A correlative classifiers approach based on particle filter and sample set for tracking occluded target

Target tracking is one of the most important issues in computer vision and has been applied in many fields of science, engineering and industry. Because of the occlusion during tracking, typical approaches with single classifier learn much of occluding background information which results in the dec...

Full description

Saved in:
Bibliographic Details
Published inApplied Mathematics-A Journal of Chinese Universities Vol. 32; no. 3; pp. 294 - 312
Main Authors Li, Kang, He, Fa-zhi, Yu, Hai-ping, Chen, Xiao
Format Journal Article
LanguageEnglish
Published Hangzhou Editorial Committee of Applied Mathematics - A Journal of Chinese Universities 01.09.2017
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1005-1031
1993-0445
DOI10.1007/s11766-017-3466-8

Cover

Abstract Target tracking is one of the most important issues in computer vision and has been applied in many fields of science, engineering and industry. Because of the occlusion during tracking, typical approaches with single classifier learn much of occluding background information which results in the decrease of tracking performance, and eventually lead to the failure of the tracking algorithm. This paper presents a new correlative classifiers approach to address the above problem. Our idea is to derive a group of correlative classifiers based on sample set method. Then we propose strategy to establish the classifiers and to query the suitable classifiers for the next frame tracking. In order to deal with nonlinear problem, particle filter is adopted and integrated with sample set method. For choosing the target from candidate particles, we define a similarity measurement between particles and sample set. The proposed sample set method includes the following steps. First, we cropped positive samples set around the target and negative samples set far away from the target. Second, we extracted average Haar-like feature from these samples and calculate their statistical characteristic which represents the target model. Third, we define the similarity measurement based on the statistical characteristic of these two sets to judge the similarity between candidate particles and target model. Finally, we choose the largest similarity score particle as the target in the new frame. A number of experiments show the robustness and efficiency of the proposed approach when compared with other state-of-the-art trackers.
AbstractList Target tracking is one of the most important issues in computer vision and has been applied in many fields of science, engineering and industry. Because of the occlusion during tracking, typical approaches with single classifier learn much of occluding background information which results in the decrease of tracking performance, and eventually lead to the failure of the tracking algorithm. This paper presents a new correlative classifiers approach to address the above problem. Our idea is to derive a group of correlative classifiers based on sample set method. Then we propose strategy to establish the classifiers and to query the suitable classifiers for the next frame tracking. In order to deal with nonlinear problem, particle filter is adopted and integrated with sample set method. For choosing the target from candidate particles, we define a similarity measurement between particles and sample set. The proposed sample set method includes the following steps. First, we cropped positive samples set around the target and negative samples set far away from the target. Second, we extracted average Haar-like feature from these samples and calculate their statistical characteristic which represents the target model. Third, we define the similarity measurement based on the statistical characteristic of these two sets to judge the similarity between candidate particles and target model. Finally, we choose the largest similarity score particle as the target in the new frame. A number of experiments show the robustness and efficiency of the proposed approach when compared with other state-of-the-art trackers.
Author He, Fa-zhi
Chen, Xiao
Li, Kang
Yu, Hai-ping
Author_xml – sequence: 1
  givenname: Kang
  surname: Li
  fullname: Li, Kang
  organization: School of Computer Science, Wuhan University, School of Computer Science and Information Engineering, Hubei University
– sequence: 2
  givenname: Fa-zhi
  surname: He
  fullname: He, Fa-zhi
  email: fzhe@whu.edu.cn
  organization: School of Computer Science, Wuhan University, The State Key Laboratory of Software Engineering, Wuhan University
– sequence: 3
  givenname: Hai-ping
  surname: Yu
  fullname: Yu, Hai-ping
  organization: School of Computer Science, Wuhan University, The State Key Laboratory of Software Engineering, Wuhan University
– sequence: 4
  givenname: Xiao
  surname: Chen
  fullname: Chen, Xiao
  organization: School of Computer Science, Wuhan University, The State Key Laboratory of Software Engineering, Wuhan University
