Soliton solutions to constrained nonlocal integrable nonlinear Schrödinger hierarchies of type (−λ,λ)

The paper aims to generate nonlocal integrable nonlinear Schrödinger hierarchies of type ( − λ , λ ) by imposing two nonlocal matrix restrictions of the AKNS matrix characteristic-value problems of arbitrary order. Based on the explored outspreading of characteristic-values and adjoint characteristi...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of geometric methods in modern physics Vol. 20; no. 6
Main Author Ma, Wen-Xiu
Format Journal Article
LanguageEnglish
Published Singapore World Scientific Publishing Company 01.05.2023
World Scientific Publishing Co. Pte., Ltd
Subjects
Online AccessGet full text
ISSN0219-8878
1793-6977
DOI10.1142/S0219887823500986

Cover

Abstract The paper aims to generate nonlocal integrable nonlinear Schrödinger hierarchies of type ( − λ , λ ) by imposing two nonlocal matrix restrictions of the AKNS matrix characteristic-value problems of arbitrary order. Based on the explored outspreading of characteristic-values and adjoint characteristic-values, exact soliton solutions are formulated by applying the associated reflectionless generalized Riemann–Hilbert problems, in which characteristic-values and adjoint characteristic-values could have a nonempty intersection. Illustrative models of the resultant mixed-type nonlocal integrable nonlinear Schrödinger equations are presented.
AbstractList The paper aims to generate nonlocal integrable nonlinear Schrödinger hierarchies of type ( − λ , λ ) by imposing two nonlocal matrix restrictions of the AKNS matrix characteristic-value problems of arbitrary order. Based on the explored outspreading of characteristic-values and adjoint characteristic-values, exact soliton solutions are formulated by applying the associated reflectionless generalized Riemann–Hilbert problems, in which characteristic-values and adjoint characteristic-values could have a nonempty intersection. Illustrative models of the resultant mixed-type nonlocal integrable nonlinear Schrödinger equations are presented.
The paper aims to generate nonlocal integrable nonlinear Schrödinger hierarchies of type (−λ,λ) by imposing two nonlocal matrix restrictions of the AKNS matrix characteristic-value problems of arbitrary order. Based on the explored outspreading of characteristic-values and adjoint characteristic-values, exact soliton solutions are formulated by applying the associated reflectionless generalized Riemann–Hilbert problems, in which characteristic-values and adjoint characteristic-values could have a nonempty intersection. Illustrative models of the resultant mixed-type nonlocal integrable nonlinear Schrödinger equations are presented.
The paper aims to generate nonlocal integrable nonlinear Schrödinger hierarchies of type [Formula: see text] by imposing two nonlocal matrix restrictions of the AKNS matrix characteristic-value problems of arbitrary order. Based on the explored outspreading of characteristic-values and adjoint characteristic-values, exact soliton solutions are formulated by applying the associated reflectionless generalized Riemann–Hilbert problems, in which characteristic-values and adjoint characteristic-values could have a nonempty intersection. Illustrative models of the resultant mixed-type nonlocal integrable nonlinear Schrödinger equations are presented.
