On the corpuscular theory of gravity

The aim of this work is to provide a general description of the corpuscular theory of gravity. After reviewing some of the major conceptual issues emerging from the semiclassical and field theoretic approaches to Einstein’s gravity, we present a synthetic overview of two novel (and extremely intertw...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of geometric methods in modern physics Vol. 16; no. 3; p. 1930001
Main Author Giusti, Andrea
Format Journal Article
LanguageEnglish
Published Singapore World Scientific Publishing Company 01.03.2019
World Scientific Publishing Co. Pte., Ltd
Subjects
Online AccessGet full text
ISSN0219-8878
1793-6977
DOI10.1142/S0219887819300010

Cover

Abstract The aim of this work is to provide a general description of the corpuscular theory of gravity. After reviewing some of the major conceptual issues emerging from the semiclassical and field theoretic approaches to Einstein’s gravity, we present a synthetic overview of two novel (and extremely intertwined) perspectives on quantum mechanical effects in gravity: the horizon quantum mechanics (HQM) formalism and the classicalization scheme. After this preliminary discussion, we then proceed with implementing the latter to several different scenarios, namely self-gravitating systems, the early Universe, and galactic dynamics. Concerning the first scenario, we start by describing the generation of the Newtonian potential as the result of a coherent state of toy (scalar) gravitons. After that we employ this result to study some features of the gravitational collapse and to argue that black holes can be thought of a self-sustained quantum states, at the critical point, made of a large number of soft virtual gravitons. We then refine this simplified analysis by constructing an effective theory for the gravitational potential of a static spherical symmetric system up to the first post-Newtonian correction. Additionally, we employ the HQM formalism to study the causal structure emerging from the corpuscular scenario. Finally, we present a short discussion of corpuscular black holes in lower dimensional spaces. After laying down the basics of corpuscular black holes, we present a generalization of the aforementioned arguments to cosmology. Specifically, we first introduce a corpuscular interpretation of the de Sitter spacetime. Then we use it as the starting point for a corpuscular formulation of the inflationary scenario and to provide an alternative viewpoint on the dark components of the Λ CDM model. The key message of this work is that the corpuscular theory of gravity offers a way to unify most of the experimental observations (from astrophysical to galactic and cosmological scales) in a single framework, solely based on gravity and baryonic matter.
AbstractList The aim of this work is to provide a general description of the corpuscular theory of gravity. After reviewing some of the major conceptual issues emerging from the semiclassical and field theoretic approaches to Einstein’s gravity, we present a synthetic overview of two novel (and extremely intertwined) perspectives on quantum mechanical effects in gravity: the horizon quantum mechanics (HQM) formalism and the classicalization scheme. After this preliminary discussion, we then proceed with implementing the latter to several different scenarios, namely self-gravitating systems, the early Universe, and galactic dynamics. Concerning the first scenario, we start by describing the generation of the Newtonian potential as the result of a coherent state of toy (scalar) gravitons. After that we employ this result to study some features of the gravitational collapse and to argue that black holes can be thought of a self-sustained quantum states, at the critical point, made of a large number of soft virtual gravitons. We then refine this simplified analysis by constructing an effective theory for the gravitational potential of a static spherical symmetric system up to the first post-Newtonian correction. Additionally, we employ the HQM formalism to study the causal structure emerging from the corpuscular scenario. Finally, we present a short discussion of corpuscular black holes in lower dimensional spaces. After laying down the basics of corpuscular black holes, we present a generalization of the aforementioned arguments to cosmology. Specifically, we first introduce a corpuscular interpretation of the de Sitter spacetime. Then we use it as the starting point for a corpuscular formulation of the inflationary scenario and to provide an alternative viewpoint on the dark components of the ΛCDM model. The key message of this work is that the corpuscular theory of gravity offers a way to unify most of the experimental observations (from astrophysical to galactic and cosmological scales) in a single framework, solely based on gravity and baryonic matter.
The aim of this work is to provide a general description of the corpuscular theory of gravity. After reviewing some of the major conceptual issues emerging from the semiclassical and field theoretic approaches to Einstein’s gravity, we present a synthetic overview of two novel (and extremely intertwined) perspectives on quantum mechanical effects in gravity: the horizon quantum mechanics (HQM) formalism and the classicalization scheme. After this preliminary discussion, we then proceed with implementing the latter to several different scenarios, namely self-gravitating systems, the early Universe, and galactic dynamics. Concerning the first scenario, we start by describing the generation of the Newtonian potential as the result of a coherent state of toy (scalar) gravitons. After that we employ this result to study some features of the gravitational collapse and to argue that black holes can be thought of a self-sustained quantum states, at the critical point, made of a large number of soft virtual gravitons. We then refine this simplified analysis by constructing an effective theory for the gravitational potential of a static spherical symmetric system up to the first post-Newtonian correction. Additionally, we employ the HQM formalism to study the causal structure emerging from the corpuscular scenario. Finally, we present a short discussion of corpuscular black holes in lower dimensional spaces. After laying down the basics of corpuscular black holes, we present a generalization of the aforementioned arguments to cosmology. Specifically, we first introduce a corpuscular interpretation of the de Sitter spacetime. Then we use it as the starting point for a corpuscular formulation of the inflationary scenario and to provide an alternative viewpoint on the dark components of the Λ CDM model. The key message of this work is that the corpuscular theory of gravity offers a way to unify most of the experimental observations (from astrophysical to galactic and cosmological scales) in a single framework, solely based on gravity and baryonic matter.
The aim of this work is to provide a general description of the corpuscular theory of gravity. After reviewing some of the major conceptual issues emerging from the semiclassical and field theoretic approaches to Einstein’s gravity, we present a synthetic overview of two novel (and extremely intertwined) perspectives on quantum mechanical effects in gravity: the horizon quantum mechanics (HQM) formalism and the classicalization scheme. After this preliminary discussion, we then proceed with implementing the latter to several different scenarios, namely self-gravitating systems, the early Universe, and galactic dynamics. Concerning the first scenario, we start by describing the generation of the Newtonian potential as the result of a coherent state of toy (scalar) gravitons. After that we employ this result to study some features of the gravitational collapse and to argue that black holes can be thought of a self-sustained quantum states, at the critical point, made of a large number of soft virtual gravitons. We then refine this simplified analysis by constructing an effective theory for the gravitational potential of a static spherical symmetric system up to the first post-Newtonian correction. Additionally, we employ the HQM formalism to study the causal structure emerging from the corpuscular scenario. Finally, we present a short discussion of corpuscular black holes in lower dimensional spaces. After laying down the basics of corpuscular black holes, we present a generalization of the aforementioned arguments to cosmology. Specifically, we first introduce a corpuscular interpretation of the de Sitter spacetime. Then we use it as the starting point for a corpuscular formulation of the inflationary scenario and to provide an alternative viewpoint on the dark components of the [Formula: see text]CDM model. The key message of this work is that the corpuscular theory of gravity offers a way to unify most of the experimental observations (from astrophysical to galactic and cosmological scales) in a single framework, solely based on gravity and baryonic matter.
Author Giusti, Andrea
Author_xml – sequence: 1
  givenname: Andrea
  surname: Giusti
  fullname: Giusti, Andrea
BookMark eNp9kE9LAzEQxYNUsK1-AG8Lel2dJNske5TiPyj0oJ6XZJpoyrqpSVbpt7dLxYMFT8Pw3m-G9yZk1IXOEnJO4YrSil0_AaO1UlLRmgMAhSMyprLmpailHJHxIJeDfkImKa0BOJVSjsnlsivymy0wxE2fsG91HPYQt0VwxWvUnz5vT8mx022yZz9zSl7ubp_nD-Vief84v1mUyBVAiWiMMI4zw9CZmZ4JYcXKCKmkcYAGbUVnWhupUSA4y5myBuxKIqsq5IxPycX-7iaGj96m3KxDH7vdy4YNuRRlku9ccu_CGFKK1jXos84-dDlq3zYUmqGS5qCSHUn_kJvo33Xc_svAnvkKsV0l9LbL3nn8RQ-Rb3Bzc6w
CitedBy_id crossref_primary_10_1016_j_physletb_2021_136818
crossref_primary_10_1140_epjc_s10052_019_7410_3
crossref_primary_10_1088_2399_6528_ab923c
crossref_primary_10_1103_PhysRevD_100_024029
crossref_primary_10_1088_1475_7516_2020_12_041
crossref_primary_10_1088_1475_7516_2020_01_022
crossref_primary_10_1142_S0219887819501834
crossref_primary_10_1007_s10714_019_2587_1
crossref_primary_10_1088_1475_7516_2020_08_024
crossref_primary_10_1103_PhysRevResearch_2_013187
crossref_primary_10_1007_JHEP04_2021_037
crossref_primary_10_1103_PhysRevD_101_124032
crossref_primary_10_1103_PhysRevD_103_064001
crossref_primary_10_1103_PhysRevD_100_084015
crossref_primary_10_1016_j_physletb_2022_136900
crossref_primary_10_1103_PhysRevD_100_024036
crossref_primary_10_1002_prop_202300136
crossref_primary_10_1007_JHEP02_2021_104
crossref_primary_10_1103_PhysRevD_101_124029
crossref_primary_10_3390_sym12081264
crossref_primary_10_1103_PhysRevD_106_084008
crossref_primary_10_1140_epjc_s10052_021_09980_2
crossref_primary_10_1103_PhysRevD_100_064017
crossref_primary_10_1088_1742_6596_1275_1_012004
crossref_primary_10_1103_PhysRevD_101_105002
crossref_primary_10_1103_PhysRevD_102_104058
crossref_primary_10_1088_1402_4896_ac9e80
crossref_primary_10_1016_j_physletb_2019_134915
crossref_primary_10_1103_PhysRevD_105_124054
crossref_primary_10_1103_PhysRevD_105_104006
crossref_primary_10_3390_sym12091396
crossref_primary_10_1140_epjc_s10052_023_11712_7
crossref_primary_10_1002_prop_202100131
crossref_primary_10_1140_epjc_s10052_020_7721_4
crossref_primary_10_3390_universe7120478
crossref_primary_10_1140_epjc_s10052_022_10570_z
crossref_primary_10_1140_epjc_s10052_019_7397_9
crossref_primary_10_1007_JHEP10_2024_065
crossref_primary_10_1142_S0217732319501748
crossref_primary_10_1142_S0219887819501081
crossref_primary_10_3390_sym13020358
crossref_primary_10_1088_1475_7516_2019_06_005
crossref_primary_10_3389_fphy_2022_891977
crossref_primary_10_1103_PhysRevD_103_044026
crossref_primary_10_1140_epjp_s13360_021_01168_7
crossref_primary_10_1103_PhysRevD_105_104010
crossref_primary_10_1140_epjp_s13360_020_00831_9
crossref_primary_10_1103_PhysRevD_109_084042
crossref_primary_10_1140_epjc_s10052_024_12817_3
Cites_doi 10.1103/PhysRevD.68.084005
10.1073/pnas.15.3.168
10.1103/PhysRev.160.1113
10.5479/sil.52126.39088015628399
10.1016/j.nuclphysb.2015.02.004
10.1088/1475-7516/2015/09/002
10.1103/PhysRevD.92.125002
10.1007/JHEP08(2013)025
