Solutions to the modified Korteweg–de Vries equation

This is a continuation of [Notes on solutions in Wronskian form to soliton equations: Korteweg–de Vries-type, arXiv:nlin.SI/0603008]. In the present paper, we review solutions to the modified Korteweg–de Vries equation in terms of Wronskians. The Wronskian entry vector needs to satisfy a matrix diff...

Full description

Saved in:
Bibliographic Details
Published inReviews in mathematical physics Vol. 26; no. 7; p. 1430006
Main Authors Zhang, Da-Jun, Zhao, Song-Lin, Sun, Ying-Ying, Zhou, Jing
Format Journal Article
LanguageEnglish
Published Singapore World Scientific Publishing Company 01.08.2014
World Scientific Publishing Co. Pte., Ltd
Subjects
Online AccessGet full text
ISSN0129-055X
1793-6659
DOI10.1142/S0129055X14300064

Cover

Abstract This is a continuation of [Notes on solutions in Wronskian form to soliton equations: Korteweg–de Vries-type, arXiv:nlin.SI/0603008]. In the present paper, we review solutions to the modified Korteweg–de Vries equation in terms of Wronskians. The Wronskian entry vector needs to satisfy a matrix differential equation set which contains complex operation. This fact makes the analysis of the modified Korteweg–de Vries to be different from the case of the Korteweg–de Vries equation. To derive complete solution expressions for the matrix differential equation set, we introduce an auxiliary matrix to deal with the complex operation. As a result, the obtained solutions to the modified Korteweg–de Vries equation are categorized into two types: solitons and breathers, together with their limit cases. Besides, we give rational solutions to the modified Korteweg–de Vries equation in Wronskian form. This is derived with the help of a Galilean transformed version of the modified Korteweg–de Vries equation. Finally, typical dynamics of the obtained solutions are analyzed and illustrated. We also list out the obtained solutions and their corresponding basic Wronskian vectors in the conclusion part.
AbstractList This is a continuation of [Notes on solutions in Wronskian form to soliton equations: Korteweg–de Vries-type, arXiv:nlin.SI/0603008]. In the present paper, we review solutions to the modified Korteweg–de Vries equation in terms of Wronskians. The Wronskian entry vector needs to satisfy a matrix differential equation set which contains complex operation. This fact makes the analysis of the modified Korteweg–de Vries to be different from the case of the Korteweg–de Vries equation. To derive complete solution expressions for the matrix differential equation set, we introduce an auxiliary matrix to deal with the complex operation. As a result, the obtained solutions to the modified Korteweg–de Vries equation are categorized into two types: solitons and breathers, together with their limit cases. Besides, we give rational solutions to the modified Korteweg–de Vries equation in Wronskian form. This is derived with the help of a Galilean transformed version of the modified Korteweg–de Vries equation. Finally, typical dynamics of the obtained solutions are analyzed and illustrated. We also list out the obtained solutions and their corresponding basic Wronskian vectors in the conclusion part.
Author Zhang, Da-Jun
Sun, Ying-Ying
Zhao, Song-Lin
Zhou, Jing
Author_xml – sequence: 1
  givenname: Da-Jun
  surname: Zhang
  fullname: Zhang, Da-Jun
  email: djzhang@staff.shu.edu.cn
