Dynamic Fuzzy Neural Network Based Learning Algorithms for Ocular Artefact Reduction in EEG Recordings
Frequent occurrence of ocular artefacts leads to serious problems in reading and analysing the electroencephalogram (EEG) signal. These artefacts have high amplitude and overlapping frequency band with the physiological signal or real brain signal. Hence, it is difficult to reduce this type of artef...
Saved in:
| Published in | Neural processing letters Vol. 39; no. 1; pp. 45 - 67 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Boston
Springer US
01.02.2014
Springer Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 1370-4621 1573-773X |
| DOI | 10.1007/s11063-013-9289-6 |
Cover
| Abstract | Frequent occurrence of ocular artefacts leads to serious problems in reading and analysing the electroencephalogram (EEG) signal. These artefacts have high amplitude and overlapping frequency band with the physiological signal or real brain signal. Hence, it is difficult to reduce this type of artefacts by traditional filtering methods. In this paper, a novel ocular artefact removal method using artificial neural networks is described. In the proposed method, the number of radial basis function (RBF) neurons and input output space clustering are adaptively determined. Furthermore, the structure of the system and the parameters of the corresponding RBF units are trained automatically and relatively fast adaptation is attained. By the recursive least square error estimator techniques, the proposed system is suitable for real EEG applications. The advantages of the proposed method are demonstrated on EEG recordings by comparing with systems based on ICA. Our results demonstrate that this new system is preferable to other methods for ocular artefact reduction, achieving a better trade-off between removing artefacts and preserving inherent brain activities. |
|---|---|
| AbstractList | Frequent occurrence of ocular artefacts leads to serious problems in reading and analysing the electroencephalogram (EEG) signal. These artefacts have high amplitude and overlapping frequency band with the physiological signal or real brain signal. Hence, it is difficult to reduce this type of artefacts by traditional filtering methods. In this paper, a novel ocular artefact removal method using artificial neural networks is described. In the proposed method, the number of radial basis function (RBF) neurons and input output space clustering are adaptively determined. Furthermore, the structure of the system and the parameters of the corresponding RBF units are trained automatically and relatively fast adaptation is attained. By the recursive least square error estimator techniques, the proposed system is suitable for real EEG applications. The advantages of the proposed method are demonstrated on EEG recordings by comparing with systems based on ICA. Our results demonstrate that this new system is preferable to other methods for ocular artefact reduction, achieving a better trade-off between removing artefacts and preserving inherent brain activities. |
| Author | García, M. A. Torres, A. M. Mateo, J. |
| Author_xml | – sequence: 1 givenname: J. surname: Mateo fullname: Mateo, J. email: jorge.mateo@uclm.es organization: Innovation in Bioengineering Research Group, University of Castilla-La Mancha – sequence: 2 givenname: A. M. surname: Torres fullname: Torres, A. M. organization: Innovation in Bioengineering Research Group, University of Castilla-La Mancha – sequence: 3 givenname: M. A. surname: García fullname: García, M. A. organization: Clinical Neurophysiology Service, Virgen de la Luz Hospital |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28068185$$DView record in Pascal Francis |
| BookMark | eNp9kVFrHCEQxyWk0CTtB-ibUAJ52XbUdVcfL8klLRwNlBb6Jq6rV5M9TdSlXD59PS6hEEifRobfb2bwf4wOQwwWoQ8EPhGA_nMmBDrWAGGNpEI23QE6IrxnTd-zX4f1zXpo2o6St-g451uAalE4Qu5yG_TGG3w1Pz5u8Tc7Jz3VUv7EdIfPdbYjXlmdgg9rvJjWMfnye5OxiwnfmHnSCS9SsU6bgr_bcTbFx4B9wMvldW2YmMZq5nfojdNTtu-f6gn6ebX8cfGlWd1cf71YrBrDelkax9pBDCMMUlInpICRk9aNA7XEcg7GOQKMERCMASdUMyEZFbRzVLZyaHt2gs72c-9TfJhtLmrjs7HTpIONc1aEs1ZQDpxW9OML9DbOKdTrFJWkbhCybSt1-kTpbPTkkg7GZ3Wf_EanraICOkEEr1y_50yKOSfrlPFF7z6jJO0nRUDtclL7nFTNSe1yUl01yQvzefj_HLp3cmXD2qZ_t78u_QU3W6Sx |
| CitedBy_id | crossref_primary_10_3233_THC_212847 crossref_primary_10_1007_s11063_020_10369_7 crossref_primary_10_1007_s00521_015_1988_7 crossref_primary_10_1007_s00034_014_9890_6 crossref_primary_10_1155_2015_150797 crossref_primary_10_1007_s11063_014_9399_9 crossref_primary_10_1016_j_cmpb_2019_04_004 |