BookMark eNp9kE1LAzEQhoNUsNb-AG8Bz6uTj_06luIXFLzoOaTZSU3dbtYkFfz3ptSDCHpJhmGezJvnnEwGPyAhlwyuGUB9Exmrq6oAVhdC5qI5IVPWtqIAKctJrgHKgoFgZ2Qe4xYAmKxlWTZTsllQ40PAXif3gdT0OkZnHYZI9TgGr80rXeuIHfUDHXVIzvRIresTBqqHjka9G3MnYqLWB5qCNm9u2FBvTL_vMpd02GC6IKdW9xHn3_eMvNzdPi8fitXT_eNysSqMaCAVss3ZuM7H2rQMat6htNyCroXESleWI1tXzFjeGN6xtuMcWllp2ZQGOoFiRq6O7-bs73uMSW39Pgx5pWKtqHgpRA15ih2nTPAxBrRqDG6nw6dioA5K1VGpykrVQalqMlP_YoxL2Zof8p9d_y_Jj2TMW4YNhh-Z_oS-ACgdjME
CitedBy_id crossref_primary_10_1016_j_jpdc_2019_05_005
crossref_primary_10_1007_s11042_018_6735_5
crossref_primary_10_1007_s11042_018_6484_5
crossref_primary_10_1007_s11042_019_08597_8
crossref_primary_10_1007_s11042_018_6230_z
crossref_primary_10_1007_s00371_020_01796_7
crossref_primary_10_1007_s11042_018_6690_1
crossref_primary_10_1007_s00521_022_07026_6
crossref_primary_10_1016_j_future_2019_05_021
crossref_primary_10_1016_j_aei_2019_100963
crossref_primary_10_1007_s12161_019_01690_6
crossref_primary_10_1109_ACCESS_2020_3021235
crossref_primary_10_1007_s10489_019_01542_0
crossref_primary_10_1007_s11042_018_6886_4
crossref_primary_10_1016_j_future_2017_11_046
crossref_primary_10_1007_s11704_018_6442_4
crossref_primary_10_1109_ACCESS_2019_2930550
crossref_primary_10_1016_j_neucom_2018_12_025
crossref_primary_10_1007_s11704_019_8123_3
crossref_primary_10_1109_ACCESS_2017_2778745
crossref_primary_10_1109_ACCESS_2017_2773651
crossref_primary_10_1007_s11390_017_1764_5
crossref_primary_10_1016_j_future_2017_09_073
crossref_primary_10_1007_s12652_018_0832_1
crossref_primary_10_1007_s11042_018_6532_1
crossref_primary_10_1007_s11042_019_08070_6
crossref_primary_10_1016_j_aei_2019_02_003
crossref_primary_10_1007_s11042_019_08564_3
crossref_primary_10_1007_s11042_018_5697_y
crossref_primary_10_1007_s11766_019_3706_1
crossref_primary_10_1007_s11042_018_6474_7
crossref_primary_10_1007_s11042_019_7354_5
crossref_primary_10_1007_s00371_018_1612_9
crossref_primary_10_1007_s11042_019_7416_8
crossref_primary_10_1007_s11042_018_6323_8
crossref_primary_10_1142_S0218843017410015
crossref_primary_10_1007_s11042_019_07827_3
crossref_primary_10_1109_ACCESS_2017_2776295
crossref_primary_10_1007_s11042_018_6772_0
crossref_primary_10_1007_s11042_020_09036_9
crossref_primary_10_3390_sym9040059
crossref_primary_10_1016_j_aei_2018_08_008
crossref_primary_10_1007_s11766_019_3714_1
crossref_primary_10_1007_s11042_018_5625_1
crossref_primary_10_1007_s11042_018_6278_9
Cites_doi 10.1109/CVPR.2013.307
10.1109/CVPR.2015.7298610
10.1299/jamdsm.2015jamdsm0048
10.1299/jamdsm.2016jamdsm0100
10.1007/978-3-642-33765-9_50
10.1109/CVPR.2014.445
10.1007/978-3-642-33712-3_62
10.1109/CVPR.2015.7298632
10.1007/s11766-016-3340-0
10.1109/CVPR.2015.7299124
10.1109/83.855432
10.1016/j.patcog.2017.02.013
10.1016/j.compmedimag.2015.07.004
10.1109/CVPR.2012.6247895
10.1109/TIP.2012.2202677
10.1007/s11766-016-3378-z
10.3233/ICA-150499
10.1109/CVPR.2009.5206737
10.1109/TPAMI.2013.230
10.1142/S0218843017420011
10.1007/s11425-011-4211-z
10.1109/CVPR.2010.5540231
10.1109/CVPR.2014.160
10.1109/78.978374
10.1023/A:1008162616689
10.1007/s11704-016-5106-5
10.1109/ICCV.2011.6126251
10.1016/j.jmmm.2015.10.054
10.1007/s00371-011-0563-1
10.1007/s11227-016-1738-3
10.1007/978-3-540-24670-1_3
10.1109/CVPR.2014.443
10.1109/CVPR.2015.7298823
10.1007/s00365-007-9003-x
10.1007/s11263-007-0075-7
10.1109/CVPR.2014.143
10.1109/ICCV.2013.87
10.1145/1177352.1177355
10.1109/ICCV.2015.357
10.1007/978-3-540-87479-9_28
10.1109/CVPR.2014.164
10.1016/S0262-8856(02)00129-4
10.1109/CVPR.2014.446
10.1109/CVPR.2012.6247882
10.1007/s10586-016-0538-0
10.1109/ICCV.2009.5459292
10.1109/CVPR.2013.312
10.1007/s11390-017-1714-2
10.1016/j.neucom.2011.07.024
10.1109/CVPR.2014.166
10.1109/CVPR.2012.6247891
10.1109/CVPR.2014.447
10.1007/978-3-319-10602-1_9
10.1145/375551.375608
10.1007/978-3-319-10584-0_12
10.1145/1273496.1273508
10.1007/978-3-319-10599-4_13
10.1007/978-3-319-10590-1_24
10.3233/ICA-120416
10.1007/978-3-319-10578-9_13
ContentType Journal Article
Copyright Editorial Committee of Applied Mathematics-A Journal of Chinese Universities and Springer-Verlag GmbH Germany 2017
Copyright Springer Science & Business Media 2017
Copyright_xml – notice: Editorial Committee of Applied Mathematics-A Journal of Chinese Universities and Springer-Verlag GmbH Germany 2017
– notice: Copyright Springer Science & Business Media 2017
DBID AAYXX
CITATION
DOI 10.1007/s11766-017-3466-8
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1993-0445
EndPage 312
ExternalDocumentID 10_1007_s11766_017_3466_8
GroupedDBID -01
-0A
-5D
-5G
-BR
-EM
-SA
-S~
-Y2
-~C
.VR
06D
0R~
0VY
188
23M
2B.
2C.
2J2
2JN
2JY
2KG
2KM
2LR
2VQ
2~H
30V
4.4
406
408
40E
5VR
5VS
5XA
5XB
6NX
8RM
8TC
92E
92I
92M
95-
95.
95~
96X
9D9
9DA
AAAVM
AABHQ
AACDK
AAEWM
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMNI
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEMSY
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFGCZ
AFLOW
AFQWF
AFUIB
AFWTZ
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARMRJ
AXYYD
B-.
BA0
BAPOH
BDATZ
BGNMA
CAG
CAJEA
CCEZO
CCVFK
CHBEP
COF
CSCUP
CW9
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
H13
HF~
HG6
HMJXF
HRMNR
HZ~
IJ-
IKXTQ
IWAJR
IXD
I~X
I~Z
J-C
JBSCW
JUIAU
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9-
O9J
P9R
PF0
PT4
Q--
Q-0
QOK
QOS
R-A
R89
R9I
REI
RHV
ROL
RPX
RSV
RT1
S..
