Three dimensional magnetorotational core-collapse supernova explosions of a 39 solar mass progenitor star

ABSTRACT We perform three-dimensional simulations of magnetorotational supernovae using a $39\, {\rm M}_{\odot }$ progenitor star with two different initial magnetic field strengths of 1010  and 1012 G in the core. Both models rapidly undergo shock revival, and their explosion energies asymptote wit...

Full description

Saved in:
Bibliographic Details
Published inMonthly notices of the Royal Astronomical Society Vol. 522; no. 4; pp. 6070 - 6086
Main Authors Powell, Jade, Müller, Bernhard, Aguilera-Dena, David R, Langer, Norbert
Format Journal Article
LanguageEnglish
Published Oxford University Press 11.05.2023
Subjects
Online AccessGet full text
ISSN0035-8711
1365-2966
DOI10.1093/mnras/stad1292

Cover

Abstract ABSTRACT We perform three-dimensional simulations of magnetorotational supernovae using a $39\, {\rm M}_{\odot }$ progenitor star with two different initial magnetic field strengths of 1010  and 1012 G in the core. Both models rapidly undergo shock revival, and their explosion energies asymptote within a few hundred milliseconds to values of ≳2 × 1051 erg after conservatively correcting for the binding energy of the envelope. Magnetically collimated, non-relativistic jets form in both models, though the jets are subject to non-axisymmetric instabilities. The jets do not appear crucial for driving the explosion, as they only emerge once the shock has already expanded considerably. Our simulations predict moderate neutron star kicks of about 150 km s−1, no spin-kick alignment, and rapid early spin-down that would result in birth periods of about 20 ms, too slow to power an energetic gamma-ray burst jet. More than $0.2\, {\rm M}_\odot$ of iron-group material is ejected, but we estimate that the mass of ejected 56Ni will be considerably smaller as the bulk of this material is neutron-rich. Explosive burning does not contribute appreciable amounts of 56Ni because the burned material originates from the slightly neutron-rich silicon shell. The iron-group ejecta also showed no pronounced bipolar geometry by the end of the simulations. The models thus do not immediately fit the characteristics of observed hypernovae, but may be representative of other transients with moderately high explosion energies. The gravitational-wave emission reaches high frequencies of up to 2000 Hz and amplitudes of over 100 cm. The gravitational-wave emission is detectable out to distances of ∼4 Mpc in the planned Cosmic Explorer detector.
AbstractList We perform three-dimensional simulations of magnetorotational supernovae using a $39\, {\rm M}_{\odot }$ progenitor star with two different initial magnetic field strengths of 1010  and 1012 G in the core. Both models rapidly undergo shock revival, and their explosion energies asymptote within a few hundred milliseconds to values of ≳2 × 1051 erg after conservatively correcting for the binding energy of the envelope. Magnetically collimated, non-relativistic jets form in both models, though the jets are subject to non-axisymmetric instabilities. The jets do not appear crucial for driving the explosion, as they only emerge once the shock has already expanded considerably. Our simulations predict moderate neutron star kicks of about 150 km s−1, no spin-kick alignment, and rapid early spin-down that would result in birth periods of about 20 ms, too slow to power an energetic gamma-ray burst jet. More than $0.2\, {\rm M}_\odot$ of iron-group material is ejected, but we estimate that the mass of ejected 56Ni will be considerably smaller as the bulk of this material is neutron-rich. Explosive burning does not contribute appreciable amounts of 56Ni because the burned material originates from the slightly neutron-rich silicon shell. The iron-group ejecta also showed no pronounced bipolar geometry by the end of the simulations. The models thus do not immediately fit the characteristics of observed hypernovae, but may be representative of other transients with moderately high explosion energies. The gravitational-wave emission reaches high frequencies of up to 2000 Hz and amplitudes of over 100 cm. The gravitational-wave emission is detectable out to distances of ∼4 Mpc in the planned Cosmic Explorer detector.
ABSTRACT We perform three-dimensional simulations of magnetorotational supernovae using a $39\, {\rm M}_{\odot }$ progenitor star with two different initial magnetic field strengths of 1010  and 1012 G in the core. Both models rapidly undergo shock revival, and their explosion energies asymptote within a few hundred milliseconds to values of ≳2 × 1051 erg after conservatively correcting for the binding energy of the envelope. Magnetically collimated, non-relativistic jets form in both models, though the jets are subject to non-axisymmetric instabilities. The jets do not appear crucial for driving the explosion, as they only emerge once the shock has already expanded considerably. Our simulations predict moderate neutron star kicks of about 150 km s−1, no spin-kick alignment, and rapid early spin-down that would result in birth periods of about 20 ms, too slow to power an energetic gamma-ray burst jet. More than $0.2\, {\rm M}_\odot$ of iron-group material is ejected, but we estimate that the mass of ejected 56Ni will be considerably smaller as the bulk of this material is neutron-rich. Explosive burning does not contribute appreciable amounts of 56Ni because the burned material originates from the slightly neutron-rich silicon shell. The iron-group ejecta also showed no pronounced bipolar geometry by the end of the simulations. The models thus do not immediately fit the characteristics of observed hypernovae, but may be representative of other transients with moderately high explosion energies. The gravitational-wave emission reaches high frequencies of up to 2000 Hz and amplitudes of over 100 cm. The gravitational-wave emission is detectable out to distances of ∼4 Mpc in the planned Cosmic Explorer detector.