| Cites_doi | 10.1109/TNN.2007.909842 10.1109/LSP.2005.855539 10.1214/09-SS054 10.1016/S1388-2457(00)00386-2 10.1109/72.641471 10.1016/j.clinph.2006.10.019 10.1177/155005941004100111 10.1109/72.750542 10.1111/1469-8986.3720163 10.1111/j.1469-8986.2003.00141.x 10.1109/TNN.2006.887556 10.1109/9780470544204 10.1093/oso/9780198538493.001.0001 10.1109/72.80341 10.1162/neco.1993.5.6.954 10.1007/s00034-012-9447-5 10.4236/jbise.2011.45043 10.1007/BF02344717 10.1016/S0987-7053(00)00055-1 10.1109/TBME.2008.2005969 10.1111/1469-8986.3710123 10.1155/2007/82069 10.1109/TNN.2007.891185 10.1109/TSMCB.2005.846651 10.1007/BF01234127 10.1109/3477.836384 10.1109/NNSP.1998.710633 10.1162/neco.1997.9.2.461 10.1093/schbul/sbn093 10.1002/9780470511923 10.1007/s10548-009-0131-4 10.1109/72.896792 10.1109/TBME.2005.862533 10.1109/PROC.1975.10036 10.1016/j.neunet.2006.05.005 10.1093/schbul/sbp091 10.1109/TBME.2006.889179 10.1109/TNN.2002.1031953 10.1109/72.701174 10.1088/0967-3334/27/4/008 10.1007/s11517-007-0179-9 10.1097/00004691-199701000-00007 10.1007/s10439-010-0087-2 10.1016/0165-0114(95)00322-3 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media New York 2013 2015 INIST-CNRS Copyright Springer Nature B.V. Feb 2014 |
| Copyright_xml | – notice: Springer Science+Business Media New York 2013 – notice: 2015 INIST-CNRS – notice: Copyright Springer Nature B.V. Feb 2014 |
| DBID | AAYXX CITATION IQODW 8FE 8FG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO GNUQQ HCIFZ JQ2 K7- P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ 7TK |
| DOI | 10.1007/s11063-013-9289-6 |
| DatabaseName | CrossRef Pascal-Francis ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials - QC ProQuest Central Database Suite (ProQuest) ProQuest Technology Collection ProQuest One Community College ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic (New) ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Neurosciences Abstracts |
| DatabaseTitle | CrossRef Advanced Technologies & Aerospace Collection ProQuest One Psychology Computer Science Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection ProQuest One Academic Eastern Edition SciTech Premium Collection ProQuest One Community College ProQuest Technology Collection ProQuest SciTech Collection ProQuest Central China ProQuest Central Advanced Technologies & Aerospace Database ProQuest One Applied & Life Sciences ProQuest One Academic UKI Edition ProQuest Central Korea ProQuest Central (New) ProQuest One Academic ProQuest One Academic (New) Neurosciences Abstracts |
| DatabaseTitleList | Advanced Technologies & Aerospace Collection Neurosciences Abstracts |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Applied Sciences |
| EISSN | 1573-773X |
| EndPage | 67 |
| ExternalDocumentID | 28068185 10_1007_s11063_013_9289_6 |
| GroupedDBID | -4Z -5F -5G -BR -EM -Y2 -~C .86 .DC .VR 06D 0R~ 0VY 123 1N0 1SB 2.D 203 28- 29N 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AAHNG AAIAL AAJKR AAJSJ AAKKN AANZL AAOBN AARHV AARTL AATVU AAUYE AAWCG AAYIU AAYOK AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABEEZ ABFTD ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMOR ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACACY ACBXY ACGFS ACHSB ACHXU ACKNC ACMDZ ACMLO ACOKC ACOMO ACSNA ACULB ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFGXO AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA C24 C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K7- KDC KOV KOW LAK LLZTM M4Y MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P9O PF0 PSYQQ PT5 QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SDH SDM SHX SISQX SNE SNPRN SNX SOHCF SOJ SPH SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z81 Z83 Z88 Z8M Z8R Z8U Z8W Z92 ZMTXR ~EX 77I AASML AAYXX ABDBE ABFSG ACSTC ADHKG AEZWR AFHIU AGQPQ AHPBZ AHWEU AIXLP AYFIA CITATION PHGZM PHGZT PQGLB PUEGO IQODW 8FE 8FG AZQEC DWQXO GNUQQ JQ2 P62 PKEHL PQEST PQQKQ PQUKI PRINS 7TK |
| ID | FETCH-LOGICAL-c379t-f34b8bd0b992f8980d514fdb2e1e550cff1033108330512a38932826f2949b473 |
| IEDL.DBID | U2A |
| ISSN | 1370-4621 |
| IngestDate | Thu Sep 04 19:32:13 EDT 2025 Sat Oct 18 23:02:06 EDT 2025 Wed Apr 02 08:10:21 EDT 2025 Wed Oct 01 01:56:21 EDT 2025 Thu Apr 24 23:01:19 EDT 2025 Fri Feb 21 02:36:38 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 1 |
| Keywords | Ocular artefact Electroencephalogram Biomedical signals Eye blink Neural networks Eye movement Brain Input output Error estimation Central nervous system Artefact Electroencephalography Dynamical system Fuzzy neural nets Encephalon Biomedical data processing Frequency band Least squares method Classification Dynamic model Filtering Independent component analysis Cluster Neural network Radial basis function Recursive method High frequency |
| Language | English |
| License | http://www.springer.com/tdm CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c379t-f34b8bd0b992f8980d514fdb2e1e550cff1033108330512a38932826f2949b473 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 ObjectType-Article-2 ObjectType-Feature-1 content type line 23 |
| PQID | 2918338944 |
| PQPubID | 2043838 |
| PageCount | 23 |
| ParticipantIDs | proquest_miscellaneous_1534825052 proquest_journals_2918338944 pascalfrancis_primary_28068185 crossref_citationtrail_10_1007_s11063_013_9289_6 crossref_primary_10_1007_s11063_013_9289_6 springer_journals_10_1007_s11063_013_9289_6 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2014-02-01 |
