On the corpuscular theory of gravity
The aim of this work is to provide a general description of the corpuscular theory of gravity. After reviewing some of the major conceptual issues emerging from the semiclassical and field theoretic approaches to Einstein’s gravity, we present a synthetic overview of two novel (and extremely intertw...
Saved in:
| Published in | International journal of geometric methods in modern physics Vol. 16; no. 3; p. 1930001 |
|---|---|
| Main Author | |
| Format | Journal Article |
| Language | English |
| Published |
Singapore
World Scientific Publishing Company
01.03.2019
World Scientific Publishing Co. Pte., Ltd |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0219-8878 1793-6977 |
| DOI | 10.1142/S0219887819300010 |
Cover
| Abstract | The aim of this work is to provide a general description of the corpuscular theory of gravity. After reviewing some of the major conceptual issues emerging from the semiclassical and field theoretic approaches to Einstein’s gravity, we present a synthetic overview of two novel (and extremely intertwined) perspectives on quantum mechanical effects in gravity: the horizon quantum mechanics (HQM) formalism and the classicalization scheme. After this preliminary discussion, we then proceed with implementing the latter to several different scenarios, namely self-gravitating systems, the early Universe, and galactic dynamics. Concerning the first scenario, we start by describing the generation of the Newtonian potential as the result of a coherent state of toy (scalar) gravitons. After that we employ this result to study some features of the gravitational collapse and to argue that black holes can be thought of a self-sustained quantum states, at the critical point, made of a large number of soft virtual gravitons. We then refine this simplified analysis by constructing an effective theory for the gravitational potential of a static spherical symmetric system up to the first post-Newtonian correction. Additionally, we employ the HQM formalism to study the causal structure emerging from the corpuscular scenario. Finally, we present a short discussion of corpuscular black holes in lower dimensional spaces. After laying down the basics of corpuscular black holes, we present a generalization of the aforementioned arguments to cosmology. Specifically, we first introduce a corpuscular interpretation of the de Sitter spacetime. Then we use it as the starting point for a corpuscular formulation of the inflationary scenario and to provide an alternative viewpoint on the dark components of the
Λ
CDM model. The key message of this work is that the corpuscular theory of gravity offers a way to unify most of the experimental observations (from astrophysical to galactic and cosmological scales) in a single framework, solely based on gravity and baryonic matter. |
|---|---|
| AbstractList | The aim of this work is to provide a general description of the corpuscular theory of gravity. After reviewing some of the major conceptual issues emerging from the semiclassical and field theoretic approaches to Einstein’s gravity, we present a synthetic overview of two novel (and extremely intertwined) perspectives on quantum mechanical effects in gravity: the horizon quantum mechanics (HQM) formalism and the classicalization scheme. After this preliminary discussion, we then proceed with implementing the latter to several different scenarios, namely self-gravitating systems, the early Universe, and galactic dynamics. Concerning the first scenario, we start by describing the generation of the Newtonian potential as the result of a coherent state of toy (scalar) gravitons. After that we employ this result to study some features of the gravitational collapse and to argue that black holes can be thought of a self-sustained quantum states, at the critical point, made of a large number of soft virtual gravitons. We then refine this simplified analysis by constructing an effective theory for the gravitational potential of a static spherical symmetric system up to the first post-Newtonian correction. Additionally, we employ the HQM formalism to study the causal structure emerging from the corpuscular scenario. Finally, we present a short discussion of corpuscular black holes in lower dimensional spaces. After laying down the basics of corpuscular black holes, we present a generalization of the aforementioned arguments to cosmology. Specifically, we first introduce a corpuscular interpretation of the de Sitter spacetime. Then we use it as the starting point for a corpuscular formulation of the inflationary scenario and to provide an alternative viewpoint on the dark components of the ΛCDM model. The key message of this work is that the corpuscular theory of gravity offers a way to unify most of the experimental observations (from astrophysical to galactic and cosmological scales) in a single framework, solely based on gravity and baryonic matter. The aim of this work is to provide a general description of the corpuscular theory of gravity. After reviewing some of the major conceptual issues emerging from the semiclassical and field theoretic approaches to Einstein’s gravity, we present a synthetic overview of two novel (and extremely intertwined) perspectives on quantum mechanical effects in gravity: the horizon quantum mechanics (HQM) formalism and the classicalization scheme. After this preliminary discussion, we then proceed with implementing the latter to several different scenarios, namely self-gravitating systems, the early Universe, and galactic dynamics. Concerning the first scenario, we start by describing the generation of the Newtonian potential as the result of a coherent state of toy (scalar) gravitons. After that we employ this result to study some features of the gravitational collapse and to argue that black holes can be thought of a self-sustained quantum states, at the critical point, made of a large number of soft virtual gravitons. We then refine this simplified analysis by constructing an effective theory for the gravitational potential of a static spherical symmetric system up to the first post-Newtonian correction. Additionally, we employ the HQM formalism to study the causal structure emerging from the corpuscular scenario. Finally, we present a short discussion of corpuscular black holes in lower dimensional spaces. After laying down the basics of corpuscular black holes, we present a generalization of the aforementioned arguments to cosmology. Specifically, we first introduce a corpuscular interpretation of the de Sitter spacetime. Then we use it as the starting point for a corpuscular formulation of the inflationary scenario and to provide an alternative viewpoint on the dark components of the Λ CDM model. The key message of this work is that the corpuscular theory of gravity offers a way to unify most of the experimental observations (from astrophysical to galactic and cosmological scales) in a single framework, solely based on gravity and baryonic matter. The aim of this work is to provide a general description of the corpuscular theory of gravity. After reviewing some of the major conceptual issues emerging from the semiclassical and field theoretic approaches to Einstein’s gravity, we present a synthetic overview of two novel (and extremely intertwined) perspectives on quantum mechanical effects in gravity: the horizon quantum mechanics (HQM) formalism and the classicalization scheme. After this preliminary discussion, we then proceed with implementing the latter to several different scenarios, namely self-gravitating systems, the early Universe, and galactic dynamics. Concerning the first scenario, we start by describing the generation of the Newtonian potential as the result of a coherent state of toy (scalar) gravitons. After that we employ this result to study some features of the gravitational collapse and to argue that black holes can be thought of a self-sustained quantum states, at the critical point, made of a large number of soft virtual gravitons. We then refine this simplified analysis by constructing an effective theory for the gravitational potential of a static spherical symmetric system up to the first post-Newtonian correction. Additionally, we employ the HQM formalism to study the causal structure emerging from the corpuscular scenario. Finally, we present a short discussion of corpuscular black holes in lower dimensional spaces. After laying down the basics of corpuscular black holes, we present a generalization of the aforementioned arguments to cosmology. Specifically, we first introduce a corpuscular interpretation of the de Sitter spacetime. Then we use it as the starting point for a corpuscular formulation of the inflationary scenario and to provide an alternative viewpoint on the dark components of the [Formula: see text]CDM model. The key message of this work is that the corpuscular theory of gravity offers a way to unify most of the experimental observations (from astrophysical to galactic and cosmological scales) in a single framework, solely based on gravity and baryonic matter. |
| Author | Giusti, Andrea |
| Author_xml | – sequence: 1 givenname: Andrea surname: Giusti fullname: Giusti, Andrea |
| BookMark | eNp9kE9LAzEQxYNUsK1-AG8Lel2dJNske5TiPyj0oJ6XZJpoyrqpSVbpt7dLxYMFT8Pw3m-G9yZk1IXOEnJO4YrSil0_AaO1UlLRmgMAhSMyprLmpailHJHxIJeDfkImKa0BOJVSjsnlsivymy0wxE2fsG91HPYQt0VwxWvUnz5vT8mx022yZz9zSl7ubp_nD-Vief84v1mUyBVAiWiMMI4zw9CZmZ4JYcXKCKmkcYAGbUVnWhupUSA4y5myBuxKIqsq5IxPycX-7iaGj96m3KxDH7vdy4YNuRRlku9ccu_CGFKK1jXos84-dDlq3zYUmqGS5qCSHUn_kJvo33Xc_svAnvkKsV0l9LbL3nn8RQ-Rb3Bzc6w |
| CitedBy_id | crossref_primary_10_1016_j_physletb_2021_136818 crossref_primary_10_1140_epjc_s10052_019_7410_3 crossref_primary_10_1088_2399_6528_ab923c crossref_primary_10_1103_PhysRevD_100_024029 crossref_primary_10_1088_1475_7516_2020_12_041 crossref_primary_10_1088_1475_7516_2020_01_022 crossref_primary_10_1142_S0219887819501834 crossref_primary_10_1007_s10714_019_2587_1 crossref_primary_10_1088_1475_7516_2020_08_024 crossref_primary_10_1103_PhysRevResearch_2_013187 crossref_primary_10_1007_JHEP04_2021_037 crossref_primary_10_1103_PhysRevD_101_124032 crossref_primary_10_1103_PhysRevD_103_064001 crossref_primary_10_1103_PhysRevD_100_084015 crossref_primary_10_1016_j_physletb_2022_136900 crossref_primary_10_1103_PhysRevD_100_024036 crossref_primary_10_1002_prop_202300136 crossref_primary_10_1007_JHEP02_2021_104 crossref_primary_10_1103_PhysRevD_101_124029 crossref_primary_10_3390_sym12081264 crossref_primary_10_1103_PhysRevD_106_084008 crossref_primary_10_1140_epjc_s10052_021_09980_2 crossref_primary_10_1103_PhysRevD_100_064017 crossref_primary_10_1088_1742_6596_1275_1_012004 crossref_primary_10_1103_PhysRevD_101_105002 crossref_primary_10_1103_PhysRevD_102_104058 crossref_primary_10_1088_1402_4896_ac9e80 crossref_primary_10_1016_j_physletb_2019_134915 crossref_primary_10_1103_PhysRevD_105_124054 crossref_primary_10_1103_PhysRevD_105_104006 crossref_primary_10_3390_sym12091396 crossref_primary_10_1140_epjc_s10052_023_11712_7 crossref_primary_10_1002_prop_202100131 crossref_primary_10_1140_epjc_s10052_020_7721_4 crossref_primary_10_3390_universe7120478 crossref_primary_10_1140_epjc_s10052_022_10570_z crossref_primary_10_1140_epjc_s10052_019_7397_9 crossref_primary_10_1007_JHEP10_2024_065 crossref_primary_10_1142_S0217732319501748 crossref_primary_10_1142_S0219887819501081 crossref_primary_10_3390_sym13020358 crossref_primary_10_1088_1475_7516_2019_06_005 crossref_primary_10_3389_fphy_2022_891977 crossref_primary_10_1103_PhysRevD_103_044026 crossref_primary_10_1140_epjp_s13360_021_01168_7 crossref_primary_10_1103_PhysRevD_105_104010 crossref_primary_10_1140_epjp_s13360_020_00831_9 crossref_primary_10_1103_PhysRevD_109_084042 crossref_primary_10_1140_epjc_s10052_024_12817_3 |
| Cites_doi | 10.1103/PhysRevD.68.084005 10.1073/pnas.15.3.168 10.1103/PhysRev.160.1113 10.5479/sil.52126.39088015628399 10.1016/j.nuclphysb.2015.02.004 10.1088/1475-7516/2015/09/002 10.1103/PhysRevD.92.125002 10.1007/JHEP08(2013)025 10.1088/1475-7516/2017/06/044 10.1007/BF00760418 10.1007/s10714-016-2026-5 10.1103/PhysRevD.90.084040 10.1103/PhysRevLett.14.57 10.1093/mnras/152.1.75 10.1093/mnras/168.2.399 10.1103/PhysRevLett.71.3743 10.1146/annurev.nucl.010909.083654 10.1103/PhysRevLett.49.1110 10.1146/annurev-astro-082708-101659 10.1140/epjc/s10052-017-4882-x 10.1103/PhysRevD.96.044010 10.1063/1.1724264 10.1007/JHEP05(2014)128 10.1016/0370-2693(85)91470-4 10.1103/PhysRevD.82.104035 10.1103/RevModPhys.84.671 10.1103/PhysRevLett.116.061102 10.1088/1361-6382/aa8535 10.1103/PhysRevLett.116.241103 10.1134/S1063772907030018 10.1155/2011/968283 10.1007/s10714-008-0661-1 10.1103/PhysRevD.94.104056 10.1103/PhysRevD.56.3258 10.1140/epjc/s10052-011-1794-z 10.1007/BF02345020 10.1103/PhysRevD.47.R5209 10.1142/S0218271816300068 10.1103/PhysRev.117.1595 10.1103/RevModPhys.82.451 10.1016/j.physletb.2013.03.025 10.1016/j.physrep.2011.09.003 10.1142/S0217732311037042 10.12942/lrr-2005-1 10.1103/PhysRevD.88.043502 10.1142/S0217732301003887 10.1086/300499 10.1086/305615 10.1103/PhysRevD.3.1818 10.1088/0067-0049/192/2/18 10.1140/epjc/s10052-014-2752-3 10.1103/PhysRev.55.364 10.1063/1.1666825 10.1140/epjc/s10052-015-3404-y 10.1007/JHEP11(2011)070 10.1103/PhysRevLett.11.237 10.1140/epjc/s10052-016-4233-3 10.1103/PhysRevD.13.198 10.1002/andp.201200109 10.1111/j.1365-2966.2012.20695.x 10.1086/377226 10.1103/PhysRevLett.26.331 10.1007/s10714-017-2198-7 10.1016/j.physletb.2015.05.053 10.1142/S0218271819500214 10.1088/1742-6596/942/1/012013 10.1103/PhysRev.162.1239 10.1016/j.physletb.2016.06.042 10.1103/PhysRevD.50.3874 10.1063/1.1664615 10.1140/epjc/s10052-013-2679-0 10.1103/PhysRevLett.34.905 10.1086/161130 10.1016/j.physletb.2014.03.037 10.1103/PhysRev.174.1559 10.1088/0264-9381/15/11/011 10.1103/PhysRevD.23.287 10.1209/0295-5075/121/60004 10.1016/0550-3213(86)90193-8 10.1002/prop.201300001 10.1002/andp.19053221004 10.1007/BF01645742 10.1007/s10714-009-0912-9 10.1088/1367-2630/11/10/105008 10.1002/andp.19163540702 10.1103/PhysRevD.44.2409 10.1086/312287 10.1093/mnras/278.1.27 10.1103/PhysRev.116.1322 10.1103/PhysRev.119.1743 10.1007/BF00759198 10.1103/PhysRevD.72.084013 10.1023/A:1026645510351 10.1016/j.physletb.2017.11.058 10.1103/PhysRevD.97.044047 10.1103/PhysRevLett.25.1596 10.1016/0370-2693(82)91219-9 10.1103/PhysRevD.81.104019 10.1007/BF01351864 10.1016/j.physletb.2011.07.052 10.1103/PhysRevLett.72.2996 10.1103/PhysRevD.97.126005 10.1088/0264-9381/20/18/305 10.1016/j.physrep.2015.02.001 10.21468/SciPostPhys.2.3.016 10.1007/BF02757029 10.1103/PhysRevD.59.086004 10.1051/0004-6361/201525830 10.1063/1.1664769 10.1007/BF01877517 10.1086/307643 10.1103/PhysRevLett.96.031103 10.1103/PhysRevD.49.1912 10.1098/rspa.1970.0021 10.1103/PhysRevLett.57.397 10.1016/j.physletb.2016.10.058 10.1139/cjp-2013-0712 10.1142/S0218271811018925 10.1063/1.5021776 10.1086/143864 10.1086/158003 10.1140/epjc/s10052-013-2685-2 10.1103/PhysRev.110.965 10.1103/PhysRevD.79.124007 10.1063/1.1665613 10.1103/PhysRevD.88.124041 10.1111/j.1745-3933.2011.01074.x 10.1016/0370-2693(80)90670-X 10.1007/BF01645859 10.1007/JHEP08(2011)108 10.12942/lrr-2001-6 10.1016/0550-3213(90)90265-F 10.1103/PhysRevD.49.831 10.1051/0004-6361/201525898 10.1103/PhysRevD.91.083531 10.1103/PhysRev.164.1776 10.1088/0264-9381/22/11/019 10.1088/1742-6596/942/1/012012 10.1139/cjp-2014-0211 10.1073/pnas.18.3.213 10.3390/universe3020048 10.1088/0034-4885/79/10/106901 10.1103/PhysRevD.75.067302 10.1103/PhysRevD.28.2929 10.1088/1126-6708/1998/02/009 10.1086/508162 10.1140/epjc/s10052-018-5715-2 10.1103/PhysRevD.65.043508 10.1016/j.physletb.2012.08.029 10.1088/1475-7516/2014/01/023 10.12942/lrr-2014-7 10.1142/S0217732300001213 10.1103/PhysRevD.23.347 10.1016/j.dark.2016.10.003 10.1088/0264-9381/10/8/017 10.1103/PhysRevD.65.065016 10.1103/PhysRev.162.1195 10.1016/0370-1573(92)90044-Z 10.12942/lrr-2009-4 10.1088/0264-9381/5/4/010 10.1103/PhysRevD.97.024041 10.1103/PhysRevD.7.2333 10.1038/nature09509 10.1103/PhysRev.136.B571 10.1103/PhysRevLett.71.1291 10.1086/307221 10.1103/PhysRevD.56.R535 10.1103/PhysRevD.91.124069 10.1086/153853 10.1016/0370-1573(74)90023-4 10.3390/e17106893 10.12942/lrr-2010-3 10.1103/PhysRev.55.374 10.1142/S0218271800000517 10.1016/j.physletb.2013.01.020 10.1007/BF01609863 10.1088/0264-9381/9/4/006 10.1007/JHEP05(2015)096 10.1103/PhysRevD.14.2460 10.1103/PhysRevD.88.044009 10.1016/S0370-2693(99)00167-7 10.1051/0004-6361/201321591 |
| ContentType | Journal Article |
| Copyright | 2019, World Scientific Publishing Company 2019. World Scientific Publishing Company |
| Copyright_xml | – notice: 2019, World Scientific Publishing Company – notice: 2019. World Scientific Publishing Company |
| DBID | AAYXX CITATION |
| DOI | 10.1142/S0219887819300010 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Applied Sciences |
| EISSN | 1793-6977 |
| ExternalDocumentID | 10_1142_S0219887819300010 S0219887819300010 |
| GroupedDBID | 0R~ 4.4 5GY ADSJI AENEX ALMA_UNASSIGNED_HOLDINGS CAG COF CS3 DU5 EBS EJD ESX HZ~ J9A O9- P2P P71 RWJ AAYXX AMVHM CITATION |
| ID | FETCH-LOGICAL-c3800-ccbb6bf32b2cfb5a566e6db6787bf0cbce415aab7ac6c0fe328eb0ed7c244c323 |
| ISSN | 0219-8878 |
| IngestDate | Sun Jun 29 16:11:48 EDT 2025 Tue Jul 01 00:25:13 EDT 2025 Thu Apr 24 23:02:42 EDT 2025 Fri Aug 23 08:19:46 EDT 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Keywords | horizon quantum mechanics corpuscular gravity black holes Modified theories of gravity inflation dark matter classicalization |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c3800-ccbb6bf32b2cfb5a566e6db6787bf0cbce415aab7ac6c0fe328eb0ed7c244c323 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| PQID | 2193081273 |
| PQPubID | 2049917 |
| ParticipantIDs | crossref_citationtrail_10_1142_S0219887819300010 worldscientific_primary_S0219887819300010 proquest_journals_2193081273 crossref_primary_10_1142_S0219887819300010 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 20190300 2019-03-00 20190301 |
| PublicationDateYYYYMMDD | 2019-03-01 |
| PublicationDate_xml | – month: 03 year: 2019 text: 20190300 |
| PublicationDecade | 2010 |
| PublicationPlace | Singapore |
| PublicationPlace_xml | – name: Singapore |
| PublicationTitle | International journal of geometric methods in modern physics |
| PublicationYear | 2019 |
| Publisher | World Scientific Publishing Company World Scientific Publishing Co. Pte., Ltd |
| Publisher_xml | – name: World Scientific Publishing Company – name: World Scientific Publishing Co. Pte., Ltd |
| References | S0219887819300010BIB121 S0219887819300010BIB001 S0219887819300010BIB122 S0219887819300010BIB002 S0219887819300010BIB123 S0219887819300010BIB124 S0219887819300010BIB004 S0219887819300010BIB125 S0219887819300010BIB005 S0219887819300010BIB006 S0219887819300010BIB127 Thorne K. S. (S0219887819300010BIB109) 1972 S0219887819300010BIB128 S0219887819300010BIB129 S0219887819300010BIB108 S0219887819300010BIB110 S0219887819300010BIB111 S0219887819300010BIB112 S0219887819300010BIB113 S0219887819300010BIB114 S0219887819300010BIB115 S0219887819300010BIB116 S0219887819300010BIB118 S0219887819300010BIB100 S0219887819300010BIB101 S0219887819300010BIB103 S0219887819300010BIB105 S0219887819300010BIB106 S0219887819300010BIB107 S0219887819300010BIB207 S0219887819300010BIB208 S0219887819300010BIB209 Schwarzschild K. (S0219887819300010BIB007) 1916; 1916 S0219887819300010BIB210 S0219887819300010BIB211 Schwarzschild K. (S0219887819300010BIB008) 1916; 1916 S0219887819300010BIB212 S0219887819300010BIB213 S0219887819300010BIB214 S0219887819300010BIB215 S0219887819300010BIB216 Dvali G. (S0219887819300010BIB104) 2017; 53 S0219887819300010BIB200 S0219887819300010BIB201 S0219887819300010BIB202 S0219887819300010BIB203 S0219887819300010BIB204 S0219887819300010BIB205 S0219887819300010BIB206 Gel’fand I. (S0219887819300010BIB119) 1947; 11 Einstein A. (S0219887819300010BIB012) 1917; 1917 S0219887819300010BIB090 S0219887819300010BIB091 S0219887819300010BIB092 S0219887819300010BIB093 