Three dimensional magnetorotational core-collapse supernova explosions of a 39 solar mass progenitor star
ABSTRACT We perform three-dimensional simulations of magnetorotational supernovae using a $39\, {\rm M}_{\odot }$ progenitor star with two different initial magnetic field strengths of 1010 and 1012 G in the core. Both models rapidly undergo shock revival, and their explosion energies asymptote wit...
Saved in:
Published in | Monthly notices of the Royal Astronomical Society Vol. 522; no. 4; pp. 6070 - 6086 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Oxford University Press
11.05.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0035-8711 1365-2966 |
DOI | 10.1093/mnras/stad1292 |
Cover
Abstract | ABSTRACT
We perform three-dimensional simulations of magnetorotational supernovae using a $39\, {\rm M}_{\odot }$ progenitor star with two different initial magnetic field strengths of 1010 and 1012 G in the core. Both models rapidly undergo shock revival, and their explosion energies asymptote within a few hundred milliseconds to values of ≳2 × 1051 erg after conservatively correcting for the binding energy of the envelope. Magnetically collimated, non-relativistic jets form in both models, though the jets are subject to non-axisymmetric instabilities. The jets do not appear crucial for driving the explosion, as they only emerge once the shock has already expanded considerably. Our simulations predict moderate neutron star kicks of about 150 km s−1, no spin-kick alignment, and rapid early spin-down that would result in birth periods of about 20 ms, too slow to power an energetic gamma-ray burst jet. More than $0.2\, {\rm M}_\odot$ of iron-group material is ejected, but we estimate that the mass of ejected 56Ni will be considerably smaller as the bulk of this material is neutron-rich. Explosive burning does not contribute appreciable amounts of 56Ni because the burned material originates from the slightly neutron-rich silicon shell. The iron-group ejecta also showed no pronounced bipolar geometry by the end of the simulations. The models thus do not immediately fit the characteristics of observed hypernovae, but may be representative of other transients with moderately high explosion energies. The gravitational-wave emission reaches high frequencies of up to 2000 Hz and amplitudes of over 100 cm. The gravitational-wave emission is detectable out to distances of ∼4 Mpc in the planned Cosmic Explorer detector. |
---|---|
AbstractList | We perform three-dimensional simulations of magnetorotational supernovae using a $39\, {\rm M}_{\odot }$ progenitor star with two different initial magnetic field strengths of 1010 and 1012 G in the core. Both models rapidly undergo shock revival, and their explosion energies asymptote within a few hundred milliseconds to values of ≳2 × 1051 erg after conservatively correcting for the binding energy of the envelope. Magnetically collimated, non-relativistic jets form in both models, though the jets are subject to non-axisymmetric instabilities. The jets do not appear crucial for driving the explosion, as they only emerge once the shock has already expanded considerably. Our simulations predict moderate neutron star kicks of about 150 km s−1, no spin-kick alignment, and rapid early spin-down that would result in birth periods of about 20 ms, too slow to power an energetic gamma-ray burst jet. More than $0.2\, {\rm M}_\odot$ of iron-group material is ejected, but we estimate that the mass of ejected 56Ni will be considerably smaller as the bulk of this material is neutron-rich. Explosive burning does not contribute appreciable amounts of 56Ni because the burned material originates from the slightly neutron-rich silicon shell. The iron-group ejecta also showed no pronounced bipolar geometry by the end of the simulations. The models thus do not immediately fit the characteristics of observed hypernovae, but may be representative of other transients with moderately high explosion energies. The gravitational-wave emission reaches high frequencies of up to 2000 Hz and amplitudes of over 100 cm. The gravitational-wave emission is detectable out to distances of ∼4 Mpc in the planned Cosmic Explorer detector. ABSTRACT We perform three-dimensional simulations of magnetorotational supernovae using a $39\, {\rm M}_{\odot }$ progenitor star with two different initial magnetic field strengths of 1010 and 1012 G in the core. Both models rapidly undergo shock revival, and their explosion energies asymptote within a few hundred milliseconds to values of ≳2 × 1051 erg after conservatively correcting for the binding energy of the envelope. Magnetically collimated, non-relativistic jets form in both models, though the jets are subject to non-axisymmetric instabilities. The jets do not appear crucial