| PublicationDateYYYYMMDD | 2014-02-01 |
| PublicationDate_xml | – month: 02 year: 2014 text: 2014-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Boston |
| PublicationPlace_xml | – name: Boston – name: Dordrecht |
| PublicationTitle | Neural processing letters |
| PublicationTitleAbbrev | Neural Process Lett |
| PublicationYear | 2014 |
| Publisher | Springer US Springer Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Springer – name: Springer Nature B.V |
| References | BishopCMNeural networks for pattern recognition1995OxfordOxford University Press Joyce C, Gorodnitsky I, MKM, (2004) Automatic removal of eye movement and blink artifacts from EEG data using blind component separation. Psychophysiology 41(2):313–325 KarayiannisNBRandolph-GipsMMSelf-organizing radial basis function network for real-time approximation of continuous-time dynamical systemsIEEE Trans Neural Netw200819346047410.1109/TNN.2007.909842 LuNSYSaratchandranPA sequential learning scheme for function approximation by using minimal radial basis function networksNeural Comput19979246147810.1162/neco.1997.9.2.4611067.68586 ShokerLSaneiSChambersJArtifact removal from electroencephalograms using a hybrid BSSSVM algorithmIEEE Signal Process Lett2005121072172410.1109/LSP.2005.855539 LinBLinBChongFLaiFHigher order statistics based radial basis function networks for signal enhancementIEEE Trans Neural Netw200718382383210.1109/TNN.2007.891185 ChanHTsaiYMengLWuTThe removal of ocular artifacts from EEG signals using adaptive filters based on ocular source componentsAnn Biomed Eng201038113489349910.1007/s10439-010-0087-2 ChenSCowanCGrantPMOrthogonal least squares learning algorithm for radial basis function networksIEEE Trans Neural Netw19912230230910.1109/72.80341 SenapatiKRoutrayAComparison of ICA and WT with s-transform based method for removal of ocular artifact from EEG signalsJ Biomed Sci Eng20114534135110.4236/jbise.2011.45043 KaySMFundamentals of statistical signal processing: estimation theory1993Upper Saddle RiverPrentice Hall PTR0803.62002 TownsendNWTarassenkoLEstimations of error bounds for neural network function approximatorsIEEE Trans Neural Netw199910221723010.1109/72.750542 ChoKBWangBHRadial basis function based adaptive fuzzy systems and their applications to system identification and predictionFuzzy Sets Syst199683332533910.1016/0165-0114(95)00322-31417777 WuSQErMJDynamic fuzzy neural networks—a novel approach to function approximationIEEE Trans Syst Man Cybern B2000302358364 CroftRBarryREOG correction: which regression should we use?Psychophysiology2000371 12312510.1111/1469-8986.3710123 MaoKZRBF neural network center selection based on Fisher ratio class separability measureIEEE Trans Neural Netw20021351211121710.1109/TNN.2002.1031953 BarretoGASouzaLGMAdaptive filtering with the self-organizing map: a performance comparisonNeural Netw2006196–778579810.1016/j.neunet.2006.05.0051102.68527 HalderSBenschMMellingerJBogdanMKüblerABirbaumerNRosenstielWOnline artifact removal for brain–computer interfaces using support vector machines and blind source separationComput Intell Neurosci200720071155116510.1155/2007/82069 Li ZR (2003) Adaptive noise cancellation using soft computing approach, School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang, Singapore. Techical Report LiYMaZLuWLiYAutomatic removal of the eye blink artifact from EEG using an ICA-based template matching approachPhysiol Meas200627442543610.1088/0967-3334/27/4/008 Gao J, Zheng C, PW, (2010) Removal of muscle artifact from electroencephalograms signals based on canonical correlation analysis. Clin EEG Neurosci 41(1):53–59 BronzinoJThe biomedical engineering handbook20002SpringerCRC Press KierkelsJJMvan BoxtelGJMVogtenLLMA model-based objective evaluation of eye movement correction in EEG recordingsIEEE Trans Biomed Eng200653224625310.1109/TBME.2005.862533 ShaoSShenKOngCJWilder-SmithEPLiXAutomatic EEG artifact removal: a weighted support vector machine approach with error correctionIEEE Trans Biomed Eng200956233634410.1109/TBME.2008.2005969 SchillingJJCRJAl-AjlouniAFApproximation of nonlinear systems with radial basis function neural networkIEEE Trans Neural Netw200112111510.1109/72.896792 Rangayyan RM (2002) Biomedical signal analysis: a case-study approach. IEEE Press, New York MateoJTorresAGarcíaMSánchezCCervigonRRobust volterra filter design for enhancement of electroencephalogram signal processingCircuits Syst Signal Process2013321233253 JungTMakeigSWesterfieldMTownsendJCourchesneESejnowskiTRemoval of eye activity artifacts from visual event-related potentials in normal and clinical subjectClin Neurophysiol2000111101745175810.1016/S1388-2457(00)00386-2 CroftRBarryRRemoval of ocular artifact from the EEG: a reviewClin Neurophysiol2000301 51910.1016/S0987-7053(00)00055-1 HePWilsonGRussellCRemoval of ocular artifacts from electro-encephalogram by adaptive filteringMed Biol Eng Comput200442340741210.1007/BF02344717 