S16
S1Z
S27
S3B
SAP
SCL
SCLPG
SDD
SDH
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T8Q
TCJ
TGP
TSG
TUC
U1F
U1G
U2A
U5A
U5K
UG4
UOJIU
UTJUX
UY8
UZ4
UZXMN
VC2
VFIZW
W48
YLTOR
ZMTXR
ZWQNP
~A9
~L9
AAPKM
AAYXX
ABBRH
ABDBE
AFDZB
AFOHR
AHPBZ
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c380t-490012a001bc91072de4f2f0a734e6a6f2e1b61cf28c2d19d220946a485c0d3e3
IEDL.DBID U2A
ISSN 1005-1031
IngestDate Wed Sep 17 23:57:03 EDT 2025
Tue Jul 01 00:47:45 EDT 2025
Thu Apr 24 23:06:28 EDT 2025
Fri Feb 21 02:32:39 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords 65L15
visual tracking
35B35
60G40
sample set method
particle filter
online learning
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c380t-490012a001bc91072de4f2f0a734e6a6f2e1b61cf28c2d19d220946a485c0d3e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1936253370
PQPubID 2043965
PageCount 19
ParticipantIDs proquest_journals_1936253370
crossref_primary_10_1007_s11766_017_3466_8
crossref_citationtrail_10_1007_s11766_017_3466_8
springer_journals_10_1007_s11766_017_3466_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2017-09-01
PublicationDateYYYYMMDD 2017-09-01
PublicationDate_xml – month: 09
  year: 2017
  text: 2017-09-01
  day: 01
PublicationDecade 2010
PublicationPlace Hangzhou
PublicationPlace_xml – name: Hangzhou
– name: Heidelberg
PublicationTitle Applied Mathematics-A Journal of Chinese Universities
PublicationTitleAbbrev Appl. Math. J. Chin. Univ
PublicationYear 2017
Publisher Editorial Committee of Applied Mathematics - A Journal of Chinese Universities
Springer Nature B.V
Publisher_xml – name: Editorial Committee of Applied Mathematics - A Journal of Chinese Universities
– name: Springer Nature B.V
References Bao, Wu, Ling (CR5) 2012
Wu, Lim, Yang (CR52) 2013
Achlioptas (CR1) 2001
Arulampalam, Maskell, Gordon (CR2) 2002; 50
Chen, He, Wu (CR10) 2017; 67
Henriques, Caseiro, Martins (CR17) 2012
Liu, Wang, Yang (CR32) 2015
Zhong, Lu, Yang (CR67) 2012
Yan, He, Hou (CR55) 2017; 32
Possegger, Mauthner, Bischof (CR42) 2015
Lu, Wu, Zhu (CR33) 2014
Liu, He, Cai (CR31) 2011; 27
Yan, He, Hou, Ai (CR56) 2017; 26
Bordes, Usunier, Bottou (CR9) 2008
Gao, Ling, Hu (CR13) 2014
Ni, He, Pan (CR37) 2016; 31
Li, He, Cai (CR29) 2013; 20
Babenko, Yang, Belongie (CR3) 2009
Cheng, He, Wu (CR11) 2016; 19
Zhang, He, Han (CR60) 2016; 23
Oron, Bar-Hillel, Levi (CR40) 2012
Wang, Ouyang, Wang (CR50) 2015
Ross, Lim, Lin (CR43) 2008; 77
Baraniuk, Davenport, Devore (CR6) 2008; 28
Lee, Sim, Kim (CR25) 2014
Zhang, Ma, Sclaroff (CR61) 2014
Berger, Seversky (CR7) 2014
Smeulders, Chu, Cucchiara (CR45) 2014; 36
Wu, He, Zhang (CR53) 2015
Yu, He, Pan (CR59) 2016; 10
Huang, He, Cai (CR19) 2011; 54
Danelljan, Khan, Felsberg (CR12) 2014
Hall, Perona (CR15) 2014
Zhang, Jia, Xu (CR65) 2014
Kwon, Lee (CR23) 2014
Wang, Lu (CR49) 2014
Wang, Lu, Yang (CR48) 2013; 22
Yan, He, Che (CR54) 2015; 9
Sun, He, Chen (CR46) 2016; 31
Yang, Shao, Zheng (CR57) 2011; 74
Bordes, Bottou, Gallinari (CR8) 2007
Li, Zhu, Hoi (CR28) 2015
Wang, Lu, Yang (CR47) 2013
Hong, Han (CR18) 2014
Li, He, Chen (CR27) 2016; 10
Sevilla-Lara, Learned-Miller (CR44) 2012
Bailer, Pagani, Stricker (CR4) 2014
Yilmaz, Javed, Shah (CR58) 2006; 38
Zhou, He, Qiu (CR69) 2017; 60
Zhang, Liu, Xu (CR64) 2015
Wang, Wang, Yeung (CR51) 2013
Kwon, Roh, Lee (CR24) 2014
Koh, Kim, Boyd (CR22) 2007; 8
Liu, Huang, Yang (CR30) 2011
Lv, He, Cai (CR34) 2016
Nummiaro, Koller-Meier, Van Gool (CR38) 2003; 21
Zhang, Wong (CR66) 2014
Jermain, Rowlands, Buhrman (CR20) 2016; 401
Zhang, Zhang, Yang (CR62) 2012
Zhou, He, Qiu (CR68) 2016; 72
Hare, Saffari, Torr (CR16) 2011
Kalal, Matas, Mikolajczyk (CR21) 2010
Zhang, Zhang, Liu (CR63) 2014
Gordon, Salmond, Smith (CR14) 1993
Levey, Lindenbaum (CR26) 2000; 9
Papageorgiou, Poggio (CR41) 2000; 38
Ni, He, Yuan (CR36) 2015; 46
Okuma, Taleghani, de Freitas (CR39) 2004
Mei, Ling (CR35) 2009
X Li (3466_CR29) 2013; 20
K Zhang (3466_CR63) 2014
Z Huang (3466_CR19) 2011; 54
T Zhang (3466_CR65) 2014
J Gao (3466_CR13) 2014
J Zhang (3466_CR61) 2014
Y Lu (3466_CR33) 2014
B Ni (3466_CR36) 2015; 46
C Bailer (3466_CR4) 2014
X Lv (3466_CR34) 2016
A Bordes (3466_CR8) 2007
Z Zhang (3466_CR66) 2014
C Papageorgiou (3466_CR41) 2000; 38
Y Wu (3466_CR52) 2013
X Yan (3466_CR55) 2017; 32
Y Zhou (3466_CR68) 2016; 72
S Hong (3466_CR18) 2014
J Kwon (3466_CR23) 2014
D Lee (3466_CR25) 2014
H Liu (3466_CR31) 2011; 27
D Wang (3466_CR47) 2013
Y Wu (3466_CR53) 2015
B Babenko (3466_CR3) 2009
Y Cheng (3466_CR11) 2016; 19
X Yan (3466_CR56) 2017; 26
T Zhang (3466_CR64) 2015
D Hall (3466_CR15) 2014
C Jermain (3466_CR20) 2016; 401
D Achlioptas (3466_CR1) 2001
M Danelljan (3466_CR12) 2014
H Yang (3466_CR57) 2011; 74
L Sevilla-Lara (3466_CR44) 2012
J Sun (3466_CR46) 2016; 31
Y Zhou (3466_CR69) 2017; 60
C Bao (3466_CR5) 2012
S Hare (3466_CR16) 2011
Y Chen (3466_CR10) 2017; 67
Z Kalal (3466_CR21) 2010
H Yu (3466_CR59) 2016; 10
K Li (3466_CR27) 2016; 10
B Ni (3466_CR37) 2016; 31
J Kwon (3466_CR24) 2014
M Arulampalam (3466_CR2) 2002; 50
S Oron (3466_CR40) 2012
B Liu (3466_CR30) 2011
A Smeulders (3466_CR45) 2014; 36
N Gordon (3466_CR14) 1993
D Wang (3466_CR48) 2013; 22
K Koh (3466_CR22) 2007; 8
T Liu (3466_CR32) 2015
K Zhang (3466_CR62) 2012
J Henriques (3466_CR17) 2012
D Zhang (3466_CR60) 2016; 23
Y Li (3466_CR28) 2015
X Yan (3466_CR54) 2015; 9
M Berger (3466_CR7) 2014
H Possegger (3466_CR42) 2015
L Wang (3466_CR50) 2015
X Mei (3466_CR35) 2009
W Zhong (3466_CR67) 2012
D Wang (3466_CR49) 2014
K Okuma (3466_CR39) 2004
N Wang (3466_CR51) 2013
K Nummiaro (3466_CR38) 2003; 21
R Baraniuk (3466_CR6) 2008; 28
A Yilmaz (3466_CR58) 2006; 38
A Bordes (3466_CR9) 2008
D A Ross (3466_CR43) 2008; 77
A Levey (3466_CR26) 2000; 9
References_xml – start-page: 2371
  year: 2013
  end-page: 2378
  ident: CR47
  article-title: Least soft-thresold squares tracking