Author Ma, Wen-Xiu
Author_xml – sequence: 1
  givenname: Wen-Xiu
  surname: Ma
  fullname: Ma, Wen-Xiu
BookMark eNp9kM1KAzEUhYNUsFYfwF3AjYKjyfzkZynFPyi4qK6HTCbTpoxJTVKkb-Dah3HTpfs-hE9ixooLC64O3HPPPdxvH_SMNQqAI4zOMc7TizFKMWeMsjQrEOKM7IA-pjxLCKe0B_qdnXT-Htj3foZQhimlfTAb21YHa6C37SJoazwMFsqowQltVA1jUWulaKE2QU2cqFr1PYumcHAsp-7jvdZmohycauWEk1E8tA0My7mCJ5-vb-vV2Xp1egB2G9F6dfijA_B4ffUwvE1G9zd3w8tRIjOGSEJkJSumuJSkkDXLi6zhdVFgklKmUtxkKRM8PljnRDUcVVjUGOWVSHNOBG94NgDHm7tzZ58XyodyZhfOxMoyZTjDKGKhcQtvtqSz3jvVlHOnn4RblhiVHdJyC2nM0D8ZqYPoqHWw2n-TaJN8sa6tvdTKBN1o-Vu6HfkCpPaP8w
CitedBy_id crossref_primary_10_1007_s12043_024_02765_8
crossref_primary_10_1016_j_chaos_2023_113856
crossref_primary_10_3390_math11163529
crossref_primary_10_1007_s11071_024_09981_2
crossref_primary_10_1016_j_padiff_2023_100588
crossref_primary_10_59277_RomRepPhys_2024_76_108
crossref_primary_10_1007_s12596_023_01525_y
crossref_primary_10_3934_dcdss_2024117
crossref_primary_10_1016_j_padiff_2023_100543
crossref_primary_10_1016_j_chaos_2023_114391
crossref_primary_10_3390_math11194110
crossref_primary_10_1016_S0034_4877_24_00040_5
crossref_primary_10_1016_j_aml_2024_109025
crossref_primary_10_1007_s12346_023_00856_2
crossref_primary_10_1016_j_aml_2023_108775
crossref_primary_10_3934_era_2023302
crossref_primary_10_1088_1572_9494_ad6f8e
crossref_primary_10_1142_S0217984923501439
crossref_primary_10_1142_S0217984924503196
crossref_primary_10_1063_5_0195378
crossref_primary_10_1088_1572_9494_ad3dd9
crossref_primary_10_1088_1674_1056_acf9e8
crossref_primary_10_1016_j_asej_2024_102917
crossref_primary_10_1016_j_cnsns_2023_107460
crossref_primary_10_3390_computation12080161
crossref_primary_10_1134_S0040577923080093
crossref_primary_10_1016_j_asej_2023_102537
crossref_primary_10_1016_j_rinp_2024_107579
crossref_primary_10_1016_j_rinp_2023_107039
crossref_primary_10_1007_s12346_024_01036_6
crossref_primary_10_1142_S0219887824501275
crossref_primary_10_1140_epjp_s13360_023_04497_x
crossref_primary_10_3390_math11224664
crossref_primary_10_1515_phys_2023_0108
crossref_primary_10_1016_j_chaos_2023_114089
crossref_primary_10_1007_s12596_023_01594_z
crossref_primary_10_1142_S0217984925500885
crossref_primary_10_1007_s12043_024_02856_6
crossref_primary_10_1016_j_wavemoti_2024_103329
crossref_primary_10_7566_JPSJ_92_104002
crossref_primary_10_1016_j_wavemoti_2024_103327
crossref_primary_10_1007_s10440_023_00610_5
crossref_primary_10_1016_j_ijleo_2023_171390
crossref_primary_10_1098_rspa_2023_0455
crossref_primary_10_1088_1572_9494_acfd13
crossref_primary_10_3934_dcdss_2024127
crossref_primary_10_1016_j_padiff_2023_100579
crossref_primary_10_1016_j_cjph_2023_09_023
crossref_primary_10_1002_mma_10008
crossref_primary_10_1016_j_physleta_2024_130217
Cites_doi 10.1016/j.physleta.2018.10.051
10.1016/j.joes.2021.09.006
10.3390/sym13112205
10.1007/s40819-022-01422-1
10.1088/0305-4470/25/20/014
10.1063/1.4997835
10.1088/0305-4470/22/13/031
10.3390/sym13030512
10.1016/j.cnsns.2016.06.015
10.1016/j.aml.2021.107209
10.1016/j.jde.2017.10.033
10.1016/j.padiff.2021.100190
10.1002/mma.5416
10.1090/bproc/116
10.1090/proc/15174
10.1111/sapm.12329
10.1017/CBO9780511546723
10.1016/j.geomphys.2021.104347
10.1016/j.aml.2019.106161
10.1134/S0040577918100033
10.1088/0951-7715/29/3/915
10.1088/0305-4470/26/11/009
10.1111/sapm.12153
10.1016/j.physd.2021.133078
10.1137/1.9780898719680
10.3390/math7070573
10.1088/1572-9494/ac75e0
ContentType Journal Article
Copyright 2023, World Scientific Publishing Company
2023. World Scientific Publishing Company
Copyright_xml – notice: 2023, World Scientific Publishing Company
– notice: 2023. World Scientific Publishing Company
DBID AAYXX
CITATION