JangJ-SRSunC-TMizutaniENeuro-fuzzy and soft computing: a computational approach to learning and machine intelligence1997Upper Saddle RiverPrentice-Hall WidrowBGloverJRAdaptive noise canceling: principles and applicationsProc IEEE197563121692171610.1109/PROC.1975.10036 CheronGCebollaAMSaedeleerCDBengoetxeaALeursFLeroyADanBPure phase-locking of beta/gamma oscillation contributes to the n30 frontal component of somatosensory evoked potentialsBMC Neurosci2007875111 LinsOPictonTBergPSchergMOcular artifacts in EEG and event-related potentials: I. scalp topographyBrain Topogr199361516310.1007/BF01234127 KierkelsJJMRianiJBergmansJWMvan BoxtelGJMUsing an eye tracker for accurate eye movement artifact correctionIEEE Trans Biomed Eng20075471256126710.1109/TBME.2006.889179 KarayiannisNBMiWGrowing radial basis neural networks: merging supervised and unsupervised learning with network growth techniquesIEEE Trans Neural Netw1997861492150610.1109/72.641471 LagerlundTSharbroughFBusackerNSpatial filtering of multichannel electroencephalographic recordings through principal component analysis by singular value decompositionClin Neurophysiol19971417382 WuSChowTSelf-organizing and self-evolving neurons: a new neural network for optimizationIEEE Trans Neural Netw200718238539610.1109/TNN.2006.887556 FatourechiMBashashatiAWardRKBirchGEEMG and EOG artifacts in brain computer interface systems: a surveyClin Neurophysiol2007118348049410.1016/j.clinph.2006.10.019 SaneiSChambersJEEG signal processing2007New YorkWiley10.1002/9780470511923 Jung T, Humphries C, Lee T, Makeig S, McKeown M, Iragui V, Sejnowski T (1998) Removing electroencephalographic artifacts: comparison between ICA and PCA. In: Proceedings of IEEE international workshop on neural networks for signal processing, pp 63–72 RoachBJMathalonDHEvent-related EEG time-frequency analysis: an overview of measures and an analysis of early gamma band phase locking in schizophreniaSchizophr Bull200834590792610.1093/schbul/sbn093 XuPChangC-HPaplinskiASelf-organizing topological tree for online vector quantization and data clusteringIEEE Trans Syst Man Cybern200535351552610.1109/TSMCB.2005.846651 GaoJFYangYLinPWangPZhengCXAutomatic removal of eye-movement and blink artifacts from eeg signalsBrain Topogr201023110511410.1007/s10548-009-0131-4 HePWilsonGRussellCGerschutzMRemoval of ocular artifacts from the EEG: a comparison between time-domain regression and adaptive filtering method using simulated dataMed Biol Eng Comput200745549550310.1007/s11517-007-0179-9 BrennerCAKrishnanGPVohsJLAhnW-YHetrickWPMorzoratiSLO’DonnellBFSteady state responses: electrophysiological assessment of sensory function in schizophreniaSchizophr Bull20093561065107710.1093/schbul/sbp091 KadirkamanathanVNiranjanMA function estimation approach to sequential learning with neural networksNeural Comput19935695497510.1162/neco.1993.5.6.954 SörnmoLLagunaPBioelectrical signal processing in cardiac an neurological applications2005BurlingtonElsevier Academic Press PedryczWConditional fuzzy clustering in the design of radial basis function neural networksIEEE Trans Neural Netw19989460161210.1109/72.701174 ArlotSCelisseAA survey of cross-validation procedures for model selectionStat Surv20104407910.1214/09-SS0541190.620802602303 JungTMakeigSHumphriesCLeeTMcKeownMIraguiVSejnowskiTRemoving electroencephalographic artifacts by blind source separationPsychophysiology200037216317810.1111/1469-8986.3720163 J-SR Jang (9289_CR44) 1997 P Xu (9289_CR41) 2005; 35 P He (9289_CR9) 2007; 45 KZ Mao (9289_CR33) 2002; 13 T Jung (9289_CR16) 2000; 37 NB Karayiannis (9289_CR27) 2008; 19 J Bronzino (9289_CR2) 2000 S Shao (9289_CR24) 2009; 56 H Chan (9289_CR22) 2010; 38 G Cheron (9289_CR48) 2007; 8 JF Gao (9289_CR25) 2010; 23 SM Kay (9289_CR50) 1993 BJ Roach (9289_CR47) 2008; 34 NSY Lu (9289_CR40) 1997; 9 9289_CR13 9289_CR17 9289_CR19 S Sanei (9289_CR4) 2007 W Pedrycz (9289_CR30) 1998; 9 CM Bishop (9289_CR26) 1995 JJCRJ Schilling (9289_CR29) 2001; 12 K Senapati (9289_CR15) 2011; 4 T Lagerlund (9289_CR11) 1997; 14 JJM Kierkels (9289_CR20) 2006; 53 9289_CR3 R Croft (9289_CR5) 2000; 37 S Chen (9289_CR28) 1991; 2 B Widrow (9289_CR37) 1975; 63 S Wu (9289_CR43) 2007; 18 GA Barreto (9289_CR42) 2006; 19 Y Li (9289_CR14) 2006; 27 KB Cho (9289_CR45) 1996; 83 O Lins (9289_CR10) 1993; 6 NW Townsend (9289_CR31) 1999; 10 NB Karayiannis (9289_CR32) 1997; 8 CA Brenner (9289_CR49) 2009; 35 P He (9289_CR8) 2004; 42 S Arlot (9289_CR46) 2010; 4 9289_CR36 9289_CR35 L Shoker (9289_CR23) 2005; 12 9289_CR38 L Sörnmo (9289_CR1) 2005 V Kadirkamanathan (9289_CR39) 1993; 5 S Halder (9289_CR18) 2007; 2007 R Croft (9289_CR6) 2000; 30 JJM Kierkels (9289_CR21) 2007; 54 T Jung (9289_CR7) 2000; 111 M Fatourechi (9289_CR12) 2007; 118 B Lin (9289_CR34) 2007; 18 |