10.1088/1475-7516/2017/06/044
10.1007/BF00760418
10.1007/s10714-016-2026-5
10.1103/PhysRevD.90.084040
10.1103/PhysRevLett.14.57
10.1093/mnras/152.1.75
10.1093/mnras/168.2.399
10.1103/PhysRevLett.71.3743
10.1146/annurev.nucl.010909.083654
10.1103/PhysRevLett.49.1110
10.1146/annurev-astro-082708-101659
10.1140/epjc/s10052-017-4882-x
10.1103/PhysRevD.96.044010
10.1063/1.1724264
10.1007/JHEP05(2014)128
10.1016/0370-2693(85)91470-4
10.1103/PhysRevD.82.104035
10.1103/RevModPhys.84.671
10.1103/PhysRevLett.116.061102
10.1088/1361-6382/aa8535
10.1103/PhysRevLett.116.241103
10.1134/S1063772907030018
10.1155/2011/968283
10.1007/s10714-008-0661-1
10.1103/PhysRevD.94.104056
10.1103/PhysRevD.56.3258
10.1140/epjc/s10052-011-1794-z
10.1007/BF02345020
10.1103/PhysRevD.47.R5209
10.1142/S0218271816300068
10.1103/PhysRev.117.1595
10.1103/RevModPhys.82.451
10.1016/j.physletb.2013.03.025
10.1016/j.physrep.2011.09.003
10.1142/S0217732311037042
10.12942/lrr-2005-1
10.1103/PhysRevD.88.043502
10.1142/S0217732301003887
10.1086/300499
10.1086/305615
10.1103/PhysRevD.3.1818
10.1088/0067-0049/192/2/18
10.1140/epjc/s10052-014-2752-3
10.1103/PhysRev.55.364
10.1063/1.1666825
10.1140/epjc/s10052-015-3404-y
10.1007/JHEP11(2011)070
10.1103/PhysRevLett.11.237
10.1140/epjc/s10052-016-4233-3
10.1103/PhysRevD.13.198
10.1002/andp.201200109
10.1111/j.1365-2966.2012.20695.x
10.1086/377226
10.1103/PhysRevLett.26.331
10.1007/s10714-017-2198-7
10.1016/j.physletb.2015.05.053
10.1142/S0218271819500214
10.1088/1742-6596/942/1/012013
10.1103/PhysRev.162.1239
10.1016/j.physletb.2016.06.042
10.1103/PhysRevD.50.3874
10.1063/1.1664615
10.1140/epjc/s10052-013-2679-0
10.1103/PhysRevLett.34.905
10.1086/161130
10.1016/j.physletb.2014.03.037
10.1103/PhysRev.174.1559
10.1088/0264-9381/15/11/011
10.1103/PhysRevD.23.287
10.1209/0295-5075/121/60004
10.1016/0550-3213(86)90193-8
10.1002/prop.201300001
10.1002/andp.19053221004
10.1007/BF01645742
10.1007/s10714-009-0912-9
10.1088/1367-2630/11/10/105008
10.1002/andp.19163540702
10.1103/PhysRevD.44.2409
10.1086/312287
10.1093/mnras/278.1.27
10.1103/PhysRev.116.1322
10.1103/PhysRev.119.1743
10.1007/BF00759198
10.1103/PhysRevD.72.084013
10.1023/A:1026645510351
10.1016/j.physletb.2017.11.058
10.1103/PhysRevD.97.044047
10.1103/PhysRevLett.25.1596
10.1016/0370-2693(82)91219-9
10.1103/PhysRevD.81.104019
10.1007/BF01351864
10.1016/j.physletb.2011.07.052
10.1103/PhysRevLett.72.2996
10.1103/PhysRevD.97.126005
10.1088/0264-9381/20/18/305
10.1016/j.physrep.2015.02.001
10.21468/SciPostPhys.2.3.016
10.1007/BF02757029
10.1103/PhysRevD.59.086004
10.1051/0004-6361/201525830
10.1063/1.1664769
10.1007/BF01877517
10.1086/307643
10.1103/PhysRevLett.96.031103
10.1103/PhysRevD.49.1912
10.1098/rspa.1970.0021
10.1103/PhysRevLett.57.397
10.1016/j.physletb.2016.10.058
10.1139/cjp-2013-0712
10.1142/S0218271811018925
10.1063/1.5021776
10.1086/143864
10.1086/158003
10.1140/epjc/s10052-013-2685-2
10.1103/PhysRev.110.965
10.1103/PhysRevD.79.124007
10.1063/1.1665613
10.1103/PhysRevD.88.124041
10.1111/j.1745-3933.2011.01074.x
10.1016/0370-2693(80)90670-X
10.1007/BF01645859
10.1007/JHEP08(2011)108
10.12942/lrr-2001-6
10.1016/0550-3213(90)90265-F
10.1103/PhysRevD.49.831
10.1051/0004-6361/201525898
10.1103/PhysRevD.91.083531
10.1103/PhysRev.164.1776
10.1088/0264-9381/22/11/019
10.1088/1742-6596/942/1/012012
10.1139/cjp-2014-0211
10.1073/pnas.18.3.213
10.3390/universe3020048
10.1088/0034-4885/79/10/106901
10.1103/PhysRevD.75.067302
10.1103/PhysRevD.28.2929
10.1088/1126-6708/1998/02/009
10.1086/508162
10.1140/epjc/s10052-018-5715-2
10.1103/PhysRevD.65.043508
10.1016/j.physletb.2012.08.029
10.1088/1475-7516/2014/01/023
10.12942/lrr-2014-7
10.1142/S0217732300001213
10.1103/PhysRevD.23.347
10.1016/j.dark.2016.10.003
10.1088/0264-9381/10/8/017
10.1103/PhysRevD.65.065016
10.1103/PhysRev.162.1195
10.1016/0370-1573(92)90044-Z
10.12942/lrr-2009-4
10.1088/0264-9381/5/4/010
10.1103/PhysRevD.97.024041
10.1103/PhysRevD.7.2333
10.1038/nature09509
10.1103/PhysRev.136.B571
10.1103/PhysRevLett.71.1291
10.1086/307221
10.1103/PhysRevD.56.R535
10.1103/PhysRevD.91.124069
10.1086/153853
10.1016/0370-1573(74)90023-4
10.3390/e17106893
10.12942/lrr-2010-3
10.1103/PhysRev.55.374
10.1142/S0218271800000517
10.1016/j.physletb.2013.01.020
10.1007/BF01609863
10.1088/0264-9381/9/4/006
10.1007/JHEP05(2015)096
10.1103/PhysRevD.14.2460
10.1103/PhysRevD.88.044009
10.1016/S0370-2693(99)00167-7
10.1051/0004-6361/201321591
ContentType Journal Article
Copyright 2019, World Scientific Publishing Company
2019. World Scientific Publishing Company
Copyright_xml – notice: 2019, World Scientific Publishing Company
– notice: 2019. World Scientific Publishing Company
DBID AAYXX
CITATION
DOI 10.1142/S0219887819300010
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
EISSN 1793-6977
ExternalDocumentID 10_1142_S0219887819300010
S0219887819300010
GroupedDBID 0R~
4.4
5GY
ADSJI
AENEX
ALMA_UNASSIGNED_HOLDINGS
CAG
COF
CS3
DU5
EBS
EJD
ESX
HZ~
J9A
O9-
P2P
P71
RWJ
AAYXX
AMVHM
CITATION