  organization: Department of Mathematics, Shanghai University, Shanghai 200444, P. R. China
– sequence: 2
  givenname: Song-Lin
  surname: Zhao
  fullname: Zhao, Song-Lin
  organization: Department of Mathematics, Zhejiang University of Technology, Hangzhou 310023, P. R. China
– sequence: 3
  givenname: Ying-Ying
  surname: Sun
  fullname: Sun, Ying-Ying
  organization: Department of Mathematics, Shanghai University, Shanghai 200444, P. R. China
– sequence: 4
  givenname: Jing
  surname: Zhou
  fullname: Zhou, Jing
  organization: Department of Mathematics, Shanghai University, Shanghai 200444, P. R. China
BookMark eNp9kM1OwzAQhC1UJNrCA3CLxDngTRwnPqKKP1GJQwFxixJ7Da7SuLUdVdx4B96QJyGhiANInPYw8-1oZkJGrW2RkGOgpwAsOVtQSATNsidgKaWUsz0yhlykMeeZGJHxIMeDfkAm3i8pBZanYkz4wjZdMLb1UbBReMFoZZXRBlV0a13ALT5_vL0rjB6dQR_hpqsG9yHZ11Xj8ej7TsnD5cX97Dqe313dzM7nsUwLymKVMFmgFKyQVDNeUy60UEJXUNNM1ZxSZJCkqAEqlWGdKsx1zhMGXNaJ1OmUnOz-rp3ddOhDubSda_vIMgHgrC9aQO-CnUs6671DXa6dWVXutQRaDvOUf-bpmfwXI0346hZcZZp_Sbojt9Y1ykuDbegXkz-hf5FP7wx6vw
CitedBy_id crossref_primary_10_1088_1361_6544_aabfab
crossref_primary_10_1515_zna_2017_0382
crossref_primary_10_1016_j_chaos_2024_114709
crossref_primary_10_1142_S0217984921501748
crossref_primary_10_3390_sym13010023
crossref_primary_10_1088_1572_9494_ab7ed6
crossref_primary_10_1109_TPS_2024_3463178
crossref_primary_10_1007_s11071_021_06799_0
crossref_primary_10_1007_s11071_021_06911_4
crossref_primary_10_1088_1674_1056_abbbf3
crossref_primary_10_1007_s13324_022_00750_1
crossref_primary_10_1088_1572_9494_ad35b1
crossref_primary_10_1088_0253_6102_68_2_155
crossref_primary_10_1016_j_aml_2020_106271
crossref_primary_10_1007_s11071_024_10316_4
crossref_primary_10_3390_sym12091445
crossref_primary_10_1155_2019_5468142
crossref_primary_10_1007_s11071_018_4143_z
crossref_primary_10_1063_1_5037280
crossref_primary_10_1016_j_cnsns_2023_107705
crossref_primary_10_1088_1572_9494_ac1937
crossref_primary_10_1103_PhysRevE_102_032201
crossref_primary_10_1016_j_aml_2019_106093
crossref_primary_10_1016_j_chaos_2023_114393
crossref_primary_10_1134_S0040577923020034
crossref_primary_10_1088_2399_6528_ab833e
crossref_primary_10_1134_S0040577922040043
crossref_primary_10_1016_j_rinp_2023_107188
crossref_primary_10_3934_math_20241552
crossref_primary_10_1007_s11071_022_07593_2
crossref_primary_10_1063_5_0190735
crossref_primary_10_1088_1674_1056_28_2_020202
crossref_primary_10_1088_1402_4896_ad10f6
crossref_primary_10_4213_tmf10848
crossref_primary_10_3390_math13010150
crossref_primary_10_3390_sym16081037
crossref_primary_10_1088_1402_4896_ab4503
crossref_primary_10_1088_1572_9494_ab5fb4
crossref_primary_10_1002_mma_8996
crossref_primary_10_3934_math_20231514
crossref_primary_10_1088_1742_5468_ab4982
crossref_primary_10_7566_JPSJ_89_054004
crossref_primary_10_1007_s11071_024_10491_4
crossref_primary_10_4213_tmf10159
crossref_primary_10_4213_tmf10676
crossref_primary_10_1063_5_0200335
crossref_primary_10_4213_tmf10314
crossref_primary_10_7498_aps_72_20230063
crossref_primary_10_1016_j_oceaneng_2022_112202
crossref_primary_10_4213_tmf10717
crossref_primary_10_1016_j_aml_2021_107256
crossref_primary_10_1134_S0040577922030023
crossref_primary_10_1016_S0034_4877_18_30087_9
crossref_primary_10_4213_tmf10107
crossref_primary_10_1016_j_cnsns_2015_08_023
crossref_primary_10_1111_sapm_12569
crossref_primary_10_1007_s11071_024_09400_6
crossref_primary_10_1088_0256_307X_35_3_030201
crossref_primary_10_1007_s11071_021_06751_2
