Solutions to the modified Korteweg–de Vries equation
This is a continuation of [Notes on solutions in Wronskian form to soliton equations: Korteweg–de Vries-type, arXiv:nlin.SI/0603008]. In the present paper, we review solutions to the modified Korteweg–de Vries equation in terms of Wronskians. The Wronskian entry vector needs to satisfy a matrix diff...
Saved in:
| Published in | Reviews in mathematical physics Vol. 26; no. 7; p. 1430006 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Singapore
World Scientific Publishing Company
01.08.2014
World Scientific Publishing Co. Pte., Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0129-055X 1793-6659 |
| DOI | 10.1142/S0129055X14300064 |
Cover
| Abstract | This is a continuation of [Notes on solutions in Wronskian form to soliton equations: Korteweg–de Vries-type, arXiv:nlin.SI/0603008]. In the present paper, we review solutions to the modified Korteweg–de Vries equation in terms of Wronskians. The Wronskian entry vector needs to satisfy a matrix differential equation set which contains complex operation. This fact makes the analysis of the modified Korteweg–de Vries to be different from the case of the Korteweg–de Vries equation. To derive complete solution expressions for the matrix differential equation set, we introduce an auxiliary matrix to deal with the complex operation. As a result, the obtained solutions to the modified Korteweg–de Vries equation are categorized into two types: solitons and breathers, together with their limit cases. Besides, we give rational solutions to the modified Korteweg–de Vries equation in Wronskian form. This is derived with the help of a Galilean transformed version of the modified Korteweg–de Vries equation. Finally, typical dynamics of the obtained solutions are analyzed and illustrated. We also list out the obtained solutions and their corresponding basic Wronskian vectors in the conclusion part. |
|---|---|
| AbstractList | This is a continuation of [Notes on solutions in Wronskian form to soliton equations: Korteweg–de Vries-type, arXiv:nlin.SI/0603008]. In the present paper, we review solutions to the modified Korteweg–de Vries equation in terms of Wronskians. The Wronskian entry vector needs to satisfy a matrix differential equation set which contains complex operation. This fact makes the analysis of the modified Korteweg–de Vries to be different from the case of the Korteweg–de Vries equation. To derive complete solution expressions for the matrix differential equation set, we introduce an auxiliary matrix to deal with the complex operation. As a result, the obtained solutions to the modified Korteweg–de Vries equation are categorized into two types: solitons and breathers, together with their limit cases. Besides, we give rational solutions to the modified Korteweg–de Vries equation in Wronskian form. This is derived with the help of a Galilean transformed version of the modified Korteweg–de Vries equation. Finally, typical dynamics of the obtained solutions are analyzed and illustrated. We also list out the obtained solutions and their corresponding basic Wronskian vectors in the conclusion part. |
| Author | Zhang, Da-Jun Sun, Ying-Ying Zhao, Song-Lin Zhou, Jing |
| Author_xml | – sequence: 1 givenname: Da-Jun surname: Zhang fullname: Zhang, Da-Jun email: djzhang@staff.shu.edu.cn organization: Department of Mathematics, Shanghai University, Shanghai 200444, P. R. China – sequence: 2 givenname: Song-Lin surname: Zhao fullname: Zhao, Song-Lin organization: Department of Mathematics, Zhejiang University of Technology, Hangzhou 310023, P. R. China – sequence: 3 givenname: Ying-Ying surname: Sun fullname: Sun, Ying-Ying organization: Department of Mathematics, Shanghai University, Shanghai 200444, P. R. China – sequence: 4 givenname: Jing surname: Zhou fullname: Zhou, Jing organization: Department of Mathematics, Shanghai University, Shanghai 200444, P. R. China |
| BookMark | eNp9kM1OwzAQhC1UJNrCA3CLxDngTRwnPqKKP1GJQwFxixJ7Da7SuLUdVdx4B96QJyGhiANInPYw8-1oZkJGrW2RkGOgpwAsOVtQSATNsidgKaWUsz0yhlykMeeZGJHxIMeDfkAm3i8pBZanYkz4wjZdMLb1UbBReMFoZZXRBlV0a13ALT5_vL0rjB6dQR_hpqsG9yHZ11Xj8ej7TsnD5cX97Dqe313dzM7nsUwLymKVMFmgFKyQVDNeUy60UEJXUNNM1ZxSZJCkqAEqlWGdKsx1zhMGXNaJ1OmUnOz-rp3ddOhDubSda_vIMgHgrC9aQO-CnUs6671DXa6dWVXutQRaDvOUf-bpmfwXI0346hZcZZp_Sbojt9Y1ykuDbegXkz-hf5FP7wx6vw |
| CitedBy_id | crossref_primary_10_1088_1361_6544_aabfab crossref_primary_10_1515_zna_2017_0382 crossref_primary_10_1016_j_chaos_2024_114709 crossref_primary_10_1142_S0217984921501748 crossref_primary_10_3390_sym13010023 crossref_primary_10_1088_1572_9494_ab7ed6 crossref_primary_10_1109_TPS_2024_3463178 crossref_primary_10_1007_s11071_021_06799_0 crossref_primary_10_1007_s11071_021_06911_4 crossref_primary_10_1088_1674_1056_abbbf3 crossref_primary_10_1007_s13324_022_00750_1 crossref_primary_10_1088_1572_9494_ad35b1 crossref_primary_10_1088_0253_6102_68_2_155 crossref_primary_10_1016_j_aml_2020_106271 crossref_primary_10_1007_s11071_024_10316_4 crossref_primary_10_3390_sym12091445 crossref_primary_10_1155_2019_5468142 crossref_primary_10_1007_s11071_018_4143_z crossref_primary_10_1063_1_5037280 crossref_primary_10_1016_j_cnsns_2023_107705 crossref_primary_10_1088_1572_9494_ac1937 crossref_primary_10_1103_PhysRevE_102_032201 crossref_primary_10_1016_j_aml_2019_106093 crossref_primary_10_1016_j_chaos_2023_114393 crossref_primary_10_1134_S0040577923020034 crossref_primary_10_1088_2399_6528_ab833e crossref_primary_10_1134_S0040577922040043 crossref_primary_10_1016_j_rinp_2023_107188 crossref_primary_10_3934_math_20241552 crossref_primary_10_1007_s11071_022_07593_2 crossref_primary_10_1063_5_0190735 crossref_primary_10_1088_1674_1056_28_2_020202 crossref_primary_10_1088_1402_4896_ad10f6 crossref_primary_10_4213_tmf10848 crossref_primary_10_3390_math13010150 crossref_primary_10_3390_sym16081037 crossref_primary_10_1088_1402_4896_ab4503 crossref_primary_10_1088_1572_9494_ab5fb4 crossref_primary_10_1002_mma_8996 crossref_primary_10_3934_math_20231514 crossref_primary_10_1088_1742_5468_ab4982 crossref_primary_10_7566_JPSJ_89_054004 crossref_primary_10_1007_s11071_024_10491_4 crossref_primary_10_4213_tmf10159 crossref_primary_10_4213_tmf10676 crossref_primary_10_1063_5_0200335 crossref_primary_10_4213_tmf10314 crossref_primary_10_7498_aps_72_20230063 crossref_primary_10_1016_j_oceaneng_2022_112202 crossref_primary_10_4213_tmf10717 crossref_primary_10_1016_j_aml_2021_107256 crossref_primary_10_1134_S0040577922030023 crossref_primary_10_1016_S0034_4877_18_30087_9 crossref_primary_10_4213_tmf10107 crossref_primary_10_1016_j_cnsns_2015_08_023 crossref_primary_10_1111_sapm_12569 crossref_primary_10_1007_s11071_024_09400_6 crossref_primary_10_1088_0256_307X_35_3_030201 crossref_primary_10_1007_s11071_021_06751_2 crossref_primary_10_1134_S0040577924060059 crossref_primary_10_1209_0295_5075_112_47004 crossref_primary_10_1103_PhysRevE_103_062214 crossref_primary_10_1111_sapm_12215 crossref_primary_10_1016_S0034_4877_20_30083_5 crossref_primary_10_1007_s11071_024_10420_5 crossref_primary_10_1134_S0040577924100040 crossref_primary_10_1007_s12043_020_01958_1 crossref_primary_10_1007_s11071_022_07269_x crossref_primary_10_1111_sapm_12454 crossref_primary_10_1007_s11075_022_01312_z crossref_primary_10_3390_mca29050091 crossref_primary_10_1016_S0034_4877_24_00055_7 crossref_primary_10_1134_S0037446624040220 crossref_primary_10_3390_axioms13090578 crossref_primary_10_1002_mma_9895 crossref_primary_10_1007_s11071_024_09626_4 crossref_primary_10_3390_w16060884 crossref_primary_10_1142_S0217979220500216 crossref_primary_10_1142_S0217984919503998 crossref_primary_10_4213_tmf10179 crossref_primary_10_1016_j_aml_2019_106165 crossref_primary_10_1016_j_cnsns_2017_03_022 crossref_primary_10_1088_1572_9494_ad5991 crossref_primary_10_1016_j_cnsns_2017_03_020 crossref_primary_10_1088_1751_8121_acee33 crossref_primary_10_1016_j_chaos_2023_114089 crossref_primary_10_3390_sym14030542 crossref_primary_10_1007_s00332_022_09835_4 crossref_primary_10_1515_zna_2017_0364 crossref_primary_10_1002_mma_6498 crossref_primary_10_1007_s11253_024_02394_9 crossref_primary_10_1080_14029251_2019_1544793 crossref_primary_10_1016_j_aml_2022_108397 crossref_primary_10_3934_math_2024021 crossref_primary_10_1007_s11071_017_3991_2 crossref_primary_10_1016_j_wavemoti_2024_103327 crossref_primary_10_1080_16583655_2023_2294554 crossref_primary_10_1016_j_physd_2023_133828 crossref_primary_10_1016_j_matcom_2022_02_027 crossref_primary_10_1140_epjd_e2016_70033_9 crossref_primary_10_1016_j_aml_2021_107852 crossref_primary_10_1088_1402_4896_abb636 crossref_primary_10_1134_S0040577921110064 crossref_primary_10_1140_epjp_s13360_022_02412_4 crossref_primary_10_1088_0253_6102_71_1_1 crossref_primary_10_1088_1572_9494_ac5cb1 crossref_primary_10_1088_1674_1056_25_1_010506 |
| Cites_doi | 10.1088/0305-4470/36/17/313 10.1023/A:1006910004292 10.1143/JPSJ.71.2649 10.1016/S0378-4371(98)00466-X 10.1103/PhysRevLett.25.1108 10.1007/s11232-011-0072-4 10.1143/JPSJ.26.1305 10.1016/S0378-4371(02)00995-0 10.1090/S0002-9947-1991-1029000-7 10.1088/0305-4470/17/7/009 10.1016/0375-9601(88)90541-5 10.1017/CBO9780511543043 10.1143/JPSJ.41.1817 10.1007/BF02430638 10.1063/1.530497 10.1143/JPSJ.46.359 10.1016/0375-9601(83)90159-7 10.1103/PhysRevA.67.013804 10.1143/JPSJ.61.4336 10.1090/S0002-9947-04-03726-2 10.1063/1.523550 10.1143/PTPS.59.64 10.1016/0375-9601(83)90764-8 10.1143/JPSJ.38.673 10.1143/JPSJ.33.1456 10.1063/1.1664701 10.1175/JPO2652.1 10.3792/pja/1195519590 10.1016/0034-4877(91)90025-I 10.1137/1.9781611970883 10.1103/PhysRevE.52.5574 10.1143/JPSJ.53.950 10.1103/PhysRevLett.19.1095 10.1007/s11232-010-0046-y 10.1143/JPSJ.37.1631 10.1088/0253-6102/55/4/02 10.1143/JPSJ.34.1289 10.1016/S0378-4371(97)00260-4 10.1016/j.physleta.2009.07.004 10.1103/PhysRevLett.27.1192 10.1088/0253-6102/57/6/03 10.1088/0253-6102/61/4/03 10.1016/S0960-0779(00)00137-5 10.1016/j.physrep.2012.10.006 |
| ContentType | Journal Article |
| Copyright | 2014, World Scientific Publishing Company 2014. World Scientific Publishing Company |
| Copyright_xml | – notice: 2014, World Scientific Publishing Company – notice: 2014. World Scientific Publishing Company |
| DBID | AAYXX CITATION |
| DOI | 10.1142/S0129055X14300064 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences Mathematics Physics |
| EISSN | 1793-6659 |
| ExternalDocumentID | 10_1142_S0129055X14300064 S0129055X14300064 |
| GroupedDBID | -~X 0R~ 123 4.4 ADSJI AENEX ALMA_UNASSIGNED_HOLDINGS CAG COF CS3 EBS EJD ESX HZ~ O9- P71 RWJ WSM WSP AAYXX AMVHM CITATION |
| ID | FETCH-LOGICAL-c3804-d24c8ec948c0f46b069f9d9fa1b05db600e4123ef11ad5eb3de7f762416cb2cf3 |
| ISSN | 0129-055X |
| IngestDate | Mon Jun 30 12:58:49 EDT 2025 Tue Jul 01 02:50:49 EDT 2025 Thu Apr 24 22:48:33 EDT 2025 Fri Aug 23 08:20:07 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 7 |
| Keywords | The modified Korteweg–de Vries equation breathers dynamics Wronskian rational solutions |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c3804-d24c8ec948c0f46b069f9d9fa1b05db600e4123ef11ad5eb3de7f762416cb2cf3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2116406481 |
| PQPubID | 2049920 |
| ParticipantIDs | crossref_primary_10_1142_S0129055X14300064 worldscientific_primary_S0129055X14300064 crossref_citationtrail_10_1142_S0129055X14300064 proquest_journals_2116406481 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20140800 |
| PublicationDateYYYYMMDD | 2014-08-01 |
| PublicationDate_xml | – month: 08 year: 2014 text: 20140800 |
| PublicationDecade | 2010 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore |
| PublicationTitle | Reviews in mathematical physics |
| PublicationYear | 2014 |
| Publisher | World Scientific Publishing Company World Scientific Publishing Co. Pte., Ltd |
| Publisher_xml | – name: World Scientific Publishing Company – name: World Scientific Publishing Co. Pte., Ltd |
| References | rf5 rf23 rf45 rf4 rf22 rf44 rf7 rf25 Kamke E. (rf39) 1977 rf47 rf6 rf24 rf46 rf9 rf41 rf8 rf40 rf21 rf43 rf20 rf42 rf27 rf49 rf26 rf48 rf29 rf28 rf12 rf34 rf11 rf33 rf13 rf35 rf30 rf51 rf10 rf32 rf31 rf19 rf16 rf38 rf15 rf37 rf18 rf17 Pratt L. J. (rf14) 1992; 23 rf3 rf2 |
| References_xml | – ident: rf48 doi: 10.1088/0305-4470/36/17/313 – ident: rf10 doi: 10.1023/A:1006910004292 – ident: rf40 doi: 10.1143/JPSJ.71.2649 – ident: rf12 doi: 10.1016/S0378-4371(98)00466-X – ident: rf18 doi: 10.1103/PhysRevLett.25.1108 – ident: rf25 doi: 10.1007/s11232-011-0072-4 – ident: rf7 doi: 10.1143/JPSJ.26.1305 – ident: rf21 doi: 10.1016/S0378-4371(02)00995-0 – ident: rf26 doi: 10.1090/S0002-9947-1991-1029000-7 – ident: rf28 doi: 10.1088/0305-4470/17/7/009 – ident: rf31 doi: 10.1016/0375-9601(88)90541-5 – ident: rf38 doi: 10.1017/CBO9780511543043 – ident: rf42 doi: 10.1143/JPSJ.41.1817 – ident: rf15 doi: 10.1007/BF02430638 – ident: rf19 doi: 10.1063/1.530497 – ident: rf27 doi: 10.1143/JPSJ.46.359 – ident: rf47 doi: 10.1016/0375-9601(83)90159-7 – ident: rf4 doi: 10.1103/PhysRevA.67.013804 – ident: rf6 doi: 10.1143/JPSJ.61.4336 – ident: rf32 doi: 10.1090/S0002-9947-04-03726-2 – ident: rf43 doi: 10.1063/1.523550 – ident: rf45 doi: 10.1143/PTPS.59.64 – ident: rf30 doi: 10.1016/0375-9601(83)90764-8 – ident: rf44 doi: 10.1143/JPSJ.38.673 – ident: rf22 doi: 10.1143/JPSJ.33.1456 – ident: rf2 doi: 10.1063/1.1664701 – ident: rf16 doi: 10.1175/JPO2652.1 – ident: rf17 – ident: rf24 doi: 10.3792/pja/1195519590 – ident: rf29 doi: 10.1016/0034-4877(91)90025-I – ident: rf41 doi: 10.1137/1.9781611970883 – ident: rf11 doi: 10.1103/PhysRevE.52.5574 – volume-title: Handbook on Ordinary Differential Equations year: 1977 ident: rf39 – ident: rf9 doi: 10.1143/JPSJ.53.950 – volume: 23 start-page: 91 year: 1992 ident: rf14 publication-title: J. Phys. Oceangr. – ident: rf3 doi: 10.1103/PhysRevLett.19.1095 – ident: rf34 doi: 10.1007/s11232-010-0046-y – ident: rf8 doi: 10.1143/JPSJ.37.1631 – ident: rf49 – ident: rf35 doi: 10.1088/0253-6102/55/4/02 – ident: rf23 doi: 10.1143/JPSJ.34.1289 – ident: rf20 doi: 10.1016/S0378-4371(97)00260-4 – ident: rf33 doi: 10.1016/j.physleta.2009.07.004 – ident: rf37 doi: 10.1103/PhysRevLett.27.1192 – ident: rf46 doi: 10.1088/0253-6102/57/6/03 – ident: rf51 doi: 10.1088/0253-6102/61/4/03 – ident: rf13 doi: 10.1016/S0960-0779(00)00137-5 – ident: rf5 doi: 10.1016/j.physrep.2012.10.006 |
| SSID | ssj0014739 |
| Score | 2.4151006 |
| Snippet | This is a continuation of [Notes on solutions in Wronskian form to soliton equations: Korteweg–de Vries-type, arXiv:nlin.SI/0603008]. In the present paper, we... |
| SourceID | proquest crossref worldscientific |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1430006 |
| SubjectTerms | Breathers Differential equations Korteweg-Devries equation Mathematical analysis Matrix algebra Matrix methods Solitary waves |
| Title | Solutions to the modified Korteweg–de Vries equation |
| URI | http://www.worldscientific.com/doi/abs/10.1142/S0129055X14300064 https://www.proquest.com/docview/2116406481 |
| Volume | 26 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 1793-6659 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0014739 issn: 0129-055X databaseCode: AMVHM dateStart: 19890101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFLVgKiRYFCggBgrygg1UBidxnGRZ8dCoMAipD01XkV-pKtGkZSZCYsU_8Id8CTeO7QykQpRNNGN5nJHPzfHx9b03CD2LTZVQJTRRueaEKZqQ3HBBBIe9g5IsM5Wt9vmRzw7Z3iJdDAGZNrtkJV-qb5fmlfwPqtAGuHZZsldANgwKDfAZ8IUrIAzXf8I4-LS8gjxr9GnVicr3XQztV3PiYxkSbXaOul3xjrloBzB8Ze6-JGnn-zgLZVy7FC0LYlDdwbn8RpC9tl5rtv7W_aY-IR9OQ_t-axntGBZHcuxXSNu_aa3x-DbndIhYCHlz1GYDfSz72IimdZ_ZmMdAUhCapot-yel5FmiBcO6KgTsi7lPnncFll_M7i-0Jc-c9gxFB7FlRNSxmIcRw1Oc62oiB-ekEbezOj2bzcNbEMvu-ufA33dk33OrVaJDf1cuwJdm09W2XYULWNMrBHbTpNhd4t7eUu-iaqbfQbbfRwI7Gl1vo1jygDN9ufOphvod4MCi8ajB0wd6gsDeon99_aIOtKWFvSvfR4bu3B69nxL1Yg6gkp4zomKncqILlilaMS8qLqtBFJSJJUy1BAxsGisZUUSR0aiTYaFbB3IF4VzJWVfIATeqmNg8RFsBEIGFh4aCCKV5IHXdH7TyTSmph0imifsJK5arOdy8_-Vz2GfFxOZrjKXoRfnLel1z5W-dtj0LpnsxlGUcRB6HK8miKnv-BTBhyNNSjK_R9jG4Oj8U2mqy-tOYJqNOVfOrM6xeV_owZ |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solutions+to+the+modified+Korteweg%E2%80%93de+Vries+equation&rft.jtitle=Reviews+in+mathematical+physics&rft.au=Zhang%2C+Da-Jun&rft.au=Zhao%2C+Song-Lin&rft.au=Sun%2C+Ying-Ying&rft.au=Zhou%2C+Jing&rft.date=2014-08-01&rft.pub=World+Scientific+Publishing+Company&rft.issn=0129-055X&rft.eissn=1793-6659&rft.volume=26&rft.issue=7&rft_id=info:doi/10.1142%2FS0129055X14300064&rft.externalDocID=S0129055X14300064 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0129-055X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0129-055X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0129-055X&client=summon |