ID FETCH-LOGICAL-c3800-ccbb6bf32b2cfb5a566e6db6787bf0cbce415aab7ac6c0fe328eb0ed7c244c323
ISSN 0219-8878
IngestDate Sun Jun 29 16:11:48 EDT 2025
Tue Jul 01 00:25:13 EDT 2025
Thu Apr 24 23:02:42 EDT 2025
Fri Aug 23 08:19:46 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords horizon quantum mechanics
corpuscular gravity
black holes
Modified theories of gravity
inflation
dark matter
classicalization
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c3800-ccbb6bf32b2cfb5a566e6db6787bf0cbce415aab7ac6c0fe328eb0ed7c244c323
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2193081273
PQPubID 2049917
ParticipantIDs crossref_citationtrail_10_1142_S0219887819300010
worldscientific_primary_S0219887819300010
proquest_journals_2193081273
crossref_primary_10_1142_S0219887819300010
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20190300
2019-03-00
20190301
PublicationDateYYYYMMDD 2019-03-01
PublicationDate_xml – month: 03
  year: 2019
  text: 20190300
PublicationDecade 2010
PublicationPlace Singapore
PublicationPlace_xml – name: Singapore
PublicationTitle International journal of geometric methods in modern physics
PublicationYear 2019
Publisher World Scientific Publishing Company
World Scientific Publishing Co. Pte., Ltd
Publisher_xml – name: World Scientific Publishing Company
– name: World Scientific Publishing Co. Pte., Ltd
References S0219887819300010BIB121
S0219887819300010BIB001
S0219887819300010BIB122
S0219887819300010BIB002
S0219887819300010BIB123
S0219887819300010BIB124
S0219887819300010BIB004
S0219887819300010BIB125
S0219887819300010BIB005
S0219887819300010BIB006
S0219887819300010BIB127
Thorne K. S. (S0219887819300010BIB109) 1972
S0219887819300010BIB128
S0219887819300010BIB129
S0219887819300010BIB108
S0219887819300010BIB110
S0219887819300010BIB111
S0219887819300010BIB112
S0219887819300010BIB113
S0219887819300010BIB114
S0219887819300010BIB115
S0219887819300010BIB116
S0219887819300010BIB118
S0219887819300010BIB100
S0219887819300010BIB101
S0219887819300010BIB103
S0219887819300010BIB105
S0219887819300010BIB106
S0219887819300010BIB107
S0219887819300010BIB207
S0219887819300010BIB208
S0219887819300010BIB209
Schwarzschild K. (S0219887819300010BIB007) 1916; 1916
S0219887819300010BIB210
S0219887819300010BIB211
Schwarzschild K. (S0219887819300010BIB008) 1916; 1916
S0219887819300010BIB212
S0219887819300010BIB213
S0219887819300010BIB214
S0219887819300010BIB215
S0219887819300010BIB216
Dvali G. (S0219887819300010BIB104) 2017; 53
S0219887819300010BIB200
S0219887819300010BIB201
S0219887819300010BIB202
S0219887819300010BIB203
S0219887819300010BIB204
S0219887819300010BIB205
S0219887819300010BIB206
Gel’fand I. (S0219887819300010BIB119) 1947; 11
Einstein A. (S0219887819300010BIB012) 1917; 1917
S0219887819300010BIB090
S0219887819300010BIB091
S0219887819300010BIB092
S0219887819300010BIB093
S0219887819300010BIB094
S0219887819300010BIB095
S0219887819300010BIB096
S0219887819300010BIB097
S0219887819300010BIB098
S0219887819300010BIB080
S0219887819300010BIB081
S0219887819300010BIB082
S0219887819300010BIB083
S0219887819300010BIB085
S0219887819300010BIB086
S0219887819300010BIB087
S0219887819300010BIB088
S0219887819300010BIB089
S0219887819300010BIB190
S0219887819300010BIB191
S0219887819300010BIB071
S0219887819300010BIB192
S0219887819300010BIB072
S0219887819300010BIB193
S0219887819300010BIB073
S0219887819300010BIB194
S0219887819300010BIB074
S0219887819300010BIB195
S0219887819300010BIB075
S0219887819300010BIB196
S0219887819300010BIB076
S0219887819300010BIB197
S0219887819300010BIB077
S0219887819300010BIB198
S0219887819300010BIB078
S0219887819300010BIB079
Turner M. S. (S0219887819300010BIB015) 1999; 165
S0219887819300010BIB180
S0219887819300010BIB060
S0219887819300010BIB181
S0219887819300010BIB061
S0219887819300010BIB183
S0219887819300010BIB063
S0219887819300010BIB184
S0219887819300010BIB064
S0219887819300010BIB185
S0219887819300010BIB065
S0219887819300010BIB186
S0219887819300010BIB187
Veltman M. J. G. (S0219887819300010BIB062) 1975; 7507281
S0219887819300010BIB067
S0219887819300010BIB188
S0219887819300010BIB068
S0219887819300010BIB189
Bogolyubov N. N. (S0219887819300010BIB117) 1947; 11
t Hooft G. (S0219887819300010BIB054) 1974; 20
Begeman K. G. (S0219887819300010BIB016) 1989; 223
S0219887819300010BIB170
S0219887819300010BIB050
S0219887819300010BIB171
S0219887819300010BIB051
S0219887819300010BIB172
S0219887819300010BIB052
S0219887819300010BIB173
S0219887819300010BIB053
S0219887819300010BIB174
S0219887819300010BIB175
S0219887819300010BIB055
S0219887819300010BIB176
S0219887819300010BIB056
S0219887819300010BIB177
S0219887819300010BIB057
S0219887819300010BIB178
S0219887819300010BIB058
S0219887819300010BIB179
Maggiore M. (S0219887819300010BIB099) 2005; 12
Starobinsky A. A. (S0219887819300010BIB024) 1979; 30
S0219887819300010BIB040
S0219887819300010BIB161
S0219887819300010BIB041
S0219887819300010BIB162
S0219887819300010BIB043
S0219887819300010BIB044
S0219887819300010BIB165
S0219887819300010BIB045
S0219887819300010BIB166
S0219887819300010BIB046
S0219887819300010BIB167
S0219887819300010BIB047
S0219887819300010BIB048
S0219887819300010BIB169
S0219887819300010BIB049
Donoghue J. F. (S0219887819300010BIB069) 2009; 09
S0219887819300010BIB150
S0219887819300010BIB030
S0219887819300010BIB151
S0219887819300010BIB031
S0219887819300010BIB152
S0219887819300010BIB153
Tully R. B. (S0219887819300010BIB199) 1977; 54
S0219887819300010BIB034
S0219887819300010BIB155
S0219887819300010BIB035
Diaz V. A. (S0219887819300010BIB154) 2018; 59
S0219887819300010BIB156
S0219887819300010BIB036
S0219887819300010BIB037
S0219887819300010BIB158
S0219887819300010BIB038
S0219887819300010BIB159
S0219887819300010BIB039
Carroll S. M. (S0219887819300010BIB163) 2004
S0219887819300010BIB140
S0219887819300010BIB020
S0219887819300010BIB141
S0219887819300010BIB021
S0219887819300010BIB142
S0219887819300010BIB022
S0219887819300010BIB143
S0219887819300010BIB023
S0219887819300010BIB144
S0219887819300010BIB145
S0219887819300010BIB025
S0219887819300010BIB146
Capozziello S. (S0219887819300010BIB168) 2010; 3
S0219887819300010BIB026
S0219887819300010BIB147
S0219887819300010BIB027
S0219887819300010BIB148
S0219887819300010BIB028
S0219887819300010BIB149
S0219887819300010BIB029
S0219887819300010BIB009
Minkowski H. (S0219887819300010BIB003) 1908
Abramowitz M. (S0219887819300010BIB126) 1964
S0219887819300010BIB130
S0219887819300010BIB010
S0219887819300010BIB131
S0219887819300010BIB011
S0219887819300010BIB132
S0219887819300010BIB133
S0219887819300010BIB013
S0219887819300010BIB134
S0219887819300010BIB014
S0219887819300010BIB135
S0219887819300010BIB137
S0219887819300010BIB017
S0219887819300010BIB138
S0219887819300010BIB018
S0219887819300010BIB019
References_xml – ident: S0219887819300010BIB068
  doi: 10.1103/PhysRevD.68.084005
– ident: S0219887819300010BIB014
  doi: 10.1073/pnas.15.3.168
– ident: S0219887819300010BIB063
  doi: 10.1103/PhysRev.160.1113
– ident: S0219887819300010BIB004
  doi: 10.5479/sil.52126.39088015628399
– ident: S0219887819300010BIB106
  doi: 10.1016/j.nuclphysb.2015.02.004
– ident: S0219887819300010BIB181
  doi: 10.1088/1475-7516/2015/09/002
– ident: S0219887819300010BIB116
  doi: 10.1103/PhysRevD.92.125002
– ident: S0219887819300010BIB132
  doi: 10.1007/JHEP08(2013)025
– ident: S0219887819300010BIB209
  doi: 10.1088/1475-7516/2017/06/044
– ident: S0219887819300010BIB149
  doi: 10.1007/BF00760418
– ident: S0219887819300010BIB146
  doi: 10.1007/s10714-016-2026-5
– ident: S0219887819300010BIB123
  doi: 10.1103/PhysRevD.90.084040
– ident: S0219887819300010BIB086
  doi: 10.1103/PhysRevLett.14.57
– ident: S0219887819300010BIB184
  doi: 10.1093/mnras/152.1.75
– ident: S0219887819300010BIB185
  doi: 10.1093/mnras/168.2.399
– ident: S0219887819300010BIB048
  doi: 10.1103/PhysRevLett.71.3743
– ident: S0219887819300010BIB190
  doi: 10.1146/annurev.nucl.010909.083654
– ident: S0219887819300010BIB027
  doi: 10.1103/PhysRevLett.49.1110
– ident: S0219887819300010BIB183
  doi: 10.1146/annurev-astro-082708-101659
– volume: 30
  start-page: 682
  year: 1979
  ident: S0219887819300010BIB024
  publication-title: JETP Lett.
– ident: S0219887819300010BIB079
  doi: 10.1140/epjc/s10052-017-4882-x
– ident: S0219887819300010BIB134
  doi: 10.1103/PhysRevD.96.044010
– ident: S0219887819300010BIB178
  doi: 10.1063/1.1724264
– ident: S0219887819300010BIB133
  doi: 10.1007/JHEP05(2014)128
– ident: S0219887819300010BIB055
  doi: 10.1016/0370-2693(85)91470-4
– ident: S0219887819300010BIB141
  doi: 10.1103/PhysRevD.82.104035
– ident: S0219887819300010BIB215
  doi: 10.1103/RevModPhys.84.671
– ident: S0219887819300010BIB005
  doi: 10.1103/PhysRevLett.116.061102
– ident: S0219887819300010BIB153
  doi: 10.1088/1361-6382/aa8535
– ident: S0219887819300010BIB006
  doi: 10.1103/PhysRevLett.116.241103
– volume: 223
  start-page: 47
  year: 1989
  ident: S0219887819300010BIB016
  publication-title: Astron. Astrophys.
– volume: 11
  start-page: 23
  year: 1947
  ident: S0219887819300010BIB117
  publication-title: J. Phys. (USSR)
– ident: S0219887819300010BIB212
  doi: 10.1134/S1063772907030018
– ident: S0219887819300010BIB020
  doi: 10.1155/2011/968283
– ident: S0219887819300010BIB043
  doi: 10.1007/s10714-008-0661-1
– ident: S0219887819300010BIB144
  doi: 10.1103/PhysRevD.94.104056
– ident: S0219887819300010BIB028
  doi: 10.1103/PhysRevD.56.3258
– ident: S0219887819300010BIB205
  doi: 10.1140/epjc/s10052-011-1794-z
– ident: S0219887819300010BIB011
  doi: 10.1007/BF02345020
– ident: S0219887819300010BIB031
  doi: 10.1103/PhysRevD.47.R5209
– ident: S0219887819300010BIB077
  doi: 10.1142/S0218271816300068
– ident: S0219887819300010BIB129
  doi: 10.1103/PhysRev.117.1595
– ident: S0219887819300010BIB167
  doi: 10.1103/RevModPhys.82.451
– ident: S0219887819300010BIB142
  doi: 10.1016/j.physletb.2013.03.025
– ident: S0219887819300010BIB171
  doi: 10.1016/j.physrep.2011.09.003
– ident: S0219887819300010BIB206
  doi: 10.1142/S0217732311037042
– volume: 1916
  start-page: 424
  year: 1916
  ident: S0219887819300010BIB008
  publication-title: Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.)
– volume: 1917
  start-page: 142
  year: 1917
  ident: S0219887819300010BIB012
  publication-title: Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.)
– ident: S0219887819300010BIB150
  doi: 10.12942/lrr-2005-1
– ident: S0219887819300010BIB192
  doi: 10.1103/PhysRevD.88.043502
– ident: S0219887819300010BIB204
  doi: 10.1142/S0217732301003887
– ident: S0219887819300010BIB176
  doi: 10.1086/300499
– volume: 11
  start-page: 411
  issue: 5
  year: 1947
  ident: S0219887819300010BIB119
  publication-title: Izv. Ross. Akad. Nauk, Ser. Mat.
– ident: S0219887819300010BIB018
  doi: 10.1086/305615
– ident: S0219887819300010BIB100
  doi: 10.1103/PhysRevD.3.1818
– ident: S0219887819300010BIB211
  doi: 10.1088/0067-0049/192/2/18
– ident: S0219887819300010BIB114
  doi: 10.1140/epjc/s10052-014-2752-3
– ident: S0219887819300010BIB130
  doi: 10.1103/PhysRev.55.364
– volume: 54
  start-page: 661
  year: 1977
  ident: S0219887819300010BIB199
  publication-title: Astron. Astrophys.
– ident: S0219887819300010BIB085
  doi: 10.1063/1.1666825
– ident: S0219887819300010BIB073
  doi: 10.1140/epjc/s10052-015-3404-y
– ident: S0219887819300010BIB105
  doi: 10.1007/JHEP11(2011)070
– ident: S0219887819300010BIB093
  doi: 10.1103/PhysRevLett.11.237
– ident: S0219887819300010BIB118
  doi: 10.1140/epjc/s10052-016-4233-3
– volume: 20
  start-page: 69
  year: 1974
  ident: S0219887819300010BIB054
  publication-title: Ann. Inst. H. Poincaré Phys. Theor. A
– ident: S0219887819300010BIB047
  doi: 10.1103/PhysRevD.13.198
– ident: S0219887819300010BIB207
  doi: 10.1002/andp.201200109
– volume: 3
  start-page: 49
  year: 2010
  ident: S0219887819300010BIB168
  publication-title: Open Astron. J.
– ident: S0219887819300010BIB196
  doi: 10.1111/j.1365-2966.2012.20695.x
– ident: S0219887819300010BIB210
  doi: 10.1086/377226
– ident: S0219887819300010BIB096
  doi: 10.1103/PhysRevLett.26.331
– ident: S0219887819300010BIB078
  doi: 10.1007/s10714-017-2198-7
– ident: S0219887819300010BIB075
  doi: 10.1016/j.physletb.2015.05.053
– ident: S0219887819300010BIB083
  doi: 10.1142/S0218271819500214
– ident: S0219887819300010BIB080
  doi: 10.1088/1742-6596/942/1/012013
– ident: S0219887819300010BIB065
  doi: 10.1103/PhysRev.162.1239
– ident: S0219887819300010BIB076
  doi: 10.1016/j.physletb.2016.06.042
– ident: S0219887819300010BIB057
  doi: 10.1103/PhysRevD.50.3874
– ident: S0219887819300010BIB089
  doi: 10.1063/1.1664615
– ident: S0219887819300010BIB122
  doi: 10.1140/epjc/s10052-013-2679-0
– ident: S0219887819300010BIB097
  doi: 10.1103/PhysRevLett.34.905
– ident: S0219887819300010BIB200
  doi: 10.1086/161130
– ident: S0219887819300010BIB072
  doi: 10.1016/j.physletb.2014.03.037
– ident: S0219887819300010BIB095
  doi: 10.1103/PhysRev.174.1559
– ident: S0219887819300010BIB111
  doi: 10.1088/0264-9381/15/11/011
– ident: S0219887819300010BIB052
  doi: 10.1103/PhysRevD.23.287
– volume: 09
  start-page: 001
  year: 2009
  ident: S0219887819300010BIB069
  publication-title: PoS
– ident: S0219887819300010BIB082
  doi: 10.1209/0295-5075/121/60004
– ident: S0219887819300010BIB056
  doi: 10.1016/0550-3213(86)90193-8
– ident: S0219887819300010BIB107
  doi: 10.1002/prop.201300001
– ident: S0219887819300010BIB002
  doi: 10.1002/andp.19053221004
– ident: S0219887819300010BIB029
  doi: 10.1007/BF01645742
– ident: S0219887819300010BIB061
  doi: 10.1007/s10714-009-0912-9
– ident: S0219887819300010BIB188
  doi: 10.1088/1367-2630/11/10/105008
– ident: S0219887819300010BIB001
  doi: 10.1002/andp.19163540702
– ident: S0219887819300010BIB110
  doi: 10.1103/PhysRevD.44.2409
– ident: S0219887819300010BIB194
  doi: 10.1086/312287
– ident: S0219887819300010BIB198
  doi: 10.1093/mnras/278.1.27
– ident: S0219887819300010BIB128
  doi: 10.1103/PhysRev.116.1322
– ident: S0219887819300010BIB010
  doi: 10.1103/PhysRev.119.1743
– ident: S0219887819300010BIB060
  doi: 10.1007/BF00759198
– ident: S0219887819300010BIB046
  doi: 10.1103/PhysRevD.72.084013
– ident: S0219887819300010BIB165
  doi: 10.1023/A:1026645510351
– ident: S0219887819300010BIB161
  doi: 10.1016/j.physletb.2017.11.058
– ident: S0219887819300010BIB162
  doi: 10.1103/PhysRevD.97.044047
– ident: S0219887819300010BIB034
  doi: 10.1103/PhysRevLett.25.1596
– ident: S0219887819300010BIB022
  doi: 10.1016/0370-2693(82)91219-9
– ident: S0219887819300010BIB187
  doi: 10.1103/PhysRevD.81.104019
– ident: S0219887819300010BIB098
  doi: 10.1007/BF01351864
– volume: 12
  volume-title: A Modern Introduction to Quantum Field Theory
  year: 2005
  ident: S0219887819300010BIB099
– ident: S0219887819300010BIB151
  doi: 10.1016/j.physletb.2011.07.052
– volume-title: Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables
  year: 1964
  ident: S0219887819300010BIB126
– start-page: 53
  year: 1908
  ident: S0219887819300010BIB003
  publication-title: Gott. Nach.
– ident: S0219887819300010BIB058
  doi: 10.1103/PhysRevLett.72.2996
– ident: S0219887819300010BIB180
  doi: 10.1103/PhysRevD.97.126005
– ident: S0219887819300010BIB156
  doi: 10.1088/0264-9381/20/18/305
– ident: S0219887819300010BIB041
  doi: 10.1016/j.physrep.2015.02.001
– ident: S0219887819300010BIB202
  doi: 10.21468/SciPostPhys.2.3.016
– ident: S0219887819300010BIB037
  doi: 10.1007/BF02757029
– ident: S0219887819300010BIB189
  doi: 10.1103/PhysRevD.59.086004
– ident: S0219887819300010BIB214
  doi: 10.1051/0004-6361/201525830
– ident: S0219887819300010BIB094
  doi: 10.1063/1.1664769
– ident: S0219887819300010BIB030
  doi: 10.1007/BF01877517
– ident: S0219887819300010BIB193
  doi: 10.1086/307643
– ident: S0219887819300010BIB147
  doi: 10.1103/PhysRevLett.96.031103
– ident: S0219887819300010BIB053
  doi: 10.1103/PhysRevD.49.1912
– ident: S0219887819300010BIB087
  doi: 10.1098/rspa.1970.0021
– ident: S0219887819300010BIB035
  doi: 10.1103/PhysRevLett.57.397
– ident: S0219887819300010BIB127
  doi: 10.1016/j.physletb.2016.10.058
– ident: S0219887819300010BIB121
  doi: 10.1139/cjp-2013-0712
– ident: S0219887819300010BIB173
  doi: 10.1142/S0218271811018925
– volume: 1916
  start-page: 189
  year: 1916
  ident: S0219887819300010BIB007
  publication-title: Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.)
– volume: 59
  start-page: 033509
  issue: 3
  year: 2018
  ident: S0219887819300010BIB154
  publication-title: J. Math. Phys.
  doi: 10.1063/1.5021776
– ident: S0219887819300010BIB017
  doi: 10.1086/143864
– ident: S0219887819300010BIB197
  doi: 10.1086/158003
– ident: S0219887819300010BIB071
  doi: 10.1140/epjc/s10052-013-2685-2
– ident: S0219887819300010BIB009
  doi: 10.1103/PhysRev.110.965
– ident: S0219887819300010BIB169
  doi: 10.1103/PhysRevD.79.124007
– ident: S0219887819300010BIB067
  doi: 10.1063/1.1665613
– ident: S0219887819300010BIB115
  doi: 10.1103/PhysRevD.88.124041
– ident: S0219887819300010BIB195
  doi: 10.1111/j.1745-3933.2011.01074.x
– ident: S0219887819300010BIB023
  doi: 10.1016/0370-2693(80)90670-X
– ident: S0219887819300010BIB039
  doi: 10.1007/BF01645859
– ident: S0219887819300010BIB103
  doi: 10.1007/JHEP08(2011)108
– ident: S0219887819300010BIB036
  doi: 10.12942/lrr-2001-6
– ident: S0219887819300010BIB148
  doi: 10.1016/0550-3213(90)90265-F
– ident: S0219887819300010BIB090
  doi: 10.1103/PhysRevD.49.831
– ident: S0219887819300010BIB177
  doi: 10.1051/0004-6361/201525898
– ident: S0219887819300010BIB172
  doi: 10.1103/PhysRevD.91.083531
– ident: S0219887819300010BIB038
  doi: 10.1103/PhysRev.164.1776
– ident: S0219887819300010BIB091
  doi: 10.1088/0264-9381/22/11/019
– ident: S0219887819300010BIB135
  doi: 10.1088/1742-6596/942/1/012012
– ident: S0219887819300010BIB201
  doi: 10.1139/cjp-2014-0211
– ident: S0219887819300010BIB013
  doi: 10.1073/pnas.18.3.213
– ident: S0219887819300010BIB145
  doi: 10.3390/universe3020048
– ident: S0219887819300010BIB174
  doi: 10.1088/0034-4885/79/10/106901
– ident: S0219887819300010BIB166
  doi: 10.1103/PhysRevD.75.067302
– volume: 53
  start-page: 189
  year: 2017
  ident: S0219887819300010BIB104
  publication-title: Subnucl. Ser.
– ident: S0219887819300010BIB049
  doi: 10.1103/PhysRevD.28.2929
– ident: S0219887819300010BIB050
  doi: 10.1088/1126-6708/1998/02/009
– ident: S0219887819300010BIB019
  doi: 10.1086/508162
– ident: S0219887819300010BIB081
  doi: 10.1140/epjc/s10052-018-5715-2
– ident: S0219887819300010BIB113
  doi: 10.1103/PhysRevD.65.043508
– ident: S0219887819300010BIB152
  doi: 10.1016/j.physletb.2012.08.029
– ident: S0219887819300010BIB158
  doi: 10.1088/1475-7516/2014/01/023
– ident: S0219887819300010BIB216
  doi: 10.12942/lrr-2014-7
– ident: S0219887819300010BIB203
  doi: 10.1142/S0217732300001213
– ident: S0219887819300010BIB021
  doi: 10.1103/PhysRevD.23.347
– volume-title: Spacetime and Geometry: An Introduction to General Relativity
  year: 2004
  ident: S0219887819300010BIB163
– ident: S0219887819300010BIB208
  doi: 10.1016/j.dark.2016.10.003
– ident: S0219887819300010BIB138
  doi: 10.1088/0264-9381/10/8/017
– ident: S0219887819300010BIB112
  doi: 10.1103/PhysRevD.65.065016
– ident: S0219887819300010BIB064
  doi: 10.1103/PhysRev.162.1195
– ident: S0219887819300010BIB025
  doi: 10.1016/0370-1573(92)90044-Z
– volume: 165
  start-page: 431
  year: 1999
  ident: S0219887819300010BIB015
  publication-title: ASP Conf. Ser.