Author Langer, Norbert
Powell, Jade
Müller, Bernhard
Aguilera-Dena, David R
Author_xml – sequence: 1
  givenname: Jade
  orcidid: 0000-0002-1357-4164
  surname: Powell
  fullname: Powell, Jade
  email: dr.jade.powell@gmail.com
– sequence: 2
  givenname: Bernhard
  surname: Müller
  fullname: Müller, Bernhard
  email: bernhard.mueller@monash.edu
– sequence: 3
  givenname: David R
  surname: Aguilera-Dena
  fullname: Aguilera-Dena, David R
– sequence: 4
  givenname: Norbert
  surname: Langer
  fullname: Langer, Norbert
BookMark eNqFkL1PwzAQxS1UJNrCyuyVIa0dx04yooovqRJLmaOrcy5Gjh3ZAcF_T0pgQUJMJ93d7-m9tyAzHzwScsnZirNarDsfIa3TAC3P6_yEzLlQMstrpWZkzpiQWVVyfkYWKb0wxgqRqzmxu-eISFvboU82eHC0g4PHIcQwwDBtdIiY6eAc9Alpeu0x-vAGFN97F45UosFQoKKmKTiIo0RKtI_hgN6OSnQ0Fc_JqQGX8OJ7LsnT7c1uc59tH-8eNtfbTIuyHjKzl0zmo7mCacEqU8IeBTeyMkq1LR-vdYUFFq0seV1CKYwopDYGFMulqYRYkmLS1TGkFNE02k5JhgjWNZw1x7qar7qan7pGbPUL66PtIH78DVxNQHjt__v9BKHlgxA
CitedBy_id crossref_primary_10_1103_PhysRevD_108_123003
crossref_primary_10_3847_1538_4357_ad08c2
crossref_primary_10_1103_PhysRevD_109_083023
crossref_primary_10_1103_PhysRevD_109_063019
crossref_primary_10_1093_mnras_stae1731
crossref_primary_10_1093_mnras_stae561
crossref_primary_10_3847_1538_4365_acf033
crossref_primary_10_1017_pasa_2025_10
crossref_primary_10_1093_mnras_stad2881
crossref_primary_10_1051_0004_6361_202451483
crossref_primary_10_1093_mnras_stad3113
crossref_primary_10_3847_1538_4357_ad4ae7
crossref_primary_10_1007_s10509_024_04343_1
crossref_primary_10_3847_1538_4357_ad6983
crossref_primary_10_1134_S0015462824605060
crossref_primary_10_1134_S1995080224010268
crossref_primary_10_1103_PhysRevD_110_083025
crossref_primary_10_1103_PhysRevLett_133_231401
crossref_primary_10_3847_1538_4357_acfca4
crossref_primary_10_1051_0004_6361_202452758
crossref_primary_10_1088_1475_7516_2025_01_108
crossref_primary_10_1103_PhysRevD_111_063042
crossref_primary_10_1093_mnrasl_slad173
crossref_primary_10_1093_mnras_stae1361
Cites_doi 10.1093/mnras/stab2161
10.3847/0004-637X/832/2/108
10.1086/186413
10.1103/PhysRevD.104.123009
10.1093/mnras/stab3763
10.1093/mnras/stz990
10.1093/mnras/staa096
10.1126/science.1149437
10.1051/0004-6361:20021398
10.1038/357472a0
10.1088/0004-637X/730/2/70
10.1088/0004-637X/807/1/110
10.1093/pasj/65.1.14
10.1093/mnras/stz3483
10.3847/1538-4357/aa76de
10.1093/mnras/242.3.289
10.1016/j.nuclphysa.2006.05.008
10.1088/2041-8205/750/1/L22
10.1086/345812
10.1093/mnrasl/slaa137
10.1103/PhysRevD.104.102002
10.1086/521873
10.1093/mnras/stab3109
10.1051/0004-6361:20053783
10.1086/509612
10.1093/mnras/staa3819
10.1016/j.jcp.2005.02.017
10.3847/1538-4357/ac403c
10.3847/1538-4365/aaa5a8
10.1093/mnras/stv101
10.1051/0004-6361/202039253
10.1093/mnras/stab029
10.1088/0004-637X/766/1/43
10.1088/0004-637X/764/1/50
10.3847/1538-4357/aad6ec
10.1086/513597
10.1093/mnrasl/slx046
10.1007/978-3-319-21846-5_35
10.1088/0067-0049/192/1/3
10.1093/mnrasl/slaa021
10.1103/PhysRevD.93.042002
10.1086/307790
10.1088/0264-9381/32/2/024001
10.1086/344135
10.1103/PhysRevD.89.044011
10.1086/173464
10.1093/mnras/stz216
10.1038/s41586-020-03059-w
10.1103/PhysRevD.101.084002
10.1103/PhysRevD.95.063019
10.3847/1538-4357/aabfc1
10.1088/0067-0049/189/1/104
10.1086/305119
10.3847/1538-4357/ab6458
10.1093/mnras/stv087
10.1093/mnras/stac613
10.1093/mnras/stx3067
10.3847/1538-4357/ab9308
10.1088/0004-637X/788/1/82
10.1086/324487
10.1093/mnras/stab883
10.1051/0004-6361:200809609
10.1086/431543
10.1086/163580
10.1088/0264-9381/28/9/094013
10.1086/508914
10.1103/PhysRevD.94.044043
10.1088/0264-9381/32/7/074001
10.3847/1538-4357/aac5f1
10.1093/pasj/59.4.771
10.1103/PhysRevLett.123.051102
10.1111/j.1365-2966.2012.21083.x
10.1093/mnras/stu1969
10.3847/1538-4357/ab1de2
10.3847/1538-4357/abb138
10.1103/PhysRevX.11.021053
10.1103/PhysRevD.103.024025
10.1111/j.1365-2966.2005.09669.x
10.1093/mnras/stac3185
10.1088/0067-0049/220/1/15
10.1103/PhysRevD.104.122004
10.1093/mnras/staa1048
10.1093/mnras/stab295
10.1103/PhysRevD.78.064056
10.1093/mnras/staa3273
10.1086/319784
10.1051/0004-6361:20064855
10.1098/rspa.1958.0079
10.1093/ptep/ptab018
10.1007/s41115-020-0008-5
10.1007/BF00646184
10.1088/2041-8205/785/2/L29
10.1016/0375-9474(91)90452-C
10.1038/nature15755
10.1086/519161
10.1088/0004-637X/743/1/30
10.3847/1538-4357/aa6035
10.1093/mnras/stv698
10.1051/0004-6361:20078577
10.1093/mnras/stz1304
10.1086/307131
10.1103/PhysRevD.90.044001
10.1093/mnras/stt047
10.1006/jcph.2001.6961
10.1093/mnras/staa1431
10.1137/S1064827502407962
10.3847/1538-4357/aa9d97
10.1051/0004-6361:20054654
10.1038/27155
10.3847/1538-4357/abc61b
10.1146/annurev.astro.43.072103.150558
10.1086/500817
10.1093/mnras/stab2983
10.1088/2041-8205/719/2/L204
10.1051/0004-6361/201220636
10.1086/322420
10.1088/0004-637X/799/1/51
10.1051/0004-6361:20054306
10.1088/0067-0049/208/1/4
10.1086/168497
10.1093/mnras/staa1691
10.1103/PhysRevX.9.031040
