Dynamic Facial Expression Recognition With Atlas Construction and Sparse Representation

In this paper, a new dynamic facial expression recognition method is proposed. Dynamic facial expression recognition is formulated as a longitudinal groupwise registration problem. The main contributions of this method lie in the following aspects: 1) subject-specific facial feature movements of dif...

Full description

Saved in:
Bibliographic Details
Published inIEEE transactions on image processing Vol. 25; no. 5; pp. 1977 - 1992
Main Authors Yimo Guo, Guoying Zhao, Pietikainen, Matti
Format Journal Article
LanguageEnglish
Published United States IEEE 01.05.2016
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Subjects
Online AccessGet full text
ISSN1057-7149
1941-0042
1941-0042
DOI10.1109/TIP.2016.2537215

Cover

Abstract In this paper, a new dynamic facial expression recognition method is proposed. Dynamic facial expression recognition is formulated as a longitudinal groupwise registration problem. The main contributions of this method lie in the following aspects: 1) subject-specific facial feature movements of different expressions are described by a diffeomorphic growth model; 2) salient longitudinal facial expression atlas is built for each expression by a sparse groupwise image registration method, which can describe the overall facial feature changes among the whole population and can suppress the bias due to large intersubject facial variations; and 3) both the image appearance information in spatial domain and topological evolution information in temporal domain are used to guide recognition by a sparse representation method. The proposed framework has been extensively evaluated on five databases for different applications: the extended Cohn-Kanade, MMI, FERA, and AFEW databases for dynamic facial expression recognition, and UNBC-McMaster database for spontaneous pain expression monitoring. This framework is also compared with several state-of-the-art dynamic facial expression recognition methods. The experimental results demonstrate that the recognition rates of the new method are consistently higher than other methods under comparison.
AbstractList In this paper, a new dynamic facial expression recognition method is proposed. Dynamic facial expression recognition is formulated as a longitudinal groupwise registration problem. The main contributions of this method lie in the following aspects: 1) subject-specific facial feature movements of different expressions are described by a diffeomorphic growth model; 2) salient longitudinal facial expression atlas is built for each expression by a sparse groupwise image registration method, which can describe the overall facial feature changes among the whole population and can suppress the bias due to large intersubject facial variations; and 3) both the image appearance information in spatial domain and topological evolution information in temporal domain are used to guide recognition by a sparse representation method. The proposed framework has been extensively evaluated on five databases for different applications: the extended Cohn-Kanade, MMI, FERA, and AFEW databases for dynamic facial expression recognition, and UNBC-McMaster database for spontaneous pain expression monitoring. This framework is also compared with several state-of-the-art dynamic facial expression recognition methods. The experimental results demonstrate that the recognition rates of the new method are consistently higher than other methods under comparison.
In this paper, a new dynamic facial expression recognition method is proposed. Dynamic facial expression recognition is formulated as a longitudinal groupwise registration problem. The main contributions of this method lie in the following aspects: 1) subject-specific facial feature movements of different expressions are described by a diffeomorphic growth model; 2) salient longitudinal facial expression atlas is built for each expression by a sparse groupwise image registration method, which can describe the overall facial feature changes among the whole population and can suppress the bias due to large intersubject facial variations; and 3) both the image appearance information in spatial domain and topological evolution information in temporal domain are used to guide recognition by a sparse representation method. The proposed framework has been extensively evaluated on five databases for different applications: the extended Cohn-Kanade, MMI, FERA, and AFEW databases for dynamic facial expression recognition, and UNBC-McMaster database for spontaneous pain expression monitoring. This framework is also compared with several state-of-the-art dynamic facial expression recognition methods. The experimental results demonstrate that the recognition rates of the new method are consistently higher than other methods under comparison.In this paper, a new dynamic facial expression recognition method is proposed. Dynamic facial expression recognition is formulated as a longitudinal groupwise registration problem. The main contributions of this method lie in the following aspects: 1) subject-specific facial feature movements of different expressions are described by a diffeomorphic growth model; 2) salient longitudinal facial expression atlas is built for each expression by a sparse groupwise image registration method, which can describe the overall facial feature changes among the whole population and can suppress the bias due to large intersubject facial variations; and 3) both the image appearance information in spatial domain and topological evolution information in temporal domain are used to guide recognition by a sparse representation method. The proposed framework has been extensively evaluated on five databases for different applications: the extended Cohn-Kanade, MMI, FERA, and AFEW databases for dynamic facial expression recognition, and UNBC-McMaster database for spontaneous pain expression monitoring. This framework is also compared with several state-of-the-art dynamic facial expression recognition methods. The experimental results demonstrate that the recognition rates of the new method are consistently higher than other methods under comparison.