crossref_primary_10_1134_S0040577924060059
crossref_primary_10_1209_0295_5075_112_47004
crossref_primary_10_1103_PhysRevE_103_062214
crossref_primary_10_1111_sapm_12215
crossref_primary_10_1016_S0034_4877_20_30083_5
crossref_primary_10_1007_s11071_024_10420_5
crossref_primary_10_1134_S0040577924100040
crossref_primary_10_1007_s12043_020_01958_1
crossref_primary_10_1007_s11071_022_07269_x
crossref_primary_10_1111_sapm_12454
crossref_primary_10_1007_s11075_022_01312_z
crossref_primary_10_3390_mca29050091
crossref_primary_10_1016_S0034_4877_24_00055_7
crossref_primary_10_1134_S0037446624040220
crossref_primary_10_3390_axioms13090578
crossref_primary_10_1002_mma_9895
crossref_primary_10_1007_s11071_024_09626_4
crossref_primary_10_3390_w16060884
crossref_primary_10_1142_S0217979220500216
crossref_primary_10_1142_S0217984919503998
crossref_primary_10_4213_tmf10179
crossref_primary_10_1016_j_aml_2019_106165
crossref_primary_10_1016_j_cnsns_2017_03_022
crossref_primary_10_1088_1572_9494_ad5991
crossref_primary_10_1016_j_cnsns_2017_03_020
crossref_primary_10_1088_1751_8121_acee33
crossref_primary_10_1016_j_chaos_2023_114089
crossref_primary_10_3390_sym14030542
crossref_primary_10_1007_s00332_022_09835_4
crossref_primary_10_1515_zna_2017_0364
crossref_primary_10_1002_mma_6498
crossref_primary_10_1007_s11253_024_02394_9
crossref_primary_10_1080_14029251_2019_1544793
crossref_primary_10_1016_j_aml_2022_108397
crossref_primary_10_3934_math_2024021
crossref_primary_10_1007_s11071_017_3991_2
crossref_primary_10_1016_j_wavemoti_2024_103327
crossref_primary_10_1080_16583655_2023_2294554
crossref_primary_10_1016_j_physd_2023_133828
crossref_primary_10_1016_j_matcom_2022_02_027
crossref_primary_10_1140_epjd_e2016_70033_9
crossref_primary_10_1016_j_aml_2021_107852
crossref_primary_10_1088_1402_4896_abb636
crossref_primary_10_1134_S0040577921110064
crossref_primary_10_1140_epjp_s13360_022_02412_4
crossref_primary_10_1088_0253_6102_71_1_1
crossref_primary_10_1088_1572_9494_ac5cb1
crossref_primary_10_1088_1674_1056_25_1_010506
Cites_doi 10.1088/0305-4470/36/17/313
10.1023/A:1006910004292
10.1143/JPSJ.71.2649
10.1016/S0378-4371(98)00466-X
10.1103/PhysRevLett.25.1108
10.1007/s11232-011-0072-4
10.1143/JPSJ.26.1305
10.1016/S0378-4371(02)00995-0
10.1090/S0002-9947-1991-1029000-7
10.1088/0305-4470/17/7/009
10.1016/0375-9601(88)90541-5
10.1017/CBO9780511543043
10.1143/JPSJ.41.1817
10.1007/BF02430638
10.1063/1.530497
10.1143/JPSJ.46.359
10.1016/0375-9601(83)90159-7
10.1103/PhysRevA.67.013804
10.1143/JPSJ.61.4336
10.1090/S0002-9947-04-03726-2
10.1063/1.523550
10.1143/PTPS.59.64
10.1016/0375-9601(83)90764-8
10.1143/JPSJ.38.673
10.1143/JPSJ.33.1456
10.1063/1.1664701
10.1175/JPO2652.1
10.3792/pja/1195519590
10.1016/0034-4877(91)90025-I
10.1137/1.9781611970883
10.1103/PhysRevE.52.5574
10.1143/JPSJ.53.950
10.1103/PhysRevLett.19.1095
10.1007/s11232-010-0046-y
10.1143/JPSJ.37.1631
10.1088/0253-6102/55/4/02
10.1143/JPSJ.34.1289
10.1016/S0378-4371(97)00260-4
10.1016/j.physleta.2009.07.004
10.1103/PhysRevLett.27.1192
10.1088/0253-6102/57/6/03
10.1088/0253-6102/61/4/03
10.1016/S0960-0779(00)00137-5
10.1016/j.physrep.2012.10.006
ContentType Journal Article
Copyright 2014, World Scientific Publishing Company
2014. World Scientific Publishing Company
Copyright_xml – notice: 2014, World Scientific Publishing Company
– notice: 2014. World Scientific Publishing Company
DBID AAYXX
CITATION
DOI 10.1142/S0129055X14300064