  publication-title: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  doi: 10.1109/CVPR.2013.307
– start-page: 150
  year: 2015
  end-page: 158
  ident: CR64
  article-title: Structural sparse tracking
  publication-title: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  doi: 10.1109/CVPR.2015.7298610
– volume: 9
  start-page: JAMDSM0048
  issue: 4
  year: 2015
  ident: CR54
  article-title: An efficient improved particle swarm optimization based on prey behavior of fish schooling
  publication-title: J Adv Mech Des Syst
  doi: 10.1299/jamdsm.2015jamdsm0048
– volume: 10
  start-page: JAMDSM0100
  issue: 8
  year: 2016
  ident: CR59
  article-title: An efficient similarity-based level set model for medical image segmentation
  publication-title: J Adv Mech Des Syst
  doi: 10.1299/jamdsm.2016jamdsm0100
– start-page: 702
  year: 2012
  end-page: 715
  ident: CR17
  article-title: Exploiting the circulant structure of tracking-bydetection with kernels
  publication-title: 2012 European conference on computer vision
  doi: 10.1007/978-3-642-33765-9_50
– start-page: 3478
  year: 2014
  end-page: 3485
  ident: CR49
  article-title: Visual tracking via probability continuous outlier model
  publication-title: 2014 IEEE Conference on Computer Vision And Pattern Recognition (CVPR)
  doi: 10.1109/CVPR.2014.445
– start-page: 864
  year: 2012
  end-page: 877
  ident: CR62
  article-title: Real-time compressive tracking
  publication-title: 2012 European Conference on Computer Vision
  doi: 10.1007/978-3-642-33712-3_62
– start-page: 127
  year: 2014
  end-page: 141
  ident: CR63
  article-title: Fast visual tracking via dense spatio-temporal context learning
  publication-title: 2014 European Conference on Computer Vision
– start-page: 353
  year: 2015
  end-page: 361
  ident: CR28
  article-title: Reliable patch trackers: Robust visual tracking by exploiting reliable patches
  publication-title: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  doi: 10.1109/CVPR.2015.7298632
– volume: 31
  start-page: 37
  issue: 1
  year: 2016
  end-page: 52
  ident: CR37
  article-title: Using shapes correlation for active contour segmentation of uterine fibroid ultrasound images in computer-aided therapy
  publication-title: Appl Math J Chinese Univ Ser B
  doi: 10.1007/s11766-016-3340-0
– start-page: 4902
  year: 2015
  end-page: 4912
  ident: CR32
  article-title: Real-time part-based visual tracking via adaptive correlation filters
  publication-title: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  doi: 10.1109/CVPR.2015.7299124
– volume: 9
  start-page: 1371
  issue: 8
  year: 2000
  end-page: 1374
  ident: CR26
  article-title: Sequential Karhunen-Loeve basis extraction and its application to images
  publication-title: IEEE Trans Image Process
  doi: 10.1109/83.855432
– volume: 67
  start-page: 139
  year: 2017
  end-page: 148
  ident: CR10
  article-title: A local start search algorithm to compute exact Hausdorff Distance for arbitrary point sets
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2017.02.013
– start-page: 1
  year: 2014
  end-page: 16
  ident: CR18
  article-title: Visual tracking by sampling tree-structured graphical models
  publication-title: 2014 European Conference on Computer Vision
– volume: 46
  start-page: 302
  year: 2015
  end-page: 314
  ident: CR36
  article-title: Segmentation of uterine fibroid ultrasound images using a dynamic statistical shape model in H I F U therapy
  publication-title: Comput Med Imag Grap
  doi: 10.1016/j.compmedimag.2015.07.004
– start-page: 1940
  year: 2012
  end-page: 1947
  ident: CR40
  article-title: Locally orderless tracking
  publication-title: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  doi: 10.1109/CVPR.2012.6247895
– volume: 22
  start-page: 314
  issue: 1
  year: 2013
  end-page: 325
  ident: CR48
  article-title: Online object tracking with sparse prototypes
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2012.2202677
– volume: 31
  start-page: 177
  issue: 2
  year: 2016
  end-page: 197
  ident: CR46
  article-title: A multiple template approach for robust tracking of fast motion target
  publication-title: Appl Math J Chinese Univ Ser B
  doi: 10.1007/s11766-016-3378-z
– start-page: 170
  year: 2014
  end-page: 185
  ident: CR4
  article-title: A superior tracking approach: Building a strong tracker through fusion
  publication-title: 2014 European Conference on Computer Vision
– volume: 23
  start-page: 31
  issue: 1
  year: 2016
  end-page: 50
  ident: CR60
  article-title: Quantitative optimization of interoperability during feature-based data exchange
  publication-title: Integr Comput-Aid E
  doi: 10.3233/ICA-150499
– start-page: 983
  year: 2009
  end-page: 990
  ident: CR3
  article-title: Visual tracking with online multiple instance learning
  publication-title: 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  doi: 10.1109/CVPR.2009.5206737
– volume: 8
  start-page: 1519
  year: 2007
  end-page: 1555
  ident: CR22
  article-title: An interior-point method for large-scale l1-regularized logistic regression
  publication-title: J Mach Learn Res
– year: 2015
  ident: CR53
  article-title: Service-oriented feature-based data exchange for cloud-based design and manufacturing
  publication-title: IEEE T Serv Comput
– volume: 36
  start-page: 1442
  issue: 7
  year: 2014
  end-page: 1468
  ident: CR45
  article-title: Visual tracking: an experimental survey
  publication-title: IEEE T Pattern Anal
  doi: 10.1109/TPAMI.2013.230
– volume: 26
  start-page: 1742001
  issue: 2
  year: 2017
  ident: CR56
  article-title: An efficient particle swarm optimization for large scale hardware/software co-design system
  publication-title: Int J Coop Info Syst
  doi: 10.1142/S0218843017420011
– volume: 54
  start-page: 1207
  issue: 6
  year: 2011
  end-page: 1217