Author Yimo Guo
Guoying Zhao
Pietikainen, Matti
Author_xml – sequence: 1
  surname: Yimo Guo
  fullname: Yimo Guo
  email: yimoguo@gmail.com
  organization: Dept. of Comput. Sci. & Eng., Univ. of Oulu, Oulu, Finland
– sequence: 2
  surname: Guoying Zhao
  fullname: Guoying Zhao
  email: gyzhao@ee.oulu.fi
  organization: Dept. of Comput. Sci. & Eng., Univ. of Oulu, Oulu, Finland
– sequence: 3
  givenname: Matti
  surname: Pietikainen
  fullname: Pietikainen, Matti
  email: mkp@ee.oulu.fi
  organization: Dept. of Comput. Sci. & Eng., Univ. of Oulu, Oulu, Finland
BackLink https://www.ncbi.nlm.nih.gov/pubmed/26955032$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1P3DAQhi1EVb56R0JCkXrpJcv4OzmiLbRISK1aEEfLcSatUdZZ7ESCf4_DLj1wKJfxyH6ekTzvAdkNQ0BCjiksKIX67Obq54IBVQsmuWZU7pB9WgtaAgi2m3uQutRU1HvkIKV7ACokVR_JHlO1lMDZPrn7-hTsyrvi0jpv--LicR0xJT-E4he64U_w49zf-fFvcT72NhXLIaQxTu7l3oa2-L22MWHGZxPDaOeXI_Khs33CT9vzkNxeXtwsv5fXP75dLc-vS8crGEteqVZ2Atpa8xYlp0x0smmbTrhKC9txIZuuVbKaS4fKVpJKphsmNMNc-SH5spm7jsPDhGk0K58c9r0NOEzJ0IoqkLVm_H1UawU1Vwwy-vkNej9MMeSPZKrSAFoolqnTLTU1K2zNOvqVjU_mdbsZUBvAxSGliJ1xfrOeMVrfGwpmjtHkGM0co9nGmEV4I77O_o9yslE8Iv7DtWBcc8WfAXPUphY
CODEN IIPRE4
CitedBy_id crossref_primary_10_1007_s10586_017_1231_7
crossref_primary_10_1007_s10586_017_1237_1
crossref_primary_10_1007_s00371_019_01705_7
crossref_primary_10_1016_j_imavis_2020_104038
crossref_primary_10_1016_j_patrec_2017_06_025
crossref_primary_10_1007_s00371_018_1585_8
crossref_primary_10_1016_j_eswa_2024_123635
crossref_primary_10_1109_TIP_2023_3318955
crossref_primary_10_1109_TCBB_2021_3091000
crossref_primary_10_1016_j_patcog_2020_107701
crossref_primary_10_1109_TIP_2019_2899267
crossref_primary_10_1007_s12559_021_09843_8
crossref_primary_10_1109_ACCESS_2023_3287389
crossref_primary_10_1002_spe_2955
crossref_primary_10_1016_j_neunet_2017_07_006
crossref_primary_10_1016_j_neunet_2024_106573
crossref_primary_10_1109_TAFFC_2023_3286351
crossref_primary_10_1186_s13640_017_0190_5
crossref_primary_10_1016_j_future_2020_08_034
crossref_primary_10_1109_TAFFC_2021_3077489
crossref_primary_10_1007_s00779_019_01235_y
crossref_primary_10_1109_TCSVT_2024_3450652
crossref_primary_10_1016_j_patcog_2019_106966
crossref_primary_10_3906_elk_1606_115
crossref_primary_10_1016_j_jksuci_2018_09_011
crossref_primary_10_1007_s11042_017_5354_x
crossref_primary_10_1016_j_asoc_2019_105540
crossref_primary_10_1007_s11760_018_1318_5
crossref_primary_10_1142_S0218213017500178
crossref_primary_10_1007_s00779_019_01238_9
Cites_doi 10.1109/CVPR.2004.1315264
10.1109/TSMCB.2005.859075
10.1016/j.imavis.2011.12.003
10.1109/MMUL.2012.26
10.1109/CVPR.2013.439
10.1109/42.796284
10.1109/TPAMI.2002.1017623
10.1145/2663204.2666277
10.1023/B:VISI.0000029664.99615.94
10.1007/978-1-4419-8853-9
10.1109/TPAMI.2005.188
10.1109/ICIP.2010.5650670
10.1109/CVPR.2012.6247876
10.1145/2663204.2666278
10.1109/TPAMI.2015.2392774
10.1109/TPAMI.2007.1110
10.1109/TPAMI.2008.79
10.1109/TPAMI.2006.34
10.1109/TPAMI.2005.93
10.1016/j.patcog.2013.09.023
10.1109/AFGR.1998.670965
10.1109/CVPR.2005.177
10.1109/TPAMI.2010.50
10.1016/j.neuroimage.2004.07.068
10.1007/978-3-642-33709-3_45
10.1016/S1361-8415(01)80026-8
10.1007/s11263-010-0380-4
10.1023/B:VISI.0000043755.93987.aa
10.1109/ICME.2005.1521424
10.1016/S1077-3142(03)00081-X
10.1109/TPAMI.2006.10
10.1109/CVPRW.2010.5543262
10.1016/j.imavis.2008.08.005
10.1109/CVPR.2014.426
10.1111/j.2517-6161.1996.tb02080.x
10.5772/4841
10.1109/TSMCB.2012.2200675
10.1109/TPAMI.2013.141
10.1109/TPAMI.2008.52
10.1145/2663204.2666275
10.1016/j.imavis.2005.08.006
10.1109/CVPR.2005.297
10.1016/S0031-3203(02)00052-3
10.1023/B:VISI.0000013087.49260.fb
10.1109/TPAMI.2010.107
10.1023/A:1011161132514
10.1109/TPAMI.2009.193
10.1109/CVPR.2010.5540138
10.1109/ACII.2015.7344636
10.1145/2663204.2666274
10.1016/j.imavis.2014.02.008
10.1109/CVPR.2013.75
10.1109/CVPR.2008.4587523
10.1109/FG.2011.5771364
10.1109/CVPR.2014.226
ContentType Journal Article
Copyright Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
Copyright_xml – notice: Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2016
DBID 97E
RIA
RIE
AAYXX
CITATION
NPM
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
DOI 10.1109/TIP.2016.2537215
DatabaseName IEEE All-Society Periodicals Package (ASPP) 2005–Present
IEEE All-Society Periodicals Package (ASPP) 1998–Present
IEEE Electronic Library (IEL)
CrossRef
PubMed
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
DatabaseTitle CrossRef
PubMed
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
MEDLINE - Academic
Engineering Research Database
ANTE: Abstracts in New Technology & Engineering
DatabaseTitleList Technology Research Database

PubMed
MEDLINE - Academic
Technology Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: RIE
  name: IEEE Electronic Library (IEL)
  url: https://proxy.k.utb.cz/login?url=https://ieeexplore.ieee.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Engineering
Statistics
EISSN 1941-0042
EndPage 1992
ExternalDocumentID 4046066681
26955032
10_1109_TIP_2016_2537215
7423736
Genre orig-research
Journal Article
GroupedDBID ---
-~X
.DC
0R~
29I
4.4
53G
5GY
5VS
6IK
97E
AAJGR
AARMG
AASAJ
AAWTH
ABAZT
ABFSI
ABQJQ
ABVLG
ACGFO
ACGFS
ACIWK
AENEX
AETIX
AGQYO
AGSQL
AHBIQ
AI.
AIBXA
AKJIK
AKQYR
ALLEH
ALMA_UNASSIGNED_HOLDINGS
ASUFR
ATWAV
BEFXN
BFFAM
BGNUA
BKEBE
BPEOZ
CS3
DU5
E.L
EBS
EJD
F5P
HZ~
H~9
ICLAB
IFIPE
IFJZH
IPLJI
JAVBF
LAI
M43
MS~
O9-
OCL
P2P
RIA
RIE
RNS
TAE
TN5
VH1
AAYXX
CITATION
AAYOK
NPM
RIG
7SC
7SP
8FD
JQ2
L7M
L~C
L~D
7X8
F28
FR3
ID FETCH-LOGICAL-c380t-386d5f40d973de53124f5bdbf4c874af345bfd658fd65fe6a851527b2472eb243
IEDL.DBID RIE
ISSN 1057-7149
1941-0042
IngestDate Sun Sep 28 08:42:46 EDT 2025
Sat Sep 27 23:18:21 EDT 2025
Mon Jun 30 10:12:58 EDT 2025
Thu Apr 03 06:59:06 EDT 2025
Wed Oct 01 02:44:51 EDT 2025
Thu Apr 24 23:07:13 EDT 2025
Tue Aug 26 16:43:04 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Dynamic facial expression recognition
diffeomorphic growth model
groupwise registration
sparse representation
Language English
License https://ieeexplore.ieee.org/Xplorehelp/downloads/license-information/IEEE.html
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c380t-386d5f40d973de53124f5bdbf4c874af345bfd658fd65fe6a851527b2472eb243
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PMID 26955032
PQID 1787007462
PQPubID 85429
PageCount 16
ParticipantIDs pubmed_primary_26955032
proquest_miscellaneous_1776093620
crossref_primary_10_1109_TIP_2016_2537215
proquest_journals_1787007462
crossref_citationtrail_10_1109_TIP_2016_2537215
ieee_primary_7423736
proquest_miscellaneous_1816059723
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-05-01
PublicationDateYYYYMMDD 2016-05-01
PublicationDate_xml – month: 05
  year: 2016
  text: 2016-05-01
  day: 01
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: New York
PublicationTitle IEEE transactions on image processing
PublicationTitleAbbrev TIP
PublicationTitleAlternate IEEE Trans Image Process
PublicationYear 2016
Publisher IEEE
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Publisher_xml – name: IEEE
– name: The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
References ref57
ref56
ref12
cao (ref31) 2012
ref59
ref15
ref58
ref14
ref53
ref52
ref55
ref54
ref10
ref17
ref16
ref19
ref18
ref51
ramirez (ref11) 2015; 37
ref50
ref46
ref45
zhong (ref13) 2012
ref47
ref42
ref41
ref44
ref43
ref49
ref8
ref7
ref9
ref4
tibshirani (ref39) 1996; 58
ref3
ref6
ref5
ref40
ref35
ref34
ref36
yang (ref20) 2008
ref30
ref33
ref32
ref2
ref1
ref38
liu (ref48) 2009
ref24
ref23
ref26
ref25
ref22
ref21
ref28
ref27
ref29
ref60
hernández (ref37) 2008
References_xml – start-page: 2887
  year: 2012
  ident: ref31
  article-title: Face alignment by explicit shape regression
  publication-title: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit
– ident: ref21
  doi: 10.1109/CVPR.2004.1315264
– ident: ref19
  doi: 10.1109/TSMCB.2005.859075
– ident: ref44
  doi: 10.1016/j.imavis.2011.12.003
– start-page: 1
  year: 2008
  ident: ref20
  article-title: Facial expression recognition using encoded dynamic features
  publication-title: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit
– ident: ref52
  doi: 10.1109/MMUL.2012.26
– ident: ref14
  doi: 10.1109/CVPR.2013.439
– ident: ref27
  doi: 10.1109/42.796284
– ident: ref4
  doi: 10.1109/TPAMI.2002.1017623
– ident: ref56
  doi: 10.1145/2663204.2666277
– ident: ref25
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: ref40
  doi: 10.1007/978-1-4419-8853-9
– ident: ref26
  doi: 10.1109/TPAMI.2005.188
– ident: ref16
  doi: 10.1109/ICIP.2010.5650670
– ident: ref45
  doi: 10.1109/CVPR.2012.6247876
– ident: ref57
  doi: 10.1145/2663204.2666278
– volume: 37
  start-page: 2146
  year: 2015
  ident: ref11
  article-title: Spatiotemporal directional number transitional graph for dynamic texture recognition
  publication-title: IEEE Trans Pattern Anal Mach Intell
  doi: 10.1109/TPAMI.2015.2392774
– ident: ref7
  doi: 10.1109/TPAMI.2007.1110
– ident: ref38
  doi: 10.1109/TPAMI.2008.79
– ident: ref6
  doi: 10.1109/TPAMI.2006.34
– ident: ref9
  doi: 10.1109/TPAMI.2005.93
– ident: ref12
  doi: 10.1016/j.patcog.2013.09.023
– ident: ref22
  doi: 10.1109/AFGR.1998.670965
– ident: ref24
  doi: 10.1109/CVPR.2005.177
– ident: ref10
  doi: 10.1109/TPAMI.2010.50
– year: 2009
  ident: ref48
  article-title: Beyond pixels: Exploring new representations and applications for motion analysis
– ident: ref35
  doi: 10.1016/j.neuroimage.2004.07.068
– ident: ref17
  doi: 10.1007/978-3-642-33709-3_45
– ident: ref33
  doi: 10.1016/S1361-8415(01)80026-8
– ident: ref23
  doi: 10.1007/s11263-010-0380-4
– ident: ref15
  doi: 10.1023/B:VISI.0000043755.93987.aa
– ident: ref42
  doi: 10.1109/ICME.2005.1521424
– ident: ref8
  doi: 10.1016/S1077-3142(03)00081-X
– ident: ref49
  doi: 10.1109/TPAMI.2006.10
– ident: ref41
  doi: 10.1109/CVPRW.2010.5543262
– ident: ref60
  doi: 10.1016/j.imavis.2008.08.005
– ident: ref46
  doi: 10.1109/CVPR.2014.426
– volume: 58
  start-page: 267
  year: 1996
  ident: ref39
  article-title: Regression shrinkage and selection via the lasso
  publication-title: J R Statist Soc B (Methodological)
  doi: 10.1111/j.2517-6161.1996.tb02080.x
– start-page: 2562
  year: 2012
  ident: ref13
  article-title: Learning active facial patches for expression analysis
  publication-title: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit
– ident: ref5
  doi: 10.5772/4841
– ident: ref43
  doi: 10.1109/TSMCB.2012.2200675
– ident: ref32
  doi: 10.1109/TPAMI.2013.141
– ident: ref2
  doi: 10.1109/TPAMI.2008.52
– ident: ref55
  doi: 10.1145/2663204.2666275
– ident: ref18
  doi: 10.1016/j.imavis.2005.08.006
– ident: ref3
  doi: 10.1109/CVPR.2005.297
– ident: ref1
  doi: 10.1016/S0031-3203(02)00052-3
– ident: ref50
  doi: 10.1023/B:VISI.0000013087.49260.fb
– ident: ref30
  doi: 10.1109/TPAMI.2010.107
– ident: ref34
  doi: 10.1023/A:1011161132514
– ident: ref36
  doi: 10.1109/TPAMI.2009.193
– ident: ref47
  doi: 10.1109/CVPR.2010.5540138
– ident: ref53
  doi: 10.1109/ACII.2015.7344636
– ident: ref58
  doi: 10.1145/2663204.2666274
– ident: ref59
  doi: 10.1016/j.imavis.2014.02.008
– ident: ref28
  doi: 10.1109/CVPR.2013.75
– start-page: 24
  year: 2008
  ident: ref37
  article-title: Comparing algorithms for diffeomorphic registration: Stationary lddmm and diffeomorphic demons
  publication-title: 2nd MICCAI Workshop on Mathematical Foundations of Computational Anatomy (MFCA)
– ident: ref29
  doi: 10.1109/CVPR.2008.4587523
– ident: ref51
  doi: 10.1109/FG.2011.5771364
– ident: ref54
  doi: 10.1109/CVPR.2014.226
SSID ssj0014516
Score 2.408139
Snippet In this paper, a new dynamic facial expression recognition method is proposed. Dynamic facial expression recognition is formulated as a longitudinal groupwise...
SourceID proquest
pubmed
crossref
ieee
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1977
SubjectTerms Diffeomorphic Growth Model
Dynamic Facial Expression Recognition
Dynamics
Face recognition
Feature extraction
Groupwise Registration
Image processing
Image recognition
Image registration
Mathematical models
Object recognition
Representations
Shape
Sociology
Sparse Representation
Statistics
Title Dynamic Facial Expression Recognition With Atlas Construction and Sparse Representation
URI https://ieeexplore.ieee.org/document/7423736
https://www.ncbi.nlm.nih.gov/pubmed/26955032
https://www.proquest.com/docview/1787007462
https://www.proquest.com/docview/1776093620
https://www.proquest.com/docview/1816059723
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIEE
  databaseName: IEEE Electronic Library (IEL)
  customDbUrl:
  eissn: 1941-0042
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0014516
  issn: 1057-7149
  databaseCode: RIE
  dateStart: 19920101
  isFulltext: true
  titleUrlDefault: https://ieeexplore.ieee.org/
  providerName: IEEE
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB6SnNJD02zaxm1SVOilUO96rZd9DEmWtJBSSkJyM5IlkZDgXYgXSn99Z2zZfdCGXozAY1tmNNI3mtF8AO-MmOtgJU-l8yoVPNA8aMt0LqwQ0pngOo6l88_q7FJ8upbXG_BhPAvjve-Sz_yUml0s3y3rNW2VzSiqqLnahE1dqP6s1hgxIMLZLrIpdaoR9g8hyaycXXz8QjlcappLjg4PkdXkqkRozvPfVqOOXuXfSLNbcRY7cD70tU80uZuuWzutv_9RxvF_f-YZPI3Qkx31Y2UXNnwzgZ0IQ1k08ocJPPmlRuEEtgmO9tWc9-DqpCewZwtDW-3s9FvMo23Y1yETCdtXt-0NO2oRmDMiBB1K1DLT4HdW6Ep7FF_9PPjUPIfLxenF8VkaqRnSmhdZm_JCORlE5krNnUc7zkWQ1tkg6kILE7iQNjhEN3QJXhkEdjLXNhc6R19e8Bew1Swbvw_MEGNWkKa2xqEvJGwW8LUqlI6bEmeXBGaDiqo61i0n-oz7qvNfsrJC_Vak3yrqN4H34xOrvmbHI7J7pJpRLmolgYNhFFTRqB-qOU1uxM-SJ_B2vI3mSDEW0_jlmmS0ykpEBdkjMsUcnUiie0vgZT_Cxu8PA_PV3_v1Grap933G5QFsoQL9IaKi1r7pzOEH2dUF-A
linkProvider IEEE
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3da9RAEB9qfbA-WL36Ea26gi-Cuctlvy6PRXtctVdErrRvYTe7i6LkDpoD8a93JtnED7T4EgKZJBtmZvObndn5Abw0YqqDlTyVzqtU8EDzoC3SqbBCSGeCazmWlmdqcS7eXcrLHXg97IXx3rfFZ35Mp20u362rLS2VTSirqLm6ATelwCd1u7WGnAFRzra5TalTjcC_T0pmxWR18oGquNQ4lxxDHqKryVWB4Jznv_2PWoKVf2PN9p8z34dlP9qu1OTLeNvYcfX9j0aO__s5d-FOBJ_sqLOWe7Dj6xHsRyDKoptfjeD2L10KR7BHgLTr53wAF287Cns2N7TYzo6_xUramn3sa5Hw_OJz84kdNQjNGVGC9k1qmanxPRsMpj2Kb35ufarvw_n8ePVmkUZyhrTis6xJ-Uw5GUTmCs2dR0_ORZDW2SCqmRYmcCFtcIhv6BC8MgjtZK5tLnSO0bzgD2C3Xtf-ETBDnFlBmsoah9GQsFnAx6pQOG4KnF8SmPQqKqvYuZwINL6WbQSTFSXqtyT9llG_Cbwa7th0XTuukT0g1QxyUSsJHPZWUEa3viqnNL0RQ0uewIvhMjokZVlM7ddbktEqKxAXZNfIzKYYRhLhWwIPOwsb3t8b5uO_j-s53Fqslqfl6cnZ-yewR1_S1V8ewi4q0z9FjNTYZ61r_ACx_wlF
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Facial+Expression+Recognition+With+Atlas+Construction+and+Sparse+Representation&rft.jtitle=IEEE+transactions+on+image+processing&rft.au=Guo%2C+Yimo&rft.au=Zhao%2C+Guoying&rft.au=Pietikainen%2C+Matti&rft.date=2016-05-01&rft.issn=1057-7149&rft.eissn=1941-0042&rft.volume=25&rft.issue=5&rft.spage=1977&rft.epage=1992&rft_id=info:doi/10.1109%2FTIP.2016.2537215&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1057-7149&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1057-7149&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1057-7149&client=summon