical signatures of plunging and pitching airfoils
  publication-title: AIAA J
  doi: 10.2514/3.9982
– volume: 124
  start-page: 617
  year: 2002
  end-page: 624
  ident: CR25
  article-title: Mathematical basis and validation of the full cavitation model
  publication-title: J Fluids Eng
  doi: 10.1115/1.1486223
– volume: 49
  start-page: 797
  year: 2006
  end-page: 805
  ident: CR39
  article-title: Lock-in phenomenon of pitching hydrofoil with cavitation breakdown
  publication-title: Int J Ser B Fluids Therm Eng
  doi: 10.1299/jsmeb.49.797
– volume: 55
  start-page: 6582
  year: 2012
  end-page: 6588
  ident: CR48
  article-title: Partially-Averaged Navier-Stokes method with modified k-epsilon model for cavitating flow around a marine propeller in a non-uniform wake
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2012.06.065
– volume: 13
  start-page: 273
  year: 1981
  end-page: 326
  ident: CR1
  article-title: Cavitation in fluid machinery and hydraulic structure
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev.fl.13.010181.001421
– volume: 31
  start-page: 417
  issue: 3
  year: 2007
  end-page: 447
  ident: CR34
  article-title: Large eddy simulation of a sheet/ cloud cavitation on a NACA0015 hydrofoil
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2005.11.019
– year: 1990
  ident: CR38
  article-title: Observations of cavitation on a three-dimensional oscillating hydrofoil
  publication-title: Proc ASME Conf on Cavitation and Multiphase, New York
– volume: 29
  start-page: 849
  year: 2000
  end-page: 875
  ident: CR24
  article-title: A preconditioned Navier-stokes method for two phase flows with application to cavitation prediction
  publication-title: Comput Fluids, Elsevier
  doi: 10.1016/S0045-7930(99)00039-0
– year: 2012
  ident: CR43
  article-title: Evaluation of cavitation models for prediction of transient cavitating flows around a pitching hydrofoil
  publication-title: Proceedings of 8th International Symposium on Cavitation, Singapore
– volume: 51
  start-page: 33
  year: 2013
  end-page: 43
  ident: CR46
  article-title: Numerical analysis of unsteady cavitating turbulent flow and shedding horse-shoe vortex structure around a twisted hydrofoil
  publication-title: Int J Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2012.11.008
– volume: 125
  start-page: 38
  issue: 1
  year: 2003
  end-page: 45
  ident: CR26
  article-title: Evaluation of the turbulence model influence on the numerical simulations of unsteady cavitations
  publication-title: ASME J Fluids Eng
  doi: 10.1115/1.1524584
– volume: 24
  start-page: 680
  year: 1987
  end-page: 687
  ident: CR15
  article-title: Lift-curve characteristics for an airfoil pitching at constant rate
  publication-title: J Aircr
  doi: 10.2514/3.45507
– volume: 25
  start-page: 548
  year: 1988
  end-page: 556
  ident: CR12
  article-title: Airfoil dynamic stall at constant pitch rate and high Reynolds number
  publication-title: J Aircr
  doi: 10.2514/3.45621
– volume: 51