S0219887819300010BIB094 S0219887819300010BIB095 S0219887819300010BIB096 S0219887819300010BIB097 S0219887819300010BIB098 S0219887819300010BIB080 S0219887819300010BIB081 S0219887819300010BIB082 S0219887819300010BIB083 S0219887819300010BIB085 S0219887819300010BIB086 S0219887819300010BIB087 S0219887819300010BIB088 S0219887819300010BIB089 S0219887819300010BIB190 S0219887819300010BIB191 S0219887819300010BIB071 S0219887819300010BIB192 S0219887819300010BIB072 S0219887819300010BIB193 S0219887819300010BIB073 S0219887819300010BIB194 S0219887819300010BIB074 S0219887819300010BIB195 S0219887819300010BIB075 S0219887819300010BIB196 S0219887819300010BIB076 S0219887819300010BIB197 S0219887819300010BIB077 S0219887819300010BIB198 S0219887819300010BIB078 S0219887819300010BIB079 Turner M. S. (S0219887819300010BIB015) 1999; 165 S0219887819300010BIB180 S0219887819300010BIB060 S0219887819300010BIB181 S0219887819300010BIB061 S0219887819300010BIB183 S0219887819300010BIB063 S0219887819300010BIB184 S0219887819300010BIB064 S0219887819300010BIB185 S0219887819300010BIB065 S0219887819300010BIB186 S0219887819300010BIB187 Veltman M. J. G. (S0219887819300010BIB062) 1975; 7507281 S0219887819300010BIB067 S0219887819300010BIB188 S0219887819300010BIB068 S0219887819300010BIB189 Bogolyubov N. N. (S0219887819300010BIB117) 1947; 11 t Hooft G. (S0219887819300010BIB054) 1974; 20 Begeman K. G. (S0219887819300010BIB016) 1989; 223 S0219887819300010BIB170 S0219887819300010BIB050 S0219887819300010BIB171 S0219887819300010BIB051 S0219887819300010BIB172 S0219887819300010BIB052 S0219887819300010BIB173 S0219887819300010BIB053 S0219887819300010BIB174 S0219887819300010BIB175 S0219887819300010BIB055 S0219887819300010BIB176 S0219887819300010BIB056 S0219887819300010BIB177 S0219887819300010BIB057 S0219887819300010BIB178 S0219887819300010BIB058 S0219887819300010BIB179 Maggiore M. (S0219887819300010BIB099) 2005; 12 Starobinsky A. A. (S0219887819300010BIB024) 1979; 30 S0219887819300010BIB040 S0219887819300010BIB161 S0219887819300010BIB041 S0219887819300010BIB162 S0219887819300010BIB043 S0219887819300010BIB044 S0219887819300010BIB165 S0219887819300010BIB045 S0219887819300010BIB166 S0219887819300010BIB046 S0219887819300010BIB167 S0219887819300010BIB047 S0219887819300010BIB048 S0219887819300010BIB169 S0219887819300010BIB049 Donoghue J. F. (S0219887819300010BIB069) 2009; 09 S0219887819300010BIB150 S0219887819300010BIB030 S0219887819300010BIB151 S0219887819300010BIB031 S0219887819300010BIB152 S0219887819300010BIB153 Tully R. B. (S0219887819300010BIB199) 1977; 54 S0219887819300010BIB034 S0219887819300010BIB155 S0219887819300010BIB035 Diaz V. A. (S0219887819300010BIB154) 2018; 59 S0219887819300010BIB156 S0219887819300010BIB036 S0219887819300010BIB037 S0219887819300010BIB158 S0219887819300010BIB038 S0219887819300010BIB159 S0219887819300010BIB039 Carroll S. M. (S0219887819300010BIB163) 2004 S0219887819300010BIB140 S0219887819300010BIB020 S0219887819300010BIB141 S0219887819300010BIB021 S0219887819300010BIB142 S0219887819300010BIB022 S0219887819300010BIB143 S0219887819300010BIB023 S0219887819300010BIB144 S0219887819300010BIB145 S0219887819300010BIB025 S0219887819300010BIB146 Capozziello S. (S0219887819300010BIB168) 2010; 3 S0219887819300010BIB026 S0219887819300010BIB147 S0219887819300010BIB027 S0219887819300010BIB148 S0219887819300010BIB028 S0219887819300010BIB149 S0219887819300010BIB029 S0219887819300010BIB009 Minkowski H. (S0219887819300010BIB003) 1908 Abramowitz M. (S0219887819300010BIB126) 1964 S0219887819300010BIB130 S0219887819300010BIB010 S0219887819300010BIB131 S0219887819300010BIB011 S0219887819300010BIB132 S0219887819300010BIB133 S0219887819300010BIB013 S0219887819300010BIB134 S0219887819300010BIB014 S0219887819300010BIB135 S0219887819300010BIB137 S0219887819300010BIB017 S0219887819300010BIB138 S0219887819300010BIB018 S0219887819300010BIB019 |
| References_xml | – ident: S0219887819300010BIB068 doi: 10.1103/PhysRevD.68.084005 – ident: S0219887819300010BIB014 doi: 10.1073/pnas.15.3.168 – ident: S0219887819300010BIB063 doi: 10.1103/PhysRev.160.1113 – ident: S0219887819300010BIB004 doi: 10.5479/sil.52126.39088015628399 – ident: S0219887819300010BIB106 doi: 10.1016/j.nuclphysb.2015.02.004 – ident: S0219887819300010BIB181 doi: 10.1088/1475-7516/2015/09/002 – ident: S0219887819300010BIB116 doi: 10.1103/PhysRevD.92.125002 – ident: S0219887819300010BIB132 doi: 10.1007/JHEP08(2013)025 – ident: S0219887819300010BIB209 doi: 10.1088/1475-7516/2017/06/044 – ident: S0219887819300010BIB149 doi: 10.1007/BF00760418 – ident: S0219887819300010BIB146 doi: 10.1007/s10714-016-2026-5 – ident: S0219887819300010BIB123 doi: 10.1103/PhysRevD.90.084040 – ident: S0219887819300010BIB086 doi: 10.1103/PhysRevLett.14.57 – ident: S0219887819300010BIB184 doi: 10.1093/mnras/152.1.75 – ident: S0219887819300010BIB185 doi: 10.1093/mnras/168.2.399 – ident: S0219887819300010BIB048 doi: 10.1103/PhysRevLett.71.3743 – ident: S0219887819300010BIB190 doi: 10.1146/annurev.nucl.010909.083654 – ident: S0219887819300010BIB027 doi: 10.1103/PhysRevLett.49.1110 – ident: S0219887819300010BIB183 doi: 10.1146/annurev-astro-082708-101659 – volume: 30 start-page: 682 year: 1979 ident: S0219887819300010BIB024 publication-title: JETP Lett. – ident: S0219887819300010BIB079 doi: 10.1140/epjc/s10052-017-4882-x – ident: S0219887819300010BIB134 doi: 10.1103/PhysRevD.96.044010 – ident: S0219887819300010BIB178 doi: 10.1063/1.1724264 – ident: S0219887819300010BIB133 doi: 10.1007/JHEP05(2014)128 – ident: S0219887819300010BIB055 doi: 10.1016/0370-2693(85)91470-4 – ident: S0219887819300010BIB141 doi: 10.1103/PhysRevD.82.104035 – ident: S0219887819300010BIB215 doi: 10.1103/RevModPhys.84.671 – ident: S0219887819300010BIB005 doi: 10.1103/PhysRevLett.116.061102 – ident: S0219887819300010BIB153 doi: 10.1088/1361-6382/aa8535 – ident: S0219887819300010BIB006 doi: 10.1103/PhysRevLett.116.241103 – volume: 223 start-page: 47 year: 1989 ident: S0219887819300010BIB016 publication-title: Astron. Astrophys. – volume: 11 start-page: 23 year: 1947 ident: S0219887819300010BIB117 publication-title: J. Phys. (USSR) – ident: S0219887819300010BIB212 doi: 10.1134/S1063772907030018 – ident: S0219887819300010BIB020 doi: 10.1155/2011/968283 – ident: S0219887819300010BIB043 doi: 10.1007/s10714-008-0661-1 – ident: S0219887819300010BIB144 doi: 10.1103/PhysRevD.94.104056 – ident: S0219887819300010BIB028 doi: 10.1103/PhysRevD.56.3258 – ident: S0219887819300010BIB205 doi: 10.1140/epjc/s10052-011-1794-z – ident: S0219887819300010BIB011 doi: 10.1007/BF02345020 – ident: S0219887819300010BIB031 doi: 10.1103/PhysRevD.47.R5209 – ident: S0219887819300010BIB077 doi: 10.1142/S0218271816300068 – ident: S0219887819300010BIB129 doi: 10.1103/PhysRev.117.1595 – ident: S0219887819300010BIB167 doi: 10.1103/RevModPhys.82.451 – ident: S0219887819300010BIB142 doi: 10.1016/j.physletb.2013.03.025 – ident: S0219887819300010BIB171 doi: 10.1016/j.physrep.2011.09.003 – ident: S0219887819300010BIB206 doi: 10.1142/S0217732311037042 – volume: 1916 start-page: 424 year: 1916 ident: S0219887819300010BIB008 publication-title: Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) – volume: 1917 start-page: 142 year: 1917 ident: S0219887819300010BIB012 publication-title: Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) – ident: S0219887819300010BIB150 doi: 10.12942/lrr-2005-1 – ident: S0219887819300010BIB192 doi: 10.1103/PhysRevD.88.043502 – ident: S0219887819300010BIB204 doi: 10.1142/S0217732301003887 – ident: S0219887819300010BIB176 doi: 10.1086/300499 – volume: 11 start-page: 411 issue: 5 year: 1947 ident: S0219887819300010BIB119 publication-title: Izv. Ross. Akad. Nauk, Ser. Mat. – ident: S0219887819300010BIB018 doi: 10.1086/305615 – ident: S0219887819300010BIB100 doi: 10.1103/PhysRevD.3.1818 – ident: S0219887819300010BIB211 doi: 10.1088/0067-0049/192/2/18 – ident: S0219887819300010BIB114 doi: 10.1140/epjc/s10052-014-2752-3 – ident: S0219887819300010BIB130 doi: 10.1103/PhysRev.55.364 – volume: 54 start-page: 661 year: 1977 ident: S0219887819300010BIB199 publication-title: Astron. Astrophys. – ident: S0219887819300010BIB085 doi: 10.1063/1.1666825 – ident: S0219887819300010BIB073 doi: 10.1140/epjc/s10052-015-3404-y – ident: S0219887819300010BIB105 doi: 10.1007/JHEP11(2011)070 – ident: S0219887819300010BIB093 doi: 10.1103/PhysRevLett.11.237 – ident: S0219887819300010BIB118 doi: 10.1140/epjc/s10052-016-4233-3 – volume: 20 start-page: 69 year: 1974 ident: S0219887819300010BIB054 publication-title: Ann. Inst. H. Poincaré Phys. Theor. A – ident: S0219887819300010BIB047 doi: 10.1103/PhysRevD.13.198 – ident: S0219887819300010BIB207 doi: 10.1002/andp.201200109 – volume: 3 start-page: 49 year: 2010 ident: S0219887819300010BIB168 publication-title: Open Astron. J. – ident: S0219887819300010BIB196 doi: 10.1111/j.1365-2966.2012.20695.x – ident: S0219887819300010BIB210 doi: 10.1086/377226 – ident: S0219887819300010BIB096 doi: 10.1103/PhysRevLett.26.331 – ident: S0219887819300010BIB078 doi: 10.1007/s10714-017-2198-7 – ident: S0219887819300010BIB075 doi: 10.1016/j.physletb.2015.05.053 – ident: S0219887819300010BIB083 doi: 10.1142/S0218271819500214 – ident: S0219887819300010BIB080 doi: 10.1088/1742-6596/942/1/012013 – ident: S0219887819300010BIB065 doi: 10.1103/PhysRev.162.1239 – ident: S0219887819300010BIB076 doi: 10.1016/j.physletb.2016.06.042 – ident: S0219887819300010BIB057 doi: 10.1103/PhysRevD.50.3874 – ident: S0219887819300010BIB089 doi: 10.1063/1.1664615 – ident: S0219887819300010BIB122 doi: 10.1140/epjc/s10052-013-2679-0 – ident: S0219887819300010BIB097 doi: 10.1103/PhysRevLett.34.905 – ident: S0219887819300010BIB200 doi: 10.1086/161130 – ident: S0219887819300010BIB072 doi: 10.1016/j.physletb.2014.03.037 – ident: S0219887819300010BIB095 doi: 10.1103/PhysRev.174.1559 – ident: S0219887819300010BIB111 doi: 10.1088/0264-9381/15/11/011 – ident: S0219887819300010BIB052 doi: 10.1103/PhysRevD.23.287 – volume: 09 start-page: 001 year: 2009 ident: S0219887819300010BIB069 publication-title: PoS – ident: S0219887819300010BIB082 doi: 10.1209/0295-5075/121/60004 – ident: S0219887819300010BIB056 doi: 10.1016/0550-3213(86)90193-8 – ident: S0219887819300010BIB107 doi: 10.1002/prop.201300001 – ident: S0219887819300010BIB002 doi: 10.1002/andp.19053221004 – ident: S0219887819300010BIB029 doi: 10.1007/BF01645742 – ident: S0219887819300010BIB061 doi: 10.1007/s10714-009-0912-9 – ident: S0219887819300010BIB188 doi: 10.1088/1367-2630/11/10/105008 – ident: S0219887819300010BIB001 doi: 10.1002/andp.19163540702 – ident: S0219887819300010BIB110 doi: 10.1103/PhysRevD.44.2409 – ident: S0219887819300010BIB194 doi: 10.1086/312287 – ident: S0219887819300010BIB198 doi: 10.1093/mnras/278.1.27 – ident: S0219887819300010BIB128 doi: 10.1103/PhysRev.116.1322 – ident: S0219887819300010BIB010 doi: 10.1103/PhysRev.119.1743 – ident: S0219887819300010BIB060 doi: 10.1007/BF00759198 – ident: S0219887819300010BIB046 doi: 10.1103/PhysRevD.72.084013 – ident: S0219887819300010BIB165 doi: 10.1023/A:1026645510351 – ident: S0219887819300010BIB161 doi: 10.1016/j.physletb.2017.11.058 – ident: S0219887819300010BIB162 doi: 10.1103/PhysRevD.97.044047 – ident: S0219887819300010BIB034 doi: 10.1103/PhysRevLett.25.1596 – ident: S0219887819300010BIB022 doi: 10.1016/0370-2693(82)91219-9 – ident: S0219887819300010BIB187 doi: 10.1103/PhysRevD.81.104019 – ident: S0219887819300010BIB098 doi: 10.1007/BF01351864 – volume: 12 volume-title: A Modern Introduction to Quantum Field Theory year: 2005 ident: S0219887819300010BIB099 – ident: S0219887819300010BIB151 doi: 10.1016/j.physletb.2011.07.052 – volume-title: Handbook of Mathematical Functions: With Formulas, Graphs, and Mathematical Tables year: 1964 ident: S0219887819300010BIB126 – start-page: 53 year: 1908 ident: S0219887819300010BIB003 publication-title: Gott. Nach. – ident: S0219887819300010BIB058 doi: 10.1103/PhysRevLett.72.2996 – ident: S0219887819300010BIB180 doi: 10.1103/PhysRevD.97.126005 – ident: S0219887819300010BIB156 doi: 10.1088/0264-9381/20/18/305 – ident: S0219887819300010BIB041 doi: 10.1016/j.physrep.2015.02.001 – ident: S0219887819300010BIB202 doi: 10.21468/SciPostPhys.2.3.016 – ident: S0219887819300010BIB037 doi: 10.1007/BF02757029 – ident: S0219887819300010BIB189 doi: 10.1103/PhysRevD.59.086004 – ident: S0219887819300010BIB214 doi: 10.1051/0004-6361/201525830 – ident: S0219887819300010BIB094 doi: 10.1063/1.1664769 – ident: S0219887819300010BIB030 doi: 10.1007/BF01877517 – ident: S0219887819300010BIB193 doi: 10.1086/307643 – ident: S0219887819300010BIB147 doi: 10.1103/PhysRevLett.96.031103 – ident: S0219887819300010BIB053 doi: 10.1103/PhysRevD.49.1912 – ident: S0219887819300010BIB087 doi: 10.1098/rspa.1970.0021 – ident: S0219887819300010BIB035 doi: 10.1103/PhysRevLett.57.397 – ident: S0219887819300010BIB127 doi: 10.1016/j.physletb.2016.10.058 – ident: S0219887819300010BIB121 doi: 10.1139/cjp-2013-0712 – ident: S0219887819300010BIB173 doi: 10.1142/S0218271811018925 – volume: 1916 start-page: 189 year: 1916 ident: S0219887819300010BIB007 publication-title: Sitzungsber. Preuss. Akad. Wiss. Berlin (Math. Phys.) – volume: 59 start-page: 033509 issue: 3 year: 2018 ident: S0219887819300010BIB154 publication-title: J. Math. Phys. doi: 10.1063/1.5021776 – ident: S0219887819300010BIB017 doi: 10.1086/143864 – ident: S0219887819300010BIB197 doi: 10.1086/158003 – ident: S0219887819300010BIB071 doi: 10.1140/epjc/s10052-013-2685-2 – ident: S0219887819300010BIB009 doi: 10.1103/PhysRev.110.965 – ident: S0219887819300010BIB169 doi: 10.1103/PhysRevD.79.124007 – ident: S0219887819300010BIB067 doi: 10.1063/1.1665613 – ident: S0219887819300010BIB115 doi: 10.1103/PhysRevD.88.124041 – ident: S0219887819300010BIB195 doi: 10.1111/j.1745-3933.2011.01074.x – ident: S0219887819300010BIB023 doi: 10.1016/0370-2693(80)90670-X – ident: S0219887819300010BIB039 doi: 10.1007/BF01645859 – ident: S0219887819300010BIB103 doi: 10.1007/JHEP08(2011)108 – ident: S0219887819300010BIB036 doi: 10.12942/lrr-2001-6 – ident: S0219887819300010BIB148 doi: 10.1016/0550-3213(90)90265-F – ident: S0219887819300010BIB090 doi: 10.1103/PhysRevD.49.831 – ident: S0219887819300010BIB177 doi: 10.1051/0004-6361/201525898 – ident: S0219887819300010BIB172 doi: 10.1103/PhysRevD.91.083531 – ident: S0219887819300010BIB038 doi: 10.1103/PhysRev.164.1776 – ident: S0219887819300010BIB091 doi: 10.1088/0264-9381/22/11/019 – ident: S0219887819300010BIB135 doi: 10.1088/1742-6596/942/1/012012 – ident: S0219887819300010BIB201 doi: 10.1139/cjp-2014-0211 – ident: S0219887819300010BIB013 doi: 10.1073/pnas.18.3.213 – ident: S0219887819300010BIB145 doi: 10.3390/universe3020048 – ident: S0219887819300010BIB174 doi: 10.1088/0034-4885/79/10/106901 – ident: S0219887819300010BIB166 doi: 10.1103/PhysRevD.75.067302 – volume: 53 start-page: 189 year: 2017 ident: S0219887819300010BIB104 publication-title: Subnucl. Ser. – ident: S0219887819300010BIB049 doi: 10.1103/PhysRevD.28.2929 – ident: S0219887819300010BIB050 doi: 10.1088/1126-6708/1998/02/009 – ident: S0219887819300010BIB019 doi: 10.1086/508162 – ident: S0219887819300010BIB081 doi: 10.1140/epjc/s10052-018-5715-2 – ident: S0219887819300010BIB113 doi: 10.1103/PhysRevD.65.043508 – ident: S0219887819300010BIB152 doi: 10.1016/j.physletb.2012.08.029 – ident: S0219887819300010BIB158 doi: 10.1088/1475-7516/2014/01/023 – ident: S0219887819300010BIB216 doi: 10.12942/lrr-2014-7 – ident: S0219887819300010BIB203 doi: 10.1142/S0217732300001213 – ident: S0219887819300010BIB021 doi: 10.1103/PhysRevD.23.347 – volume-title: Spacetime and Geometry: An Introduction to General Relativity year: 2004 ident: S0219887819300010BIB163 – ident: S0219887819300010BIB208 doi: 10.1016/j.dark.2016.10.003 – ident: S0219887819300010BIB138 doi: 10.1088/0264-9381/10/8/017 – ident: S0219887819300010BIB112 doi: 10.1103/PhysRevD.65.065016 – ident: S0219887819300010BIB064 doi: 10.1103/PhysRev.162.1195 – ident: S0219887819300010BIB025 doi: 10.1016/0370-1573(92)90044-Z – volume: 165 start-page: 431 year: 1999 ident: S0219887819300010BIB015 publication-title: ASP Conf. Ser. – volume-title: Magic Without Magic: John Archibald Wheeler, A Collection of Essays in Honor of his Sixtieth Birthday year: 1972 ident: S0219887819300010BIB109 – ident: S0219887819300010BIB092 doi: 10.12942/lrr-2009-4 – ident: S0219887819300010BIB137 doi: 10.1088/0264-9381/5/4/010 – ident: S0219887819300010BIB159 doi: 10.1103/PhysRevD.97.024041 – ident: S0219887819300010BIB040 doi: 10.1103/PhysRevD.7.2333 – ident: S0219887819300010BIB191 doi: 10.1038/nature09509 – ident: S0219887819300010BIB088 doi: 10.1103/PhysRev.136.B571 – ident: S0219887819300010BIB051 doi: 10.1103/PhysRevLett.71.1291 – ident: S0219887819300010BIB175 doi: 10.1086/307221 – volume: 7507281 start-page: 265 year: 1975 ident: S0219887819300010BIB062 publication-title: Conf. Proc. C – ident: S0219887819300010BIB026 doi: 10.1103/PhysRevD.56.R535 – ident: S0219887819300010BIB124 doi: 10.1103/PhysRevD.91.124069 – ident: S0219887819300010BIB186 doi: 10.1086/153853 – ident: S0219887819300010BIB101 doi: 10.1016/0370-1573(74)90023-4 – ident: S0219887819300010BIB125 doi: 10.3390/e17106893 – ident: S0219887819300010BIB170 doi: 10.12942/lrr-2010-3 – ident: S0219887819300010BIB131 doi: 10.1103/PhysRev.55.374 – ident: S0219887819300010BIB140 doi: 10.1142/S0218271800000517 – ident: S0219887819300010BIB108 doi: 10.1016/j.physletb.2013.01.020 – ident: S0219887819300010BIB044 doi: 10.1007/BF01609863 – ident: S0219887819300010BIB179 doi: 10.1088/0264-9381/9/4/006 – ident: S0219887819300010BIB074 doi: 10.1007/JHEP05(2015)096 – ident: S0219887819300010BIB045 doi: 10.1103/PhysRevD.14.2460 – ident: S0219887819300010BIB143 doi: 10.1103/PhysRevD.88.044009 – ident: S0219887819300010BIB155 doi: 10.1016/S0370-2693(99)00167-7 – ident: S0219887819300010BIB213 doi: 10.1051/0004-6361/201321591 |
| SSID | ssj0031777 |
| Score | 2.4546154 |
| SecondaryResourceType | review_article |
| Snippet | The aim of this work is to provide a general description of the corpuscular theory of gravity. After reviewing some of the major conceptual issues emerging... |
| SourceID | proquest crossref worldscientific |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 1930001 |
| SubjectTerms | Black holes Cosmology Critical point Formalism Gravitation theory Gravitational collapse Gravitons Quantum mechanics Universe |
| Title | On the corpuscular theory of gravity |
| URI | http://www.worldscientific.com/doi/abs/10.1142/S0219887819300010 https://www.proquest.com/docview/2193081273 |
| Volume | 16 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: EBSCOhost Mathematics Source - HOST customDbUrl: eissn: 1793-6977 dateEnd: 20241105 omitProxy: false ssIdentifier: ssj0031777 issn: 0219-8878 databaseCode: AMVHM dateStart: 20050201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1JT-swELagXN6F7YEom3JASIAMaZzY7REhoEKUvkOLeots10ZI0BYaLvx6xkuWUoQeXKIoTSfVzHTyeRZ_CB3wOGkKzhqYy2GCY8Yp5gAscMiYkgCfVULNoHDnjrb78c0gGZREl3a6JBOn8v3LuZLfWBWugV3NlOwPLFsIhQtwDvaFI1gYjv9l467rUYQF5OTNN5TawURbNTfEQo_ZTNV2Nv1X2TTiQY2fDbWW9IzStkn22dGkudxHAb2vHw3_V9ELyatpAzOpRKppA9eqY-OH7UmqZr0uxqcn_zJlo1PZW2QiEoQ3DFHJBUzlIib8wTFteS6WPKTSiuuQryN1HNlaMYg0EgFHGrgZlq-lvBR_102v-re3ae9y0DucvGBDGGYK6549ZREtRRDQwxpaOu_ctzv5axhwkaXdLH6zL2nDc8_mnjoLSsqVxrLdtnZaaKkCPXqraNmvGYJz5wBraEGN1tGKXz8EPjpP_6KD7igA-wcVfwicPwRjHXh_2ED9q8veRRt7FgwsCaB5LKUQVGgSiUhqkXDA34oOBYAMJnQohVSAwTgXjEsqQ61I1FQiVEMmAblJEpFNVBuNR2oLBS0KYLCRNJua6lhSzRkhoCeRNKhuDRthHYW5GlLpt4g3TCVPqRtfj9I5zdXRcfGVidsf5bubd3Pdpt7Hp2lkPgWYyUgdHX3SdyFyTtT296J20J_S6XdRLXt9U3uAHjOx7_3kAxZVbf0 |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=On+the+corpuscular+theory+of+gravity&rft.jtitle=International+journal+of+geometric+methods+in+modern+physics&rft.au=Giusti%2C+Andrea&rft.date=2019-03-01&rft.pub=World+Scientific+Publishing+Co.+Pte.%2C+Ltd&rft.issn=0219-8878&rft.eissn=1793-6977&rft.volume=16&rft.issue=3&rft_id=info:doi/10.1142%2FS0219887819300010&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0219-8878&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0219-8878&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0219-8878&client=summon |