ContentType Journal Article
Copyright 2023 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society. 2023
Copyright_xml – notice: 2023 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society. 2023
DBID TOX
AAYXX
CITATION
DOI 10.1093/mnras/stad1292
DatabaseName Oxford Journals Open Access (Activated by CARLI)
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Astronomy & Astrophysics
EISSN 1365-2966
EndPage 6086
ExternalDocumentID 10_1093_mnras_stad1292
10.1093/mnras/stad1292
GroupedDBID -DZ
-~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
123
1OC
1TH
29M
2WC
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHHS
AAHTB
AAIJN
AAJKP
AAJQQ
AAKDD
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AASNB
AAUQX
AAVAP
ABCQN
ABCQX
ABEML
ABEUO
ABFSI
ABIXL
ABJNI
ABNKS
ABPEJ
ABPTD
ABQLI
ABSAR
ABSMQ
ABTAH
ABXVV
ABZBJ
ACBNA
ACBWZ
ACCFJ
ACFRR
ACGFO
ACGFS
ACGOD
ACNCT
ACSCC
ACUFI
ACUTJ
ACXQS
ACYRX
ACYTK
ADEYI
ADGZP
ADHKW
ADHZD
ADOCK
ADQBN
ADRDM
ADRIX
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEEZP
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AEQDE
AETBJ
AETEA
AEWNT
AFBPY
AFEBI
AFFNX
AFFZL
AFIYH
AFOFC
AFXEN
AFZJQ
AGINJ
AGMDO
AGSYK
AHXPO
AIWBW
AJAOE
AJBDE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
APIBT
ASAOO
ASPBG
ATDFG
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BCRHZ
BDRZF
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
BY8
CAG
CDBKE
CO8
COF
CXTWN
D-E
D-F
DAKXR
DCZOG
DFGAJ
DILTD
DR2
DU5
D~K
E.L
E3Z
EAD
EAP
EBS
EE~
EJD
ESX
F00
F04
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
K48
KBUDW
KOP
KQ8
KSI
KSN
L7B
LC2
LC3
LH4
LP6
LP7
LW6
M43
MBTAY
MK4
NGC
NMDNZ
NOMLY
O0~
O9-
OCL
ODMLO
OHT
OIG
OJQWA
OK1
P2P
P2X
P4D
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q11
Q5Y
QB0
RHF
RNP
RNS
ROL
ROX
ROZ
RUSNO
RW1
RX1
RXO
TJP
TN5
TOX
UB1
UQL
V8K
VOH
W8V
W99
WH7
WQJ
WRC
WYUIH
X5Q
X5S
XG1
YAYTL
YKOAZ
YXANX
ZY4
AAYXX
ABAZT
ABEJV
ABGNP
ABVLG
ACUXJ
AHGBF
ALXQX
AMNDL
ANAKG
CITATION
JXSIZ
ID FETCH-LOGICAL-c379t-fb505243240c308f7abe31f58f66dd1b5098e4e4d57197a73f345cffa6025f833
IEDL.DBID TOX
ISSN 0035-8711
IngestDate Tue Jul 01 03:32:32 EDT 2025
Thu Apr 24 22:51:09 EDT 2025
Wed Aug 28 03:17:36 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords transients: supernovae
gravitational waves
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c379t-fb505243240c308f7abe31f58f66dd1b5098e4e4d57197a73f345cffa6025f833
ORCID 0000-0002-1357-4164
OpenAccessLink https://dx.doi.org/10.1093/mnras/stad1292
PageCount 17
ParticipantIDs crossref_citationtrail_10_1093_mnras_stad1292
crossref_primary_10_1093_mnras_stad1292
oup_primary_10_1093_mnras_stad1292
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-05-11
PublicationDateYYYYMMDD 2023-05-11
PublicationDate_xml – month: 05
  year: 2023
  text: 2023-05-11
  day: 11
PublicationDecade 2020
PublicationTitle Monthly notices of the Royal Astronomical Society
PublicationYear 2023
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Jardine (2023101908161195400_bib48) 2022; 510
Mazzali (2023101908161195400_bib66) 2007; 670
Bugli (2023101908161195400_bib19) 2020; 492
Modjaz (2023101908161195400_bib69) 2016; 832
Acernese (2023101908161195400_bib7) 2015; 32
Abdikamalov (2023101908161195400_bib5) 2014; 90
Duncan (2023101908161195400_bib29) 1992; 392
Müller (2023101908161195400_bib76) 2015; 448
Obergaulinger (2023101908161195400_bib91) 2021; 503
Raynaud (2023101908161195400_bib104) 2022; 509
Müller (2023101908161195400_bib77) 2020; 498
Scheidegger (2023101908161195400_bib109) 2008; 490
Noutsos (2023101908161195400_bib85) 2012; 423
Burrows (2023101908161195400_bib25) 2007; 664
Sieverding (2023101908161195400_bib111) 2020; 904
Chan (2023101908161195400_bib26) 2020; 495
Müller (2023101908161195400_bib80) 2019; 484
Varma (2023101908161195400_bib125) 2021; 508
Wanajo (2023101908161195400_bib127) 2018; 852
Grimmett (2023101908161195400_bib40) 2021; 501
Lopez (2023101908161195400_bib61) 2013; 764
Stockinger (2023101908161195400_bib114) 2020; 496
O’Connor (2023101908161195400_bib87) 2011; 730
Mösta (2023101908161195400_bib73) 2018; 864
Müller (2023101908161195400_bib75) 2014; 788
Sotani (2023101908161195400_bib113) 2021; 104
Morozova (2023101908161195400_bib70) 2018; 861
Suwa (2023101908161195400_bib115) 2007; 59
Bugli (2023101908161195400_bib21) 2022
Nakamura (2023101908161195400_bib82) 2001; 550
Müller (2023101908161195400_bib79) 2013; 766
Obergaulinger (2023101908161195400_bib90) 2021; 503
Dimmelmeier (2023101908161195400_bib28) 2008; 78
Akiyama (2023101908161195400_bib10) 2003; 584
Gossan (2023101908161195400_bib39) 2016; 93
Szczepańczyk (2023101908161195400_bib116) 2021; 104
Varma (2023101908161195400_bib126) 2022
Andresen (2023101908161195400_bib13) 2019; 486
Usov (2023101908161195400_bib123) 1992; 357
Kuroda (2023101908161195400_bib56) 2014; 89
Paxton (2023101908161195400_bib99) 2015; 220
Gal-Yam (2023101908161195400_bib38) 2017