  start-page: 1649
  year: 1995
  end-page: 1650
  ident: CR17
  article-title: Cavitation in a flowing liquid
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.51.R1649
– volume: 25
  start-page: 510
  issue: 4
  year: 2013
  end-page: 519
  ident: CR32
  article-title: Three-dimensional large eddy simulation and vorticity analysis of unsteady cavitating flow around a twisted hydrofoil
  publication-title: J Hydrodyn
  doi: 10.1016/S1001-6058(11)60390-X
– volume: 27
  start-page: 1310
  year: 2011
  end-page: 1325
  ident: CR4
  article-title: Performance-based design and analysis of flexible composite propulsors
  publication-title: J Fluids Struct
  doi: 10.1016/j.jfluidstructs.2010.11.013
– volume: 176
  start-page: 363
  year: 2002
  end-page: 383
  ident: CR27
  article-title: A pressure-based method for turbulent cavitating flow computations
  publication-title: J Comput Phys
  doi: 10.1006/jcph.2002.6992
– volume: 27
  start-page: 1200
  year: 1989
  end-page: 1205
  ident: CR11
  article-title: Vortical patterns in the wake of an oscillating airfoil
  publication-title: AIAA J
  doi: 10.2514/3.10246
– volume: 37
  start-page: 551
  year: 2001
  end-page: 581
  ident: CR20
  article-title: Dynamics of attached turbulent cavitating flows
  publication-title: Prog Aero Sci
  doi: 10.1016/S0376-0421(01)00014-8
– year: 2008
  ident: CR23
  publication-title: The structure of three-dimensional sheet cavitation
– volume: 49
  start-page: 739
  year: 2005
  end-page: 761
  ident: CR33
  article-title: Time-dependent turbulent cavitating flow computations with interfacial transport and filter based models
  publication-title: Int J Numer MethFluids
  doi: 10.1002/fld.1047
– volume: 28
  start-page: 026401
  issue: 2
  year: 2011
  ident: CR47
  article-title: Evaluation of a filter-based model for computations of cavitating flows
  publication-title: Chin Phys Lett
  doi: 10.1088/0256-307X/28/2/026401
– year: 1998
  ident: CR42
  article-title: Computational modeling of sheet cavitations
  publication-title: Proceedings of Third International Symposium on Cavitation, Grenoble
– volume: 27
  start-page: 1310
  year: 2011
  ident: 5423_CR4
  publication-title: J Fluids Struct
  doi: 10.1016/j.jfluidstructs.2011.08.004
– volume: 35
  start-page: 130
  year: 2003
  ident: 5423_CR22
  publication-title: Exp Fluids
  doi: 10.1007/s00348-003-0622-0
– volume: 25
  start-page: 510
  issue: 4
  year: 2013
  ident: 5423_CR32
  publication-title: J Hydrodyn
  doi: 10.1016/S1001-6058(11)60390-X
– volume: 49
  start-page: 797
  year: 2006
  ident: 5423_CR39
  publication-title: Int J Ser B Fluids Therm Eng
  doi: 10.1299/jsmeb.49.797
– volume: 55
  start-page: 6582
  year: 2012
  ident: 5423_CR48
  publication-title: Int J Heat Mass Tran
  doi: 10.1016/j.ijheatmasstransfer.2012.06.065
– volume: 27
  start-page: 1200
  year: 1989
  ident: 5423_CR11
  publication-title: AIAA J
  doi: 10.2514/3.10246
– volume: 193
  start-page: 171
  year: 1988
  ident: 5423_CR37