for driving the explosion, as they only emerge once the shock has already expanded considerably. Our simulations predict moderate neutron star kicks of about 150 km s−1, no spin-kick alignment, and rapid early spin-down that would result in birth periods of about 20 ms, too slow to power an energetic gamma-ray burst jet. More than $0.2\, {\rm M}_\odot$ of iron-group material is ejected, but we estimate that the mass of ejected 56Ni will be considerably smaller as the bulk of this material is neutron-rich. Explosive burning does not contribute appreciable amounts of 56Ni because the burned material originates from the slightly neutron-rich silicon shell. The iron-group ejecta also showed no pronounced bipolar geometry by the end of the simulations. The models thus do not immediately fit the characteristics of observed hypernovae, but may be representative of other transients with moderately high explosion energies. The gravitational-wave emission reaches high frequencies of up to 2000 Hz and amplitudes of over 100 cm. The gravitational-wave emission is detectable out to distances of ∼4 Mpc in the planned Cosmic Explorer detector. |
Author | Langer, Norbert Powell, Jade Müller, Bernhard Aguilera-Dena, David R |
Author_xml | – sequence: 1 givenname: Jade orcidid: 0000-0002-1357-4164 surname: Powell fullname: Powell, Jade email: dr.jade.powell@gmail.com – sequence: 2 givenname: Bernhard surname: Müller fullname: Müller, Bernhard email: bernhard.mueller@monash.edu – sequence: 3 givenname: David R surname: Aguilera-Dena fullname: Aguilera-Dena, David R – sequence: 4 givenname: Norbert surname: Langer fullname: Langer, Norbert |
BookMark | eNqFkL1PwzAQxS1UJNrCyuyVIa0dx04yooovqRJLmaOrcy5Gjh3ZAcF_T0pgQUJMJ93d7-m9tyAzHzwScsnZirNarDsfIa3TAC3P6_yEzLlQMstrpWZkzpiQWVVyfkYWKb0wxgqRqzmxu-eISFvboU82eHC0g4PHIcQwwDBtdIiY6eAc9Alpeu0x-vAGFN97F45UosFQoKKmKTiIo0RKtI_hgN6OSnQ0Fc_JqQGX8OJ7LsnT7c1uc59tH-8eNtfbTIuyHjKzl0zmo7mCacEqU8IeBTeyMkq1LR-vdYUFFq0seV1CKYwopDYGFMulqYRYkmLS1TGkFNE02k5JhgjWNZw1x7qar7qan7pGbPUL66PtIH78DVxNQHjt__v9BKHlgxA |
CitedBy_id | crossref_primary_10_1103_PhysRevD_108_123003 crossref_primary_10_3847_1538_4357_ad08c2 crossref_primary_10_1103_PhysRevD_109_083023 crossref_primary_10_1103_PhysRevD_109_063019 crossref_primary_10_1093_mnras_stae1731 crossref_primary_10_1093_mnras_stae561 crossref_primary_10_3847_1538_4365_acf033 crossref_primary_10_1017_pasa_2025_10 crossref_primary_10_1093_mnras_stad2881 crossref_primary_10_1051_0004_6361_202451483 crossref_primary_10_1093_mnras_stad3113 crossref_primary_10_3847_1538_4357_ad4ae7 crossref_primary_10_1007_s10509_024_04343_1 crossref_primary_10_3847_1538_4357_ad6983 crossref_primary_10_1134_S0015462824605060 crossref_primary_10_1134_S1995080224010268 crossref_primary_10_1103_PhysRevD_110_083025 crossref_primary_10_1103_PhysRevLett_133_231401 crossref_primary_10_3847_1538_4357_acfca4 crossref_primary_10_1051_0004_6361_202452758 crossref_primary_10_1088_1475_7516_2025_01_108 crossref_primary_10_1103_PhysRevD_111_063042 crossref_primary_10_1093_mnrasl_slad173 crossref_primary_10_1093_mnras_stae1361 |
Cites_doi | 10.1093/mnras/stab2161 10.3847/0004-637X/832/2/108 10.1086/186413 10.1103/PhysRevD.104.123009 10.1093/mnras/stab3763 10.1093/mnras/stz990 10.1093/mnras/staa096 10.1126/science.1149437 10.1051/0004-6361:20021398 10.1038/357472a0 10.1088/0004-637X/730/2/70 10.1088/0004-637X/807/1/110 10.1093/pasj/65.1.14 10.1093/mnras/stz3483 10.3847/1538-4357/aa76de 10.1093/mnras/242.3.289 10.1016/j.nuclphysa.2006.05.008 10.1088/2041-8205/750/1/L22 10.1086/345812 10.1093/mnrasl/slaa137 10.1103/PhysRevD.104.102002 10.1086/521873 10.1093/mnras/stab3109 10.1051/0004-6361:20053783 10.1086/509612 10.1093/mnras/staa3819 10.1016/j.jcp.2005.02.017 10.3847/1538-4357/ac403c 10.3847/1538-4365/aaa5a8 10.1093/mnras/stv101 10.1051/0004-6361/202039253 10.1093/mnras/stab029 10.1088/0004-637X/766/1/43 10.1088/0004-637X/764/1/50 10.3847/1538-4357/aad6ec 10.1086/513597 10.1093/mnrasl/slx046 10.1007/978-3-319-21846-5_35 10.1088/0067-0049/192/1/3 10.1093/mnrasl/slaa021 10.1103/PhysRevD.93.042002 10.1086/307790 10.1088/0264-9381/32/2/024001 10.1086/344135 10.1103/PhysRevD.89.044011 10.1086/173464 10.1093/mnras/stz216 10.1038/s41586-020-03059-w 10.1103/PhysRevD.101.084002 10.1103/PhysRevD.95.063019 10.3847/1538-4357/aabfc1 10.1088/0067-0049/189/1/104 10.1086/305119 10.3847/1538-4357/ab6458 10.1093/mnras/stv087 10.1093/mnras/stac613 10.1093/mnras/stx3067 10.3847/1538-4357/ab9308 10.1088/0004-637X/788/1/82 10.1086/324487 10.1093/mnras/stab883 10.1051/0004-6361:200809609 10.1086/431543 10.1086/163580 10.1088/0264-9381/28/9/094013 10.1086/508914 10.1103/PhysRevD.94.044043 10.1088/0264-9381/32/7/074001 10.3847/1538-4357/aac5f1 10.1093/pasj/59.4.771 10.1103/PhysRevLett.123.051102 10.1111/j.1365-2966.2012.21083.x 