| References_xml | – reference: SaneiSChambersJEEG signal processing2007New YorkWiley10.1002/9780470511923 – reference: LagerlundTSharbroughFBusackerNSpatial filtering of multichannel electroencephalographic recordings through principal component analysis by singular value decompositionClin Neurophysiol19971417382 – reference: ShaoSShenKOngCJWilder-SmithEPLiXAutomatic EEG artifact removal: a weighted support vector machine approach with error correctionIEEE Trans Biomed Eng200956233634410.1109/TBME.2008.2005969 – reference: ChoKBWangBHRadial basis function based adaptive fuzzy systems and their applications to system identification and predictionFuzzy Sets Syst199683332533910.1016/0165-0114(95)00322-31417777 – reference: WidrowBGloverJRAdaptive noise canceling: principles and applicationsProc IEEE197563121692171610.1109/PROC.1975.10036 – reference: ArlotSCelisseAA survey of cross-validation procedures for model selectionStat Surv20104407910.1214/09-SS0541190.620802602303 – reference: FatourechiMBashashatiAWardRKBirchGEEMG and EOG artifacts in brain computer interface systems: a surveyClin Neurophysiol2007118348049410.1016/j.clinph.2006.10.019 – reference: CroftRBarryREOG correction: which regression should we use?Psychophysiology2000371 12312510.1111/1469-8986.3710123 – reference: BishopCMNeural networks for pattern recognition1995OxfordOxford University Press – reference: BarretoGASouzaLGMAdaptive filtering with the self-organizing map: a performance comparisonNeural Netw2006196–778579810.1016/j.neunet.2006.05.0051102.68527 – reference: LinsOPictonTBergPSchergMOcular artifacts in EEG and event-related potentials: I. scalp topographyBrain Topogr199361516310.1007/BF01234127 – reference: Gao J, Zheng C, PW, (2010) Removal of muscle artifact from electroencephalograms signals based on canonical correlation analysis. Clin EEG Neurosci 41(1):53–59 – reference: Joyce C, Gorodnitsky I, MKM, (2004) Automatic removal of eye movement and blink artifacts from EEG data using blind component separation. Psychophysiology 41(2):313–325 – reference: KaySMFundamentals of statistical signal processing: estimation theory1993Upper Saddle RiverPrentice Hall PTR0803.62002 – reference: GaoJFYangYLinPWangPZhengCXAutomatic removal of eye-movement and blink artifacts from eeg signalsBrain Topogr201023110511410.1007/s10548-009-0131-4 – reference: KierkelsJJMvan BoxtelGJMVogtenLLMA model-based objective evaluation of eye movement correction in EEG recordingsIEEE Trans Biomed Eng200653224625310.1109/TBME.2005.862533 – reference: SchillingJJCRJAl-AjlouniAFApproximation of nonlinear systems with radial basis function neural networkIEEE Trans Neural Netw200112111510.1109/72.896792 – reference: TownsendNWTarassenkoLEstimations of error bounds for neural network function approximatorsIEEE Trans Neural Netw199910221723010.1109/72.750542 – reference: HePWilsonGRussellCRemoval of ocular artifacts from electro-encephalogram by adaptive filteringMed Biol Eng Comput200442340741210.1007/BF02344717 – reference: ChanHTsaiYMengLWuTThe removal of ocular artifacts from EEG signals using adaptive filters based on ocular source componentsAnn Biomed Eng201038113489349910.1007/s10439-010-0087-2 – reference: ChenSCowanCGrantPMOrthogonal least squares learning algorithm for radial basis function networksIEEE Trans Neural Netw19912230230910.1109/72.80341 – reference: CheronGCebollaAMSaedeleerCDBengoetxeaALeursFLeroyADanBPure phase-locking of beta/gamma oscillation contributes to the n30 frontal component of somatosensory evoked potentialsBMC Neurosci2007875111 – reference: WuSQErMJDynamic fuzzy neural networks—a novel approach to function approximationIEEE Trans Syst Man Cybern B2000302358364 – reference: LinBLinBChongFLaiFHigher order statistics based radial basis function networks for signal enhancementIEEE Trans Neural Netw200718382383210.1109/TNN.2007.891185 – reference: JungTMakeigSWesterfieldMTownsendJCourchesneESejnowskiTRemoval of eye activity artifacts from visual event-related potentials in normal and clinical subjectClin Neurophysiol2000111101745175810.1016/S1388-2457(00)00386-2 – reference: JungTMakeigSHumphriesCLeeTMcKeownMIraguiVSejnowskiTRemoving electroencephalographic artifacts by blind source separationPsychophysiology200037216317810.1111/1469-8986.3720163 – reference: KarayiannisNBMiWGrowing radial basis neural networks: merging supervised and unsupervised learning with network growth techniquesIEEE Trans Neural Netw1997861492150610.1109/72.641471 – reference: Li ZR (2003) Adaptive noise cancellation using soft computing approach, School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang, Singapore. Techical Report – reference: JangJ-SRSunC-TMizutaniENeuro-fuzzy and soft computing: a computational approach to learning and machine intelligence1997Upper Saddle RiverPrentice-Hall – reference: MaoKZRBF neural network center selection based on Fisher ratio class separability measureIEEE Trans Neural Netw20021351211121710.1109/TNN.2002.1031953 – reference: Jung T, Humphries C, Lee T, Makeig S, McKeown M, Iragui V, Sejnowski T (1998) Removing electroencephalographic artifacts: comparison between ICA and PCA. In: Proceedings of IEEE international workshop on neural networks