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112088002101
– volume-title: Proceedings of 27th Symposium on Naval Hydrodynamics, Seoul
  year: 2008
  ident: 5423_CR28
– volume-title: Proceedings of 13th Symp on Naval Hydrodynamics, Tokyo
  year: 1980
  ident: 5423_CR36
– volume: 36
  start-page: 63
  year: 2012
  ident: 5423_CR41
  publication-title: Eur J Mech B/Fluids
  doi: 10.1016/j.euromechflu.2012.03.009
– volume: 37
  start-page: 551
  year: 2001
  ident: 5423_CR20
  publication-title: Prog Aero Sci
  doi: 10.1016/S0376-0421(01)00014-8
– volume: 26
  start-page: 881
  year: 1988
  ident: 5423_CR10
  publication-title: AIAA J
  doi: 10.2514/3.9982
– volume: 7
  start-page: 205
  year: 1993
  ident: 5423_CR14
  publication-title: J Fluids Struct
  doi: 10.1006/jfls.1993.1012
– volume: 51
  start-page: 33
  year: 2013
  ident: 5423_CR46
  publication-title: Int J Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2012.11.008
– volume-title: Proc ASME Conf on Cavitation and Multiphase, New York
  year: 1990
  ident: 5423_CR38
– volume-title: Proceedings of 8th International Symposium on Cavitation, Singapore
  year: 2012
  ident: 5423_CR43
– volume: 13
  start-page: 273
  year: 1981
  ident: 5423_CR1
  publication-title: Annu Rev Fluid Mech
  doi: 10.1146/annurev.fl.13.010181.001421
– volume: 25
  start-page: 6
  year: 1988
  ident: 5423_CR6
  publication-title: J Aircr
  doi: 10.2514/3.45534
– volume: 24
  start-page: 680
  year: 1987
  ident: 5423_CR15
  publication-title: J Aircr
  doi: 10.2514/3.45507
– volume: 176
  start-page: 363
  year: 2002
  ident: 5423_CR27
  publication-title: J Comput Phys
  doi: 10.1006/jcph.2002.6992
– volume: 512
  start-page: 313
  year: 2004
  ident: 5423_CR13
  publication-title: J Fluid Mech
– volume: 25
  start-page: 548
  year: 1988
  ident: 5423_CR12
  publication-title: J Aircr
  doi: 10.2514/3.45621
– volume: 51
  start-page: 1649
  year: 1995
  ident: 5423_CR17
  publication-title: Phys Rev E
  doi: 10.1103/PhysRevE.51.R1649
– volume: 28
  start-page: 026401
  issue: 2
  year: 2011
  ident: 5423_CR47
  publication-title: Chin Phys Lett
  doi: 10.1088/0256-307X/28/2/026401
– volume: 29
  start-page: 849
  year: 2000
  ident: 5423_CR24
  publication-title: Comput Fluids, Elsevier
  doi: 10.1016/S0045-7930(99)00039-0
– volume: 43
  start-page: 13
  year: 2012
  ident: 5423_CR3
  publication-title: Int J Multiphase Flow
  doi: 10.1016/j.ijmultiphaseflow.2012.02.006
– volume: 211
  start-page: 37
  year: 1990
  ident: 5423_CR8
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112090001483
– volume-title: International Union of Theoretical and Applied Mechanics on Fluid Dynamics at High Angle of Attack, Tokyo
  year: 1992
  ident: 5423_CR7
– volume-title: Proceedings of Third International Symposium on Cavitation, Grenoble
  year: 1998
  ident: 5423_CR42
– volume-title: Cavitation
  year: 1970
  ident: 5423_CR18
– volume: 31
  start-page: 417
  issue: 3
  year: 2007
  ident: 5423_CR34
  publication-title: Appl Math Model
  doi: 10.1016/j.apm.2005.11.019
– volume-title: Proceedings of 12th Symp on Naval Hydrodynamics, Washington D C
  year: 1978
  ident: 5423_CR35
– volume: 23
  start-page: 26
  issue: 1
  year: 2011
  ident: 5423_CR49
  publication-title: J Hydrodyn
  doi: 10.1016/S1001-6058(10)60084-4
– volume: 49
  start-page: 739
  year: 2005
  ident: 5423_CR33
  publication-title: Int J Numer MethFluids
  doi: 10.1002/fld.1047
– volume: 28
  start-page: 728
  year: 2009
  ident: 5423_CR16
  publication-title: Eur J Mech/B Fluids Elsevier
  doi: 10.1016/j.euromechflu.2009.06.001
– volume: 444
  start-page: 223
  year: 2001
  ident: 5423_CR19
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112001005420
– volume: 134
  start-page: 041202
  issue: 4
  year: 2012
  ident: 5423_CR2
  publication-title: J Fluids Eng
  doi: 10.1115/1.4006416
– volume-title: The structure of three-dimensional sheet cavitation
  year: 2008
  ident: 5423_CR23
– volume: 56
  start-page: 2207
  issue: 9
  year: 2013
  ident: 5423_CR31
  publication-title: Sci China Tech Sci
  doi: 10.1007/s11431-013-5315-1
– volume: 125
  start-page: 38
  issue: 1
  year: 2003
  ident: 5423_CR26
  publication-title: ASME J Fluids Eng
  doi: 10.1115/1.1524584
– volume: 135
  start-page: 071301
  year: 2013
  ident: 5423_CR45
  publication-title: J Fluids Eng
  doi: 10.1115/1.4023650
– volume: 54
  start-page: 1801
  year: 2011
  ident: 5423_CR21
  publication-title: Sci China Tech Sci
  doi: 10.1007/s11431-011-4369-1
– volume: 111
  start-page: 204
  issue: 2
  year: 1989
  ident: 5423_CR30
  publication-title: J Fluids Eng
  doi: 10.1115/1.3243624
– volume: 14
  start-page: 285
  year: 1982
  ident: 5423_CR5
  publication-title: Ann Rev Fluid Mech
  doi: 10.1146/annurev.fl.14.010182.001441
– ident: 5423_CR29
– volume: 34
  start-page: 103975
  year: 1992
  ident: 5423_CR44
  publication-title: NASA Tech Memorandu
– volume: 124
  start-page: 617
  year: 2002
  ident: 5423_CR25
  publication-title: J Fluids Eng
  doi: 10.1115/1.1486223
– volume: 217
  start-page: 811
  year: 2003
  ident: 5423_CR40
  publication-title: Proc Institute Mech Eng
– volume-title: 2nd Int Symp on Flow Visualization, Bochum
  year: 1980
  ident: 5423_CR9
SSID ssj0000389014
Score 2.053781
Snippet The objective of this paper is to improve the understanding of the influence of multiphase flow on the turbulent closure model, the interplay between vorticity...
SourceID proquest
crossref
springer
chongqing
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 101
SubjectTerms Cavitation
Computational fluid dynamics
Engineering
Fluid flow
Hydrofoils
Mathematical models
Navier-Stokes equations
Turbulent flow
Unsteady
实验分析
数值模拟
水动力系数
水翼船
流体结构相互作用
空泡流
计算结果
非定常
Title Numerical simulation of unsteady cavitating flows around a transient pitching hydrofoil
URI http://lib.cqvip.com/qk/60110X/201401/48498548.html
https://link.springer.com/article/10.1007/s11431-013-5423-y
https://www.proquest.com/docview/1551072234
https://www.proquest.com/docview/1677993392
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1869-1900
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000389014
  issn: 1674-7321
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1869-1900
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000389014
  issn: 1674-7321
  databaseCode: U2A
  dateStart: 20100501
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3PT9swFH4acBkHxAaI8kuetBPIkhM7jnOsEFBtGqdVg5PlJHZbqSRAUlD_e57TpN0mVmnHSI4t-bP9vuf3_D2Ar5FiSnAX0jS0igrJOFU2djSUEU9lmLq8Sfn_cSsHQ_HtLrpr33FXXbZ7F5JsTurVYzc07d719cH8kNP5BmxFXs0LF_Ew7C8vVrxiHGs0vX2CPY15GHTRzPd68ZoK47IYPeGIf9qmFeH8K0bamJ7rXdhpOSPpL0D-BB9s8Rm2f1MS3INft7NF6GVKqslDW5KLlI7MigbGOcnMSyPHXYyIm5avFTHPvqISMaT25so_iySPk7pJrSTjeY7nczmZ7sPw-urn5YC2NRNoxhWraZTINEIKxIMM51lkLI4DI5UVCj2lxEaBdZmTCe5zi45KzqwLTYyfJsF_RGL5AWwWZWEPgTjJvXAwUqAkElKmJmdBjnTHMZFxw1UPjpYzpx8X2hhaKJEo9IJ6wLqp1FmrNu6LXkz1SifZI6ERCe2R0PMenC9_6bpb0_hLh4_GDeGjHKaw5azSngOyGFmPWNNGxjESM-SGPbjowNXt7q3-PerRf7U-ho9Ir8TiwuYENuvnmT1FClOnZ7DVv7n_fnXWLN03MYrohw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB7B9gA9UF5VtxQwEieQKyd2HOdYVZSFtnvainKynMRuVyxJaRLQ8us7zqMLFVTqMZJjJx575hvP-BuAt5FiSnAX0jS0igrJOFU2djSUEU9lmLq8Tfk_nsrJifh8Gp3297irIdt9CEm2mnp12Q1Nu3d9fTA_5HR5H9YE-ifhCNb2Pn49XB2teM441rJ6-xR7GvMwGOKZ_-rHsyqcl8XZDxzzb-u0gpw3oqSt8TnYgNnw2V3Oybfdpk53s983GB3v-F-P4VEPRslet3qewD1bPIX1PygKn8GXadPFdBakmn_va32R0pGmaNfHkmTmZ8vzXZwRtyh_VcRc-lJNxJDa20F_35JczOs2Z5OcL3NU_OV88RxODj7M9ie0L8ZAM65YTaNEphFiKx5kKECRsTgOjFRWKHTBEhsF1mVOJqhALHpAObMuNDE-mgTfEYnlmzAqysJuAXGSe0ZixFZJJKRMTc6CHHGUYyLjhqsxbF8LRF90pBtaKJEodK_GwAYJ6aynMffVNBZ6RcDsJ1TjhGo_oXo5hnfXrwzd3dL4zSB2jTvNh09MYcum0h5cshjhlLiljYxjRHwIOsfwfhC37tVC9f9Rt-_U-jU8mMyOj_TRp-nhC3iIGE50p0I7MKovG_sScVKdvur3xRXHSQbq
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1ba9swFD6sHYzuYezS0nQ3Dfq0ISpbsiw_hm0hu4U-NKxvQralNJDZae105N_vyJekG2uhjwZdQJ_k8x2do-8AHEeKKcFdSNPQKiok41TZ2NFQRjyVYeryJuX_x0SOp-LreXTe1Tmt-mz3PiTZvmnwKk1FfbLM3cn24Ruaee8G-8B-yOl6Bx4Kr5OAG3oaDjeXLF49jjX63j7ZnsY8DPrI5v9G8foKF2Uxu8TZ_7ZTW_L5T7y0MUOjp_Ck449k2AL-DB7Y4jk8vqEq-AJ-TlZtGGZBqvmvrjwXKR1ZFQ2ka5KZ60aau5gRtyh_V8Rc-epKxJDamy7_RJIs53WTZkku1jn-q8v5Yh-mo89nH8e0q59AM65YTaNEphHSIR5kuOYiY3EcGKmsUOg1JTYKrMucTPDMW3RacmZdaGL8NAn2EYnlB7BblIU9BOIk9yLCSIeSSEiZmpwFOVIfx0TGDVcDONqsnF62OhlaKJEo9IgGwPql1FmnPO4LYCz0VjPZI6ERCe2R0OsBvN906Ye7o_G7Hh-Nh8NHPExhy1WlPR9kMTIgcUcbGcdI0pAnDuBDD67uTnJ1-6xH92r9Fh6dfhrp718m317CHrIu0d7jvILd-mplXyOzqdM3ze79A3Mn7hs
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Numerical+simulation+of+unsteady+cavitating+flows+around+a+transient+pitching+hydrofoil&rft.jtitle=%E4%B8%AD%E5%9B%BD%E7%A7%91%E5%AD%A6%EF%BC%9A%E6%8A%80%E6%9C%AF%E7%A7%91%E5%AD%A6%E8%8B%B1%E6%96%87%E7%89%88&rft.au=HUANG+Biao+WU+Qin+WANG+GuoYu&rft.date=2014&rft.issn=1674-7321&rft.eissn=1869-1900&rft.issue=1&rft.spage=101&rft.epage=116&rft_id=info:doi/10.1007%2Fs11431-013-5423-y&rft.externalDocID=48498548
thumbnail_s http://utb.summon.serialssolutions.com/2.0.0/image/custom?url=http%3A%2F%2Fimage.cqvip.com%2Fvip1000%2Fqk%2F60110X%2F60110X.jpg