Woosley (2023101908161195400_bib131) 2006; 44
Takahashi (2023101908161195400_bib117) 2021; 646
Eichler (2023101908161195400_bib31) 1993; 419
Takiwaki (2023101908161195400_bib118) 2011; 743
Richers (2023101908161195400_bib107) 2017; 95
Bisnovatyi-Kogan (2023101908161195400_bib15) 1976; 41
Blondin (2023101908161195400_bib17) 2006; 642
Burrows (2023101908161195400_bib24) 2021; 589
Buras (2023101908161195400_bib22) 2006; 447
Paxton (2023101908161195400_bib98) 2013; 208
Lattimer (2023101908161195400_bib59) 2005; 629
Mösta (2023101908161195400_bib72) 2015; 528
Müller (2023101908161195400_bib74) 2020; 6
Obergaulinger (2023101908161195400_bib95) 2014; 445
Mazzali (2023101908161195400_bib65) 2001; 559
Begelman (2023101908161195400_bib14) 1998; 493
Aguilera-Dena (2023101908161195400_bib9) 2020; 901
Bugli (2023101908161195400_bib20) 2021; 507
Abbott (2023101908161195400_bib1) 2019; 9
Sotani (2023101908161195400_bib112) 2016; 94
Tanaka (2023101908161195400_bib119) 2017; 837
Nomoto (2023101908161195400_bib84) 2006; 777
Ertl (2023101908161195400_bib32) 2020; 890
Lattimer (2023101908161195400_bib60) 1991; 535
Abbott (2023101908161195400_bib2) 2020; 101
Fuller (2023101908161195400_bib37) 2015; 450
Blanchet (2023101908161195400_bib16) 1990; 242
Dedner (2023101908161195400_bib27) 2002; 175
Kobayashi (2023101908161195400_bib54) 2006; 653
Abdikamalov (2023101908161195400_bib6) 2020
Kuroda (2023101908161195400_bib57) 2020; 896
Noutsos (2023101908161195400_bib86) 2013; 430
Varma (2023101908161195400_bib124) 2021; 504
Buras (2023101908161195400_bib23) 2006; 457
Paxton (2023101908161195400_bib100) 2018; 234
Milisavljevic (2023101908161195400_bib67) 2015; 799
Maeda (2023101908161195400_bib63) 2002; 565
(2023101908161195400_bib58) 2015; 32
Johnston (2023101908161195400_bib51) 2005; 364
Obergaulinger (2023101908161195400_bib92) 2022; 512
Miyoshi (2023101908161195400_bib68) 2005; 208
Blondin (2023101908161195400_bib18) 2003; 584
Aguilera-Dena (2023101908161195400_bib8) 2018; 858
Maeda (2023101908161195400_bib64) 2008; 319
Mösta (2023101908161195400_bib71) 2014; 785
Obergaulinger (2023101908161195400_bib93) 2022; 512
Grimmett (2023101908161195400_bib41) 2021; 501
Müller (2023101908161195400_bib81) 2010; 189
Shibagaki (2023101908161195400_bib110) 2020; 493
Powell (2023101908161195400_bib101) 2019; 487
Torres-Forné (2023101908161195400_bib121) 2018; 474
Evans (2023101908161195400_bib33) 2021
Woosley (2023101908161195400_bib132) 1999; 516
Aloy (2023101908161195400_bib12) 2020; 500
Abbott (2023101908161195400_bib3) 2021; 11
Torres-Forné (2023101908161195400_bib122) 2019; 123
Scheck (2023101908161195400_bib108) 2006; 457
Paxton (2023101908161195400_bib97) 2011; 192
Janka (2023101908161195400_bib47) 2022; 926
The LIGO Scientific Collaboration (2023101908161195400_bib120) 2021
Abbott (2023101908161195400_bib4) 2021; 104
Obergaulinger (2023101908161195400_bib89) 2020; 492
Foglizzo (2023101908161195400_bib36) 2007; 654
Reichert (2023101908161195400_bib106) 2022
Winteler (2023101908161195400_bib128) 2012; 750
MacFadyen (2023101908161195400_bib62) 1999; 524
Hartmann (2023101908161195400_bib44) 1985; 297
Gurski (2023101908161195400_bib42) 2004; 25
Kalogera (2023101908161195400_bib52) 2019; 51
Obergaulinger (2023101908161195400_bib88) 2017; 469
Akutsu (2023101908161195400_bib11) 2021; 2021
Müller (2023101908161195400_bib78) 2008; 489
Powell (2023101908161195400_bib102) 2020; 494
Wongwathanarat (2023101908161195400_bib129) 2013; 552
Rampp (2023101908161195400_bib103) 2002; 396
Jerkstrand (2023101908161195400_bib50) 2015; 807
Hild (2023101908161195400_bib45) 2011; 28
Pajkos (2023101908161195400_bib96) 2019; 878
Woosley (2023101908161195400_bib130) 2010; 719
Kruskal (2023101908161195400_bib55) 1958; 245
Iwamoto (2023101908161195400_bib46) 1998; 395
Ng (2023101908161195400_bib83) 2007; 660
Kimura (2023101908161195400_bib53) 2013; 65
Finn (2023101908161195400_bib34) 1989
Edwards (2023101908161195400_bib30) 2021; 103
Reichert (2023101908161195400_bib105) 2021
Obergaulinger (2023101908161195400_bib94) 2006; 450
Jerkstrand (2023101908161195400_bib49) 2015; 448
Harris (2023101908161195400_bib43) 2017; 843
Finn (2023101908161195400_bib35) 1990; 351
References_xml – volume: 507
  start-page: 443
  year: 2021
  ident: 2023101908161195400_bib20
  publication-title: MNRAS
  doi: 10.1093/mnras/stab2161
– volume: 832
  start-page: 108
  year: 2016
  ident: 2023101908161195400_bib69
  publication-title: ApJ
  doi: 10.3847/0004-637X/832/2/108
– volume: 392
  start-page: L9
  year: 1992
  ident: 2023101908161195400_bib29
  publication-title: ApJ
  doi: 10.1086/186413
– volume: 104
  start-page: 123009
  year: 2021
  ident: 2023101908161195400_bib113
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.104.123009
– volume: 510
  start-page: 5535
  year: 2022
  ident: 2023101908161195400_bib48
  publication-title: MNRAS