  ident: CR19
  article-title: Efficient random saliency map detection
  publication-title: Sci China Ser F
  doi: 10.1007/s11425-011-4211-z
– start-page: 49
  year: 2010
  end-page: 56
  ident: CR21
  article-title: Pn learning: Bootstrapping binary classifiers by structural constraints
  publication-title: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  doi: 10.1109/CVPR.2010.5540231
– start-page: 188
  year: 2014
  end-page: 203
  ident: CR61
  article-title: MEEM: Robust tracking via multiple experts using entropy minimization
  publication-title: 2014 European Conference on Computer Vision
– start-page: 1226
  year: 2014
  end-page: 1233
  ident: CR66
  article-title: Pyramid-based visual tracking using sparsity represented mean transform
  publication-title: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  doi: 10.1109/CVPR.2014.160
– volume: 50
  start-page: 174
  issue: 2
  year: 2002
  end-page: 188
  ident: CR2
  article-title: A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/78.978374
– start-page: 377
  year: 2014
  end-page: 392
  ident: CR24
  article-title: Robust visual tracking with double bounding box model
  publication-title: European Conference on Computer Vision
– volume: 38
  start-page: 15
  issue: 1
  year: 2000
  end-page: 33
  ident: CR41
  article-title: A trainable system for object detection
  publication-title: Int J Comput Vision
  doi: 10.1023/A:1008162616689
– volume: 60
  start-page: 068102
  issue: 6
  year: 2017
  ident: CR69
  article-title: Dynamic strategy based parallel ant colony optimization on GPUs for TSPs
  publication-title: Sci China Ser F
– year: 2016
  ident: CR34
  article-title: A string-wise C R D T algorithm for smart and large-scale collaborative editing systems
  publication-title: Adv Eng Inform
– volume: 10
  start-page: 689
  issue: 4
  year: 2016
  end-page: 701
  ident: CR27
  article-title: Real-time object tracking via compressive feature selection
  publication-title: Front Comput Sci
  doi: 10.1007/s11704-016-5106-5
– start-page: 263
  year: 2011
  end-page: 270
  ident: CR16
  article-title: Struck: Structured output tracking with kernels
  publication-title: 2011 IEEE International Conference on Computer Vision (ICCV)
  doi: 10.1109/ICCV.2011.6126251
– start-page: 89
  year: 2007
  end-page: 96
  ident: CR8
  article-title: Solving multiclass support vector machines with LaRank
  publication-title: Proceedings of the 24th international conference on Machine learning
– volume: 401
  start-page: 320
  year: 2016
  end-page: 322
  ident: CR20
  article-title: GPU-accelerated micromagnetic simulations using cloud computing
  publication-title: J Magn Magn Mater
  doi: 10.1016/j.jmmm.2015.10.054
– volume: 27
  start-page: 595
  issue: 6-8
  year: 2011
  end-page: 603
  ident: CR31
  article-title: Performance-based control interfaces using mixture of factor analyzers
  publication-title: Visual Comput
  doi: 10.1007/s00371-011-0563-1
– start-page: 188
  year: 2014
  end-page: 203
  ident: CR13
  article-title: Transfer learning based visual tracking with Gaussian processes regression
  publication-title: 2014 European Conference on Computer Vision
– volume: 72
  start-page: 2394
  issue: 6
  year: 2016
  end-page: 2416
  ident: CR68
  article-title: Optimization of parallel iterated local search algorithms on graphics processing unit
  publication-title: J Supercomput
  doi: 10.1007/s11227-016-1738-3
– start-page: 28
  year: 2004
  end-page: 39
  ident: CR39
  article-title: A boosted particle filter: Multitarget detection and tracking
  publication-title: 2004 European Conference on Computer Vision
  doi: 10.1007/978-3-540-24670-1_3
– start-page: 1830
  year: 2012
  end-page: 1837
  ident: CR5
  article-title: Real time robust l1 tracker using accelerated proximal gradient approach
  publication-title: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 3462
  year: 2014
  end-page: 3469
  ident: CR33
  article-title: Online object tracking, learning and parsing with And-Or graphs
  publication-title: 2014 IEEE Conference on Computer Vision And Pattern Recognition (CVPR)
  doi: 10.1109/CVPR.2014.443
– start-page: 2113
  year: 2015
  end-page: 2120
  ident: CR42
  article-title: In defense of color-based model-free tracking
  publication-title: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  doi: 10.1109/CVPR.2015.7298823
– volume: 28
  start-page: 253
  issue: 3
  year: 2008
  end-page: 263
  ident: CR6
  article-title: A simple proof of the restricted isometry property for random matrices
  publication-title: Constr Approx
  doi: 10.1007/s00365-007-9003-x
– volume: 77
  start-page: 125
  issue: 1-3
  year: 2008
  end-page: 141
  ident: CR43
  article-title: Incremental learning for robust visual tracking
  publication-title: Int J Comput Vision
  doi: 10.1007/s11263-007-0075-7
– start-page: 1090
  year: 2014
  end-page: 1097
  ident: CR12
  article-title: Adaptive color attributes for real-time visual tracking
  publication-title: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  doi: 10.1109/CVPR.2014.143
– volume: 20
  start-page: 15
  issue: 1
  year: 2013
  end-page: 30
  ident: CR29
  article-title: A method for topological entity matching in the integration of heterogeneous CAD systems
  publication-title: Integr Comput-Aid E
– start-page: 657
  year: 2013
  end-page: 664
  ident: CR51
  article-title: Online robust non-negative dictionary learning for visual tracking
  publication-title: 2013 IEEE International Conference on Computer Vision (ICCV)
  doi: 10.1109/ICCV.2013.87
– volume: 38
  start-page: 13
  issue: 4
  year: 2006
  ident: CR58
  article-title: Object tracking: A survey
  publication-title: ACM Comput Surv (CSUR)
  doi: 10.1145/1177352.1177355
– start-page: 1313
  year: 2011
  end-page: 1320
  ident: CR30
  article-title: Robust tracking using local sparse appearance model and kselection
  publication-title: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
– start-page: 107
  year: 1993
  end-page: 113
  ident: CR14
  article-title: Novel approach to nonlinear/non-Gaussian Bayesian state estimation
  publication-title: IEE Proceedings F-Radar and Signal Processing
– start-page: 3119
  year: 2015
  end-page: 3127
  ident: CR50
  article-title: Visual tracking with fully convolutional networks
  publication-title: 2015 IEEE International Conference on Computer Vision (ICCV)
  doi: 10.1109/ICCV.2015.357
– start-page: 146
  year: 2008
  end-page: 161
  ident: CR9
  article-title: Sequence labelling S V Ms trained in one pass
  publication-title: Joint European Conference on Machine Learning and Knowledge Discovery in Databases
  doi: 10.1007/978-3-540-87479-9_28
– start-page: 1258
  year: 2014
  end-page: 1265
  ident: CR65
  article-title: Partial occlusion handling for visual tracking via robust part matching
  publication-title: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  doi: 10.1109/CVPR.2014.164
– volume: 21
  start-page: 99
  issue: 1
  year: 2003
  end-page: 110
  ident: CR38
  article-title: An adaptive color-based particle filter
  publication-title: Image Vision Comput
  doi: 10.1016/S0262-8856(02)00129-4
– start-page: 3486
  year: 2014
  end-page: 3493
  ident: CR25
  article-title: Visual tracking using pertinent patch selection and masking
  publication-title: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  doi: 10.1109/CVPR.2014.446
– start-page: 1838
  year: 2012
  end-page: 1845
  ident: CR67
  article-title: Robust object tracking via sparsity-based collaborative model
  publication-title: 2012 IEEE Conference on Computer vision and pattern recognition (CVPR)
  doi: 10.1109/CVPR.2012.6247882
– volume: 19
  start-page: 237
  issue: 1
  year: 2016
  end-page: 253
  ident: CR11
  article-title: Meta-operation conflict resolution for human-human interaction in collaborative feature-based C A D systems
  publication-title: Cluster Comput
  doi: 10.1007/s10586-016-0538-0
– start-page: 1436
  year: 2009
  end-page: 1443
  ident: CR35
  article-title: Robust visual tracking using l1 minimization
  publication-title: 2009 IEEE 12th International Conference on Computer Vision (ICCV)
  doi: 10.1109/ICCV.2009.5459292
– start-page: 2411
  year: 2013
  end-page: 2418
  ident: CR52
  article-title: Online object tracking: A benchmark
  publication-title: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  doi: 10.1109/CVPR.2013.312
– start-page: 274
  year: 2001
  end-page: 281
  ident: CR1
  article-title: Database-friendly random projections
  publication-title: Proceedings of the 20th ACM SIGMODSIGACT-SIGART symposium on Principles of database systems
– volume: 32
  start-page: 340
  issue: 2
  year: 2017
  end-page: 355
  ident: CR55
  article-title: A novel hardware/software partitioning method based on position disturbed particle swarm optimization with invasive weed optimization
  publication-title: J Comput Sci Tech
  doi: 10.1007/s11390-017-1714-2
– volume: 74
  start-page: 3823
  issue: 18
  year: 2011
  end-page: 3831
  ident: CR57
  article-title: Recent advances and trends in visual tracking: A review
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.07.024
– start-page: 361
  year: 2014
  end-page: 376
  ident: CR15
  article-title: Online, real-time tracking using a category-to-individual detector
  publication-title: 2014 European Conference on Computer Vision
– start-page: 1274
  year: 2014
  end-page: 1281
  ident: CR7
  article-title: Subspace tracking under dynamic dimensionality for online background subtraction
  publication-title: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  doi: 10.1109/CVPR.2014.166
– start-page: 1910
  year: 2012
  end-page: 1917
  ident: CR44
  article-title: Distribution fields for tracking
  publication-title: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  doi: 10.1109/CVPR.2012.6247891
– start-page: 3494
  year: 2014
  end-page: 3501
  ident: CR23
  article-title: Interval tracker: Tracking by interval analysis
  publication-title: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  doi: 10.1109/CVPR.2014.447
– start-page: 127
  volume-title: 2014 European Conference on Computer Vision
  year: 2014
  ident: 3466_CR63
  doi: 10.1007/978-3-319-10602-1_9
– start-page: 107
  volume-title: IEE Proceedings F-Radar and Signal Processing
  year: 1993
  ident: 3466_CR14
– start-page: 377
  volume-title: European Conference on Computer Vision
  year: 2014
  ident: 3466_CR24
– start-page: 353
  volume-title: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2015
  ident: 3466_CR28
  doi: 10.1109/CVPR.2015.7298632
– start-page: 274
  volume-title: Proceedings of the 20th ACM SIGMODSIGACT-SIGART symposium on Principles of database systems
  year: 2001
  ident: 3466_CR1
  doi: 10.1145/375551.375608
– start-page: 150
  volume-title: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2015
  ident: 3466_CR64
  doi: 10.1109/CVPR.2015.7298610
– volume: 8
  start-page: 1519
  year: 2007
  ident: 3466_CR22
  publication-title: J Mach Learn Res
– volume-title: Adv Eng Inform
  year: 2016
  ident: 3466_CR34
– volume: 77
  start-page: 125
  issue: 1-3
  year: 2008
  ident: 3466_CR43
  publication-title: Int J Comput Vision
  doi: 10.1007/s11263-007-0075-7
– volume: 22
  start-page: 314
  issue: 1
  year: 2013
  ident: 3466_CR48
  publication-title: IEEE Trans Image Process
  doi: 10.1109/TIP.2012.2202677
– volume: 32
  start-page: 340
  issue: 2
  year: 2017
  ident: 3466_CR55
  publication-title: J Comput Sci Tech
  doi: 10.1007/s11390-017-1714-2
– start-page: 3478
  volume-title: 2014 IEEE Conference on Computer Vision And Pattern Recognition (CVPR)
  year: 2014
  ident: 3466_CR49
  doi: 10.1109/CVPR.2014.445
– volume: 46
  start-page: 302
  year: 2015
  ident: 3466_CR36
  publication-title: Comput Med Imag Grap
  doi: 10.1016/j.compmedimag.2015.07.004
– volume: 26
  start-page: 1742001
  issue: 2
  year: 2017
  ident: 3466_CR56
  publication-title: Int J Coop Info Syst
  doi: 10.1142/S0218843017420011
– start-page: 983
  volume-title: 2009 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2009
  ident: 3466_CR3
  doi: 10.1109/CVPR.2009.5206737
– start-page: 3486
  volume-title: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2014
  ident: 3466_CR25
  doi: 10.1109/CVPR.2014.446
– start-page: 1090
  volume-title: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2014
  ident: 3466_CR12
  doi: 10.1109/CVPR.2014.143
– start-page: 263
  volume-title: 2011 IEEE International Conference on Computer Vision (ICCV)
  year: 2011
  ident: 3466_CR16
  doi: 10.1109/ICCV.2011.6126251
– volume: 38
  start-page: 13
  issue: 4
  year: 2006
  ident: 3466_CR58
  publication-title: ACM Comput Surv (CSUR)
  doi: 10.1145/1177352.1177355
– start-page: 702
  volume-title: 2012 European conference on computer vision
  year: 2012
  ident: 3466_CR17
  doi: 10.1007/978-3-642-33765-9_50
– start-page: 657
  volume-title: 2013 IEEE International Conference on Computer Vision (ICCV)
  year: 2013
  ident: 3466_CR51
  doi: 10.1109/ICCV.2013.87
– volume: 31
  start-page: 177
  issue: 2
  year: 2016
  ident: 3466_CR46
  publication-title: Appl Math J Chinese Univ Ser B
  doi: 10.1007/s11766-016-3378-z
– volume: 72
  start-page: 2394
  issue: 6
  year: 2016
  ident: 3466_CR68
  publication-title: J Supercomput
  doi: 10.1007/s11227-016-1738-3
– start-page: 3494
  volume-title: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2014
  ident: 3466_CR23
  doi: 10.1109/CVPR.2014.447
– start-page: 1
  volume-title: 2014 European Conference on Computer Vision
  year: 2014
  ident: 3466_CR18
– start-page: 170
  volume-title: 2014 European Conference on Computer Vision
  year: 2014
  ident: 3466_CR4
  doi: 10.1007/978-3-319-10584-0_12
– volume: 28
  start-page: 253
  issue: 3
  year: 2008
  ident: 3466_CR6
  publication-title: Constr Approx
  doi: 10.1007/s00365-007-9003-x
– volume: 9
  start-page: JAMDSM0048
  issue: 4
  year: 2015
  ident: 3466_CR54
  publication-title: J Adv Mech Des Syst
  doi: 10.1299/jamdsm.2015jamdsm0048
– start-page: 1274
  volume-title: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2014
  ident: 3466_CR7
  doi: 10.1109/CVPR.2014.166
– start-page: 1313
  volume-title: 2011 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2011
  ident: 3466_CR30
– start-page: 4902
  volume-title: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2015
  ident: 3466_CR32
  doi: 10.1109/CVPR.2015.7299124
– start-page: 1436
  volume-title: 2009 IEEE 12th International Conference on Computer Vision (ICCV)
  year: 2009
  ident: 3466_CR35
  doi: 10.1109/ICCV.2009.5459292
– start-page: 1226
  volume-title: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2014
  ident: 3466_CR66
  doi: 10.1109/CVPR.2014.160
– volume: 50
  start-page: 174
  issue: 2
  year: 2002
  ident: 3466_CR2
  publication-title: IEEE Trans Signal Process
  doi: 10.1109/78.978374
– start-page: 1830
  volume-title: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2012
  ident: 3466_CR5
– volume: 74
  start-page: 3823
  issue: 18
  year: 2011
  ident: 3466_CR57
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2011.07.024
– start-page: 28
  volume-title: 2004 European Conference on Computer Vision
  year: 2004
  ident: 3466_CR39
  doi: 10.1007/978-3-540-24670-1_3
– start-page: 89
  volume-title: Proceedings of the 24th international conference on Machine learning
  year: 2007
  ident: 3466_CR8
  doi: 10.1145/1273496.1273508
– volume: 38
  start-page: 15
  issue: 1
  year: 2000
  ident: 3466_CR41
  publication-title: Int J Comput Vision
  doi: 10.1023/A:1008162616689
– start-page: 1258
  volume-title: 2014 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2014
  ident: 3466_CR65
  doi: 10.1109/CVPR.2014.164
– start-page: 1838
  volume-title: 2012 IEEE Conference on Computer vision and pattern recognition (CVPR)
  year: 2012
  ident: 3466_CR67
  doi: 10.1109/CVPR.2012.6247882
– volume: 54
  start-page: 1207
  issue: 6
  year: 2011
  ident: 3466_CR19
  publication-title: Sci China Ser F
  doi: 10.1007/s11425-011-4211-z
– volume: 67
  start-page: 139
  year: 2017
  ident: 3466_CR10
  publication-title: Pattern Recogn
  doi: 10.1016/j.patcog.2017.02.013
– volume: 31
  start-page: 37
  issue: 1
  year: 2016
  ident: 3466_CR37
  publication-title: Appl Math J Chinese Univ Ser B
  doi: 10.1007/s11766-016-3340-0
– start-page: 188
  volume-title: 2014 European Conference on Computer Vision
  year: 2014
  ident: 3466_CR61
  doi: 10.1007/978-3-319-10599-4_13
– volume: 10
  start-page: JAMDSM0100
  issue: 8
  year: 2016
  ident: 3466_CR59
  publication-title: J Adv Mech Des Syst
  doi: 10.1299/jamdsm.2016jamdsm0100
– start-page: 1940
  volume-title: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2012
  ident: 3466_CR40
  doi: 10.1109/CVPR.2012.6247895
– volume: 60
  start-page: 068102
  issue: 6
  year: 2017
  ident: 3466_CR69
  publication-title: Sci China Ser F
– volume: 21
  start-page: 99
  issue: 1
  year: 2003
  ident: 3466_CR38
  publication-title: Image Vision Comput
  doi: 10.1016/S0262-8856(02)00129-4
– start-page: 3119
  volume-title: 2015 IEEE International Conference on Computer Vision (ICCV)
  year: 2015
  ident: 3466_CR50
  doi: 10.1109/ICCV.2015.357
– start-page: 1910
  volume-title: 2012 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2012
  ident: 3466_CR44
  doi: 10.1109/CVPR.2012.6247891
– start-page: 2371
  volume-title: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2013
  ident: 3466_CR47
