A correlative classifiers approach based on particle filter and sample set for tracking occluded target
Target tracking is one of the most important issues in computer vision and has been applied in many fields of science, engineering and industry. Because of the occlusion during tracking, typical approaches with single classifier learn much of occluding background information which results in the dec...
Saved in:
Published in | Applied Mathematics-A Journal of Chinese Universities Vol. 32; no. 3; pp. 294 - 312 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Hangzhou
Editorial Committee of Applied Mathematics - A Journal of Chinese Universities
01.09.2017
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 1005-1031 1993-0445 |
DOI | 10.1007/s11766-017-3466-8 |
Cover
Abstract | Target tracking is one of the most important issues in computer vision and has been applied in many fields of science, engineering and industry. Because of the occlusion during tracking, typical approaches with single classifier learn much of occluding background information which results in the decrease of tracking performance, and eventually lead to the failure of the tracking algorithm. This paper presents a new correlative classifiers approach to address the above problem. Our idea is to derive a group of correlative classifiers based on sample set method. Then we propose strategy to establish the classifiers and to query the suitable classifiers for the next frame tracking. In order to deal with nonlinear problem, particle filter is adopted and integrated with sample set method. For choosing the target from candidate particles, we define a similarity measurement between particles and sample set. The proposed sample set method includes the following steps. First, we cropped positive samples set around the target and negative samples set far away from the target. Second, we extracted average Haar-like feature from these samples and calculate their statistical characteristic which represents the target model. Third, we define the similarity measurement based on the statistical characteristic of these two sets to judge the similarity between candidate particles and target model. Finally, we choose the largest similarity score particle as the target in the new frame. A number of experiments show the robustness and efficiency of the proposed approach when compared with other state-of-the-art trackers. |
---|---|
AbstractList | Target tracking is one of the most important issues in computer vision and has been applied in many fields of science, engineering and industry. Because of the occlusion during tracking, typical approaches with single classifier learn much of occluding background information which results in the decrease of tracking performance, and eventually lead to the failure of the tracking algorithm. This paper presents a new correlative classifiers approach to address the above problem. Our idea is to derive a group of correlative classifiers based on sample set method. Then we propose strategy to establish the classifiers and to query the suitable classifiers for the next frame tracking. In order to deal with nonlinear problem, particle filter is adopted and integrated with sample set method. For choosing the target from candidate particles, we define a similarity measurement between particles and sample set. The proposed sample set method includes the following steps. First, we cropped positive samples set around the target and negative samples set far away from the target. Second, we extracted average Haar-like feature from these samples and calculate their statistical characteristic which represents the target model. Third, we define the similarity measurement based on the statistical characteristic of these two sets to judge the similarity between candidate particles and target model. Finally, we choose the largest similarity score particle as the target in the new frame. A number of experiments show the robustness and efficiency of the proposed approach when compared with other state-of-the-art trackers. |
Author | He, Fa-zhi Chen, Xiao Li, Kang Yu, Hai-ping |
Author_xml | – sequence: 1 givenname: Kang surname: Li fullname: Li, Kang organization: School of Computer Science, Wuhan University, School of Computer Science and Information Engineering, Hubei University – sequence: 2 givenname: Fa-zhi surname: He fullname: He, Fa-zhi email: fzhe@whu.edu.cn organization: School of Computer Science, Wuhan University, The State Key Laboratory of Software Engineering, Wuhan University – sequence: 3 givenname: Hai-ping surname: Yu fullname: Yu, Hai-ping organization: School of Computer Science, Wuhan University, The State Key Laboratory of Software Engineering, Wuhan University – sequence: 4 givenname: Xiao surname: Chen fullname: Chen, Xiao organization: School of Computer Science, Wuhan University, The State Key Laboratory of Software Engineering, Wuhan University |
BookMark | eNp9kE1LAzEQhoNUsNb-AG8Bz6uTj_06luIXFLzoOaTZSU3dbtYkFfz3ptSDCHpJhmGezJvnnEwGPyAhlwyuGUB9Exmrq6oAVhdC5qI5IVPWtqIAKctJrgHKgoFgZ2Qe4xYAmKxlWTZTsllQ40PAXif3gdT0OkZnHYZI9TgGr80rXeuIHfUDHXVIzvRIresTBqqHjka9G3MnYqLWB5qCNm9u2FBvTL_vMpd02GC6IKdW9xHn3_eMvNzdPi8fitXT_eNysSqMaCAVss3ZuM7H2rQMat6htNyCroXESleWI1tXzFjeGN6xtuMcWllp2ZQGOoFiRq6O7-bs73uMSW39Pgx5pWKtqHgpRA15ih2nTPAxBrRqDG6nw6dioA5K1VGpykrVQalqMlP_YoxL2Zof8p9d_y_Jj2TMW4YNhh-Z_oS-ACgdjME |
CitedBy_id | crossref_primary_10_1016_j_jpdc_2019_05_005 crossref_primary_10_1007_s11042_018_6735_5 crossref_primary_10_1007_s11042_018_6484_5 crossref_primary_10_1007_s11042_019_08597_8 crossref_primary_10_1007_s11042_018_6230_z crossref_primary_10_1007_s00371_020_01796_7 crossref_primary_10_1007_s11042_018_6690_1 crossref_primary_10_1007_s00521_022_07026_6 crossref_primary_10_1016_j_future_2019_05_021 crossref_primary_10_1016_j_aei_2019_100963 crossref_primary_10_1007_s12161_019_01690_6 crossref_primary_10_1109_ACCESS_2020_3021235 crossref_primary_10_1007_s10489_019_01542_0 crossref_primary_10_1007_s11042_018_6886_4 crossref_primary_10_1016_j_future_2017_11_046 crossref_primary_10_1007_s11704_018_6442_4 crossref_primary_10_1109_ACCESS_2019_2930550 crossref_primary_10_1016_j_neucom_2018_12_025 crossref_primary_10_1007_s11704_019_8123_3 crossref_primary_10_1109_ACCESS_2017_2778745 crossref_primary_10_1109_ACCESS_2017_2773651 crossref_primary_10_1007_s11390_017_1764_5 crossref_primary_10_1016_j_future_2017_09_073 crossref_primary_10_1007_s12652_018_0832_1 crossref_primary_10_1007_s11042_018_6532_1 crossref_primary_10_1007_s11042_019_08070_6 crossref_primary_10_1016_j_aei_2019_02_003 crossref_primary_10_1007_s11042_019_08564_3 crossref_primary_10_1007_s11042_018_5697_y crossref_primary_10_1007_s11766_019_3706_1 crossref_primary_10_1007_s11042_018_6474_7 crossref_primary_10_1007_s11042_019_7354_5 crossref_primary_10_1007_s00371_018_1612_9 crossref_primary_10_1007_s11042_019_7416_8 crossref_primary_10_1007_s11042_018_6323_8 crossref_primary_10_1142_S0218843017410015 crossref_primary_10_1007_s11042_019_07827_3 crossref_primary_10_1109_ACCESS_2017_2776295 crossref_primary_10_1007_s11042_018_6772_0 crossref_primary_10_1007_s11042_020_09036_9 crossref_primary_10_3390_sym9040059 crossref_primary_10_1016_j_aei_2018_08_008 crossref_primary_10_1007_s11766_019_3714_1 crossref_primary_10_1007_s11042_018_5625_1 crossref_primary_10_1007_s11042_018_6278_9 |
Cites_doi | 10.1109/CVPR.2013.307 10.1109/CVPR.2015.7298610 10.1299/jamdsm.2015jamdsm0048 10.1299/jamdsm.2016jamdsm0100 10.1007/978-3-642-33765-9_50 10.1109/CVPR.2014.445 10.1007/978-3-642-33712-3_62 10.1109/CVPR.2015.7298632 10.1007/s11766-016-3340-0 10.1109/CVPR.2015.7299124 10.1109/83.855432 10.1016/j.patcog.2017.02.013 10.1016/j.compmedimag.2015.07.004 10.1109/CVPR.2012.6247895 10.1109/TIP.2012.2202677 10.1007/s11766-016-3378-z 10.3233/ICA-150499 10.1109/CVPR.2009.5206737 10.1109/TPAMI.2013.230 10.1142/S0218843017420011 10.1007/s11425-011-4211-z 10.1109/CVPR.2010.5540231 10.1109/CVPR.2014.160 10.1109/78.978374 10.1023/A:1008162616689 10.1007/s11704-016-5106-5 10.1109/ICCV.2011.6126251 10.1016/j.jmmm.2015.10.054 10.1007/s00371-011-0563-1 10.1007/s11227-016-1738-3 10.1007/978-3-540-24670-1_3 10.1109/CVPR.2014.443 10.1109/CVPR.2015.7298823 10.1007/s00365-007-9003-x 10.1007/s11263-007-0075-7 10.1109/CVPR.2014.143 10.1109/ICCV.2013.87 10.1145/1177352.1177355 10.1109/ICCV.2015.357 10.1007/978-3-540-87479-9_28 10.1109/CVPR.2014.164 10.1016/S0262-8856(02)00129-4 10.1109/CVPR.2014.446 10.1109/CVPR.2012.6247882 10.1007/s10586-016-0538-0 10.1109/ICCV.2009.5459292 10.1109/CVPR.2013.312 10.1007/s11390-017-1714-2 10.1016/j.neucom.2011.07.024 10.1109/CVPR.2014.166 10.1109/CVPR.2012.6247891 10.1109/CVPR.2014.447 10.1007/978-3-319-10602-1_9 10.1145/375551.375608 10.1007/978-3-319-10584-0_12 10.1145/1273496.1273508 10.1007/978-3-319-10599-4_13 10.1007/978-3-319-10590-1_24 10.3233/ICA-120416 10.1007/978-3-319-10578-9_13 |
ContentType | Journal Article |
Copyright | Editorial Committee of Applied Mathematics-A Journal of Chinese Universities and Springer-Verlag GmbH Germany 2017 Copyright Springer Science & Business Media 2017 |
Copyright_xml | – notice: Editorial Committee of Applied Mathematics-A Journal of Chinese Universities and Springer-Verlag GmbH Germany 2017 – notice: Copyright Springer Science & Business Media 2017 |
DBID | AAYXX CITATION |
DOI | 10.1007/s11766-017-3466-8 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 1993-0445 |
EndPage | 312 |
ExternalDocumentID | 10_1007_s11766_017_3466_8 |
GroupedDBID | -01 -0A -5D -5G -BR -EM -SA -S~ -Y2 -~C .VR 06D 0R~ 0VY 188 23M 2B. 2C. 2J2 2JN 2JY 2KG 2KM 2LR 2VQ 2~H 30V 4.4 406 408 40E 5VR 5VS 5XA 5XB 6NX 8RM 8TC 92E 92I 92M 95- 95. 95~ 96X 9D9 9DA AAAVM AABHQ AACDK AAEWM AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMNI ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGAL AEGNC AEJHL AEJRE AEMSY AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFGCZ AFLOW AFQWF AFUIB AFWTZ AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARMRJ AXYYD B-. BA0 BAPOH BDATZ BGNMA CAG CAJEA CCEZO CCVFK CHBEP COF CSCUP CW9 DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FA0 FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 H13 HF~ HG6 HMJXF HRMNR HZ~ IJ- IKXTQ IWAJR IXD I~X I~Z J-C JBSCW JUIAU JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9- O9J P9R PF0 PT4 Q-- Q-0 QOK QOS R-A R89 R9I REI RHV ROL RPX RSV RT1 S.. S16 S1Z S27 S3B SAP SCL SCLPG SDD SDH SHX SISQX SJYHP SMT SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T8Q TCJ TGP TSG TUC U1F U1G U2A U5A U5K UG4 UOJIU UTJUX UY8 UZ4 UZXMN VC2 VFIZW W48 YLTOR ZMTXR ZWQNP ~A9 ~L9 AAPKM AAYXX ABBRH ABDBE AFDZB AFOHR AHPBZ ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c380t-490012a001bc91072de4f2f0a734e6a6f2e1b61cf28c2d19d220946a485c0d3e3 |
IEDL.DBID | U2A |
ISSN | 1005-1031 |
IngestDate | Wed Sep 17 23:57:03 EDT 2025 Tue Jul 01 00:47:45 EDT 2025 Thu Apr 24 23:06:28 EDT 2025 Fri Feb 21 02:32:39 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | 65L15 visual tracking 35B35 60G40 sample set method particle filter online learning |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c380t-490012a001bc91072de4f2f0a734e6a6f2e1b61cf28c2d19d220946a485c0d3e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1936253370 |
PQPubID | 2043965 |
PageCount | 19 |
ParticipantIDs | proquest_journals_1936253370 crossref_primary_10_1007_s11766_017_3466_8 crossref_citationtrail_10_1007_s11766_017_3466_8 springer_journals_10_1007_s11766_017_3466_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2017-09-01 |
PublicationDateYYYYMMDD | 2017-09-01 |
PublicationDate_xml | – month: 09 year: 2017 text: 2017-09-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Hangzhou |
PublicationPlace_xml | – name: Hangzhou – name: Heidelberg |
PublicationTitle | Applied Mathematics-A Journal of Chinese Universities |
PublicationTitleAbbrev | Appl. Math. J. Chin. Univ |
PublicationYear | 2017 |
Publisher | Editorial Committee of Applied Mathematics - A Journal of Chinese Universities Springer Nature B.V |
Publisher_xml | – name: Editorial Committee of Applied Mathematics - A Journal of Chinese Universities – name: Springer Nature B.V |
References | Bao, Wu, Ling (CR5) 2012 Wu, Lim, Yang (CR52) 2013 Achlioptas (CR1) 2001 Arulampalam, Maskell, Gordon (CR2) 2002; 50 Chen, He, Wu (CR10) 2017; 67 Henriques, Caseiro, Martins (CR17) 2012 Liu, Wang, Yang (CR32) 2015 Zhong, Lu, Yang (CR67) 2012 Yan, He, Hou (CR55) 2017; 32 Possegger, Mauthner, Bischof (CR42) 2015 Lu, Wu, Zhu (CR33) 2014 Liu, He, Cai (CR31) 2011; 27 Yan, He, Hou, Ai (CR56) 2017; 26 Bordes, Usunier, Bottou (CR9) 2008 Gao, Ling, Hu (CR13) 2014 Ni, He, Pan (CR37) 2016; 31 Li, He, Cai (CR29) 2013; 20 Babenko, Yang, Belongie (CR3) 2009 Cheng, He, Wu (CR11) 2016; 19 Zhang, He, Han (CR60) 2016; 23 Oron, Bar-Hillel, Levi (CR40) 2012 Wang, Ouyang, Wang (CR50) 2015 Ross, Lim, Lin (CR43) 2008; 77 Baraniuk, Davenport, Devore (CR6) 2008; 28 Lee, Sim, Kim (CR25) 2014 Zhang, Ma, Sclaroff (CR61) 2014 Berger, Seversky (CR7) 2014 Smeulders, Chu, Cucchiara (CR45) 2014; 36 Wu, He, Zhang (CR53) 2015 Yu, He, Pan (CR59) 2016; 10 Huang, He, Cai (CR19) 2011; 54 Danelljan, Khan, Felsberg (CR12) 2014 Hall, Perona (CR15) 2014 Zhang, Jia, Xu (CR65) 2014 Kwon, Lee (CR23) 2014 Wang, Lu (CR49) 2014 Wang, Lu, Yang (CR48) 2013; 22 Yan, He, Che (CR54) 2015; 9 Sun, He, Chen (CR46) 2016; 31 Yang, Shao, Zheng (CR57) 2011; 74 Bordes, Bottou, Gallinari (CR8) 2007 Li, Zhu, Hoi (CR28) 2015 Wang, Lu, Yang (CR47) 2013 Hong, Han (CR18) 2014 Li, He, Chen (CR27) 2016; 10 Sevilla-Lara, Learned-Miller (CR44) 2012 Bailer, Pagani, Stricker (CR4) 2014 Yilmaz, Javed, Shah (CR58) 2006; 38 Zhou, He, Qiu (CR69) 2017; 60 Zhang, Liu, Xu (CR64) 2015 Wang, Wang, Yeung (CR51) 2013 Kwon, Roh, Lee (CR24) 2014 Koh, Kim, Boyd (CR22) 2007; 8 Liu, Huang, Yang (CR30) 2011 Lv, He, Cai (CR34) 2016 Nummiaro, Koller-Meier, Van Gool (CR38) 2003; 21 Zhang, Wong (CR66) 2014 Jermain, Rowlands, Buhrman (CR20) 2016; 401 Zhang, Zhang, Yang (CR62) 2012 Zhou, He, Qiu (CR68) 2016; 72 Hare, Saffari, Torr (CR16) 2011 Kalal, Matas, Mikolajczyk (CR21) 2010 Zhang, Zhang, Liu (CR63) 2014 Gordon, Salmond, Smith (CR14) 1993 Levey, Lindenbaum (CR26) 2000; 9 Papageorgiou, Poggio (CR41) 2000; 38 Ni, He, Yuan (CR36) 2015; 46 Okuma, Taleghani, de Freitas (CR39) 2004 Mei, Ling (CR35) 2009 X Li (3466_CR29) 2013; 20 K Zhang (3466_CR63) 2014 Z Huang (3466_CR19) 2011; 54 T Zhang (3466_CR65) 2014 J Gao (3466_CR13) 2014 J Zhang (3466_CR61) 2014 Y Lu (3466_CR33) 2014 B Ni (3466_CR36) 2015; 46 C Bailer (3466_CR4) 2014 X Lv (3466_CR34) 2016 A Bordes (3466_CR8) 2007 Z Zhang (3466_CR66) 2014 C Papageorgiou (3466_CR41) 2000; 38 Y Wu (3466_CR52) 2013 X Yan (3466_CR55) 2017; 32 Y Zhou (3466_CR68) 2016; 72 S Hong (3466_CR18) 2014 J Kwon (3466_CR23) 2014 D Lee (3466_CR25) 2014 H Liu (3466_CR31) 2011; 27 D Wang (3466_CR47) 2013 Y Wu (3466_CR53) 2015 B Babenko (3466_CR3) 2009 Y Cheng (3466_CR11) 2016; 19 X Yan (3466_CR56) 2017; 26 T Zhang (3466_CR64) 2015 D Hall (3466_CR15) 2014 C Jermain (3466_CR20) 2016; 401 D Achlioptas (3466_CR1) 2001 M Danelljan (3466_CR12) 2014 H Yang (3466_CR57) 2011; 74 L Sevilla-Lara (3466_CR44) 2012 J Sun (3466_CR46) 2016; 31 Y Zhou (3466_CR69) 2017; 60 C Bao (3466_CR5) 2012 S Hare (3466_CR16) 2011 Y Chen (3466_CR10) 2017; 67 Z Kalal (3466_CR21) 2010 H Yu (3466_CR59) 2016; 10 K Li (3466_CR27) 2016; 10 B Ni (3466_CR37) 2016; 31 J Kwon (3466_CR24) 2014 M Arulampalam (3466_CR2) 2002; 50 S Oron (3466_CR40) 2012 B Liu (3466_CR30) 2011 A Smeulders (3466_CR45) 2014; 36 N Gordon (3466_CR14) 1993 D Wang (3466_CR48) 2013; 22 K Koh (3466_CR22) 2007; 8 T Liu (3466_CR32) 2015 K Zhang (3466_CR62) 2012 J Henriques (3466_CR17) 2012 D Zhang (3466_CR60) 2016; 23 Y Li (3466_CR28) 2015 X Yan (3466_CR54) 2015; 9 M Berger (3466_CR7) 2014 H Possegger (3466_CR42) 2015 L Wang (3466_CR50) 2015 X Mei (3466_CR35) 2009 W Zhong (3466_CR67) 2012 D Wang (3466_CR49) 2014 K Okuma (3466_CR39) 2004 N Wang (3466_CR51) 2013 K Nummiaro (3466_CR38) 2003; 21 R Baraniuk (3466_CR6) 2008; 28 A Yilmaz (3466_CR58) 2006; 38 A Bordes (3466_CR9) 2008 D A Ross (3466_CR43) 2008; 77 A Levey (3466_CR26) 2000; 9 |
References_xml | – start-page: 2371 year: 2013 end-page: 2378 ident: CR47 article-title: Least soft-thresold squares tracking publication-title: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) doi: 10.1109/CVPR.2013.307 – start-page: 150 year: 2015 end-page: 158 ident: CR64 article-title: Structural sparse tracking publication-title: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) doi: 10.1109/CVPR.2015.7298610 – volume: 9 start-page: JAMDSM0048 issue: 4 year: 2015 ident: CR54 article-title: An efficient improved particle swarm optimization based on prey behavior of fish schooling publication-title: J Adv Mech Des Syst doi: 10.1299/jamdsm.2015jamdsm0048 – volume: 10 start-page: JAMDSM0100 issue: 8 year: 2016 ident: CR59 article-title: An efficient similarity-based level set model for medical image segmentation publication-title: J Adv Mech Des Syst doi: 10.1299/jamdsm.2016jamdsm0100 – start-page: 702 year: 2012 end-page: 715 ident: CR17 article-title: Exploiting the circulant structure of tracking-bydetection with kernels publication-title: 2012 European conference on computer vision doi: 10.1007/978-3-642-33765-9_50 – start-page: 3478 year: 2014 end-page: 3485 ident: CR49 article-title: Visual tracking via probability continuous outlier model publication-title: 2014 IEEE Conference on Computer Vision And Pattern Recognition (CVPR) doi: 10.1109/CVPR.2014.445 – start-page: 864 year: 2012 end-page: 877 ident: CR62 article-title: Real-time compressive tracking publication-title: 2012 European Conference on Computer Vision doi: 10.1007/978-3-642-33712-3_62 – start-page: 127 year: 2014 end-page: 141 ident: CR63 article-title: Fast visual tracking via dense spatio-temporal context learning publication-title: 2014 European Conference on Computer Vision – start-page: 353 year: 2015 end-page: 361 ident: CR28 article-title: Reliable patch trackers: Robust visual tracking by exploiting reliable patches publication-title: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) doi: 10.1109/CVPR.2015.7298632 – volume: 31 start-page: 37 issue: 1 year: 2016 end-page: 52 ident: CR37 article-title: Using shapes correlation for active contour segmentation of uterine fibroid ultrasound images in computer-aided therapy publication-title: Appl Math J Chinese Univ Ser B doi: 10.1007/s11766-016-3340-0 – start-page: 4902 year: 2015 end-page: 4912 ident: CR32 article-title: Real-time part-based visual tracking via adaptive correlation filters publication-title: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) doi: 10.1109/CVPR.2015.7299124 – volume: 9 start-page: 1371 issue: 8 year: 2000 end-page: 1374 ident: CR26 article-title: Sequential Karhunen-Loeve basis extraction and its application to images publication-title: IEEE Trans Image Process doi: 10.1109/83.855432 – volume: 67 start-page: 139 year: 2017 end-page: 148 ident: CR10 article-title: A local start search algorithm to compute exact Hausdorff Distance for arbitrary point sets publication-title: Pattern Recogn doi: 10.1016/j.patcog.2017.02.013 – start-page: 1 year: 2014 end-page: 16 ident: CR18 article-title: Visual tracking by sampling tree-structured graphical models publication-title: 2014 European Conference on Computer Vision – volume: 46 start-page: 302 year: 2015 end-page: 314 ident: CR36 article-title: Segmentation of uterine fibroid ultrasound images using a dynamic statistical shape model in H I F U therapy publication-title: Comput Med Imag Grap doi: 10.1016/j.compmedimag.2015.07.004 – start-page: 1940 year: 2012 end-page: 1947 ident: CR40 article-title: Locally orderless tracking publication-title: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) doi: 10.1109/CVPR.2012.6247895 – volume: 22 start-page: 314 issue: 1 year: 2013 end-page: 325 ident: CR48 article-title: Online object tracking with sparse prototypes publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2012.2202677 – volume: 31 start-page: 177 issue: 2 year: 2016 end-page: 197 ident: CR46 article-title: A multiple template approach for robust tracking of fast motion target publication-title: Appl Math J Chinese Univ Ser B doi: 10.1007/s11766-016-3378-z – start-page: 170 year: 2014 end-page: 185 ident: CR4 article-title: A superior tracking approach: Building a strong tracker through fusion publication-title: 2014 European Conference on Computer Vision – volume: 23 start-page: 31 issue: 1 year: 2016 end-page: 50 ident: CR60 article-title: Quantitative optimization of interoperability during feature-based data exchange publication-title: Integr Comput-Aid E doi: 10.3233/ICA-150499 – start-page: 983 year: 2009 end-page: 990 ident: CR3 article-title: Visual tracking with online multiple instance learning publication-title: 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) doi: 10.1109/CVPR.2009.5206737 – volume: 8 start-page: 1519 year: 2007 end-page: 1555 ident: CR22 article-title: An interior-point method for large-scale l1-regularized logistic regression publication-title: J Mach Learn Res – year: 2015 ident: CR53 article-title: Service-oriented feature-based data exchange for cloud-based design and manufacturing publication-title: IEEE T Serv Comput – volume: 36 start-page: 1442 issue: 7 year: 2014 end-page: 1468 ident: CR45 article-title: Visual tracking: an experimental survey publication-title: IEEE T Pattern Anal doi: 10.1109/TPAMI.2013.230 – volume: 26 start-page: 1742001 issue: 2 year: 2017 ident: CR56 article-title: An efficient particle swarm optimization for large scale hardware/software co-design system publication-title: Int J Coop Info Syst doi: 10.1142/S0218843017420011 – volume: 54 start-page: 1207 issue: 6 year: 2011 end-page: 1217 ident: CR19 article-title: Efficient random saliency map detection publication-title: Sci China Ser F doi: 10.1007/s11425-011-4211-z – start-page: 49 year: 2010 end-page: 56 ident: CR21 article-title: Pn learning: Bootstrapping binary classifiers by structural constraints publication-title: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) doi: 10.1109/CVPR.2010.5540231 – start-page: 188 year: 2014 end-page: 203 ident: CR61 article-title: MEEM: Robust tracking via multiple experts using entropy minimization publication-title: 2014 European Conference on Computer Vision – start-page: 1226 year: 2014 end-page: 1233 ident: CR66 article-title: Pyramid-based visual tracking using sparsity represented mean transform publication-title: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) doi: 10.1109/CVPR.2014.160 – volume: 50 start-page: 174 issue: 2 year: 2002 end-page: 188 ident: CR2 article-title: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking publication-title: IEEE Trans Signal Process doi: 10.1109/78.978374 – start-page: 377 year: 2014 end-page: 392 ident: CR24 article-title: Robust visual tracking with double bounding box model publication-title: European Conference on Computer Vision – volume: 38 start-page: 15 issue: 1 year: 2000 end-page: 33 ident: CR41 article-title: A trainable system for object detection publication-title: Int J Comput Vision doi: 10.1023/A:1008162616689 – volume: 60 start-page: 068102 issue: 6 year: 2017 ident: CR69 article-title: Dynamic strategy based parallel ant colony optimization on GPUs for TSPs publication-title: Sci China Ser F – year: 2016 ident: CR34 article-title: A string-wise C R D T algorithm for smart and large-scale collaborative editing systems publication-title: Adv Eng Inform – volume: 10 start-page: 689 issue: 4 year: 2016 end-page: 701 ident: CR27 article-title: Real-time object tracking via compressive feature selection publication-title: Front Comput Sci doi: 10.1007/s11704-016-5106-5 – start-page: 263 year: 2011 end-page: 270 ident: CR16 article-title: Struck: Structured output tracking with kernels publication-title: 2011 IEEE International Conference on Computer Vision (ICCV) doi: 10.1109/ICCV.2011.6126251 – start-page: 89 year: 2007 end-page: 96 ident: CR8 article-title: Solving multiclass support vector machines with LaRank publication-title: Proceedings of the 24th international conference on Machine learning – volume: 401 start-page: 320 year: 2016 end-page: 322 ident: CR20 article-title: GPU-accelerated micromagnetic simulations using cloud computing publication-title: J Magn Magn Mater doi: 10.1016/j.jmmm.2015.10.054 – volume: 27 start-page: 595 issue: 6-8 year: 2011 end-page: 603 ident: CR31 article-title: Performance-based control interfaces using mixture of factor analyzers publication-title: Visual Comput doi: 10.1007/s00371-011-0563-1 – start-page: 188 year: 2014 end-page: 203 ident: CR13 article-title: Transfer learning based visual tracking with Gaussian processes regression publication-title: 2014 European Conference on Computer Vision – volume: 72 start-page: 2394 issue: 6 year: 2016 end-page: 2416 ident: CR68 article-title: Optimization of parallel iterated local search algorithms on graphics processing unit publication-title: J Supercomput doi: 10.1007/s11227-016-1738-3 – start-page: 28 year: 2004 end-page: 39 ident: CR39 article-title: A boosted particle filter: Multitarget detection and tracking publication-title: 2004 European Conference on Computer Vision doi: 10.1007/978-3-540-24670-1_3 – start-page: 1830 year: 2012 end-page: 1837 ident: CR5 article-title: Real time robust l1 tracker using accelerated proximal gradient approach publication-title: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 3462 year: 2014 end-page: 3469 ident: CR33 article-title: Online object tracking, learning and parsing with And-Or graphs publication-title: 2014 IEEE Conference on Computer Vision And Pattern Recognition (CVPR) doi: 10.1109/CVPR.2014.443 – start-page: 2113 year: 2015 end-page: 2120 ident: CR42 article-title: In defense of color-based model-free tracking publication-title: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) doi: 10.1109/CVPR.2015.7298823 – volume: 28 start-page: 253 issue: 3 year: 2008 end-page: 263 ident: CR6 article-title: A simple proof of the restricted isometry property for random matrices publication-title: Constr Approx doi: 10.1007/s00365-007-9003-x – volume: 77 start-page: 125 issue: 1-3 year: 2008 end-page: 141 ident: CR43 article-title: Incremental learning for robust visual tracking publication-title: Int J Comput Vision doi: 10.1007/s11263-007-0075-7 – start-page: 1090 year: 2014 end-page: 1097 ident: CR12 article-title: Adaptive color attributes for real-time visual tracking publication-title: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) doi: 10.1109/CVPR.2014.143 – volume: 20 start-page: 15 issue: 1 year: 2013 end-page: 30 ident: CR29 article-title: A method for topological entity matching in the integration of heterogeneous CAD systems publication-title: Integr Comput-Aid E – start-page: 657 year: 2013 end-page: 664 ident: CR51 article-title: Online robust non-negative dictionary learning for visual tracking publication-title: 2013 IEEE International Conference on Computer Vision (ICCV) doi: 10.1109/ICCV.2013.87 – volume: 38 start-page: 13 issue: 4 year: 2006 ident: CR58 article-title: Object tracking: A survey publication-title: ACM Comput Surv (CSUR) doi: 10.1145/1177352.1177355 – start-page: 1313 year: 2011 end-page: 1320 ident: CR30 article-title: Robust tracking using local sparse appearance model and kselection publication-title: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) – start-page: 107 year: 1993 end-page: 113 ident: CR14 article-title: Novel approach to nonlinear/non-Gaussian Bayesian state estimation publication-title: IEE Proceedings F-Radar and Signal Processing – start-page: 3119 year: 2015 end-page: 3127 ident: CR50 article-title: Visual tracking with fully convolutional networks publication-title: 2015 IEEE International Conference on Computer Vision (ICCV) doi: 10.1109/ICCV.2015.357 – start-page: 146 year: 2008 end-page: 161 ident: CR9 article-title: Sequence labelling S V Ms trained in one pass publication-title: Joint European Conference on Machine Learning and Knowledge Discovery in Databases doi: 10.1007/978-3-540-87479-9_28 – start-page: 1258 year: 2014 end-page: 1265 ident: CR65 article-title: Partial occlusion handling for visual tracking via robust part matching publication-title: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) doi: 10.1109/CVPR.2014.164 – volume: 21 start-page: 99 issue: 1 year: 2003 end-page: 110 ident: CR38 article-title: An adaptive color-based particle filter publication-title: Image Vision Comput doi: 10.1016/S0262-8856(02)00129-4 – start-page: 3486 year: 2014 end-page: 3493 ident: CR25 article-title: Visual tracking using pertinent patch selection and masking publication-title: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) doi: 10.1109/CVPR.2014.446 – start-page: 1838 year: 2012 end-page: 1845 ident: CR67 article-title: Robust object tracking via sparsity-based collaborative model publication-title: 2012 IEEE Conference on Computer vision and pattern recognition (CVPR) doi: 10.1109/CVPR.2012.6247882 – volume: 19 start-page: 237 issue: 1 year: 2016 end-page: 253 ident: CR11 article-title: Meta-operation conflict resolution for human-human interaction in collaborative feature-based C A D systems publication-title: Cluster Comput doi: 10.1007/s10586-016-0538-0 – start-page: 1436 year: 2009 end-page: 1443 ident: CR35 article-title: Robust visual tracking using l1 minimization publication-title: 2009 IEEE 12th International Conference on Computer Vision (ICCV) doi: 10.1109/ICCV.2009.5459292 – start-page: 2411 year: 2013 end-page: 2418 ident: CR52 article-title: Online object tracking: A benchmark publication-title: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) doi: 10.1109/CVPR.2013.312 – start-page: 274 year: 2001 end-page: 281 ident: CR1 article-title: Database-friendly random projections publication-title: Proceedings of the 20th ACM SIGMODSIGACT-SIGART symposium on Principles of database systems – volume: 32 start-page: 340 issue: 2 year: 2017 end-page: 355 ident: CR55 article-title: A novel hardware/software partitioning method based on position disturbed particle swarm optimization with invasive weed optimization publication-title: J Comput Sci Tech doi: 10.1007/s11390-017-1714-2 – volume: 74 start-page: 3823 issue: 18 year: 2011 end-page: 3831 ident: CR57 article-title: Recent advances and trends in visual tracking: A review publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.07.024 – start-page: 361 year: 2014 end-page: 376 ident: CR15 article-title: Online, real-time tracking using a category-to-individual detector publication-title: 2014 European Conference on Computer Vision – start-page: 1274 year: 2014 end-page: 1281 ident: CR7 article-title: Subspace tracking under dynamic dimensionality for online background subtraction publication-title: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) doi: 10.1109/CVPR.2014.166 – start-page: 1910 year: 2012 end-page: 1917 ident: CR44 article-title: Distribution fields for tracking publication-title: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) doi: 10.1109/CVPR.2012.6247891 – start-page: 3494 year: 2014 end-page: 3501 ident: CR23 article-title: Interval tracker: Tracking by interval analysis publication-title: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) doi: 10.1109/CVPR.2014.447 – start-page: 127 volume-title: 2014 European Conference on Computer Vision year: 2014 ident: 3466_CR63 doi: 10.1007/978-3-319-10602-1_9 – start-page: 107 volume-title: IEE Proceedings F-Radar and Signal Processing year: 1993 ident: 3466_CR14 – start-page: 377 volume-title: European Conference on Computer Vision year: 2014 ident: 3466_CR24 – start-page: 353 volume-title: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) year: 2015 ident: 3466_CR28 doi: 10.1109/CVPR.2015.7298632 – start-page: 274 volume-title: Proceedings of the 20th ACM SIGMODSIGACT-SIGART symposium on Principles of database systems year: 2001 ident: 3466_CR1 doi: 10.1145/375551.375608 – start-page: 150 volume-title: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) year: 2015 ident: 3466_CR64 doi: 10.1109/CVPR.2015.7298610 – volume: 8 start-page: 1519 year: 2007 ident: 3466_CR22 publication-title: J Mach Learn Res – volume-title: Adv Eng Inform year: 2016 ident: 3466_CR34 – volume: 77 start-page: 125 issue: 1-3 year: 2008 ident: 3466_CR43 publication-title: Int J Comput Vision doi: 10.1007/s11263-007-0075-7 – volume: 22 start-page: 314 issue: 1 year: 2013 ident: 3466_CR48 publication-title: IEEE Trans Image Process doi: 10.1109/TIP.2012.2202677 – volume: 32 start-page: 340 issue: 2 year: 2017 ident: 3466_CR55 publication-title: J Comput Sci Tech doi: 10.1007/s11390-017-1714-2 – start-page: 3478 volume-title: 2014 IEEE Conference on Computer Vision And Pattern Recognition (CVPR) year: 2014 ident: 3466_CR49 doi: 10.1109/CVPR.2014.445 – volume: 46 start-page: 302 year: 2015 ident: 3466_CR36 publication-title: Comput Med Imag Grap doi: 10.1016/j.compmedimag.2015.07.004 – volume: 26 start-page: 1742001 issue: 2 year: 2017 ident: 3466_CR56 publication-title: Int J Coop Info Syst doi: 10.1142/S0218843017420011 – start-page: 983 volume-title: 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) year: 2009 ident: 3466_CR3 doi: 10.1109/CVPR.2009.5206737 – start-page: 3486 volume-title: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) year: 2014 ident: 3466_CR25 doi: 10.1109/CVPR.2014.446 – start-page: 1090 volume-title: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) year: 2014 ident: 3466_CR12 doi: 10.1109/CVPR.2014.143 – start-page: 263 volume-title: 2011 IEEE International Conference on Computer Vision (ICCV) year: 2011 ident: 3466_CR16 doi: 10.1109/ICCV.2011.6126251 – volume: 38 start-page: 13 issue: 4 year: 2006 ident: 3466_CR58 publication-title: ACM Comput Surv (CSUR) doi: 10.1145/1177352.1177355 – start-page: 702 volume-title: 2012 European conference on computer vision year: 2012 ident: 3466_CR17 doi: 10.1007/978-3-642-33765-9_50 – start-page: 657 volume-title: 2013 IEEE International Conference on Computer Vision (ICCV) year: 2013 ident: 3466_CR51 doi: 10.1109/ICCV.2013.87 – volume: 31 start-page: 177 issue: 2 year: 2016 ident: 3466_CR46 publication-title: Appl Math J Chinese Univ Ser B doi: 10.1007/s11766-016-3378-z – volume: 72 start-page: 2394 issue: 6 year: 2016 ident: 3466_CR68 publication-title: J Supercomput doi: 10.1007/s11227-016-1738-3 – start-page: 3494 volume-title: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) year: 2014 ident: 3466_CR23 doi: 10.1109/CVPR.2014.447 – start-page: 1 volume-title: 2014 European Conference on Computer Vision year: 2014 ident: 3466_CR18 – start-page: 170 volume-title: 2014 European Conference on Computer Vision year: 2014 ident: 3466_CR4 doi: 10.1007/978-3-319-10584-0_12 – volume: 28 start-page: 253 issue: 3 year: 2008 ident: 3466_CR6 publication-title: Constr Approx doi: 10.1007/s00365-007-9003-x – volume: 9 start-page: JAMDSM0048 issue: 4 year: 2015 ident: 3466_CR54 publication-title: J Adv Mech Des Syst doi: 10.1299/jamdsm.2015jamdsm0048 – start-page: 1274 volume-title: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) year: 2014 ident: 3466_CR7 doi: 10.1109/CVPR.2014.166 – start-page: 1313 volume-title: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) year: 2011 ident: 3466_CR30 – start-page: 4902 volume-title: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) year: 2015 ident: 3466_CR32 doi: 10.1109/CVPR.2015.7299124 – start-page: 1436 volume-title: 2009 IEEE 12th International Conference on Computer Vision (ICCV) year: 2009 ident: 3466_CR35 doi: 10.1109/ICCV.2009.5459292 – start-page: 1226 volume-title: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) year: 2014 ident: 3466_CR66 doi: 10.1109/CVPR.2014.160 – volume: 50 start-page: 174 issue: 2 year: 2002 ident: 3466_CR2 publication-title: IEEE Trans Signal Process doi: 10.1109/78.978374 – start-page: 1830 volume-title: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) year: 2012 ident: 3466_CR5 – volume: 74 start-page: 3823 issue: 18 year: 2011 ident: 3466_CR57 publication-title: Neurocomputing doi: 10.1016/j.neucom.2011.07.024 – start-page: 28 volume-title: 2004 European Conference on Computer Vision year: 2004 ident: 3466_CR39 doi: 10.1007/978-3-540-24670-1_3 – start-page: 89 volume-title: Proceedings of the 24th international conference on Machine learning year: 2007 ident: 3466_CR8 doi: 10.1145/1273496.1273508 – volume: 38 start-page: 15 issue: 1 year: 2000 ident: 3466_CR41 publication-title: Int J Comput Vision doi: 10.1023/A:1008162616689 – start-page: 1258 volume-title: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) year: 2014 ident: 3466_CR65 doi: 10.1109/CVPR.2014.164 – start-page: 1838 volume-title: 2012 IEEE Conference on Computer vision and pattern recognition (CVPR) year: 2012 ident: 3466_CR67 doi: 10.1109/CVPR.2012.6247882 – volume: 54 start-page: 1207 issue: 6 year: 2011 ident: 3466_CR19 publication-title: Sci China Ser F doi: 10.1007/s11425-011-4211-z – volume: 67 start-page: 139 year: 2017 ident: 3466_CR10 publication-title: Pattern Recogn doi: 10.1016/j.patcog.2017.02.013 – volume: 31 start-page: 37 issue: 1 year: 2016 ident: 3466_CR37 publication-title: Appl Math J Chinese Univ Ser B doi: 10.1007/s11766-016-3340-0 – start-page: 188 volume-title: 2014 European Conference on Computer Vision year: 2014 ident: 3466_CR61 doi: 10.1007/978-3-319-10599-4_13 – volume: 10 start-page: JAMDSM0100 issue: 8 year: 2016 ident: 3466_CR59 publication-title: J Adv Mech Des Syst doi: 10.1299/jamdsm.2016jamdsm0100 – start-page: 1940 volume-title: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) year: 2012 ident: 3466_CR40 doi: 10.1109/CVPR.2012.6247895 – volume: 60 start-page: 068102 issue: 6 year: 2017 ident: 3466_CR69 publication-title: Sci China Ser F – volume: 21 start-page: 99 issue: 1 year: 2003 ident: 3466_CR38 publication-title: Image Vision Comput doi: 10.1016/S0262-8856(02)00129-4 – start-page: 3119 volume-title: 2015 IEEE International Conference on Computer Vision (ICCV) year: 2015 ident: 3466_CR50 doi: 10.1109/ICCV.2015.357 – start-page: 1910 volume-title: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) year: 2012 ident: 3466_CR44 doi: 10.1109/CVPR.2012.6247891 – start-page: 2371 volume-title: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) year: 2013 ident: 3466_CR47 doi: 10.1109/CVPR.2013.307 – start-page: 361 volume-title: 2014 European Conference on Computer Vision year: 2014 ident: 3466_CR15 doi: 10.1007/978-3-319-10590-1_24 – start-page: 49 volume-title: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) year: 2010 ident: 3466_CR21 doi: 10.1109/CVPR.2010.5540231 – volume: 20 start-page: 15 issue: 1 year: 2013 ident: 3466_CR29 publication-title: Integr Comput-Aid E doi: 10.3233/ICA-120416 – volume-title: IEEE T Serv Comput year: 2015 ident: 3466_CR53 – start-page: 146 volume-title: Joint European Conference on Machine Learning and Knowledge Discovery in Databases year: 2008 ident: 3466_CR9 doi: 10.1007/978-3-540-87479-9_28 – volume: 10 start-page: 689 issue: 4 year: 2016 ident: 3466_CR27 publication-title: Front Comput Sci doi: 10.1007/s11704-016-5106-5 – volume: 23 start-page: 31 issue: 1 year: 2016 ident: 3466_CR60 publication-title: Integr Comput-Aid E doi: 10.3233/ICA-150499 – start-page: 188 volume-title: 2014 European Conference on Computer Vision year: 2014 ident: 3466_CR13 doi: 10.1007/978-3-319-10578-9_13 – volume: 27 start-page: 595 issue: 6-8 year: 2011 ident: 3466_CR31 publication-title: Visual Comput doi: 10.1007/s00371-011-0563-1 – volume: 36 start-page: 1442 issue: 7 year: 2014 ident: 3466_CR45 publication-title: IEEE T Pattern Anal doi: 10.1109/TPAMI.2013.230 – start-page: 864 volume-title: 2012 European Conference on Computer Vision year: 2012 ident: 3466_CR62 doi: 10.1007/978-3-642-33712-3_62 – volume: 9 start-page: 1371 issue: 8 year: 2000 ident: 3466_CR26 publication-title: IEEE Trans Image Process doi: 10.1109/83.855432 – start-page: 3462 volume-title: 2014 IEEE Conference on Computer Vision And Pattern Recognition (CVPR) year: 2014 ident: 3466_CR33 doi: 10.1109/CVPR.2014.443 – volume: 19 start-page: 237 issue: 1 year: 2016 ident: 3466_CR11 publication-title: Cluster Comput doi: 10.1007/s10586-016-0538-0 – volume: 401 start-page: 320 year: 2016 ident: 3466_CR20 publication-title: J Magn Magn Mater doi: 10.1016/j.jmmm.2015.10.054 – start-page: 2113 volume-title: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) year: 2015 ident: 3466_CR42 doi: 10.1109/CVPR.2015.7298823 – start-page: 2411 volume-title: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR) year: 2013 ident: 3466_CR52 doi: 10.1109/CVPR.2013.312 |
SSID | ssj0001474558 ssj0064147 |
Score | 2.287759 |
Snippet | Target tracking is one of the most important issues in computer vision and has been applied in many fields of science, engineering and industry. Because of the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 294 |
SubjectTerms | Applications of Mathematics Classifiers Computer vision Correlation Feature extraction Mathematics Mathematics and Statistics Occlusion Samples Similarity Statistical analysis Statistical methods Tracking |
Title | A correlative classifiers approach based on particle filter and sample set for tracking occluded target |
URI | https://link.springer.com/article/10.1007/s11766-017-3466-8 https://www.proquest.com/docview/1936253370 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-6XfQgfuJ0jhw8KYXmo2l6LLI5FD05mKeSviYyGN1Yu__fpB_bFBW8lEJfcnjvNe-XvJffQ-g2FZJJoZWnJQjP4tvISzNlPB4pBoYI5UNV5fsqxhP-NA2mzT3uoq12b1OS1Uq9vezmuAw9t6oybl_kPuoGjk7KOvGExtuDFR7yHcpwwUnVZYzUlJuMtKnNn6b8Gpy2iPNbkrSKPaNjdNSARhzXVj5Bezo_RYcvG8bV4gx9xBhco415ReSNwYHimXF9rnFLG45dxMrwIsfLxl-wmblkOVZ5hgvleIJxoUtscSwuVwrcKTpeAMzXmR1X14yfo8lo-PYw9pomCh4w6ZdW6Q7RKPtIwUKDkGaaG2p8FTKuhRKGapIKAoZKoBmJMkrtjk8oLgPwM6bZBerki1xfIgxURAq4DpiVICFJCdcmggDslBZ4qh7yW-0l0DCMu0YX82TLjewUnliFJ07hieyhu82QZU2v8ZdwvzVJ0vxpRWIBqN3CMRb6PXTfmmnn82-TXf1L-hodUOcmVXFZH3XK1VrfWDRSpgPUjR_fn4eDygs_AX-e1dM |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDMCAeIpCAQ9MoEjxI04yVghUoO3USt0i52yjSlVaNen_x86jLQiQWKJIsW84X3zf-c7fIXSfiohFQktPRyA8i29jL1XSeDyWDAwR0oeyyncoemP-Ngkm9T3uvKl2b1KS5U69uezmuAw9t6sybl-iXbTnsowu4hrT7uZghYd8izJccFJ2GSMV5SYjTWrzJ5FfndMGcX5Lkpa-5-UYHdWgEXerVT5BOzo7RYeDNeNqfoY-uhhco41ZSeSNwYHiqXF9rnFDG46dx1J4nuFFbS_YTF2yHMtM4Vw6nmCc6wJbHIuLpQR3io7nALOVsvOqmvFzNH55Hj31vLqJggcs8gurdIdopH2kYKFBSJXmhhpfhoxrIYWhmqSCgKERUEViRamN-ITkUQC-YppdoFY2z_QlwkBFLIHrgNkRJCQp4drEEIAVaYGnbCO_0V4CNcO4a3QxSzbcyE7hiVV44hSeRG30sJ6yqOg1_hrcaZYkqf-0PLEA1IZwjIV-Gz02y7T1-TdhV_8afYf2e6NBP-m_Dt-v0QF1JlMWmnVQq1iu9I1FJkV6W1riJ9jM1yI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6VRargQKGAWKDgA6dWgfixTnJcFZZXizgUiZ6CM7bRilV2RbIXfj12HuwWtUiolyhSbEv2jOPPnvH3ARxkMuaxNCowMcrA4dskyLSygUgUR0ulCrHK8r2SZzfi4rZ32-icFm22exuSrO80eJamvDyaaHs0u_jmeQ0D_4flwr3EC7AovIREBxb7p78v545ZRCTmCMSloJXmGK0JODltA51_a_TPpWqGP1-FTKuVaPAJ7to-1AkoD4fTMjvEp1f0jv_RyVVYaVAq6ddutQYfTP4Zln--ULwW63DfJ-iVPUYVczhBj8KH1gtrk5annPglUpNxTiaNgxI79NF5onJNCuWJiUlhSuKAMykfFfpjezJGHE21q1cnqW_AzeDk1_ezoFFtCJDHYems7CGUco8MHRaJmDbCMhuqiAsjlbTM0ExStCxGpmmiGXNbTKlE3MNQc8M3oZOPc7MFBJlMFArT464EjWhGhbEJ9tA16ZCu6kLYGijFhtLcK2uM0hkZsx_D1I1h6scwjbvw9aXKpObzeKvwbmv1tJnaReoQr9szch6FXfjWGnHu878a235X6X34eH08SH-cX13uwBLzTlAltu1Cp3ycmi8OCZXZXuPtz3jS_NU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+correlative+classifiers+approach+based+on+particle+filter+and+sample+set+for+tracking+occluded+target&rft.jtitle=Applied+Mathematics-A+Journal+of+Chinese+Universities&rft.au=Li%2C+Kang&rft.au=He%2C+Fa-zhi&rft.au=Yu%2C+Hai-ping&rft.au=Chen%2C+Xiao&rft.date=2017-09-01&rft.issn=1005-1031&rft.eissn=1993-0445&rft.volume=32&rft.issue=3&rft.spage=294&rft.epage=312&rft_id=info:doi/10.1007%2Fs11766-017-3466-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11766_017_3466_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1005-1031&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1005-1031&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1005-1031&client=summon |