  doi: 10.1093/mnras/stab3763
– volume: 486
  start-page: 2238
  year: 2019
  ident: 2023101908161195400_bib13
  publication-title: MNRAS
  doi: 10.1093/mnras/stz990
– volume: 492
  start-page: 4613
  year: 2020
  ident: 2023101908161195400_bib89
  publication-title: MNRAS
  doi: 10.1093/mnras/staa096
– volume: 319
  start-page: 1220
  year: 2008
  ident: 2023101908161195400_bib64
  publication-title: Science
  doi: 10.1126/science.1149437
– volume: 396
  start-page: 361
  year: 2002
  ident: 2023101908161195400_bib103
  publication-title: A&A
  doi: 10.1051/0004-6361:20021398
– volume: 357
  start-page: 472
  year: 1992
  ident: 2023101908161195400_bib123
  publication-title: Nature
  doi: 10.1038/357472a0
– volume: 730
  start-page: 70
  year: 2011
  ident: 2023101908161195400_bib87
  publication-title: ApJ
  doi: 10.1088/0004-637X/730/2/70
– volume: 807
  start-page: 110
  year: 2015
  ident: 2023101908161195400_bib50
  publication-title: ApJ
  doi: 10.1088/0004-637X/807/1/110
– volume: 65
  start-page: 14
  year: 2013
  ident: 2023101908161195400_bib53
  publication-title: PASJ
  doi: 10.1093/pasj/65.1.14
– volume: 492
  start-page: 58
  year: 2020
  ident: 2023101908161195400_bib19
  publication-title: MNRAS
  doi: 10.1093/mnras/stz3483
– year: 2021
  ident: 2023101908161195400_bib120
– volume: 843
  start-page: 2
  year: 2017
  ident: 2023101908161195400_bib43
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa76de
– volume: 242
  start-page: 289
  year: 1990
  ident: 2023101908161195400_bib16
  publication-title: MNRAS
  doi: 10.1093/mnras/242.3.289
– volume: 777
  start-page: 424
  year: 2006
  ident: 2023101908161195400_bib84
  publication-title: Nucl. Phys. A
  doi: 10.1016/j.nuclphysa.2006.05.008
– start-page: 5622
  volume-title: MNRAS
  year: 2022
  ident: 2023101908161195400_bib21
– volume: 750
  start-page: L22
  year: 2012
  ident: 2023101908161195400_bib128
  publication-title: ApJ
  doi: 10.1088/2041-8205/750/1/L22
– volume: 584
  start-page: 971
  year: 2003
  ident: 2023101908161195400_bib18
  publication-title: ApJ
  doi: 10.1086/345812
– volume: 498
  start-page: L109
  year: 2020
  ident: 2023101908161195400_bib77
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slaa137
– volume: 104
  start-page: 102002
  year: 2021
  ident: 2023101908161195400_bib116
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.104.102002
– volume: 670
  start-page: 592
  year: 2007
  ident: 2023101908161195400_bib66
  publication-title: ApJ
  doi: 10.1086/521873
– volume: 509
  start-page: 3410
  year: 2022
  ident: 2023101908161195400_bib104
  publication-title: MNRAS
  doi: 10.1093/mnras/stab3109
– year: 2021
  ident: 2023101908161195400_bib33
– volume: 447
  start-page: 1049
  year: 2006
  ident: 2023101908161195400_bib22
  publication-title: A&A
  doi: 10.1051/0004-6361:20053783
– volume: 654
  start-page: 1006
  year: 2007
  ident: 2023101908161195400_bib36
  publication-title: ApJ
  doi: 10.1086/509612
– volume: 501
  start-page: 2764
  year: 2021
  ident: 2023101908161195400_bib40
  publication-title: MNRAS
  doi: 10.1093/mnras/staa3819
– volume: 208
  start-page: 315
  year: 2005
  ident: 2023101908161195400_bib68
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2005.02.017
– volume: 926
  start-page: 9
  year: 2022
  ident: 2023101908161195400_bib47
  publication-title: ApJ
  doi: 10.3847/1538-4357/ac403c
– volume: 234
  start-page: 34
  year: 2018
  ident: 2023101908161195400_bib100
  publication-title: ApJS
  doi: 10.3847/1538-4365/aaa5a8
– volume: 448
  start-page: 2141
  year: 2015
  ident: 2023101908161195400_bib76
  publication-title: MNRAS
  doi: 10.1093/mnras/stv101
– volume: 646
  start-page: A19
  year: 2021
  ident: 2023101908161195400_bib117
  publication-title: A&A
  doi: 10.1051/0004-6361/202039253
– year: 2021
  ident: 2023101908161195400_bib105
  publication-title: MNRAS
  doi: 10.1093/mnras/stab029
– volume: 766
  start-page: 43
  year: 2013
  ident: 2023101908161195400_bib79
  publication-title: ApJ
  doi: 10.1088/0004-637X/766/1/43
– volume: 764
  start-page: 50
  year: 2013
  ident: 2023101908161195400_bib61
  publication-title: ApJ
  doi: 10.1088/0004-637X/764/1/50
– volume: 864
  start-page: 171
  year: 2018
  ident: 2023101908161195400_bib73
  publication-title: ApJ
  doi: 10.3847/1538-4357/aad6ec
– volume: 660
  start-page: 1357
  year: 2007
  ident: 2023101908161195400_bib83
  publication-title: ApJ
  doi: 10.1086/513597
– volume: 469
  start-page: L43
  year: 2017
  ident: 2023101908161195400_bib88
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slx046
– volume-title: Handbook of Supernovae
  year: 2017
  ident: 2023101908161195400_bib38
  doi: 10.1007/978-3-319-21846-5_35
– volume: 192
  start-page: 3
  year: 2011
  ident: 2023101908161195400_bib97
  publication-title: ApJS
  doi: 10.1088/0067-0049/192/1/3
– volume: 493
  start-page: L138
  year: 2020
  ident: 2023101908161195400_bib110
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slaa021
– volume: 93
  start-page: 042002
  year: 2016
  ident: 2023101908161195400_bib39
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.93.042002
– volume: 524
  start-page: 262
  year: 1999
  ident: 2023101908161195400_bib62
  publication-title: ApJ
  doi: 10.1086/307790
– volume: 32
  start-page: 024001
  year: 2015
  ident: 2023101908161195400_bib7
  publication-title: Classical and Quantum Gravity
  doi: 10.1088/0264-9381/32/2/024001
– volume: 584
  start-page: 954
  year: 2003
  ident: 2023101908161195400_bib10
  publication-title: ApJ
  doi: 10.1086/344135
– volume: 89
  start-page: 044011
  year: 2014
  ident: 2023101908161195400_bib56
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.89.044011
– volume: 419
  start-page: 111
  year: 1993
  ident: 2023101908161195400_bib31
  publication-title: ApJ
  doi: 10.1086/173464
– volume: 484
  start-page: 3307
  year: 2019
  ident: 2023101908161195400_bib80
  publication-title: MNRAS
  doi: 10.1093/mnras/stz216
– volume: 589
  start-page: 29
  year: 2021
  ident: 2023101908161195400_bib24
  publication-title: Nature
  doi: 10.1038/s41586-020-03059-w
– volume: 101
  start-page: 084002
  year: 2020
  ident: 2023101908161195400_bib2
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.101.084002
– volume: 95
  start-page: 063019
  year: 2017
  ident: 2023101908161195400_bib107
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.95.063019
– volume: 858
  start-page: 115
  year: 2018
  ident: 2023101908161195400_bib8
  publication-title: ApJ
  doi: 10.3847/1538-4357/aabfc1
– volume: 189
  start-page: 104
  year: 2010
  ident: 2023101908161195400_bib81
  publication-title: ApJS
  doi: 10.1088/0067-0049/189/1/104
– volume: 493
  start-page: 291
  year: 1998
  ident: 2023101908161195400_bib14
  publication-title: ApJ
  doi: 10.1086/305119
– volume: 890
  start-page: 51
  year: 2020
  ident: 2023101908161195400_bib32
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab6458
– volume: 448
  start-page: 2482
  year: 2015
  ident: 2023101908161195400_bib49
  publication-title: MNRAS
  doi: 10.1093/mnras/stv087
– volume: 512
  start-page: 2489
  year: 2022
  ident: 2023101908161195400_bib93
  publication-title: MNRAS
  doi: 10.1093/mnras/stac613
– volume: 474
  start-page: 5272
  year: 2018
  ident: 2023101908161195400_bib121
  publication-title: MNRAS
  doi: 10.1093/mnras/stx3067
– volume: 896
  start-page: 102
  year: 2020
  ident: 2023101908161195400_bib57
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab9308
– volume-title: Frontiers in Numerical Relativity
  year: 1989
  ident: 2023101908161195400_bib34
– volume: 788
  start-page: 82
  year: 2014
  ident: 2023101908161195400_bib75
  publication-title: ApJ
  doi: 10.1088/0004-637X/788/1/82
– volume: 565
  start-page: 405
  year: 2002
  ident: 2023101908161195400_bib63
  publication-title: ApJ
  doi: 10.1086/324487
– volume: 504
  start-page: 636
  year: 2021
  ident: 2023101908161195400_bib124
  publication-title: MNRAS
  doi: 10.1093/mnras/stab883
– volume: 489
  start-page: 301
  year: 2008
  ident: 2023101908161195400_bib78
  publication-title: A&A
  doi: 10.1051/0004-6361:200809609
– year: 2020
  ident: 2023101908161195400_bib6
– volume: 629
  start-page: 979
  year: 2005
  ident: 2023101908161195400_bib59
  publication-title: ApJ
  doi: 10.1086/431543
– volume: 297
  start-page: 837
  year: 1985
  ident: 2023101908161195400_bib44
  publication-title: ApJ
  doi: 10.1086/163580
– volume: 28
  start-page: 094013
  year: 2011
  ident: 2023101908161195400_bib45
  publication-title: Class. Quantum Gravity
  doi: 10.1088/0264-9381/28/9/094013
– volume: 653
  start-page: 1145
  year: 2006
  ident: 2023101908161195400_bib54
  publication-title: ApJ
  doi: 10.1086/508914
– volume: 94
  start-page: 044043
  year: 2016
  ident: 2023101908161195400_bib112
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.94.044043
– volume: 32
  start-page: 074001
  year: 2015
  ident: 2023101908161195400_bib58
  publication-title: Class. Quantum Gravity
  doi: 10.1088/0264-9381/32/7/074001
– volume: 861
  start-page: 10
  year: 2018
  ident: 2023101908161195400_bib70
  publication-title: ApJ
  doi: 10.3847/1538-4357/aac5f1
– volume: 59
  start-page: 771
  year: 2007
  ident: 2023101908161195400_bib115
  publication-title: PASJ
  doi: 10.1093/pasj/59.4.771
– volume: 123
  start-page: 051102
  year: 2019
  ident: 2023101908161195400_bib122
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.123.051102
– volume: 51
  start-page: 239
  year: 2019
  ident: 2023101908161195400_bib52
  publication-title: BAAS
– volume: 423
  start-page: 2736
  year: 2012
  ident: 2023101908161195400_bib85
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2012.21083.x
– volume: 445
  start-page: 3169
  year: 2014
  ident: 2023101908161195400_bib95
  publication-title: MNRAS
  doi: 10.1093/mnras/stu1969
– volume: 878
  start-page: 13
  year: 2019
  ident: 2023101908161195400_bib96
  publication-title: ApJ
  doi: 10.3847/1538-4357/ab1de2
– volume: 901
  start-page: 114
  year: 2020
  ident: 2023101908161195400_bib9
  publication-title: ApJ
  doi: 10.3847/1538-4357/abb138
– volume: 11
  start-page: 021053
  year: 2021
  ident: 2023101908161195400_bib3
  publication-title: Physical Review X
  doi: 10.1103/PhysRevX.11.021053
– volume: 103
  start-page: 024025
  year: 2021
  ident: 2023101908161195400_bib30
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.103.024025
– volume: 364
  start-page: 1397
  year: 2005
  ident: 2023101908161195400_bib51
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2005.09669.x
– year: 2022
  ident: 2023101908161195400_bib106
  publication-title: MNRAS
  doi: 10.1093/mnras/stac3185
– volume: 220
  start-page: 15
  year: 2015
  ident: 2023101908161195400_bib99
  publication-title: ApJS
  doi: 10.1088/0067-0049/220/1/15
– volume: 104
  start-page: 122004
  year: 2021
  ident: 2023101908161195400_bib4
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.104.122004
– volume: 494
  start-page: 4665
  year: 2020
  ident: 2023101908161195400_bib102
  publication-title: MNRAS
  doi: 10.1093/mnras/staa1048
– volume: 503
  start-page: 4942
  year: 2021
  ident: 2023101908161195400_bib91
  publication-title: MNRAS
  doi: 10.1093/mnras/stab295
– volume: 78
  start-page: 064056
  year: 2008
  ident: 2023101908161195400_bib28
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.78.064056
– volume: 500
  start-page: 4365
  year: 2020
  ident: 2023101908161195400_bib12
  publication-title: MNRAS
  doi: 10.1093/mnras/staa3273
– volume: 550
  start-page: 991
  year: 2001
  ident: 2023101908161195400_bib82
  publication-title: ApJ
  doi: 10.1086/319784
– volume: 457
  start-page: 963
  year: 2006
  ident: 2023101908161195400_bib108
  publication-title: A&A
  doi: 10.1051/0004-6361:20064855
– volume: 245
  start-page: 222
  year: 1958
  ident: 2023101908161195400_bib55
  publication-title: Proc. R. Soc.
  doi: 10.1098/rspa.1958.0079
– volume: 2021
  start-page: 05A102
  year: 2021
  ident: 2023101908161195400_bib11
  publication-title: Prog. Theor. Exp. Phys.
  doi: 10.1093/ptep/ptab018
– volume: 6
  start-page: 3
  year: 2020
  ident: 2023101908161195400_bib74
  publication-title: Living Rev. Comput. Astrophys.
  doi: 10.1007/s41115-020-0008-5
– volume: 41
  start-page: 287
  year: 1976
  ident: 2023101908161195400_bib15
  publication-title: Ap&SS
  doi: 10.1007/BF00646184
– volume: 785
  start-page: L29
  year: 2014
  ident: 2023101908161195400_bib71
  publication-title: ApJ
  doi: 10.1088/2041-8205/785/2/L29
– volume: 535
  start-page: 331
  year: 1991
  ident: 2023101908161195400_bib60
  publication-title: Nucl. Phys. A
  doi: 10.1016/0375-9474(91)90452-C
– volume: 528
  start-page: 376
  year: 2015
  ident: 2023101908161195400_bib72
  publication-title: Nature
  doi: 10.1038/nature15755
– volume: 664
  start-page: 416
  year: 2007
  ident: 2023101908161195400_bib25
  publication-title: ApJ
  doi: 10.1086/519161
– volume: 743
  start-page: 30
  year: 2011
  ident: 2023101908161195400_bib118
  publication-title: ApJ
  doi: 10.1088/0004-637X/743/1/30
– volume: 837
  start-page: 105
  year: 2017
  ident: 2023101908161195400_bib119
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa6035
– volume: 450
  start-page: 414
  year: 2015
  ident: 2023101908161195400_bib37
  publication-title: MNRAS
  doi: 10.1093/mnras/stv698
– volume: 490
  start-page: 231
  year: 2008
  ident: 2023101908161195400_bib109
  publication-title: A&A
  doi: 10.1051/0004-6361:20078577
– volume: 487
  start-page: 1178
  year: 2019
  ident: 2023101908161195400_bib101
  publication-title: MNRAS
  doi: 10.1093/mnras/stz1304
– volume: 516
  start-page: 788
  year: 1999
  ident: 2023101908161195400_bib132
  publication-title: ApJ
  doi: 10.1086/307131
– volume: 90
  start-page: 044001
  year: 2014
  ident: 2023101908161195400_bib5
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.90.044001
– volume: 430
  start-page: 2281
  year: 2013
  ident: 2023101908161195400_bib86
  publication-title: MNRAS
  doi: 10.1093/mnras/stt047
– volume: 512
  start-page: 2489
  year: 2022
  ident: 2023101908161195400_bib92
  publication-title: MNRAS
  doi: 10.1093/mnras/stac613
– volume: 175
  start-page: 645
  year: 2002
  ident: 2023101908161195400_bib27
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.2001.6961
– volume: 495
  start-page: 3751
  year: 2020
  ident: 2023101908161195400_bib26
  publication-title: MNRAS
  doi: 10.1093/mnras/staa1431
– volume: 25
  start-page: 2165
  year: 2004
  ident: 2023101908161195400_bib42
  publication-title: SIAM J. Sci. Comput.