10.1093/mnras/stu1969 10.3847/1538-4357/ab1de2 10.3847/1538-4357/abb138 10.1103/PhysRevX.11.021053 10.1103/PhysRevD.103.024025 10.1111/j.1365-2966.2005.09669.x 10.1093/mnras/stac3185 10.1088/0067-0049/220/1/15 10.1103/PhysRevD.104.122004 10.1093/mnras/staa1048 10.1093/mnras/stab295 10.1103/PhysRevD.78.064056 10.1093/mnras/staa3273 10.1086/319784 10.1051/0004-6361:20064855 10.1098/rspa.1958.0079 10.1093/ptep/ptab018 10.1007/s41115-020-0008-5 10.1007/BF00646184 10.1088/2041-8205/785/2/L29 10.1016/0375-9474(91)90452-C 10.1038/nature15755 10.1086/519161 10.1088/0004-637X/743/1/30 10.3847/1538-4357/aa6035 10.1093/mnras/stv698 10.1051/0004-6361:20078577 10.1093/mnras/stz1304 10.1086/307131 10.1103/PhysRevD.90.044001 10.1093/mnras/stt047 10.1006/jcph.2001.6961 10.1093/mnras/staa1431 10.1137/S1064827502407962 10.3847/1538-4357/aa9d97 10.1051/0004-6361:20054654 10.1038/27155 10.3847/1538-4357/abc61b 10.1146/annurev.astro.43.072103.150558 10.1086/500817 10.1093/mnras/stab2983 10.1088/2041-8205/719/2/L204 10.1051/0004-6361/201220636 10.1086/322420 10.1088/0004-637X/799/1/51 10.1051/0004-6361:20054306 10.1088/0067-0049/208/1/4 10.1086/168497 10.1093/mnras/staa1691 10.1103/PhysRevX.9.031040 |
ContentType | Journal Article |
Copyright | 2023 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society. 2023 |
Copyright_xml | – notice: 2023 The Author(s). Published by Oxford University Press on behalf of Royal Astronomical Society. 2023 |
DBID | TOX AAYXX CITATION |
DOI | 10.1093/mnras/stad1292 |
DatabaseName | Oxford Journals Open Access (Activated by CARLI) CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Astronomy & Astrophysics |
EISSN | 1365-2966 |
EndPage | 6086 |
ExternalDocumentID | 10_1093_mnras_stad1292 10.1093/mnras/stad1292 |
GroupedDBID | -DZ -~X .2P .3N .GA .I3 .Y3 0R~ 10A 123 1OC 1TH 29M 2WC 31~ 4.4 48X 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8UM AAHHS AAHTB AAIJN AAJKP AAJQQ AAKDD AAMVS AAOGV AAPQZ AAPXW AARHZ AASNB AAUQX AAVAP ABCQN ABCQX ABEML ABEUO ABFSI ABIXL ABJNI ABNKS ABPEJ ABPTD ABQLI ABSAR ABSMQ ABTAH ABXVV ABZBJ ACBNA ACBWZ ACCFJ ACFRR ACGFO ACGFS ACGOD ACNCT ACSCC ACUFI ACUTJ ACXQS ACYRX ACYTK ADEYI ADGZP ADHKW ADHZD ADOCK ADQBN ADRDM ADRIX ADRTK ADVEK ADYVW ADZXQ AECKG AEEZP AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AEQDE AETBJ AETEA AEWNT AFBPY AFEBI AFFNX AFFZL AFIYH AFOFC AFXEN AFZJQ AGINJ AGMDO AGSYK AHXPO AIWBW AJAOE AJBDE AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC APIBT ASAOO ASPBG ATDFG AVWKF AXUDD AZFZN AZVOD BAYMD BCRHZ BDRZF BEFXN BEYMZ BFFAM BFHJK BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN BY8 CAG CDBKE CO8 COF CXTWN D-E D-F DAKXR DCZOG DFGAJ DILTD DR2 DU5 D~K E.L E3Z EAD EAP EBS EE~ EJD ESX F00 F04 F5P F9B FEDTE FLIZI FLUFQ FOEOM FRJ GAUVT GJXCC GROUPED_DOAJ H13 H5~ HAR HF~ HOLLA HVGLF HW0 HZI HZ~ IHE IX1 J21 JAVBF K48 KBUDW KOP KQ8 KSI KSN L7B LC2 LC3 LH4 LP6 LP7 LW6 M43 MBTAY MK4 NGC NMDNZ NOMLY O0~ O9- OCL ODMLO OHT OIG OJQWA OK1 P2P P2X P4D PAFKI PB- PEELM PQQKQ Q1. Q11 Q5Y QB0 RHF RNP RNS ROL ROX ROZ RUSNO RW1 RX1 RXO TJP TN5 TOX UB1 UQL V8K VOH W8V W99 WH7 WQJ WRC WYUIH X5Q X5S XG1 YAYTL YKOAZ YXANX ZY4 AAYXX ABAZT ABEJV ABGNP ABVLG ACUXJ AHGBF ALXQX AMNDL ANAKG CITATION JXSIZ |
ID | FETCH-LOGICAL-c379t-fb505243240c308f7abe31f58f66dd1b5098e4e4d57197a73f345cffa6025f833 |
IEDL.DBID | TOX |
ISSN | 0035-8711 |
IngestDate | Tue Jul 01 03:32:32 EDT 2025 Thu Apr 24 22:51:09 EDT 2025 Wed Aug 28 03:17:36 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Keywords | transients: supernovae gravitational waves |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c379t-fb505243240c308f7abe31f58f66dd1b5098e4e4d57197a73f345cffa6025f833 |
ORCID | 0000-0002-1357-4164 |
OpenAccessLink | https://dx.doi.org/10.1093/mnras/stad1292 |
PageCount | 17 |
ParticipantIDs | crossref_citationtrail_10_1093_mnras_stad1292 crossref_primary_10_1093_mnras_stad1292 oup_primary_10_1093_mnras_stad1292 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-05-11 |
PublicationDateYYYYMMDD | 2023-05-11 |
PublicationDate_xml | – month: 05 year: 2023 text: 2023-05-11 day: 11 |
PublicationDecade | 2020 |
PublicationTitle | Monthly notices of the Royal Astronomical Society |
PublicationYear | 2023 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Jardine (2023101908161195400_bib48) 2022; 510 Mazzali (2023101908161195400_bib66) 2007; 670 Bugli (2023101908161195400_bib19) 2020; 492 Modjaz (2023101908161195400_bib69) 2016; 832 Acernese (2023101908161195400_bib7) 2015; 32 Abdikamalov (2023101908161195400_bib5) 2014; 90 Duncan (2023101908161195400_bib29) 1992; 392 Müller (2023101908161195400_bib76) 2015; 448 Obergaulinger (2023101908161195400_bib91) 2021; 503 Raynaud (2023101908161195400_bib104) 2022; 509 Müller (2023101908161195400_bib77) 2020; 498 Scheidegger (2023101908161195400_bib109) 2008; 490 Noutsos (2023101908161195400_bib85) 2012; 423 Burrows (2023101908161195400_bib25) 2007; 664 Sieverding (2023101908161195400_bib111) 2020; 904 Chan (2023101908161195400_bib26) 2020; 495 Müller (2023101908161195400_bib80) 2019; 484 Varma (2023101908161195400_bib125) 2021; 508 Wanajo (2023101908161195400_bib127) 2018; 852 Grimmett (2023101908161195400_bib40) 2021; 501 Lopez (2023101908161195400_bib61) 2013; 764 Stockinger (2023101908161195400_bib114) 2020; 496 O’Connor (2023101908161195400_bib87) 2011; 730 Mösta (2023101908161195400_bib73) 2018; 864 Müller (2023101908161195400_bib75) 2014; 788 Sotani (2023101908161195400_bib113) 2021; 104 Morozova (2023101908161195400_bib70) 2018; 861 Suwa (2023101908161195400_bib115) 2007; 59 Bugli (2023101908161195400_bib21) 2022 Nakamura (2023101908161195400_bib82) 2001; 550 Müller (2023101908161195400_bib79) 2013; 766 Obergaulinger (2023101908161195400_bib90) 2021; 503 Dimmelmeier (2023101908161195400_bib28) 2008; 78 Akiyama (2023101908161195400_bib10) 2003; 584 Gossan (2023101908161195400_bib39) 2016; 93 Szczepańczyk (2023101908161195400_bib116) 2021; 104 Varma (2023101908161195400_bib126) 2022 Andresen (2023101908161195400_bib13) 2019; 486 Usov (2023101908161195400_bib123) 1992; 357 Kuroda (2023101908161195400_bib56) 2014; 89 Paxton (2023101908161195400_bib99) 2015; 220 Gal-Yam (2023101908161195400_bib38) 2017 Woosley (2023101908161195400_bib131) 2006; 44 Takahashi (2023101908161195400_bib117) 2021; 646 Eichler (2023101908161195400_bib31) 1993; 419 Takiwaki (2023101908161195400_bib118) 2011; 743 Richers (2023101908161195400_bib107) 2017; 95 Bisnovatyi-Kogan (2023101908161195400_bib15) 1976; 41 Blondin (2023101908161195400_bib17) 2006; 642 Burrows (2023101908161195400_bib24) 2021; 589 Buras (2023101908161195400_bib22) 2006; 447 Paxton (2023101908161195400_bib98) 2013; 208 Lattimer (2023101908161195400_bib59) 2005; 629 Mösta (2023101908161195400_bib72) 2015; 528 Müller (2023101908161195400_bib74) 2020; 6 Obergaulinger (2023101908161195400_bib95) 2014; 445 Mazzali (2023101908161195400_bib65) 2001; 559 Begelman (2023101908161195400_bib14) 1998; 493 Aguilera-Dena (2023101908161195400_bib9) 2020; 901 Bugli (2023101908161195400_bib20) 2021; 507 Abbott (2023101908161195400_bib1) 2019; 9 Sotani (2023101908161195400_bib112) 2016; 94 Tanaka (2023101908161195400_bib119) 2017; 837 Nomoto (2023101908161195400_bib84) 2006; 777 Ertl (2023101908161195400_bib32) 2020; 890 Lattimer (2023101908161195400_bib60) 1991; 535 Abbott (2023101908161195400_bib2) 2020; 101 Fuller (2023101908161195400_bib37) 2015; 450 Blanchet (2023101908161195400_bib16) 1990; 242 Dedner (2023101908161195400_bib27) 2002; 175 Kobayashi (2023101908161195400_bib54) 2006; 653 Abdikamalov (2023101908161195400_bib6) 2020 Kuroda (2023101908161195400_bib57) 2020; 896 Noutsos (2023101908161195400_bib86) 2013; 430 Varma (2023101908161195400_bib124) 2021; 504 Buras (2023101908161195400_bib23) 2006; 457 Paxton (2023101908161195400_bib100) 2018; 234 Milisavljevic (2023101908161195400_bib67) 2015; 799 Maeda (2023101908161195400_bib63) 2002; 565 (2023101908161195400_bib58) 2015; 32 Johnston (2023101908161195400_bib51) 2005; 364 Obergaulinger (2023101908161195400_bib92) 2022; 512 Miyoshi (2023101908161195400_bib68) 2005; 208 Blondin (2023101908161195400_bib18) 2003; 584 Aguilera-Dena (2023101908161195400_bib8) 2018; 858 Maeda (2023101908161195400_bib64) 2008; 319 Mösta (2023101908161195400_bib71) 2014; 785 Obergaulinger (2023101908161195400_bib93) 2022; 512 Grimmett (2023101908161195400_bib41) 2021; 501 Müller (2023101908161195400_bib81) 2010; 189 Shibagaki (2023101908161195400_bib110) 2020; 493 Powell (2023101908161195400_bib101) 2019; 487 Torres-Forné (2023101908161195400_bib121) 2018; 474 Evans (2023101908161195400_bib33) 2021 Woosley (2023101908161195400_bib132) 1999; 516 Aloy (2023101908161195400_bib12) 2020; 500 Abbott (2023101908161195400_bib3) 2021; 11 Torres-Forné (2023101908161195400_bib122) 2019; 123 Scheck (2023101908161195400_bib108) 2006; 457 Paxton (2023101908161195400_bib97) 2011; 192 Janka (2023101908161195400_bib47) 2022; 926 The LIGO Scientific Collaboration (2023101908161195400_bib120) 2021 Abbott (2023101908161195400_bib4) 2021; 104 Obergaulinger (2023101908161195400_bib89) 2020; 492 Foglizzo (2023101908161195400_bib36) 2007; 654 Reichert (2023101908161195400_bib106) 2022 Winteler (2023101908161195400_bib128) 2012; 750 MacFadyen (2023101908161195400_bib62) 1999; 524 Hartmann (2023101908161195400_bib44) 1985; 297 Gurski (2023101908161195400_bib42) 2004; 25 Kalogera (2023101908161195400_bib52) 2019; 51 Obergaulinger (2023101908161195400_bib88) 2017; 469 Akutsu (2023101908161195400_bib11) 2021; 2021 Müller (2023101908161195400_bib78) 2008; 489 Powell (2023101908161195400_bib102) 2020; 494 Wongwathanarat (2023101908161195400_bib129) 2013; 552 Rampp (2023101908161195400_bib103) 2002; 396 Jerkstrand (2023101908161195400_bib50) 2015; 807 Hild (2023101908161195400_bib45) 2011; 28 Pajkos (2023101908161195400_bib96) 2019; 878 Woosley (2023101908161195400_bib130) 2010; 719 Kruskal (2023101908161195400_bib55) 1958; 245 Iwamoto (2023101908161195400_bib46) 1998; 395 Ng (2023101908161195400_bib83) 2007; 660 Kimura (2023101908161195400_bib53) 2013; 65 Finn (2023101908161195400_bib34) 1989 Edwards (2023101908161195400_bib30) 2021; 103 Reichert (2023101908161195400_bib105) 2021 Obergaulinger (2023101908161195400_bib94) 2006; 450 Jerkstrand (2023101908161195400_bib49) 2015; 448 Harris (2023101908161195400_bib43) 2017; 843 Finn (2023101908161195400_bib35) 1990; 351 |
References_xml | – volume: 507 start-page: 443 year: 2021 ident: 2023101908161195400_bib20 publication-title: MNRAS doi: 10.1093/mnras/stab2161 – volume: 832 start-page: 108 year: 2016 ident: 2023101908161195400_bib69 publication-title: ApJ doi: 10.3847/0004-637X/832/2/108 – volume: 392 start-page: L9 year: 1992 ident: 2023101908161195400_bib29 publication-title: ApJ doi: 10.1086/186413 – volume: 104 start-page: 123009 year: 2021 ident: 2023101908161195400_bib113 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.104.123009 – volume: 510 start-page: 5535 year: 2022 ident: 2023101908161195400_bib48 publication-title: MNRAS doi: 10.1093/mnras/stab3763 – volume: 486 start-page: 2238 year: 2019 ident: 2023101908161195400_bib13 publication-title: MNRAS doi: 10.1093/mnras/stz990 – volume: 492 start-page: 4613 year: 2020 ident: 2023101908161195400_bib89 publication-title: MNRAS doi: 10.1093/mnras/staa096 – volume: 319 start-page: 1220 year: 2008 ident: 2023101908161195400_bib64 publication-title: Science doi: 10.1126/science.1149437 – volume: 396 start-page: 361 year: 2002 ident: 2023101908161195400_bib103 publication-title: A&A doi: 10.1051/0004-6361:20021398 – volume: 357 start-page: 472 year: 1992 ident: 2023101908161195400_bib123 publication-title: Nature doi: 10.1038/357472a0 – volume: 730 start-page: 70 year: 2011 ident: 2023101908161195400_bib87 publication-title: ApJ doi: 10.1088/0004-637X/730/2/70 – volume: 807 start-page: 110 year: 2015 ident: 2023101908161195400_bib50 publication-title: ApJ doi: 10.1088/0004-637X/807/1/110 – volume: 65 start-page: 14 year: 2013 ident: 2023101908161195400_bib53 publication-title: PASJ doi: 10.1093/pasj/65.1.14 – volume: 492 start-page: 58 year: 2020 ident: 2023101908161195400_bib19 publication-title: MNRAS doi: 10.1093/mnras/stz3483 – year: 2021 ident: 2023101908161195400_bib120 – volume: 843 start-page: 2 year: 2017 ident: 2023101908161195400_bib43 publication-title: ApJ doi: 10.3847/1538-4357/aa76de – volume: 242 start-page: 289 year: 1990 ident: 2023101908161195400_bib16 publication-title: MNRAS doi: 10.1093/mnras/242.3.289 – volume: 777 start-page: 424 year: 2006 ident: 2023101908161195400_bib84 publication-title: Nucl. Phys. A doi: 10.1016/j.nuclphysa.2006.05.008 – start-page: 5622 volume-title: MNRAS year: 2022 ident: 2023101908161195400_bib21 – volume: 750 start-page: L22 year: 2012 ident: 2023101908161195400_bib128 publication-title: ApJ doi: 10.1088/2041-8205/750/1/L22 – volume: 584 start-page: 971 year: 2003 ident: 2023101908161195400_bib18 publication-title: ApJ doi: 10.1086/345812 – volume: 498 start-page: L109 year: 2020 ident: 2023101908161195400_bib77 publication-title: MNRAS doi: 10.1093/mnrasl/slaa137 – volume: 104 start-page: 102002 year: 2021 ident: 2023101908161195400_bib116 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.104.102002 – volume: 670 start-page: 592 year: 2007 ident: 2023101908161195400_bib66 publication-title: ApJ doi: 10.1086/521873 – volume: 509 start-page: 3410 year: 2022 ident: 2023101908161195400_bib104 publication-title: MNRAS doi: 10.1093/mnras/stab3109 – year: 2021 ident: 2023101908161195400_bib33 – volume: 447 start-page: 1049 year: 2006 ident: 2023101908161195400_bib22 publication-title: A&A doi: 10.1051/0004-6361:20053783 – volume: 654 start-page: 1006 year: 2007 ident: 2023101908161195400_bib36 publication-title: ApJ doi: 10.1086/509612 – volume: 501 start-page: 2764 year: 2021 ident: 2023101908161195400_bib40 publication-title: MNRAS doi: 10.1093/mnras/staa3819 – volume: 208 start-page: 315 year: 2005 ident: 2023101908161195400_bib68 publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2005.02.017 – volume: 926 start-page: 9 year: 2022 ident: 2023101908161195400_bib47 publication-title: ApJ doi: 10.3847/1538-4357/ac403c – volume: 234 start-page: 34 year: 2018 ident: 2023101908161195400_bib100 publication-title: ApJS doi: 10.3847/1538-4365/aaa5a8 – volume: 448 start-page: 2141 year: 2015 ident: 2023101908161195400_bib76 publication-title: MNRAS doi: 10.1093/mnras/stv101 – volume: 646 start-page: A19 year: 2021 ident: 2023101908161195400_bib117 publication-title: A&A doi: 10.1051/0004-6361/202039253 – year: 2021 ident: 2023101908161195400_bib105 publication-title: MNRAS doi: 10.1093/mnras/stab029 – volume: 766 start-page: 43 year: 2013 ident: 2023101908161195400_bib79 publication-title: ApJ doi: 10.1088/0004-637X/766/1/43 – volume: 764 start-page: 50 year: 2013 ident: 2023101908161195400_bib61 publication-title: ApJ doi: 10.1088/0004-637X/764/1/50 – volume: 864 start-page: 171 year: 2018 ident: 2023101908161195400_bib73 publication-title: ApJ doi: 10.3847/1538-4357/aad6ec – volume: 660 start-page: 1357 year: 2007 ident: 2023101908161195400_bib83 publication-title: ApJ doi: 10.1086/513597 – volume: 469 start-page: L43 year: 2017 ident: 2023101908161195400_bib88 publication-title: MNRAS doi: 10.1093/mnrasl/slx046 – volume-title: Handbook of Supernovae year: 2017 ident: 2023101908161195400_bib38 doi: 10.1007/978-3-319-21846-5_35 – volume: 192 start-page: 3 year: 2011 ident: 2023101908161195400_bib97 publication-title: ApJS doi: 10.1088/0067-0049/192/1/3 – volume: 493 start-page: L138 year: 2020 ident: 2023101908161195400_bib110 publication-title: MNRAS doi: 10.1093/mnrasl/slaa021 – volume: 93 start-page: 042002 year: 2016 ident: 2023101908161195400_bib39 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.93.042002 – volume: 524 start-page: 262 year: 1999 ident: 2023101908161195400_bib62 publication-title: ApJ doi: 10.1086/307790 – volume: 32 start-page: 024001 year: 2015 ident: 2023101908161195400_bib7 publication-title: Classical and Quantum Gravity doi: 10.1088/0264-9381/32/2/024001 – volume: 584 start-page: 954 year: 2003 ident: 2023101908161195400_bib10 publication-title: ApJ doi: 10.1086/344135 – volume: 89 start-page: 044011 year: 2014 ident: 2023101908161195400_bib56 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.89.044011 – volume: 419 start-page: 111 year: 1993 ident: 2023101908161195400_bib31 publication-title: ApJ doi: 10.1086/173464 – volume: 484 start-page: 3307 year: 2019 ident: 2023101908161195400_bib80 publication-title: MNRAS doi: 10.1093/mnras/stz216 – volume: 589 start-page: 29 year: 2021 ident: 2023101908161195400_bib24 publication-title: Nature doi: 10.1038/s41586-020-03059-w – volume: 101 start-page: 084002 year: 2020 ident: 2023101908161195400_bib2 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.101.084002 – volume: 95 start-page: 063019 year: 2017 ident: 2023101908161195400_bib107 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.95.063019 – volume: 858 start-page: 115 year: 2018 ident: 2023101908161195400_bib8 publication-title: ApJ doi: 10.3847/1538-4357/aabfc1 – volume: 189 start-page: 104 year: 2010 ident: 2023101908161195400_bib81 publication-title: ApJS doi: 10.1088/0067-0049/189/1/104 – volume: 493 start-page: 291 year: 1998 ident: 2023101908161195400_bib14 publication-title: ApJ doi: 10.1086/305119 – volume: 890 start-page: 51 year: 2020 ident: 2023101908161195400_bib32 publication-title: ApJ doi: 10.3847/1538-4357/ab6458 – volume: 448 start-page: 2482 year: 2015 ident: 2023101908161195400_bib49 publication-title: MNRAS doi: 10.1093/mnras/stv087 – volume: 512 start-page: 2489 year: 2022 ident: 2023101908161195400_bib93 publication-title: MNRAS doi: 10.1093/mnras/stac613 – volume: 474 start-page: 5272 year: 2018 ident: 2023101908161195400_bib121 publication-title: MNRAS doi: 10.1093/mnras/stx3067 – volume: 896 start-page: 102 year: 2020 ident: 2023101908161195400_bib57 publication-title: ApJ doi: 10.3847/1538-4357/ab9308 – volume-title: Frontiers in Numerical Relativity year: 1989 ident: 2023101908161195400_bib34 – volume: 788 start-page: 82 year: 2014 ident: 2023101908161195400_bib75 publication-title: ApJ doi: 10.1088/0004-637X/788/1/82 – volume: 565 start-page: 405 year: 2002 ident: 2023101908161195400_bib63 publication-title: ApJ doi: 10.1086/324487 – volume: 504 start-page: 636 year: 2021 ident: 2023101908161195400_bib124 publication-title: MNRAS doi: 10.1093/mnras/stab883 – volume: 489 start-page: 301 year: 2008 ident: 2023101908161195400_bib78 publication-title: A&A doi: 10.1051/0004-6361:200809609 – year: 2020 ident: 2023101908161195400_bib6 – volume: 629 start-page: 979 year: 2005 ident: 2023101908161195400_bib59 publication-title: ApJ doi: 10.1086/431543 – volume: 297 start-page: 837 year: 1985 ident: 2023101908161195400_bib44 publication-title: ApJ doi: 10.1086/163580 – volume: 28 start-page: 094013 year: 2011 ident: 2023101908161195400_bib45 publication-title: Class. Quantum Gravity doi: 10.1088/0264-9381/28/9/094013 – volume: 653 start-page: 1145 year: 2006 ident: 2023101908161195400_bib54 publication-title: ApJ doi: 10.1086/508914 – volume: 94 start-page: 044043 year: 2016 ident: 2023101908161195400_bib112 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.94.044043 – volume: 32 start-page: 074001 year: 2015 ident: 2023101908161195400_bib58 publication-title: Class. Quantum Gravity doi: 10.1088/0264-9381/32/7/074001 – volume: 861 start-page: 10 year: 2018 ident: 2023101908161195400_bib70 publication-title: ApJ doi: 10.3847/1538-4357/aac5f1 – volume: 59 start-page: 771 year: 2007 ident: 2023101908161195400_bib115 publication-title: PASJ doi: 10.1093/pasj/59.4.771 – volume: 123 start-page: 051102 year: 2019 ident: 2023101908161195400_bib122 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.123.051102 – volume: 51 start-page: 239 year: 2019 ident: 2023101908161195400_bib52 publication-title: BAAS – volume: 423 start-page: 2736 year: 2012 ident: 2023101908161195400_bib85 publication-title: MNRAS doi: 10.1111/j.1365-2966.2012.21083.x – volume: 445 start-page: 3169 year: 2014 ident: 2023101908161195400_bib95 publication-title: MNRAS doi: 10.1093/mnras/stu1969 – volume: 878 start-page: 13 year: 2019 ident: 2023101908161195400_bib96 publication-title: ApJ doi: 10.3847/1538-4357/ab1de2 – volume: 901 start-page: 114 year: 2020 ident: 2023101908161195400_bib9 publication-title: ApJ doi: 10.3847/1538-4357/abb138 – volume: 11 start-page: 021053 year: 2021 ident: 2023101908161195400_bib3 publication-title: Physical Review X doi: 10.1103/PhysRevX.11.021053 – volume: 103 start-page: 024025 year: 2021 ident: 2023101908161195400_bib30 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.103.024025 – volume: 364 start-page: 1397 year: 2005 ident: 2023101908161195400_bib51 publication-title: MNRAS doi: 10.1111/j.1365-2966.2005.09669.x – year: 2022 ident: 2023101908161195400_bib106 publication-title: MNRAS doi: 10.1093/mnras/stac3185 – volume: 220 start-page: 15 year: 2015 ident: 2023101908161195400_bib99 publication-title: ApJS doi: 10.1088/0067-0049/220/1/15 – volume: 104 start-page: 122004 year: 2021 ident: 2023101908161195400_bib4 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.104.122004 – volume: 494 start-page: 4665 year: 2020 ident: 2023101908161195400_bib102 publication-title: MNRAS doi: 10.1093/mnras/staa1048 – volume: 503 start-page: 4942 year: 2021 ident: 2023101908161195400_bib91 publication-title: MNRAS doi: 10.1093/mnras/stab295 – volume: 78 start-page: 064056 year: 2008 ident: 2023101908161195400_bib28 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.78.064056 – volume: 500 start-page: 4365 year: 2020 ident: 2023101908161195400_bib12 publication-title: MNRAS doi: 10.1093/mnras/staa3273 – volume: 550 start-page: 991 year: 2001 ident: 2023101908161195400_bib82 publication-title: ApJ doi: 10.1086/319784 – volume: 457 start-page: 963 year: 2006 ident: 2023101908161195400_bib108 publication-title: A&A doi: 10.1051/0004-6361:20064855 – volume: 245 start-page: 222 year: 1958 ident: 2023101908161195400_bib55 publication-title: Proc. R. Soc. doi: 10.1098/rspa.1958.0079 – volume: 2021 start-page: 05A102 year: 2021 ident: 2023101908161195400_bib11 publication-title: Prog. Theor. Exp. Phys. doi: 10.1093/ptep/ptab018 – volume: 6 start-page: 3 year: 2020 ident: 2023101908161195400_bib74 publication-title: Living Rev. Comput. Astrophys. doi: 10.1007/s41115-020-0008-5 – volume: 41 start-page: 287 year: 1976 ident: 2023101908161195400_bib15 publication-title: Ap&SS doi: 10.1007/BF00646184 – volume: 785 start-page: L29 year: 2014 ident: 2023101908161195400_bib71 publication-title: ApJ doi: 10.1088/2041-8205/785/2/L29 – volume: 535 start-page: 331 year: 1991 ident: 2023101908161195400_bib60 publication-title: Nucl. Phys. A doi: 10.1016/0375-9474(91)90452-C – volume: 528 start-page: 376 year: 2015 ident: 2023101908161195400_bib72 publication-title: Nature doi: 10.1038/nature15755 – volume: 664 start-page: 416 year: 2007 ident: 2023101908161195400_bib25 publication-title: ApJ doi: 10.1086/519161 – volume: 743 start-page: 30 year: 2011 ident: 2023101908161195400_bib118 publication-title: ApJ doi: 10.1088/0004-637X/743/1/30 – volume: 837 start-page: 105 year: 2017 ident: 2023101908161195400_bib119 publication-title: ApJ doi: 10.3847/1538-4357/aa6035 – volume: 450 start-page: 414 year: 2015 ident: 2023101908161195400_bib37 publication-title: MNRAS doi: 10.1093/mnras/stv698 – volume: 490 start-page: 231 year: 2008 ident: 2023101908161195400_bib109 publication-title: A&A doi: 10.1051/0004-6361:20078577 – volume: 487 start-page: 1178 year: 2019 ident: 2023101908161195400_bib101 publication-title: MNRAS doi: 10.1093/mnras/stz1304 – volume: 516 start-page: 788 year: 1999 ident: 2023101908161195400_bib132 publication-title: ApJ doi: 10.1086/307131 – volume: 90 start-page: 044001 year: 2014 ident: 2023101908161195400_bib5 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.90.044001 – volume: 430 start-page: 2281 year: 2013 ident: 2023101908161195400_bib86 publication-title: MNRAS doi: 10.1093/mnras/stt047 – volume: 512 start-page: 2489 year: 2022 ident: 2023101908161195400_bib92 publication-title: MNRAS doi: 10.1093/mnras/stac613 – volume: 175 start-page: 645 year: 2002 ident: 2023101908161195400_bib27 publication-title: J. Comput. Phys. doi: 10.1006/jcph.2001.6961 – volume: 495 start-page: 3751 year: 2020 ident: 2023101908161195400_bib26 publication-title: MNRAS doi: 10.1093/mnras/staa1431 – volume: 25 start-page: 2165 year: 2004 ident: 2023101908161195400_bib42 publication-title: SIAM J. Sci. Comput. doi: 10.1137/S1064827502407962 – volume: 503 start-page: 4942 year: 2021 ident: 2023101908161195400_bib90 publication-title: MNRAS doi: 10.1093/mnras/stab295 – volume: 852 start-page: 40 year: 2018 ident: 2023101908161195400_bib127 publication-title: ApJ doi: 10.3847/1538-4357/aa9d97 – volume: 457 start-page: 281 year: 2006 ident: 2023101908161195400_bib23 publication-title: A&A doi: 10.1051/0004-6361:20054654 – volume: 395 start-page: 672 year: 1998 ident: 2023101908161195400_bib46 publication-title: Nature doi: 10.1038/27155 – volume: 904 start-page: 163 year: 2020 ident: 2023101908161195400_bib111 publication-title: ApJ doi: 10.3847/1538-4357/abc61b – volume: 44 start-page: 507 year: 2006 ident: 2023101908161195400_bib131 publication-title: ARA&A doi: 10.1146/annurev.astro.43.072103.150558 – volume: 642 start-page: 401 year: 2006 ident: 2023101908161195400_bib17 publication-title: ApJ doi: 10.1086/500817 – volume: 508 start-page: 6033 year: 2021 ident: 2023101908161195400_bib125 publication-title: MNRAS doi: 10.1093/mnras/stab2983 – volume: 719 start-page: L204 year: 2010 ident: 2023101908161195400_bib130 publication-title: ApJ doi: 10.1088/2041-8205/719/2/L204 – volume: 552 start-page: A126 year: 2013 ident: 2023101908161195400_bib129 publication-title: A&A doi: 10.1051/0004-6361/201220636 – volume: 559 start-page: 1047 year: 2001 ident: 2023101908161195400_bib65 publication-title: ApJ doi: 10.1086/322420 – volume: 501 start-page: 2764 year: 2021 ident: 2023101908161195400_bib41 publication-title: MNRAS doi: 10.1093/mnras/staa3819 – volume: 799 start-page: 51 year: 2015 ident: 2023101908161195400_bib67 publication-title: ApJ doi: 10.1088/0004-637X/799/1/51 – start-page: 3622 volume-title: MNRAS year: 2022 ident: 2023101908161195400_bib126 – volume: 450 start-page: 1107 year: 2006 ident: 2023101908161195400_bib94 publication-title: A&A doi: 10.1051/0004-6361:20054306 – volume: 208 start-page: 4 year: 2013 ident: 2023101908161195400_bib98 publication-title: ApJS doi: 10.1088/0067-0049/208/1/4 – volume: 351 start-page: 588 year: 1990 ident: 2023101908161195400_bib35 publication-title: ApJ doi: 10.1086/168497 – volume: 496 start-page: 2039 year: 2020 ident: 2023101908161195400_bib114 publication-title: MNRAS doi: 10.1093/mnras/staa1691 – volume: 9 start-page: 031040 year: 2019 ident: 2023101908161195400_bib1 publication-title: Physical Review X doi: 10.1103/PhysRevX.9.031040 |
SSID | ssj0004326 |
Score | 2.5455692 |
Snippet | ABSTRACT
We perform three-dimensional simulations of magnetorotational supernovae using a $39\, {\rm M}_{\odot }$ progenitor star with two different initial... We perform three-dimensional simulations of magnetorotational supernovae using a $39\, {\rm M}_{\odot }$ progenitor star with two different initial magnetic... |
SourceID | crossref oup |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 6070 |
Title | Three dimensional magnetorotational core-collapse supernova explosions of a 39 solar mass progenitor star |
Volume | 522 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3PS8MwFA6ykxfRqWz-GEFET2Vr0ybNcQzHEKYgG-xWsjaRwdaNpjv43_te2s0fKHpryUuh_ZK-770k3yPkFoIeBZFE6slQ9DyYidyTCqJWIAdpbEIRBRzPO4-f-GgaPs6iWS0WbX9Ywpesu8oLZbvAlTLwTfi3BQ-MI3ryPPs4AclcYTUnwAghgL-XZ_ze_Yv7wSNtn7zJ8Jgc1TSQ9ivcTsiBzpuk1beYmF6v3ugddddV3sE2SXsM5HZduBw4NA6WC2Ca7u6ULCaAh6YZ6vRXGht0pV5zjeIEZZ3ro6hW6TnQN1ZTu93oAsuhUo178LCXpWtDFWWSWox24RHWUty9pXHSFxRerTgj0-HDZDDy6goKXsqELD0zxzp1TnQvZb3YCDXXzDdRbDjPMh9aZaxDHWaR8KVQghkWRqkxigMVMjFj56SRr3PdIjTgUgmlYL4bDg4NAE19pbJQaxMw3ovbxNt92CSt5cWxysUyqZa5WeKASHZAtMn93n5TCWv8ankDOP1hdPEfo0tyiNXicfHf969Ioyy2-ho4RTnvAJt-CTpuUL0DLvXOVw |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Three+dimensional+magnetorotational+core-collapse+supernova+explosions+of+a+39+solar+mass+progenitor+star&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Powell%2C+Jade&rft.au=M%C3%BCller%2C+Bernhard&rft.au=Aguilera-Dena%2C+David+R&rft.au=Langer%2C+Norbert&rft.date=2023-05-11&rft.pub=Oxford+University+Press&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=522&rft.issue=4&rft.spage=6070&rft.epage=6086&rft_id=info:doi/10.1093%2Fmnras%2Fstad1292&rft.externalDocID=10.1093%2Fmnras%2Fstad1292 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon |