Soliton solutions to constrained nonlocal integrable nonlinear Schrödinger hierarchies of type (−λ,λ)
The paper aims to generate nonlocal integrable nonlinear Schrödinger hierarchies of type ( − λ , λ ) by imposing two nonlocal matrix restrictions of the AKNS matrix characteristic-value problems of arbitrary order. Based on the explored outspreading of characteristic-values and adjoint characteristi...
        Saved in:
      
    
          | Published in | International journal of geometric methods in modern physics Vol. 20; no. 6 | 
|---|---|
| Main Author | |
| Format | Journal Article | 
| Language | English | 
| Published | 
        Singapore
          World Scientific Publishing Company
    
        01.05.2023
     World Scientific Publishing Co. Pte., Ltd  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0219-8878 1793-6977  | 
| DOI | 10.1142/S0219887823500986 | 
Cover
| Abstract | The paper aims to generate nonlocal integrable nonlinear Schrödinger hierarchies of type
(
−
λ
,
λ
)
by imposing two nonlocal matrix restrictions of the AKNS matrix characteristic-value problems of arbitrary order. Based on the explored outspreading of characteristic-values and adjoint characteristic-values, exact soliton solutions are formulated by applying the associated reflectionless generalized Riemann–Hilbert problems, in which characteristic-values and adjoint characteristic-values could have a nonempty intersection. Illustrative models of the resultant mixed-type nonlocal integrable nonlinear Schrödinger equations are presented. | 
    
|---|---|
| AbstractList | The paper aims to generate nonlocal integrable nonlinear Schrödinger hierarchies of type
(
−
λ
,
λ
)
by imposing two nonlocal matrix restrictions of the AKNS matrix characteristic-value problems of arbitrary order. Based on the explored outspreading of characteristic-values and adjoint characteristic-values, exact soliton solutions are formulated by applying the associated reflectionless generalized Riemann–Hilbert problems, in which characteristic-values and adjoint characteristic-values could have a nonempty intersection. Illustrative models of the resultant mixed-type nonlocal integrable nonlinear Schrödinger equations are presented. The paper aims to generate nonlocal integrable nonlinear Schrödinger hierarchies of type (−λ,λ) by imposing two nonlocal matrix restrictions of the AKNS matrix characteristic-value problems of arbitrary order. Based on the explored outspreading of characteristic-values and adjoint characteristic-values, exact soliton solutions are formulated by applying the associated reflectionless generalized Riemann–Hilbert problems, in which characteristic-values and adjoint characteristic-values could have a nonempty intersection. Illustrative models of the resultant mixed-type nonlocal integrable nonlinear Schrödinger equations are presented. The paper aims to generate nonlocal integrable nonlinear Schrödinger hierarchies of type [Formula: see text] by imposing two nonlocal matrix restrictions of the AKNS matrix characteristic-value problems of arbitrary order. Based on the explored outspreading of characteristic-values and adjoint characteristic-values, exact soliton solutions are formulated by applying the associated reflectionless generalized Riemann–Hilbert problems, in which characteristic-values and adjoint characteristic-values could have a nonempty intersection. Illustrative models of the resultant mixed-type nonlocal integrable nonlinear Schrödinger equations are presented.  | 
    
| Author | Ma, Wen-Xiu | 
    
| Author_xml | – sequence: 1 givenname: Wen-Xiu surname: Ma fullname: Ma, Wen-Xiu  | 
    
| BookMark | eNp9kM1KAzEUhYNUsFYfwF3AjYKjyfzkZynFPyi4qK6HTCbTpoxJTVKkb-Dah3HTpfs-hE9ixooLC64O3HPPPdxvH_SMNQqAI4zOMc7TizFKMWeMsjQrEOKM7IA-pjxLCKe0B_qdnXT-Htj3foZQhimlfTAb21YHa6C37SJoazwMFsqowQltVA1jUWulaKE2QU2cqFr1PYumcHAsp-7jvdZmohycauWEk1E8tA0My7mCJ5-vb-vV2Xp1egB2G9F6dfijA_B4ffUwvE1G9zd3w8tRIjOGSEJkJSumuJSkkDXLi6zhdVFgklKmUtxkKRM8PljnRDUcVVjUGOWVSHNOBG94NgDHm7tzZ58XyodyZhfOxMoyZTjDKGKhcQtvtqSz3jvVlHOnn4RblhiVHdJyC2nM0D8ZqYPoqHWw2n-TaJN8sa6tvdTKBN1o-Vu6HfkCpPaP8w | 
    
| CitedBy_id | crossref_primary_10_1007_s12043_024_02765_8 crossref_primary_10_1016_j_chaos_2023_113856 crossref_primary_10_3390_math11163529 crossref_primary_10_1007_s11071_024_09981_2 crossref_primary_10_1016_j_padiff_2023_100588 crossref_primary_10_59277_RomRepPhys_2024_76_108 crossref_primary_10_1007_s12596_023_01525_y crossref_primary_10_3934_dcdss_2024117 crossref_primary_10_1016_j_padiff_2023_100543 crossref_primary_10_1016_j_chaos_2023_114391 crossref_primary_10_3390_math11194110 crossref_primary_10_1016_S0034_4877_24_00040_5 crossref_primary_10_1016_j_aml_2024_109025 crossref_primary_10_1007_s12346_023_00856_2 crossref_primary_10_1016_j_aml_2023_108775 crossref_primary_10_3934_era_2023302 crossref_primary_10_1088_1572_9494_ad6f8e crossref_primary_10_1142_S0217984923501439 crossref_primary_10_1142_S0217984924503196 crossref_primary_10_1063_5_0195378 crossref_primary_10_1088_1572_9494_ad3dd9 crossref_primary_10_1088_1674_1056_acf9e8 crossref_primary_10_1016_j_asej_2024_102917 crossref_primary_10_1016_j_cnsns_2023_107460 crossref_primary_10_3390_computation12080161 crossref_primary_10_1134_S0040577923080093 crossref_primary_10_1016_j_asej_2023_102537 crossref_primary_10_1016_j_rinp_2024_107579 crossref_primary_10_1016_j_rinp_2023_107039 crossref_primary_10_1007_s12346_024_01036_6 crossref_primary_10_1142_S0219887824501275 crossref_primary_10_1140_epjp_s13360_023_04497_x crossref_primary_10_3390_math11224664 crossref_primary_10_1515_phys_2023_0108 crossref_primary_10_1016_j_chaos_2023_114089 crossref_primary_10_1007_s12596_023_01594_z crossref_primary_10_1142_S0217984925500885 crossref_primary_10_1007_s12043_024_02856_6 crossref_primary_10_1016_j_wavemoti_2024_103329 crossref_primary_10_7566_JPSJ_92_104002 crossref_primary_10_1016_j_wavemoti_2024_103327 crossref_primary_10_1007_s10440_023_00610_5 crossref_primary_10_1016_j_ijleo_2023_171390 crossref_primary_10_1098_rspa_2023_0455 crossref_primary_10_1088_1572_9494_acfd13 crossref_primary_10_3934_dcdss_2024127 crossref_primary_10_1016_j_padiff_2023_100579 crossref_primary_10_1016_j_cjph_2023_09_023 crossref_primary_10_1002_mma_10008 crossref_primary_10_1016_j_physleta_2024_130217  | 
    
| Cites_doi | 10.1016/j.physleta.2018.10.051 10.1016/j.joes.2021.09.006 10.3390/sym13112205 10.1007/s40819-022-01422-1 10.1088/0305-4470/25/20/014 10.1063/1.4997835 10.1088/0305-4470/22/13/031 10.3390/sym13030512 10.1016/j.cnsns.2016.06.015 10.1016/j.aml.2021.107209 10.1016/j.jde.2017.10.033 10.1016/j.padiff.2021.100190 10.1002/mma.5416 10.1090/bproc/116 10.1090/proc/15174 10.1111/sapm.12329 10.1017/CBO9780511546723 10.1016/j.geomphys.2021.104347 10.1016/j.aml.2019.106161 10.1134/S0040577918100033 10.1088/0951-7715/29/3/915 10.1088/0305-4470/26/11/009 10.1111/sapm.12153 10.1016/j.physd.2021.133078 10.1137/1.9780898719680 10.3390/math7070573 10.1088/1572-9494/ac75e0  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2023, World Scientific Publishing Company 2023. World Scientific Publishing Company  | 
    
| Copyright_xml | – notice: 2023, World Scientific Publishing Company – notice: 2023. World Scientific Publishing Company  | 
    
| DBID | AAYXX CITATION  | 
    
| DOI | 10.1142/S0219887823500986 | 
    
| DatabaseName | CrossRef | 
    
| DatabaseTitle | CrossRef | 
    
| DatabaseTitleList | CrossRef  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Applied Sciences | 
    
| EISSN | 1793-6977 | 
    
| ExternalDocumentID | 10_1142_S0219887823500986 S0219887823500986  | 
    
| GroupedDBID | 0R~ 4.4 5GY ADSJI AENEX ALMA_UNASSIGNED_HOLDINGS CAG COF CS3 DU5 EBS EJD ESX HZ~ J9A O9- P2P P71 RWJ AAYXX AMVHM CITATION  | 
    
| ID | FETCH-LOGICAL-c3806-6cbcb8e9cc65cd8453f9d5516278e21f328a9986d46ef90b1ad104ba2496a9f93 | 
    
| ISSN | 0219-8878 | 
    
| IngestDate | Mon Jun 30 07:09:01 EDT 2025 Tue Jul 01 00:25:15 EDT 2025 Thu Apr 24 22:56:59 EDT 2025 Fri Aug 23 08:19:28 EDT 2024  | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 6 | 
    
| Keywords | nonlinear Schrödinger equations soliton solution nonlocal integrable equation Integrable hierarchy Riemann–Hilbert problem  | 
    
| Language | English | 
    
| LinkModel | OpenURL | 
    
| MergedId | FETCHMERGED-LOGICAL-c3806-6cbcb8e9cc65cd8453f9d5516278e21f328a9986d46ef90b1ad104ba2496a9f93 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0001-5309-1493 | 
    
| PQID | 2813107937 | 
    
| PQPubID | 2049917 | 
    
| ParticipantIDs | worldscientific_primary_S0219887823500986 proquest_journals_2813107937 crossref_primary_10_1142_S0219887823500986 crossref_citationtrail_10_1142_S0219887823500986  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 20230500 | 
    
| PublicationDateYYYYMMDD | 2023-05-01 | 
    
| PublicationDate_xml | – month: 05 year: 2023 text: 20230500  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Singapore | 
    
| PublicationPlace_xml | – name: Singapore | 
    
| PublicationTitle | International journal of geometric methods in modern physics | 
    
| PublicationYear | 2023 | 
    
| Publisher | World Scientific Publishing Company World Scientific Publishing Co. Pte., Ltd  | 
    
| Publisher_xml | – name: World Scientific Publishing Company – name: World Scientific Publishing Co. Pte., Ltd  | 
    
| References | Ma W. X. (S0219887823500986BIB018) 2022; 430 Ma W. X. (S0219887823500986BIB020) 1992; 25 Gesztesy F. (S0219887823500986BIB025) 2003 Yang J. (S0219887823500986BIB013) 2019; 383 Ma W. X. (S0219887823500986BIB014) 2021; 149 Ablowitz M. J. (S0219887823500986BIB003) 2016; 29 Ma W. X. (S0219887823500986BIB005) 2020; 145 Sulaiman T. A. (S0219887823500986BIB023) 2021; 169 Ma W. X. (S0219887823500986BIB017) 2019; 42 Ma W. X. (S0219887823500986BIB021) 1993; 26 Grahovski G. G. (S0219887823500986BIB008) 2018; 197 Ma W. X. (S0219887823500986BIB004) 2020; 102 Ma W. X. (S0219887823500986BIB002) 2021; 4 Ling L. M. (S0219887823500986BIB006) 2021; 13 Xin X. P. (S0219887823500986BIB029) 2021; 119 Yusuf A. (S0219887823500986BIB024) 2022; 7 Ma W. X. (S0219887823500986BIB015) 2022; 74 Gürses M. (S0219887823500986BIB009) 2018; 59 Ablowitz M. J. (S0219887823500986BIB001) 2017; 139 Ma W. X. (S0219887823500986BIB027) 2022; 9 Novikov S. P. (S0219887823500986BIB010) 1984 Yang J. (S0219887823500986BIB012) 2010 Tu G. Z. (S0219887823500986BIB019) 1989; 22 Kawata T. (S0219887823500986BIB011) 1984 Ma W. X. (S0219887823500986BIB022) 2018; 264 Ma W. X. (S0219887823500986BIB026) 2019; 7 Ma W. X. (S0219887823500986BIB030) 2012; 1 Ji J. L. (S0219887823500986BIB007) 2017; 42 Ma W. X. (S0219887823500986BIB016) 2022; 8 Ma W. X. (S0219887823500986BIB028) 2021; 13  | 
    
| References_xml | – volume: 383 start-page: 328 year: 2019 ident: S0219887823500986BIB013 publication-title: Phys. Lett. A doi: 10.1016/j.physleta.2018.10.051 – volume: 7 year: 2022 ident: S0219887823500986BIB024 publication-title: J. Ocean Eng. Sci. doi: 10.1016/j.joes.2021.09.006 – volume: 13 start-page: 2205 year: 2021 ident: S0219887823500986BIB028 publication-title: Symmetry doi: 10.3390/sym13112205 – volume: 8 start-page: 206 year: 2022 ident: S0219887823500986BIB016 publication-title: Int. J. Appl. Comput. Math. doi: 10.1007/s40819-022-01422-1 – volume: 1 start-page: 1 year: 2012 ident: S0219887823500986BIB030 publication-title: Global J. Math. Sci. – volume-title: Theory of Solitons: The Inverse Scattering Method year: 1984 ident: S0219887823500986BIB010 – volume: 25 start-page: 5329 year: 1992 ident: S0219887823500986BIB020 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/25/20/014 – start-page: 210 volume-title: Advances in Nonlinear Waves year: 1984 ident: S0219887823500986BIB011 – volume: 59 start-page: 051501 year: 2018 ident: S0219887823500986BIB009 publication-title: J. Math. Phys. doi: 10.1063/1.4997835 – volume: 22 start-page: 2375 year: 1989 ident: S0219887823500986BIB019 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/22/13/031 – volume: 13 start-page: 512 year: 2021 ident: S0219887823500986BIB006 publication-title: Symmetry doi: 10.3390/sym13030512 – volume: 42 start-page: 699 year: 2017 ident: S0219887823500986BIB007 publication-title: Commun. Nonlinear Sci. Numer. Simul. doi: 10.1016/j.cnsns.2016.06.015 – volume: 119 start-page: 107209 year: 2021 ident: S0219887823500986BIB029 publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2021.107209 – volume: 264 start-page: 2633 year: 2018 ident: S0219887823500986BIB022 publication-title: J. Differ. Equ. doi: 10.1016/j.jde.2017.10.033 – volume: 4 start-page: 100190 year: 2021 ident: S0219887823500986BIB002 publication-title: Partial Differ. Equ. Appl. Math. doi: 10.1016/j.padiff.2021.100190 – volume: 42 start-page: 1099 year: 2019 ident: S0219887823500986BIB017 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.5416 – volume: 9 start-page: 1 year: 2022 ident: S0219887823500986BIB027 publication-title: Proc. Amer. Math. Soc. Ser. B doi: 10.1090/bproc/116 – volume: 149 start-page: 251 year: 2021 ident: S0219887823500986BIB014 publication-title: Proc. Amer. Math. Soc. doi: 10.1090/proc/15174 – volume: 145 start-page: 563 year: 2020 ident: S0219887823500986BIB005 publication-title: Stud. Appl. Math. doi: 10.1111/sapm.12329 – volume-title: Soliton Equations and their Algebro-geometric Solutions: (1+1)-Dimensional Continuous Models year: 2003 ident: S0219887823500986BIB025 doi: 10.1017/CBO9780511546723 – volume: 169 start-page: 104347 year: 2021 ident: S0219887823500986BIB023 publication-title: J. Geom. Phys. doi: 10.1016/j.geomphys.2021.104347 – volume: 102 start-page: 106161 year: 2020 ident: S0219887823500986BIB004 publication-title: Appl. Math. Lett. doi: 10.1016/j.aml.2019.106161 – volume: 197 start-page: 1430 year: 2018 ident: S0219887823500986BIB008 publication-title: Theor. Math. Phys. doi: 10.1134/S0040577918100033 – volume: 29 start-page: 915 year: 2016 ident: S0219887823500986BIB003 publication-title: Nonlinearity doi: 10.1088/0951-7715/29/3/915 – volume: 26 start-page: 2573 year: 1993 ident: S0219887823500986BIB021 publication-title: J. Phys. A: Math. Gen. doi: 10.1088/0305-4470/26/11/009 – volume: 139 start-page: 7 year: 2017 ident: S0219887823500986BIB001 publication-title: Stud. Appl. Math. doi: 10.1111/sapm.12153 – volume: 430 start-page: 133078 year: 2022 ident: S0219887823500986BIB018 publication-title: Physica D doi: 10.1016/j.physd.2021.133078 – volume-title: Nonlinear Waves in Integrable and Nonintegrable Systems year: 2010 ident: S0219887823500986BIB012 doi: 10.1137/1.9780898719680 – volume: 7 start-page: 573 year: 2019 ident: S0219887823500986BIB026 publication-title: Mathematics doi: 10.3390/math7070573 – volume: 74 start-page: 065002 year: 2022 ident: S0219887823500986BIB015 publication-title: Commun. Theor. Phys. doi: 10.1088/1572-9494/ac75e0  | 
    
| SSID | ssj0031777 | 
    
| Score | 2.5165274 | 
    
| Snippet | The paper aims to generate nonlocal integrable nonlinear Schrödinger hierarchies of type
(
−
λ
,
λ
)
by imposing two nonlocal matrix restrictions of the AKNS... The paper aims to generate nonlocal integrable nonlinear Schrödinger hierarchies of type [Formula: see text] by imposing two nonlocal matrix restrictions of... The paper aims to generate nonlocal integrable nonlinear Schrödinger hierarchies of type (−λ,λ) by imposing two nonlocal matrix restrictions of the AKNS matrix...  | 
    
| SourceID | proquest crossref worldscientific  | 
    
| SourceType | Aggregation Database Enrichment Source Index Database Publisher  | 
    
| SubjectTerms | Hierarchies Research Article Schrodinger equation Solitary waves  | 
    
| Title | Soliton solutions to constrained nonlocal integrable nonlinear Schrödinger hierarchies of type (−λ,λ) | 
    
| URI | http://www.worldscientific.com/doi/abs/10.1142/S0219887823500986 https://www.proquest.com/docview/2813107937  | 
    
| Volume | 20 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Mathematics Source customDbUrl: eissn: 1793-6977 dateEnd: 20241102 omitProxy: false ssIdentifier: ssj0031777 issn: 0219-8878 databaseCode: AMVHM dateStart: 20050201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9MwFLegu3AZ_0VhIB-oxBCGxHFc-7hOQxVSubBBb1HsOBOItWjrLnwCznwYLjty34fgk_Ce7aTZWhDjEkVR-9L0_fL8e37_CHkqja0rIXKWKamYsDm8cyJPWJWrmleCl9ZivfPkrRwfiDfTfLoMF_jqkoV5ab-urSv5H63CNdArVsleQbOtULgA56BfOIKG4fhPOn6HyWugvvYuyCQtMj4c_ICB_fnML1ZNVwgsk5qF5hjlMXbg9IHykaxCO0Kci-0jC6ETrd-eBQbqEyLUQPPB7t5gNAKtNCe6y20vbi52WlIcuvkRDu6ycV61T8E9CkPYws5KS-wnnst-cDM2_Xja3ZHgnfy_aLjACjIwXsGuumBYwQ4wqePIlmh5edJBmFxv0AX3IWUQiRJ5lmMH1DXNsy8tam2qYSi85sWKiOtkg8NKkPTIxs7k_XjSrN9AqPy8zvYpYiwchLxaEXKRzSxdlE3f7zbUtGLKV4ez7N8im9HZoDsBObfJNTe7Q25Gx4NGs35yl3yKQKItkOhiTjtAog2Q6BJItAUSRSD9_BFARDsgovOaIojos1_fvp-fvTg_275HDl7v7e-OWRzCwWymEsmkNdYop62V2EdC5FmtK4yu8qFyPK0zrkpw2WUlpKt1YtKyAg_flODWy1LXOrtPevB73ANCM2BCpc6HNjVD4O1O1UMHdD01xiojEtUnSfNnFjZ2qMfH_Fz8UYl98rz9ypfQnuVvH95qNFTEl-Ck4CoFDwe7RPbJ9iWttSJXRD28yn0fkRvL12SL9BbHp-4xUNmFeRKx9xtsMprn | 
    
| linkProvider | EBSCOhost | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soliton+solutions+to+constrained+nonlocal+integrable+nonlinear+Schr%C3%B6dinger+hierarchies+of+type+%28%E2%88%92%CE%BB%2C%CE%BB%29&rft.jtitle=International+journal+of+geometric+methods+in+modern+physics&rft.au=Ma%2C+Wen-Xiu&rft.date=2023-05-01&rft.issn=0219-8878&rft.eissn=1793-6977&rft.volume=20&rft.issue=6&rft_id=info:doi/10.1142%2FS0219887823500986&rft.externalDBID=n%2Fa&rft.externalDocID=10_1142_S0219887823500986 | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0219-8878&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0219-8878&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0219-8878&client=summon |