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Mathematics
Physics
EISSN 1793-6659
ExternalDocumentID 10_1142_S0129055X14300064
S0129055X14300064
GroupedDBID -~X
0R~
123
4.4
ADSJI
AENEX
ALMA_UNASSIGNED_HOLDINGS
CAG
COF
CS3
EBS
EJD
ESX
HZ~
O9-
P71
RWJ
WSM
WSP
AAYXX
AMVHM
CITATION
ID FETCH-LOGICAL-c3804-d24c8ec948c0f46b069f9d9fa1b05db600e4123ef11ad5eb3de7f762416cb2cf3
ISSN 0129-055X
IngestDate Mon Jun 30 12:58:49 EDT 2025
Tue Jul 01 02:50:49 EDT 2025
Thu Apr 24 22:48:33 EDT 2025
Fri Aug 23 08:20:07 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords The modified Korteweg–de Vries equation
breathers
dynamics
Wronskian
rational solutions
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3804-d24c8ec948c0f46b069f9d9fa1b05db600e4123ef11ad5eb3de7f762416cb2cf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2116406481
PQPubID 2049920
ParticipantIDs crossref_primary_10_1142_S0129055X14300064
worldscientific_primary_S0129055X14300064
crossref_citationtrail_10_1142_S0129055X14300064
proquest_journals_2116406481
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20140800
PublicationDateYYYYMMDD 2014-08-01
PublicationDate_xml – month: 08
  year: 2014
  text: 20140800
PublicationDecade 2010
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle Reviews in mathematical physics
PublicationYear 2014
Publisher World Scientific Publishing Company
World Scientific Publishing Co. Pte., Ltd
Publisher_xml – name: World Scientific Publishing Company
– name: World Scientific Publishing Co. Pte., Ltd
References rf5
rf23
rf45
rf4
rf22
rf44
rf7
rf25
Kamke E. (rf39) 1977
rf47
rf6
rf24
rf46
rf9
rf41
rf8
rf40
rf21
rf43
rf20
rf42
rf27
rf49
rf26
rf48
rf29
rf28
rf12
rf34
rf11
rf33
rf13
rf35
rf30
rf51
rf10
rf32
rf31
rf19
rf16
rf38
rf15
rf37
rf18
rf17
Pratt L. J. (rf14) 1992; 23
rf3
rf2
References_xml – ident: rf48
  doi: 10.1088/0305-4470/36/17/313
– ident: rf10
  doi: 10.1023/A:1006910004292
– ident: rf40
  doi: 10.1143/JPSJ.71.2649
– ident: rf12
  doi: 10.1016/S0378-4371(98)00466-X
– ident: rf18
  doi: 10.1103/PhysRevLett.25.1108
– ident: rf25
  doi: 10.1007/s11232-011-0072-4
– ident: rf7
  doi: 10.1143/JPSJ.26.1305
– ident: rf21
  doi: 10.1016/S0378-4371(02)00995-0
– ident: rf26
  doi: 10.1090/S0002-9947-1991-1029000-7
– ident: rf28
  doi: 10.1088/0305-4470/17/7/009
– ident: rf31
  doi: 10.1016/0375-9601(88)90541-5
– ident: rf38
  doi: 10.1017/CBO9780511543043
– ident: rf42
  doi: 10.1143/JPSJ.41.1817
– ident: rf15
  doi: 10.1007/BF02430638
– ident: rf19
  doi: 10.1063/1.530497
– ident: rf27
  doi: 10.1143/JPSJ.46.359
– ident: rf47
  doi: 10.1016/0375-9601(83)90159-7
– ident: rf4
  doi: 10.1103/PhysRevA.67.013804
– ident: rf6
  doi: 10.1143/JPSJ.61.4336
– ident: rf32
  doi: 10.1090/S0002-9947-04-03726-2
– ident: rf43
  doi: 10.1063/1.523550
– ident: rf45
  doi: 10.1143/PTPS.59.64
– ident: rf30
  doi: 10.1016/0375-9601(83)90764-8
– ident: rf44
  doi: 10.1143/JPSJ.38.673
– ident: rf22
  doi: 10.1143/JPSJ.33.1456
– ident: rf2
  doi: 10.1063/1.1664701
– ident: rf16
  doi: 10.1175/JPO2652.1
– ident: rf17
– ident: rf24
  doi: 10.3792/pja/1195519590
– ident: rf29
  doi: 10.1016/0034-4877(91)90025-I
– ident: rf41
  doi: 10.1137/1.9781611970883
– ident: rf11
  doi: 10.1103/PhysRevE.52.5574
– volume-title: Handbook on Ordinary Differential Equations
  year: 1977
  ident: rf39
– ident: rf9
  doi: 10.1143/JPSJ.53.950
– volume: 23
  start-page: 91
  year: 1992
  ident: rf14
  publication-title: J. Phys. Oceangr.
– ident: rf3
  doi: 10.1103/PhysRevLett.19.1095
– ident: rf34
  doi: 10.1007/s11232-010-0046-y
– ident: rf8
  doi: 10.1143/JPSJ.37.1631
– ident: rf49
– ident: rf35
  doi: 10.1088/0253-6102/55/4/02
– ident: rf23
  doi: 10.1143/JPSJ.34.1289
– ident: rf20
  doi: 10.1016/S0378-4371(97)00260-4
– ident: rf33
  doi: 10.1016/j.physleta.2009.07.004
– ident: rf37
  doi: 10.1103/PhysRevLett.27.1192
– ident: rf46
  doi: 10.1088/0253-6102/57/6/03
– ident: rf51
  doi: 10.1088/0253-6102/61/4/03
– ident: rf13
  doi: 10.1016/S0960-0779(00)00137-5
– ident: rf5
  doi: 10.1016/j.physrep.2012.10.006
SSID ssj0014739
Score 2.4151006
Snippet This is a continuation of [Notes on solutions in Wronskian form to soliton equations: Korteweg–de Vries-type, arXiv:nlin.SI/0603008]. In the present paper, we...
SourceID proquest
crossref
worldscientific
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1430006
SubjectTerms Breathers
Differential equations
Korteweg-Devries equation
Mathematical analysis
Matrix algebra
Matrix methods
Solitary waves
Title Solutions to the modified Korteweg–de Vries equation
URI http://www.worldscientific.com/doi/abs/10.1142/S0129055X14300064
https://www.proquest.com/docview/2116406481
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1793-6659
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0014739
  issn: 0129-055X
  databaseCode: AMVHM
  dateStart: 19890101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLVgKiRYFCggBgrygg1UBidxnGRZ8dCoMAipD01XkV-pKtGkZSZCYsU_8Id8CTeO7QykQpRNNGN5nJHPzfHx9b03CD2LTZVQJTRRueaEKZqQ3HBBBIe9g5IsM5Wt9vmRzw7Z3iJdDAGZNrtkJV-qb5fmlfwPqtAGuHZZsldANgwKDfAZ8IUrIAzXf8I4-LS8gjxr9GnVicr3XQztV3PiYxkSbXaOul3xjrloBzB8Ze6-JGnn-zgLZVy7FC0LYlDdwbn8RpC9tl5rtv7W_aY-IR9OQ_t-axntGBZHcuxXSNu_aa3x-DbndIhYCHlz1GYDfSz72IimdZ_ZmMdAUhCapot-yel5FmiBcO6KgTsi7lPnncFll_M7i-0Jc-c9gxFB7FlRNSxmIcRw1Oc62oiB-ekEbezOj2bzcNbEMvu-ufA33dk33OrVaJDf1cuwJdm09W2XYULWNMrBHbTpNhd4t7eUu-iaqbfQbbfRwI7Gl1vo1jygDN9ufOphvod4MCi8ajB0wd6gsDeon99_aIOtKWFvSvfR4bu3B69nxL1Yg6gkp4zomKncqILlilaMS8qLqtBFJSJJUy1BAxsGisZUUSR0aiTYaFbB3IF4VzJWVfIATeqmNg8RFsBEIGFh4aCCKV5IHXdH7TyTSmph0imifsJK5arOdy8_-Vz2GfFxOZrjKXoRfnLel1z5W-dtj0LpnsxlGUcRB6HK8miKnv-BTBhyNNSjK_R9jG4Oj8U2mqy-tOYJqNOVfOrM6xeV_owZ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solutions+to+the+modified+Korteweg%E2%80%93de+Vries+equation&rft.jtitle=Reviews+in+mathematical+physics&rft.au=Zhang%2C+Da-Jun&rft.au=Zhao%2C+Song-Lin&rft.au=Sun%2C+Ying-Ying&rft.au=Zhou%2C+Jing&rft.date=2014-08-01&rft.pub=World+Scientific+Publishing+Company&rft.issn=0129-055X&rft.eissn=1793-6659&rft.volume=26&rft.issue=7&rft_id=info:doi/10.1142%2FS0129055X14300064&rft.externalDocID=S0129055X14300064
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0129-055X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0129-055X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0129-055X&client=summon