– volume-title: Magic Without Magic: John Archibald Wheeler, A Collection of Essays in Honor of his Sixtieth Birthday
  year: 1972
  ident: S0219887819300010BIB109
– ident: S0219887819300010BIB092
  doi: 10.12942/lrr-2009-4
– ident: S0219887819300010BIB137
  doi: 10.1088/0264-9381/5/4/010
– ident: S0219887819300010BIB159
  doi: 10.1103/PhysRevD.97.024041
– ident: S0219887819300010BIB040
  doi: 10.1103/PhysRevD.7.2333
– ident: S0219887819300010BIB191
  doi: 10.1038/nature09509
– ident: S0219887819300010BIB088
  doi: 10.1103/PhysRev.136.B571
– ident: S0219887819300010BIB051
  doi: 10.1103/PhysRevLett.71.1291
– ident: S0219887819300010BIB175
  doi: 10.1086/307221
– volume: 7507281
  start-page: 265
  year: 1975
  ident: S0219887819300010BIB062
  publication-title: Conf. Proc. C
– ident: S0219887819300010BIB026
  doi: 10.1103/PhysRevD.56.R535
– ident: S0219887819300010BIB124
  doi: 10.1103/PhysRevD.91.124069
– ident: S0219887819300010BIB186
  doi: 10.1086/153853
– ident: S0219887819300010BIB101
  doi: 10.1016/0370-1573(74)90023-4
– ident: S0219887819300010BIB125
  doi: 10.3390/e17106893
– ident: S0219887819300010BIB170
  doi: 10.12942/lrr-2010-3
– ident: S0219887819300010BIB131
  doi: 10.1103/PhysRev.55.374
– ident: S0219887819300010BIB140
  doi: 10.1142/S0218271800000517
– ident: S0219887819300010BIB108
  doi: 10.1016/j.physletb.2013.01.020
– ident: S0219887819300010BIB044
  doi: 10.1007/BF01609863
– ident: S0219887819300010BIB179
  doi: 10.1088/0264-9381/9/4/006
– ident: S0219887819300010BIB074
  doi: 10.1007/JHEP05(2015)096
– ident: S0219887819300010BIB045
  doi: 10.1103/PhysRevD.14.2460
– ident: S0219887819300010BIB143
  doi: 10.1103/PhysRevD.88.044009
– ident: S0219887819300010BIB155
  doi: 10.1016/S0370-2693(99)00167-7
– ident: S0219887819300010BIB213
  doi: 10.1051/0004-6361/201321591
SSID ssj0031777
Score 2.4546154
SecondaryResourceType review_article
Snippet The aim of this work is to provide a general description of the corpuscular theory of gravity. After reviewing some of the major conceptual issues emerging...
SourceID proquest
crossref
worldscientific
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1930001
SubjectTerms Black holes
Cosmology
Critical point
Formalism
Gravitation theory
Gravitational collapse
Gravitons
Quantum mechanics
Universe
Title On the corpuscular theory of gravity
URI http://www.worldscientific.com/doi/abs/10.1142/S0219887819300010
https://www.proquest.com/docview/2193081273
Volume 16
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - HOST
  customDbUrl:
  eissn: 1793-6977
  dateEnd: 20241105
  omitProxy: false
  ssIdentifier: ssj0031777
  issn: 0219-8878
  databaseCode: AMVHM
  dateStart: 20050201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT-swELagXN6F7YEom3JASIAMaZzY7REhoEKUvkOLeots10ZI0BYaLvx6xkuWUoQeXKIoTSfVzHTyeRZ_CB3wOGkKzhqYy2GCY8Yp5gAscMiYkgCfVULNoHDnjrb78c0gGZREl3a6JBOn8v3LuZLfWBWugV3NlOwPLFsIhQtwDvaFI1gYjv9l467rUYQF5OTNN5TawURbNTfEQo_ZTNV2Nv1X2TTiQY2fDbWW9IzStkn22dGkudxHAb2vHw3_V9ELyatpAzOpRKppA9eqY-OH7UmqZr0uxqcn_zJlo1PZW2QiEoQ3DFHJBUzlIib8wTFteS6WPKTSiuuQryN1HNlaMYg0EgFHGrgZlq-lvBR_102v-re3ae9y0DucvGBDGGYK6549ZREtRRDQwxpaOu_ctzv5axhwkaXdLH6zL2nDc8_mnjoLSsqVxrLdtnZaaKkCPXqraNmvGYJz5wBraEGN1tGKXz8EPjpP_6KD7igA-wcVfwicPwRjHXh_2ED9q8veRRt7FgwsCaB5LKUQVGgSiUhqkXDA34oOBYAMJnQohVSAwTgXjEsqQ61I1FQiVEMmAblJEpFNVBuNR2oLBS0KYLCRNJua6lhSzRkhoCeRNKhuDRthHYW5GlLpt4g3TCVPqRtfj9I5zdXRcfGVidsf5bubd3Pdpt7Hp2lkPgWYyUgdHX3SdyFyTtT296J20J_S6XdRLXt9U3uAHjOx7_3kAxZVbf0
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+corpuscular+theory+of+gravity&rft.jtitle=International+journal+of+geometric+methods+in+modern+physics&rft.au=Giusti%2C+Andrea&rft.date=2019-03-01&rft.pub=World+Scientific+Publishing+Co.+Pte.%2C+Ltd&rft.issn=0219-8878&rft.eissn=1793-6977&rft.volume=16&rft.issue=3&rft_id=info:doi/10.1142%2FS0219887819300010&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0219-8878&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0219-8878&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0219-8878&client=summon