  doi: 10.1109/CVPR.2013.307
– start-page: 361
  volume-title: 2014 European Conference on Computer Vision
  year: 2014
  ident: 3466_CR15
  doi: 10.1007/978-3-319-10590-1_24
– start-page: 49
  volume-title: 2010 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2010
  ident: 3466_CR21
  doi: 10.1109/CVPR.2010.5540231
– volume: 20
  start-page: 15
  issue: 1
  year: 2013
  ident: 3466_CR29
  publication-title: Integr Comput-Aid E
  doi: 10.3233/ICA-120416
– volume-title: IEEE T Serv Comput
  year: 2015
  ident: 3466_CR53
– start-page: 146
  volume-title: Joint European Conference on Machine Learning and Knowledge Discovery in Databases
  year: 2008
  ident: 3466_CR9
  doi: 10.1007/978-3-540-87479-9_28
– volume: 10
  start-page: 689
  issue: 4
  year: 2016
  ident: 3466_CR27
  publication-title: Front Comput Sci
  doi: 10.1007/s11704-016-5106-5
– volume: 23
  start-page: 31
  issue: 1
  year: 2016
  ident: 3466_CR60
  publication-title: Integr Comput-Aid E
  doi: 10.3233/ICA-150499
– start-page: 188
  volume-title: 2014 European Conference on Computer Vision
  year: 2014
  ident: 3466_CR13
  doi: 10.1007/978-3-319-10578-9_13
– volume: 27
  start-page: 595
  issue: 6-8
  year: 2011
  ident: 3466_CR31
  publication-title: Visual Comput
  doi: 10.1007/s00371-011-0563-1
– volume: 36
  start-page: 1442
  issue: 7
  year: 2014
  ident: 3466_CR45
  publication-title: IEEE T Pattern Anal
  doi: 10.1109/TPAMI.2013.230
– start-page: 864
  volume-title: 2012 European Conference on Computer Vision
  year: 2012
  ident: 3466_CR62
  doi: 10.1007/978-3-642-33712-3_62
– volume: 9
  start-page: 1371
  issue: 8
  year: 2000
  ident: 3466_CR26
  publication-title: IEEE Trans Image Process
  doi: 10.1109/83.855432
– start-page: 3462
  volume-title: 2014 IEEE Conference on Computer Vision And Pattern Recognition (CVPR)
  year: 2014
  ident: 3466_CR33
  doi: 10.1109/CVPR.2014.443
– volume: 19
  start-page: 237
  issue: 1
  year: 2016
  ident: 3466_CR11
  publication-title: Cluster Comput
  doi: 10.1007/s10586-016-0538-0
– volume: 401
  start-page: 320
  year: 2016
  ident: 3466_CR20
  publication-title: J Magn Magn Mater
  doi: 10.1016/j.jmmm.2015.10.054
– start-page: 2113
  volume-title: 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2015
  ident: 3466_CR42
  doi: 10.1109/CVPR.2015.7298823
– start-page: 2411
  volume-title: 2013 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
  year: 2013
  ident: 3466_CR52
  doi: 10.1109/CVPR.2013.312
SSID ssj0001474558
ssj0064147
Score 2.287759
Snippet Target tracking is one of the most important issues in computer vision and has been applied in many fields of science, engineering and industry. Because of the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 294
SubjectTerms Applications of Mathematics
Classifiers
Computer vision
Correlation
Feature extraction
Mathematics
Mathematics and Statistics
Occlusion
Samples
Similarity
Statistical analysis
Statistical methods
Tracking
Title A correlative classifiers approach based on particle filter and sample set for tracking occluded target
URI https://link.springer.com/article/10.1007/s11766-017-3466-8
https://www.proquest.com/docview/1936253370
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NS8MwFA-6XfQgfuJ0jhw8KYXmo2l6LLI5FD05mKeSviYyGN1Yu__fpB_bFBW8lEJfcnjvNe-XvJffQ-g2FZJJoZWnJQjP4tvISzNlPB4pBoYI5UNV5fsqxhP-NA2mzT3uoq12b1OS1Uq9vezmuAw9t6oybl_kPuoGjk7KOvGExtuDFR7yHcpwwUnVZYzUlJuMtKnNn6b8Gpy2iPNbkrSKPaNjdNSARhzXVj5Bezo_RYcvG8bV4gx9xBhco415ReSNwYHimXF9rnFLG45dxMrwIsfLxl-wmblkOVZ5hgvleIJxoUtscSwuVwrcKTpeAMzXmR1X14yfo8lo-PYw9pomCh4w6ZdW6Q7RKPtIwUKDkGaaG2p8FTKuhRKGapIKAoZKoBmJMkrtjk8oLgPwM6bZBerki1xfIgxURAq4DpiVICFJCdcmggDslBZ4qh7yW-0l0DCMu0YX82TLjewUnliFJ07hieyhu82QZU2v8ZdwvzVJ0vxpRWIBqN3CMRb6PXTfmmnn82-TXf1L-hodUOcmVXFZH3XK1VrfWDRSpgPUjR_fn4eDygs_AX-e1dM
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV07T8MwELagDMCAeIpCAQ9MoEjxI04yVghUoO3USt0i52yjSlVaNen_x86jLQiQWKJIsW84X3zf-c7fIXSfiohFQktPRyA8i29jL1XSeDyWDAwR0oeyyncoemP-Ngkm9T3uvKl2b1KS5U69uezmuAw9t6sybl-iXbTnsowu4hrT7uZghYd8izJccFJ2GSMV5SYjTWrzJ5FfndMGcX5Lkpa-5-UYHdWgEXerVT5BOzo7RYeDNeNqfoY-uhhco41ZSeSNwYHiqXF9rnFDG46dx1J4nuFFbS_YTF2yHMtM4Vw6nmCc6wJbHIuLpQR3io7nALOVsvOqmvFzNH55Hj31vLqJggcs8gurdIdopH2kYKFBSJXmhhpfhoxrIYWhmqSCgKERUEViRamN-ITkUQC-YppdoFY2z_QlwkBFLIHrgNkRJCQp4drEEIAVaYGnbCO_0V4CNcO4a3QxSzbcyE7hiVV44hSeRG30sJ6yqOg1_hrcaZYkqf-0PLEA1IZwjIV-Gz02y7T1-TdhV_8afYf2e6NBP-m_Dt-v0QF1JlMWmnVQq1iu9I1FJkV6W1riJ9jM1yI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB6VRargQKGAWKDgA6dWgfixTnJcFZZXizgUiZ6CM7bRilV2RbIXfj12HuwWtUiolyhSbEv2jOPPnvH3ARxkMuaxNCowMcrA4dskyLSygUgUR0ulCrHK8r2SZzfi4rZ32-icFm22exuSrO80eJamvDyaaHs0u_jmeQ0D_4flwr3EC7AovIREBxb7p78v545ZRCTmCMSloJXmGK0JODltA51_a_TPpWqGP1-FTKuVaPAJ7to-1AkoD4fTMjvEp1f0jv_RyVVYaVAq6ddutQYfTP4Zln--ULwW63DfJ-iVPUYVczhBj8KH1gtrk5annPglUpNxTiaNgxI79NF5onJNCuWJiUlhSuKAMykfFfpjezJGHE21q1cnqW_AzeDk1_ezoFFtCJDHYems7CGUco8MHRaJmDbCMhuqiAsjlbTM0ExStCxGpmmiGXNbTKlE3MNQc8M3oZOPc7MFBJlMFArT464EjWhGhbEJ9tA16ZCu6kLYGijFhtLcK2uM0hkZsx_D1I1h6scwjbvw9aXKpObzeKvwbmv1tJnaReoQr9szch6FXfjWGnHu878a235X6X34eH08SH-cX13uwBLzTlAltu1Cp3ycmi8OCZXZXuPtz3jS_NU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+correlative+classifiers+approach+based+on+particle+filter+and+sample+set+for+tracking+occluded+target&rft.jtitle=Applied+Mathematics-A+Journal+of+Chinese+Universities&rft.au=Li%2C+Kang&rft.au=He%2C+Fa-zhi&rft.au=Yu%2C+Hai-ping&rft.au=Chen%2C+Xiao&rft.date=2017-09-01&rft.issn=1005-1031&rft.eissn=1993-0445&rft.volume=32&rft.issue=3&rft.spage=294&rft.epage=312&rft_id=info:doi/10.1007%2Fs11766-017-3466-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1007_s11766_017_3466_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1005-1031&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1005-1031&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1005-1031&client=summon