for signal processing, pp 63–72 – reference: HalderSBenschMMellingerJBogdanMKüblerABirbaumerNRosenstielWOnline artifact removal for brain–computer interfaces using support vector machines and blind source separationComput Intell Neurosci200720071155116510.1155/2007/82069 – reference: Rangayyan RM (2002) Biomedical signal analysis: a case-study approach. IEEE Press, New York – reference: SenapatiKRoutrayAComparison of ICA and WT with s-transform based method for removal of ocular artifact from EEG signalsJ Biomed Sci Eng20114534135110.4236/jbise.2011.45043 – reference: RoachBJMathalonDHEvent-related EEG time-frequency analysis: an overview of measures and an analysis of early gamma band phase locking in schizophreniaSchizophr Bull200834590792610.1093/schbul/sbn093 – reference: KarayiannisNBRandolph-GipsMMSelf-organizing radial basis function network for real-time approximation of continuous-time dynamical systemsIEEE Trans Neural Netw200819346047410.1109/TNN.2007.909842 – reference: CroftRBarryRRemoval of ocular artifact from the EEG: a reviewClin Neurophysiol2000301 51910.1016/S0987-7053(00)00055-1 – reference: MateoJTorresAGarcíaMSánchezCCervigonRRobust volterra filter design for enhancement of electroencephalogram signal processingCircuits Syst Signal Process2013321233253 – reference: XuPChangC-HPaplinskiASelf-organizing topological tree for online vector quantization and data clusteringIEEE Trans Syst Man Cybern200535351552610.1109/TSMCB.2005.846651 – reference: BrennerCAKrishnanGPVohsJLAhnW-YHetrickWPMorzoratiSLO’DonnellBFSteady state responses: electrophysiological assessment of sensory function in schizophreniaSchizophr Bull20093561065107710.1093/schbul/sbp091 – reference: WuSChowTSelf-organizing and self-evolving neurons: a new neural network for optimizationIEEE Trans Neural Netw200718238539610.1109/TNN.2006.887556 – reference: SörnmoLLagunaPBioelectrical signal processing in cardiac an neurological applications2005BurlingtonElsevier Academic Press – reference: LiYMaZLuWLiYAutomatic removal of the eye blink artifact from EEG using an ICA-based template matching approachPhysiol Meas200627442543610.1088/0967-3334/27/4/008 – reference: ShokerLSaneiSChambersJArtifact removal from electroencephalograms using a hybrid BSSSVM algorithmIEEE Signal Process Lett2005121072172410.1109/LSP.2005.855539 – reference: KadirkamanathanVNiranjanMA function estimation approach to sequential learning with neural networksNeural Comput19935695497510.1162/neco.1993.5.6.954 – reference: HePWilsonGRussellCGerschutzMRemoval of ocular artifacts from the EEG: a comparison between time-domain regression and adaptive filtering method using simulated dataMed Biol Eng Comput200745549550310.1007/s11517-007-0179-9 – reference: KierkelsJJMRianiJBergmansJWMvan BoxtelGJMUsing an eye tracker for accurate eye movement artifact correctionIEEE Trans Biomed Eng20075471256126710.1109/TBME.2006.889179 – reference: BronzinoJThe biomedical engineering handbook20002SpringerCRC Press – reference: PedryczWConditional fuzzy clustering in the design of radial basis function neural networksIEEE Trans Neural Netw19989460161210.1109/72.701174 – reference: LuNSYSaratchandranPA sequential learning scheme for function approximation by using minimal radial basis function networksNeural Comput19979246147810.1162/neco.1997.9.2.4611067.68586 – volume: 19 start-page: 460 issue: 3 year: 2008 ident: 9289_CR27 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2007.909842 – volume: 12 start-page: 721 issue: 10 year: 2005 ident: 9289_CR23 publication-title: IEEE Signal Process Lett doi: 10.1109/LSP.2005.855539 – volume: 4 start-page: 40 year: 2010 ident: 9289_CR46 publication-title: Stat Surv doi: 10.1214/09-SS054 – volume: 111 start-page: 1745 issue: 10 year: 2000 ident: 9289_CR7 publication-title: Clin Neurophysiol doi: 10.1016/S1388-2457(00)00386-2 – volume: 8 start-page: 1492 issue: 6 year: 1997 ident: 9289_CR32 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.641471 – volume: 118 start-page: 480 issue: 3 year: 2007 ident: 9289_CR12 publication-title: Clin Neurophysiol doi: 10.1016/j.clinph.2006.10.019 – volume-title: Bioelectrical signal processing in cardiac an neurological applications year: 2005 ident: 9289_CR1 – ident: 9289_CR19 doi: 10.1177/155005941004100111 – volume: 10 start-page: 217 issue: 2 year: 1999 ident: 9289_CR31 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.750542 – volume: 37 start-page: 163 issue: 2 year: 2000 ident: 9289_CR16 publication-title: Psychophysiology doi: 10.1111/1469-8986.3720163 – ident: 9289_CR17 doi: 10.1111/j.1469-8986.2003.00141.x – volume: 18 start-page: 385 issue: 2 year: 2007 ident: 9289_CR43 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2006.887556 – ident: 9289_CR3 doi: 10.1109/9780470544204 – volume-title: Neural networks for pattern recognition year: 1995 ident: 9289_CR26 doi: 10.1093/oso/9780198538493.001.0001 – volume: 2 start-page: 302 issue: 2 year: 1991 ident: 9289_CR28 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.80341 – volume: 5 start-page: 954 issue: 6 year: 1993 ident: 9289_CR39 publication-title: Neural Comput doi: 10.1162/neco.1993.5.6.954 – ident: 9289_CR36 doi: 10.1007/s00034-012-9447-5 – volume: 4 start-page: 341 issue: 5 year: 2011 ident: 9289_CR15 publication-title: J Biomed Sci Eng doi: 10.4236/jbise.2011.45043 – volume: 42 start-page: 407 issue: 3 year: 2004 ident: 9289_CR8 publication-title: Med Biol Eng Comput doi: 10.1007/BF02344717 – volume-title: Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence year: 1997 ident: 9289_CR44 – volume: 30 start-page: 5 issue: 1 year: 2000 ident: 9289_CR6 publication-title: Clin Neurophysiol doi: 10.1016/S0987-7053(00)00055-1 – volume-title: Fundamentals of statistical signal processing: estimation theory year: 1993 ident: 9289_CR50 – volume: 56 start-page: 336 issue: 2 year: 2009 ident: 9289_CR24 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2008.2005969 – volume: 37 start-page: 123 issue: 1 year: 2000 ident: 9289_CR5 publication-title: Psychophysiology doi: 10.1111/1469-8986.3710123 – volume: 8 start-page: 1 issue: 75 year: 2007 ident: 9289_CR48 publication-title: BMC Neurosci – ident: 9289_CR38 – volume: 2007 start-page: 1155 year: 2007 ident: 9289_CR18 publication-title: Comput Intell Neurosci doi: 10.1155/2007/82069 – volume: 18 start-page: 823 issue: 3 year: 2007 ident: 9289_CR34 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2007.891185 – volume: 35 start-page: 515 issue: 3 year: 2005 ident: 9289_CR41 publication-title: IEEE Trans Syst Man Cybern doi: 10.1109/TSMCB.2005.846651 – volume: 6 start-page: 51 issue: 1 year: 1993 ident: 9289_CR10 publication-title: Brain Topogr doi: 10.1007/BF01234127 – ident: 9289_CR35 doi: 10.1109/3477.836384 – ident: 9289_CR13 doi: 10.1109/NNSP.1998.710633 – volume: 9 start-page: 461 issue: 2 year: 1997 ident: 9289_CR40 publication-title: Neural Comput doi: 10.1162/neco.1997.9.2.461 – volume: 34 start-page: 907 issue: 5 year: 2008 ident: 9289_CR47 publication-title: Schizophr Bull doi: 10.1093/schbul/sbn093 – volume-title: EEG signal processing year: 2007 ident: 9289_CR4 doi: 10.1002/9780470511923 – volume: 23 start-page: 105 issue: 1 year: 2010 ident: 9289_CR25 publication-title: Brain Topogr doi: 10.1007/s10548-009-0131-4 – volume: 12 start-page: 1 issue: 1 year: 2001 ident: 9289_CR29 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.896792 – volume: 53 start-page: 246 issue: 2 year: 2006 ident: 9289_CR20 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2005.862533 – volume: 63 start-page: 1692 issue: 12 year: 1975 ident: 9289_CR37 publication-title: Proc IEEE doi: 10.1109/PROC.1975.10036 – volume: 19 start-page: 785 issue: 6–7 year: 2006 ident: 9289_CR42 publication-title: Neural Netw doi: 10.1016/j.neunet.2006.05.005 – volume: 35 start-page: 1065 issue: 6 year: 2009 ident: 9289_CR49 publication-title: Schizophr Bull doi: 10.1093/schbul/sbp091 – volume: 54 start-page: 1256 issue: 7 year: 2007 ident: 9289_CR21 publication-title: IEEE Trans Biomed Eng doi: 10.1109/TBME.2006.889179 – volume: 13 start-page: 1211 issue: 5 year: 2002 ident: 9289_CR33 publication-title: IEEE Trans Neural Netw doi: 10.1109/TNN.2002.1031953 – volume: 9 start-page: 601 issue: 4 year: 1998 ident: 9289_CR30 publication-title: IEEE Trans Neural Netw doi: 10.1109/72.701174 – volume-title: The biomedical engineering handbook year: 2000 ident: 9289_CR2 – volume: 27 start-page: 425 issue: 4 year: 2006 ident: 9289_CR14 publication-title: Physiol Meas doi: 10.1088/0967-3334/27/4/008 – volume: 45 start-page: 495 issue: 5 year: 2007 ident: 9289_CR9 publication-title: Med Biol Eng Comput doi: 10.1007/s11517-007-0179-9 – volume: 14 start-page: 73 issue: 1 year: 1997 ident: 9289_CR11 publication-title: Clin Neurophysiol doi: 10.1097/00004691-199701000-00007 – volume: 38 start-page: 3489 issue: 11 year: 2010 ident: 9289_CR22 publication-title: Ann Biomed Eng doi: 10.1007/s10439-010-0087-2 – volume: 83 start-page: 325 issue: 3 year: 1996 ident: 9289_CR45 publication-title: Fuzzy Sets Syst doi: 10.1016/0165-0114(95)00322-3 |
| SSID | ssj0010020 |
| Score | 2.029511 |
| Snippet | Frequent occurrence of ocular artefacts leads to serious problems in reading and analysing the electroencephalogram (EEG) signal. These artefacts have high... |
| SourceID | proquest pascalfrancis crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 45 |
| SubjectTerms | Algorithms Applied sciences Artificial Intelligence Artificial neural networks Biological and medical sciences Brain Clustering Complex Systems Computational Intelligence Computer Science Computer science; control theory; systems Connectionism. Neural networks Electric fields Electrodes Electrodiagnosis. Electric activity recording Electroencephalography Exact sciences and technology Eye movements Frequencies Fuzzy logic Investigative techniques, diagnostic techniques (general aspects) Kalman filters Machine learning Medical sciences Methods Nervous system Neural networks Pattern recognition. Digital image processing. Computational geometry Radial basis function Reduction Support vector machines |
| SummonAdditionalLinks | – databaseName: ProQuest Central Database Suite (ProQuest) dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90vgjit1idEsEnJdilWds8iEzdFMEpouBbWZZkCtpNtz3oX-9dPzYmaF_ba9pckvtd7vI7gMM4MMpEkaGTuYJLvHgcGsPrlmJUPpq8jKz6th1eP8mb5_rzHLTLszCUVlmuidlCbfpd2iM_EQoHH1pXKc8GH5yqRlF0tSyh0SlKK5jTjGJsHhYEMWNVYOG82b5_mMQVCB1lLljkcxmKWhnnzA7ToXdEuUUBV-iF8HDGUi0NOkPsNJdXu5iBo78iqJlhaq3CcoEoWSMfAmswZ9N1WCmrNbBi8m6Au8yLz7PW-Pv7ixErB4q18zRwdo7WzLCCbbXHGm89_PnRy_uQIapld1m2KrVh6SQEeyDCV1Ipe01Zs3nFci-Wdt034anVfLy45kWVBd4NIjXiLpA61sbXSgkXq9g3iKGc0cLWLLovXedqfoAgEHsfJ7DoEMJBPy10QkmlZRRsQSXtp3YbmEX3S7vYST8gYKB1iIKhrRv0v2PjfA_8skeTbkFBTpUw3pIpeTIpIUElJKSEJPTgaCIyyPk3_nt4f0ZNEwkKHxMy8aBa6i0p5uowmY4sDw4mt3GWUeikk9r-eJigXZAxoUXhwXGp7-kr_vyinf8b3IVFBGAyzwKvQmX0ObZ7CHJGer8YuT-LevUP priority: 102 providerName: ProQuest |
| Title | Dynamic Fuzzy Neural Network Based Learning Algorithms for Ocular Artefact Reduction in EEG Recordings |
| URI | https://link.springer.com/article/10.1007/s11063-013-9289-6 https://www.proquest.com/docview/2918338944 https://www.proquest.com/docview/1534825052 |
| Volume | 39 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-773X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010020 issn: 1370-4621 databaseCode: AFBBN dateStart: 19970201 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-773X dateEnd: 20241102 omitProxy: true ssIdentifier: ssj0010020 issn: 1370-4621 databaseCode: BENPR dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVAVX databaseName: HAS SpringerNature Open Access 2022 customDbUrl: eissn: 1573-773X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0010020 issn: 1370-4621 databaseCode: AAJSJ dateStart: 19970201 isFulltext: true titleUrlDefault: https://www.springernature.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-773X dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0010020 issn: 1370-4621 databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-773X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0010020 issn: 1370-4621 databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_W9mUw2n0yt13QYE8bAkdWbOkxae2UjWWjLNA9mSiS2kLnlDh5aP763vkjIaUtzC96sE62dZLud74vgC8qstomiaXIXMElXlzF1vKeIxtViCKvSlb9cxSfjeX3i95FE8ddtt7urUmyOqk3wW6ovZDvT8Q1agk83oG9HmXzwkU8Fv216YAAUKVlJSGXsei2pszHhtgSRq9uJyXOi68LWmwhzgdG0kr2ZK9hvwGNrF9z-Q28cMVbOGgLMrBmf74Df1rXl2fZcrW6Y5R4A8lGtac3G6DAsqxJqHrJ-jeXs_n14upfyRC4sl-VQyo9w1GwAzunnK7ENXZdsDQdslpRpR_r72GcpX9OznhTSIFPo0QvuI-kUcaGRmvhlVahRZjkrRGu61BDmXrfDSPEeSrC3d8VEwIxqIrFXmipjUyiD7BbzAr3EZhDDct45WUYkew3JkbC2PUsqtjK-jCAsJ3RfNpkGadiFzf5Jj8yMSFHJuTEhDwO4Oua5LZOsfFc584Wm9YUZCEm8BHAccu3vNmOZS40nlz4VVIG8Hl9GzcSWUcmhZstyxyPfqkIEIoAvrX83gzx5Bsd_lfvI3iJkEvWft_HsLuYL90nhDUL04EdlQ07sNfPBoMRtcO_P1JsB-no93mnWuT3M5rwlw |
| linkProvider | Springer Nature |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swED8xeNgkxL61MMY8aXvZZC113CR-QBOMdmVANyGQePPq2oZJLC2k1QR_3P623SVOq04ab-Q1cRz5Lr7fz_cF8DZPrLJZZikzV3CJF89Ta3nbkY8qRpNXFas-7Ke9E_n1tH26BH-aXBgKq2z2xGqjtqMhnZF_FAqVD62rlJ_Gl5y6RpF3tWmhMQitFexWVWIsJHbsu-vfSOHKrb1dlPc7Ibqd4889HroM8GGSqQn3iTS5sbFRSvhc5bFFDOGtEa7lEL4PvW_FCYIgnB0VWAzIwiNPSb1QUhmZJfjee7AiE6mQ_K3sdPrfj2Z-DEJjFeXLYi5T0Wr8qlXyHrIximVKuELWw9MFy7g6HpQoJF9311iAv_94bCtD2H0EawHBsu1a5R7DkiuewMOmOwQLm8VT8Lt1s3vWnd7cXDOqAoLD-nXYOdtB62lZqO56xrYvznCxJ-e_SoYomn2romNpDkeZF-yICsySCrGfBet0vrCaNdMp_zM4uZP1fg7LxahwL4A5pHvG517GCQERY1IcmLq2Rb6fWx9HEDcrqoeh5Dl13rjQ82LNJASNQtAkBJ1G8H42ZFzX-7jt4c0FMc1GkLuakFAEG43cdNgbSj3X5AjezG7jX02umkHhRtNSox2SOaFTEcGHRt7zV_z3i9Zvn_A13O8dHx7og73-_kt4gOBP1hHoG7A8uZq6VwiwJmYzaDGDH3f94_wFVdAvqg |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8NJiGkaR9saNkY8ySemCxSx03sx260AzYKQqvEm1XXNiCxtCLpw_jrd5ePVp02JPIan5P4bN_vcuffAeypxGmXZY5O5gou8eIqdY53PcWoYjR5FVn16TA9GsmTy-5lU-e0aLPd25BkfaaBWJry8mDmwsHy4Bt6MpQHlHCNHgNP1-CpJJ4EnNAj0VuEEQgMVR5XFnOZik4b1vxXFyuG6dlsXOAYhbq4xQr6_CtgWtmhwUt43gBI1qs1_gqe-HwLXrTFGVizVl9DOKxrzbPB_P7-NyMSDhQb1lnf7AsaL8cactUr1ru9mt7dlNe_CoYglp1Vyan0DE8HH9gF8buSBtlNzvr9b6x2Wukn-xsYDfo_vx7xpqgCnySZLnlIpFXWxVZrEZRWsUPIFJwVvuPRW5mE0IkTxHwqwZ2gI8YEaNAtS4PQUluZJduwnk9z_xaYR2_LBhVknBAOsDZFwdR3HbrbyoU4grgdUTNpGMep8MWtWXIlkxIMKsGQEkwawf5CZFbTbTzUeHdFTQsJihYTEIlgp9WbaZZmYYTGXQy_SsoIPi1u46KiSMk499N5YdAMSEXgUETwudX3sov_vtG7R7X-CBvnhwPz43j4_T1sIhKTdTr4DqyXd3P_AdFOaXerGf0HWRbyLw |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Fuzzy+Neural+Network+Based+Learning+Algorithms+for+Ocular+Artefact+Reduction+in+EEG+Recordings&rft.jtitle=Neural+processing+letters&rft.au=Mateo%2C+J&rft.au=Torres%2C+A&rft.au=Garcia%2C+M&rft.date=2014-02-01&rft.issn=1370-4621&rft.eissn=1573-773X&rft.volume=39&rft.issue=1&rft.spage=45&rft.epage=67&rft_id=info:doi/10.1007%2Fs11063-013-9289-6&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1370-4621&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1370-4621&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1370-4621&client=summon |