DOI 10.1142/S0219887823500986
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1793-6977
ExternalDocumentID 10_1142_S0219887823500986
S0219887823500986
GroupedDBID 0R~
4.4
5GY
ADSJI
AENEX
ALMA_UNASSIGNED_HOLDINGS
CAG
COF
CS3
DU5
EBS
EJD
ESX
HZ~
J9A
O9-
P2P
P71
RWJ
AAYXX
AMVHM
CITATION
ID FETCH-LOGICAL-c3806-6cbcb8e9cc65cd8453f9d5516278e21f328a9986d46ef90b1ad104ba2496a9f93
ISSN 0219-8878
IngestDate Mon Jun 30 07:09:01 EDT 2025
Tue Jul 01 00:25:15 EDT 2025
Thu Apr 24 22:56:59 EDT 2025
Fri Aug 23 08:19:28 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 6
Keywords nonlinear Schrödinger equations
soliton solution
nonlocal integrable equation
Integrable hierarchy
Riemann–Hilbert problem
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3806-6cbcb8e9cc65cd8453f9d5516278e21f328a9986d46ef90b1ad104ba2496a9f93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-5309-1493
PQID 2813107937
PQPubID 2049917
ParticipantIDs worldscientific_primary_S0219887823500986
proquest_journals_2813107937
crossref_primary_10_1142_S0219887823500986
crossref_citationtrail_10_1142_S0219887823500986
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230500
PublicationDateYYYYMMDD 2023-05-01
PublicationDate_xml – month: 05
  year: 2023
  text: 20230500
PublicationDecade 2020
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle International journal of geometric methods in modern physics
PublicationYear 2023
Publisher World Scientific Publishing Company
World Scientific Publishing Co. Pte., Ltd
Publisher_xml – name: World Scientific Publishing Company
– name: World Scientific Publishing Co. Pte., Ltd
References Ma W. X. (S0219887823500986BIB018) 2022; 430
Ma W. X. (S0219887823500986BIB020) 1992; 25
Gesztesy F. (S0219887823500986BIB025) 2003
Yang J. (S0219887823500986BIB013) 2019; 383
Ma W. X. (S0219887823500986BIB014) 2021; 149
Ablowitz M. J. (S0219887823500986BIB003) 2016; 29
Ma W. X. (S0219887823500986BIB005) 2020; 145
Sulaiman T. A. (S0219887823500986BIB023) 2021; 169
Ma W. X. (S0219887823500986BIB017) 2019; 42
Ma W. X. (S0219887823500986BIB021) 1993; 26
Grahovski G. G. (S0219887823500986BIB008) 2018; 197
Ma W. X. (S0219887823500986BIB004) 2020; 102
Ma W. X. (S0219887823500986BIB002) 2021; 4
Ling L. M. (S0219887823500986BIB006) 2021; 13
Xin X. P. (S0219887823500986BIB029) 2021; 119
Yusuf A. (S0219887823500986BIB024) 2022; 7
Ma W. X. (S0219887823500986BIB015) 2022; 74
Gürses M. (S0219887823500986BIB009) 2018; 59
Ablowitz M. J. (S0219887823500986BIB001) 2017; 139
Ma W. X. (S0219887823500986BIB027) 2022; 9
Novikov S. P. (S0219887823500986BIB010) 1984
Yang J. (S0219887823500986BIB012) 2010
Tu G. Z. (S0219887823500986BIB019) 1989; 22
Kawata T. (S0219887823500986BIB011) 1984
Ma W. X. (S0219887823500986BIB022) 2018; 264
Ma W. X. (S0219887823500986BIB026) 2019; 7
Ma W. X. (S0219887823500986BIB030) 2012; 1
Ji J. L. (S0219887823500986BIB007) 2017; 42
Ma W. X. (S0219887823500986BIB016) 2022; 8
Ma W. X. (S0219887823500986BIB028) 2021; 13
References_xml – volume: 383
  start-page: 328
  year: 2019
  ident: S0219887823500986BIB013
  publication-title: Phys. Lett. A
  doi: 10.1016/j.physleta.2018.10.051
– volume: 7
  year: 2022
  ident: S0219887823500986BIB024
  publication-title: J. Ocean Eng. Sci.
  doi: 10.1016/j.joes.2021.09.006
– volume: 13
  start-page: 2205
  year: 2021
  ident: S0219887823500986BIB028
  publication-title: Symmetry
  doi: 10.3390/sym13112205
– volume: 8
  start-page: 206
  year: 2022
  ident: S0219887823500986BIB016
  publication-title: Int. J. Appl. Comput. Math.
  doi: 10.1007/s40819-022-01422-1
– volume: 1
  start-page: 1
  year: 2012
  ident: S0219887823500986BIB030
  publication-title: Global J. Math. Sci.
– volume-title: Theory of Solitons: The Inverse Scattering Method
  year: 1984
  ident: S0219887823500986BIB010
– volume: 25
  start-page: 5329
  year: 1992
  ident: S0219887823500986BIB020
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/25/20/014
– start-page: 210
  volume-title: Advances in Nonlinear Waves
  year: 1984
  ident: S0219887823500986BIB011
– volume: 59
  start-page: 051501
  year: 2018
  ident: S0219887823500986BIB009
  publication-title: J. Math. Phys.
  doi: 10.1063/1.4997835
– volume: 22
  start-page: 2375
  year: 1989
  ident: S0219887823500986BIB019
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/22/13/031
– volume: 13
  start-page: 512
  year: 2021
  ident: S0219887823500986BIB006
  publication-title: Symmetry
  doi: 10.3390/sym13030512
– volume: 42
  start-page: 699
  year: 2017
  ident: S0219887823500986BIB007
  publication-title: Commun. Nonlinear Sci. Numer. Simul.
  doi: 10.1016/j.cnsns.2016.06.015
– volume: 119
  start-page: 107209
  year: 2021
  ident: S0219887823500986BIB029
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2021.107209
– volume: 264
  start-page: 2633
  year: 2018
  ident: S0219887823500986BIB022
  publication-title: J. Differ. Equ.
  doi: 10.1016/j.jde.2017.10.033
– volume: 4
  start-page: 100190
  year: 2021
  ident: S0219887823500986BIB002
  publication-title: Partial Differ. Equ. Appl. Math.
  doi: 10.1016/j.padiff.2021.100190
– volume: 42
  start-page: 1099
  year: 2019
  ident: S0219887823500986BIB017
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.5416
– volume: 9
  start-page: 1
  year: 2022
  ident: S0219887823500986BIB027
  publication-title: Proc. Amer. Math. Soc. Ser. B
  doi: 10.1090/bproc/116
– volume: 149
  start-page: 251
  year: 2021
  ident: S0219887823500986BIB014
  publication-title: Proc. Amer. Math. Soc.
  doi: 10.1090/proc/15174
– volume: 145
  start-page: 563
  year: 2020
  ident: S0219887823500986BIB005
  publication-title: Stud. Appl. Math.
  doi: 10.1111/sapm.12329
– volume-title: Soliton Equations and their Algebro-geometric Solutions: (1+1)-Dimensional Continuous Models
  year: 2003
  ident: S0219887823500986BIB025
  doi: 10.1017/CBO9780511546723
– volume: 169
  start-page: 104347
  year: 2021
  ident: S0219887823500986BIB023
  publication-title: J. Geom. Phys.
  doi: 10.1016/j.geomphys.2021.104347
– volume: 102
  start-page: 106161
  year: 2020
  ident: S0219887823500986BIB004
  publication-title: Appl. Math. Lett.
  doi: 10.1016/j.aml.2019.106161
– volume: 197
  start-page: 1430
  year: 2018
  ident: S0219887823500986BIB008
  publication-title: Theor. Math. Phys.
  doi: 10.1134/S0040577918100033
– volume: 29
  start-page: 915
  year: 2016
  ident: S0219887823500986BIB003
  publication-title: Nonlinearity
  doi: 10.1088/0951-7715/29/3/915
– volume: 26
  start-page: 2573
  year: 1993
  ident: S0219887823500986BIB021
  publication-title: J. Phys. A: Math. Gen.
  doi: 10.1088/0305-4470/26/11/009
– volume: 139
  start-page: 7
  year: 2017
  ident: S0219887823500986BIB001
  publication-title: Stud. Appl. Math.
  doi: 10.1111/sapm.12153
– volume: 430
  start-page: 133078
  year: 2022
  ident: S0219887823500986BIB018
  publication-title: Physica D
  doi: 10.1016/j.physd.2021.133078
– volume-title: Nonlinear Waves in Integrable and Nonintegrable Systems
  year: 2010
  ident: S0219887823500986BIB012
  doi: 10.1137/1.9780898719680
– volume: 7
  start-page: 573
  year: 2019
  ident: S0219887823500986BIB026
  publication-title: Mathematics
  doi: 10.3390/math7070573
– volume: 74
  start-page: 065002
  year: 2022
  ident: S0219887823500986BIB015
  publication-title: Commun. Theor. Phys.
  doi: 10.1088/1572-9494/ac75e0
SSID ssj0031777
Score 2.5165274
Snippet The paper aims to generate nonlocal integrable nonlinear Schrödinger hierarchies of type ( − λ , λ ) by imposing two nonlocal matrix restrictions of the AKNS...
The paper aims to generate nonlocal integrable nonlinear Schrödinger hierarchies of type [Formula: see text] by imposing two nonlocal matrix restrictions of...
The paper aims to generate nonlocal integrable nonlinear Schrödinger hierarchies of type (−λ,λ) by imposing two nonlocal matrix restrictions of the AKNS matrix...
SourceID proquest
crossref
worldscientific
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Hierarchies
Research Article
Schrodinger equation
Solitary waves
Title Soliton solutions to constrained nonlocal integrable nonlinear Schrödinger hierarchies of type (−λ,λ)
URI http://www.worldscientific.com/doi/abs/10.1142/S0219887823500986
https://www.proquest.com/docview/2813107937
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Mathematics Source
  customDbUrl:
  eissn: 1793-6977
  dateEnd: 20241102
  omitProxy: false
  ssIdentifier: ssj0031777
  issn: 0219-8878
  databaseCode: AMVHM
  dateStart: 20050201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Pb9MwFLegu3AZ_0VhIB-oxBCGxHFc-7hOQxVSubBBb1HsOBOItWjrLnwCznwYLjty34fgk_Ce7aTZWhDjEkVR-9L0_fL8e37_CHkqja0rIXKWKamYsDm8cyJPWJWrmleCl9ZivfPkrRwfiDfTfLoMF_jqkoV5ab-urSv5H63CNdArVsleQbOtULgA56BfOIKG4fhPOn6HyWugvvYuyCQtMj4c_ICB_fnML1ZNVwgsk5qF5hjlMXbg9IHykaxCO0Kci-0jC6ETrd-eBQbqEyLUQPPB7t5gNAKtNCe6y20vbi52WlIcuvkRDu6ycV61T8E9CkPYws5KS-wnnst-cDM2_Xja3ZHgnfy_aLjACjIwXsGuumBYwQ4wqePIlmh5edJBmFxv0AX3IWUQiRJ5lmMH1DXNsy8tam2qYSi85sWKiOtkg8NKkPTIxs7k_XjSrN9AqPy8zvYpYiwchLxaEXKRzSxdlE3f7zbUtGLKV4ez7N8im9HZoDsBObfJNTe7Q25Gx4NGs35yl3yKQKItkOhiTjtAog2Q6BJItAUSRSD9_BFARDsgovOaIojos1_fvp-fvTg_275HDl7v7e-OWRzCwWymEsmkNdYop62V2EdC5FmtK4yu8qFyPK0zrkpw2WUlpKt1YtKyAg_flODWy1LXOrtPevB73ANCM2BCpc6HNjVD4O1O1UMHdD01xiojEtUnSfNnFjZ2qMfH_Fz8UYl98rz9ypfQnuVvH95qNFTEl-Ck4CoFDwe7RPbJ9iWttSJXRD28yn0fkRvL12SL9BbHp-4xUNmFeRKx9xtsMprn
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Soliton+solutions+to+constrained+nonlocal+integrable+nonlinear+Schr%C3%B6dinger+hierarchies+of+type+%28%E2%88%92%CE%BB%2C%CE%BB%29&rft.jtitle=International+journal+of+geometric+methods+in+modern+physics&rft.au=Ma%2C+Wen-Xiu&rft.date=2023-05-01&rft.issn=0219-8878&rft.eissn=1793-6977&rft.volume=20&rft.issue=6&rft_id=info:doi/10.1142%2FS0219887823500986&rft.externalDBID=n%2Fa&rft.externalDocID=10_1142_S0219887823500986
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0219-8878&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0219-8878&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0219-8878&client=summon