  doi: 10.1137/S1064827502407962
– volume: 503
  start-page: 4942
  year: 2021
  ident: 2023101908161195400_bib90
  publication-title: MNRAS
  doi: 10.1093/mnras/stab295
– volume: 852
  start-page: 40
  year: 2018
  ident: 2023101908161195400_bib127
  publication-title: ApJ
  doi: 10.3847/1538-4357/aa9d97
– volume: 457
  start-page: 281
  year: 2006
  ident: 2023101908161195400_bib23
  publication-title: A&A
  doi: 10.1051/0004-6361:20054654
– volume: 395
  start-page: 672
  year: 1998
  ident: 2023101908161195400_bib46
  publication-title: Nature
  doi: 10.1038/27155
– volume: 904
  start-page: 163
  year: 2020
  ident: 2023101908161195400_bib111
  publication-title: ApJ
  doi: 10.3847/1538-4357/abc61b
– volume: 44
  start-page: 507
  year: 2006
  ident: 2023101908161195400_bib131
  publication-title: ARA&A
  doi: 10.1146/annurev.astro.43.072103.150558
– volume: 642
  start-page: 401
  year: 2006
  ident: 2023101908161195400_bib17
  publication-title: ApJ
  doi: 10.1086/500817
– volume: 508
  start-page: 6033
  year: 2021
  ident: 2023101908161195400_bib125
  publication-title: MNRAS
  doi: 10.1093/mnras/stab2983
– volume: 719
  start-page: L204
  year: 2010
  ident: 2023101908161195400_bib130
  publication-title: ApJ
  doi: 10.1088/2041-8205/719/2/L204
– volume: 552
  start-page: A126
  year: 2013
  ident: 2023101908161195400_bib129
  publication-title: A&A
  doi: 10.1051/0004-6361/201220636
– volume: 559
  start-page: 1047
  year: 2001
  ident: 2023101908161195400_bib65
  publication-title: ApJ
  doi: 10.1086/322420
– volume: 501
  start-page: 2764
  year: 2021
  ident: 2023101908161195400_bib41
  publication-title: MNRAS
  doi: 10.1093/mnras/staa3819
– volume: 799
  start-page: 51
  year: 2015
  ident: 2023101908161195400_bib67
  publication-title: ApJ
  doi: 10.1088/0004-637X/799/1/51
– start-page: 3622
  volume-title: MNRAS
  year: 2022
  ident: 2023101908161195400_bib126
– volume: 450
  start-page: 1107
  year: 2006
  ident: 2023101908161195400_bib94
  publication-title: A&A
  doi: 10.1051/0004-6361:20054306
– volume: 208
  start-page: 4
  year: 2013
  ident: 2023101908161195400_bib98
  publication-title: ApJS
  doi: 10.1088/0067-0049/208/1/4
– volume: 351
  start-page: 588
  year: 1990
  ident: 2023101908161195400_bib35
  publication-title: ApJ
  doi: 10.1086/168497
– volume: 496
  start-page: 2039
  year: 2020
  ident: 2023101908161195400_bib114
  publication-title: MNRAS
  doi: 10.1093/mnras/staa1691
– volume: 9
  start-page: 031040
  year: 2019
  ident: 2023101908161195400_bib1
  publication-title: Physical Review X
  doi: 10.1103/PhysRevX.9.031040
SSID ssj0004326
Score 2.5455692
Snippet ABSTRACT We perform three-dimensional simulations of magnetorotational supernovae using a $39\, {\rm M}_{\odot }$ progenitor star with two different initial...
We perform three-dimensional simulations of magnetorotational supernovae using a $39\, {\rm M}_{\odot }$ progenitor star with two different initial magnetic...
SourceID crossref
oup
SourceType Enrichment Source
Index Database
Publisher
StartPage 6070
Title Three dimensional magnetorotational core-collapse supernova explosions of a 39 solar mass progenitor star
Volume 522
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA6ykxfRqWz-GEFET2Vr0ybNcQzHEKYgG-xWsjaRwdaNpjv43_te2s0fKHpryUuh_ZK-770k3yPkFoIeBZFE6slQ9DyYidyTCqJWIAdpbEIRBRzPO4-f-GgaPs6iWS0WbX9Ywpesu8oLZbvAlTLwTfi3BQ-MI3ryPPs4AclcYTUnwAghgL-XZ_ze_Yv7wSNtn7zJ8Jgc1TSQ9ivcTsiBzpuk1beYmF6v3ugddddV3sE2SXsM5HZduBw4NA6WC2Ca7u6ULCaAh6YZ6vRXGht0pV5zjeIEZZ3ro6hW6TnQN1ZTu93oAsuhUo178LCXpWtDFWWSWox24RHWUty9pXHSFxRerTgj0-HDZDDy6goKXsqELD0zxzp1TnQvZb3YCDXXzDdRbDjPMh9aZaxDHWaR8KVQghkWRqkxigMVMjFj56SRr3PdIjTgUgmlYL4bDg4NAE19pbJQaxMw3ovbxNt92CSt5cWxysUyqZa5WeKASHZAtMn93n5TCWv8ankDOP1hdPEfo0tyiNXicfHf969Ioyy2-ho4RTnvAJt-CTpuUL0DLvXOVw
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three+dimensional+magnetorotational+core-collapse+supernova+explosions+of+a+39+solar+mass+progenitor+star&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Powell%2C+Jade&rft.au=M%C3%BCller%2C+Bernhard&rft.au=Aguilera-Dena%2C+David+R&rft.au=Langer%2C+Norbert&rft.date=2023-05-11&rft.pub=Oxford+University+Press&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=522&rft.issue=4&rft.spage=6070&rft.epage=6086&rft_id=info:doi/10.1093%2Fmnras%2Fstad1292&rft.externalDocID=10.1093%2Fmnras%2Fstad1292
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon