Dynamic Fuzzy Neural Network Based Learning Algorithms for Ocular Artefact Reduction in EEG Recordings

Frequent occurrence of ocular artefacts leads to serious problems in reading and analysing the electroencephalogram (EEG) signal. These artefacts have high amplitude and overlapping frequency band with the physiological signal or real brain signal. Hence, it is difficult to reduce this type of artef...

Full description

Saved in:
Bibliographic Details
Published inNeural processing letters Vol. 39; no. 1; pp. 45 - 67
Main Authors Mateo, J., Torres, A. M., García, M. A.
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.02.2014
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN1370-4621
1573-773X
DOI10.1007/s11063-013-9289-6

Cover

Abstract Frequent occurrence of ocular artefacts leads to serious problems in reading and analysing the electroencephalogram (EEG) signal. These artefacts have high amplitude and overlapping frequency band with the physiological signal or real brain signal. Hence, it is difficult to reduce this type of artefacts by traditional filtering methods. In this paper, a novel ocular artefact removal method using artificial neural networks is described. In the proposed method, the number of radial basis function (RBF) neurons and input output space clustering are adaptively determined. Furthermore, the structure of the system and the parameters of the corresponding RBF units are trained automatically and relatively fast adaptation is attained. By the recursive least square error estimator techniques, the proposed system is suitable for real EEG applications. The advantages of the proposed method are demonstrated on EEG recordings by comparing with systems based on ICA. Our results demonstrate that this new system is preferable to other methods for ocular artefact reduction, achieving a better trade-off between removing artefacts and preserving inherent brain activities.
AbstractList Frequent occurrence of ocular artefacts leads to serious problems in reading and analysing the electroencephalogram (EEG) signal. These artefacts have high amplitude and overlapping frequency band with the physiological signal or real brain signal. Hence, it is difficult to reduce this type of artefacts by traditional filtering methods. In this paper, a novel ocular artefact removal method using artificial neural networks is described. In the proposed method, the number of radial basis function (RBF) neurons and input output space clustering are adaptively determined. Furthermore, the structure of the system and the parameters of the corresponding RBF units are trained automatically and relatively fast adaptation is attained. By the recursive least square error estimator techniques, the proposed system is suitable for real EEG applications. The advantages of the proposed method are demonstrated on EEG recordings by comparing with systems based on ICA. Our results demonstrate that this new system is preferable to other methods for ocular artefact reduction, achieving a better trade-off between removing artefacts and preserving inherent brain activities.
Author García, M. A.
Torres, A. M.
Mateo, J.
Author_xml – sequence: 1
  givenname: J.
  surname: Mateo
  fullname: Mateo, J.
  email: jorge.mateo@uclm.es
  organization: Innovation in Bioengineering Research Group, University of Castilla-La Mancha
– sequence: 2
  givenname: A. M.
  surname: Torres
  fullname: Torres, A. M.
  organization: Innovation in Bioengineering Research Group, University of Castilla-La Mancha
– sequence: 3
  givenname: M. A.
  surname: García
  fullname: García, M. A.
  organization: Clinical Neurophysiology Service, Virgen de la Luz Hospital
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28068185$$DView record in Pascal Francis
BookMark eNp9kVFrHCEQxyWk0CTtB-ibUAJ52XbUdVcfL8klLRwNlBb6Jq6rV5M9TdSlXD59PS6hEEifRobfb2bwf4wOQwwWoQ8EPhGA_nMmBDrWAGGNpEI23QE6IrxnTd-zX4f1zXpo2o6St-g451uAalE4Qu5yG_TGG3w1Pz5u8Tc7Jz3VUv7EdIfPdbYjXlmdgg9rvJjWMfnye5OxiwnfmHnSCS9SsU6bgr_bcTbFx4B9wMvldW2YmMZq5nfojdNTtu-f6gn6ebX8cfGlWd1cf71YrBrDelkax9pBDCMMUlInpICRk9aNA7XEcg7GOQKMERCMASdUMyEZFbRzVLZyaHt2gs72c-9TfJhtLmrjs7HTpIONc1aEs1ZQDpxW9OML9DbOKdTrFJWkbhCybSt1-kTpbPTkkg7GZ3Wf_EanraICOkEEr1y_50yKOSfrlPFF7z6jJO0nRUDtclL7nFTNSe1yUl01yQvzefj_HLp3cmXD2qZ_t78u_QU3W6Sx
CitedBy_id crossref_primary_10_3233_THC_212847
crossref_primary_10_1007_s11063_020_10369_7
crossref_primary_10_1007_s00521_015_1988_7
crossref_primary_10_1007_s00034_014_9890_6
crossref_primary_10_1155_2015_150797
crossref_primary_10_1007_s11063_014_9399_9
crossref_primary_10_1016_j_cmpb_2019_04_004
Cites_doi 10.1109/TNN.2007.909842
10.1109/LSP.2005.855539
10.1214/09-SS054
10.1016/S1388-2457(00)00386-2
10.1109/72.641471
10.1016/j.clinph.2006.10.019
10.1177/155005941004100111
10.1109/72.750542
10.1111/1469-8986.3720163
10.1111/j.1469-8986.2003.00141.x
10.1109/TNN.2006.887556
10.1109/9780470544204
10.1093/oso/9780198538493.001.0001
10.1109/72.80341
10.1162/neco.1993.5.6.954
10.1007/s00034-012-9447-5
10.4236/jbise.2011.45043
10.1007/BF02344717
10.1016/S0987-7053(00)00055-1
10.1109/TBME.2008.2005969
10.1111/1469-8986.3710123
10.1155/2007/82069
10.1109/TNN.2007.891185
10.1109/TSMCB.2005.846651
10.1007/BF01234127
10.1109/3477.836384
10.1109/NNSP.1998.710633
10.1162/neco.1997.9.2.461
10.1093/schbul/sbn093
10.1002/9780470511923
10.1007/s10548-009-0131-4
10.1109/72.896792
10.1109/TBME.2005.862533
10.1109/PROC.1975.10036
10.1016/j.neunet.2006.05.005
10.1093/schbul/sbp091
10.1109/TBME.2006.889179
10.1109/TNN.2002.1031953
10.1109/72.701174
10.1088/0967-3334/27/4/008
10.1007/s11517-007-0179-9
10.1097/00004691-199701000-00007
10.1007/s10439-010-0087-2
10.1016/0165-0114(95)00322-3
ContentType Journal Article
Copyright Springer Science+Business Media New York 2013
2015 INIST-CNRS
Copyright Springer Nature B.V. Feb 2014
Copyright_xml – notice: Springer Science+Business Media New York 2013
– notice: 2015 INIST-CNRS
– notice: Copyright Springer Nature B.V. Feb 2014
DBID AAYXX
CITATION
IQODW
8FE
8FG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
7TK
DOI 10.1007/s11063-013-9289-6
DatabaseName CrossRef
Pascal-Francis
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials - QC
ProQuest Central Database Suite (ProQuest)
ProQuest Technology Collection
ProQuest One Community College
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Neurosciences Abstracts
DatabaseTitle CrossRef
Advanced Technologies & Aerospace Collection
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
Technology Collection
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
ProQuest One Academic Eastern Edition
SciTech Premium Collection
ProQuest One Community College
ProQuest Technology Collection
ProQuest SciTech Collection
ProQuest Central China
ProQuest Central
Advanced Technologies & Aerospace Database
ProQuest One Applied & Life Sciences
ProQuest One Academic UKI Edition
ProQuest Central Korea
ProQuest Central (New)
ProQuest One Academic
ProQuest One Academic (New)
Neurosciences Abstracts
DatabaseTitleList Advanced Technologies & Aerospace Collection
Neurosciences Abstracts

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
EISSN 1573-773X
EndPage 67
ExternalDocumentID 28068185
10_1007_s11063_013_9289_6
GroupedDBID -4Z
-5F
-5G
-BR
-EM
-Y2
-~C
.86
.DC
.VR
06D
0R~
0VY
123
1N0
1SB
2.D
203
28-
29N
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AAHNG
AAIAL
AAJKR
AAJSJ
AAKKN
AANZL
AAOBN
AARHV
AARTL
AATVU
AAUYE
AAWCG
AAYIU
AAYOK
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABEEZ
ABFTD
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMOR
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACACY
ACBXY
ACGFS
ACHSB
ACHXU
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACSNA
ACULB
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFGXO
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
C24
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K7-
KDC
KOV
KOW
LAK
LLZTM
M4Y
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P9O
PF0
PSYQQ
PT5
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SDH
SDM
SHX
SISQX
SNE
SNPRN
SNX
SOHCF
SOJ
SPH
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z81
Z83
Z88
Z8M
Z8R
Z8U
Z8W
Z92
ZMTXR
~EX
77I
AASML
AAYXX
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFHIU
AGQPQ
AHPBZ
AHWEU
AIXLP
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
IQODW
8FE
8FG
AZQEC
DWQXO
GNUQQ
JQ2
P62
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
7TK
ID FETCH-LOGICAL-c379t-f34b8bd0b992f8980d514fdb2e1e550cff1033108330512a38932826f2949b473
IEDL.DBID U2A
ISSN 1370-4621
IngestDate Thu Sep 04 19:32:13 EDT 2025
Sat Oct 18 23:02:06 EDT 2025
Wed Apr 02 08:10:21 EDT 2025
Wed Oct 01 01:56:21 EDT 2025
Thu Apr 24 23:01:19 EDT 2025
Fri Feb 21 02:36:38 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords Ocular artefact
Electroencephalogram
Biomedical signals
Eye blink
Neural networks
Eye movement
Brain
Input output
Error estimation
Central nervous system
Artefact
Electroencephalography
Dynamical system
Fuzzy neural nets
Encephalon
Biomedical data processing
Frequency band
Least squares method
Classification
Dynamic model
Filtering
Independent component analysis
Cluster
Neural network
Radial basis function
Recursive method
High frequency
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c379t-f34b8bd0b992f8980d514fdb2e1e550cff1033108330512a38932826f2949b473
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ObjectType-Article-2
ObjectType-Feature-1
content type line 23
PQID 2918338944
PQPubID 2043838
PageCount 23
ParticipantIDs proquest_miscellaneous_1534825052
proquest_journals_2918338944
pascalfrancis_primary_28068185
crossref_citationtrail_10_1007_s11063_013_9289_6
crossref_primary_10_1007_s11063_013_9289_6
springer_journals_10_1007_s11063_013_9289_6
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-02-01
PublicationDateYYYYMMDD 2014-02-01
PublicationDate_xml – month: 02
  year: 2014
  text: 2014-02-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: Dordrecht
PublicationTitle Neural processing letters
PublicationTitleAbbrev Neural Process Lett
PublicationYear 2014
Publisher Springer US
Springer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer
– name: Springer Nature B.V
References BishopCMNeural networks for pattern recognition1995OxfordOxford University Press
Joyce C, Gorodnitsky I, MKM, (2004) Automatic removal of eye movement and blink artifacts from EEG data using blind component separation. Psychophysiology 41(2):313–325
KarayiannisNBRandolph-GipsMMSelf-organizing radial basis function network for real-time approximation of continuous-time dynamical systemsIEEE Trans Neural Netw200819346047410.1109/TNN.2007.909842
LuNSYSaratchandranPA sequential learning scheme for function approximation by using minimal radial basis function networksNeural Comput19979246147810.1162/neco.1997.9.2.4611067.68586
ShokerLSaneiSChambersJArtifact removal from electroencephalograms using a hybrid BSSSVM algorithmIEEE Signal Process Lett2005121072172410.1109/LSP.2005.855539
LinBLinBChongFLaiFHigher order statistics based radial basis function networks for signal enhancementIEEE Trans Neural Netw200718382383210.1109/TNN.2007.891185
ChanHTsaiYMengLWuTThe removal of ocular artifacts from EEG signals using adaptive filters based on ocular source componentsAnn Biomed Eng201038113489349910.1007/s10439-010-0087-2
ChenSCowanCGrantPMOrthogonal least squares learning algorithm for radial basis function networksIEEE Trans Neural Netw19912230230910.1109/72.80341
SenapatiKRoutrayAComparison of ICA and WT with s-transform based method for removal of ocular artifact from EEG signalsJ Biomed Sci Eng20114534135110.4236/jbise.2011.45043
KaySMFundamentals of statistical signal processing: estimation theory1993Upper Saddle RiverPrentice Hall PTR0803.62002
TownsendNWTarassenkoLEstimations of error bounds for neural network function approximatorsIEEE Trans Neural Netw199910221723010.1109/72.750542
ChoKBWangBHRadial basis function based adaptive fuzzy systems and their applications to system identification and predictionFuzzy Sets Syst199683332533910.1016/0165-0114(95)00322-31417777
WuSQErMJDynamic fuzzy neural networks—a novel approach to function approximationIEEE Trans Syst Man Cybern B2000302358364
CroftRBarryREOG correction: which regression should we use?Psychophysiology2000371 12312510.1111/1469-8986.3710123
MaoKZRBF neural network center selection based on Fisher ratio class separability measureIEEE Trans Neural Netw20021351211121710.1109/TNN.2002.1031953
BarretoGASouzaLGMAdaptive filtering with the self-organizing map: a performance comparisonNeural Netw2006196–778579810.1016/j.neunet.2006.05.0051102.68527
HalderSBenschMMellingerJBogdanMKüblerABirbaumerNRosenstielWOnline artifact removal for brain–computer interfaces using support vector machines and blind source separationComput Intell Neurosci200720071155116510.1155/2007/82069
Li ZR (2003) Adaptive noise cancellation using soft computing approach, School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang, Singapore. Techical Report
LiYMaZLuWLiYAutomatic removal of the eye blink artifact from EEG using an ICA-based template matching approachPhysiol Meas200627442543610.1088/0967-3334/27/4/008
Gao J, Zheng C, PW, (2010) Removal of muscle artifact from electroencephalograms signals based on canonical correlation analysis. Clin EEG Neurosci 41(1):53–59
BronzinoJThe biomedical engineering handbook20002SpringerCRC Press
KierkelsJJMvan BoxtelGJMVogtenLLMA model-based objective evaluation of eye movement correction in EEG recordingsIEEE Trans Biomed Eng200653224625310.1109/TBME.2005.862533
ShaoSShenKOngCJWilder-SmithEPLiXAutomatic EEG artifact removal: a weighted support vector machine approach with error correctionIEEE Trans Biomed Eng200956233634410.1109/TBME.2008.2005969
SchillingJJCRJAl-AjlouniAFApproximation of nonlinear systems with radial basis function neural networkIEEE Trans Neural Netw200112111510.1109/72.896792
Rangayyan RM (2002) Biomedical signal analysis: a case-study approach. IEEE Press, New York
MateoJTorresAGarcíaMSánchezCCervigonRRobust volterra filter design for enhancement of electroencephalogram signal processingCircuits Syst Signal Process2013321233253
JungTMakeigSWesterfieldMTownsendJCourchesneESejnowskiTRemoval of eye activity artifacts from visual event-related potentials in normal and clinical subjectClin Neurophysiol2000111101745175810.1016/S1388-2457(00)00386-2
CroftRBarryRRemoval of ocular artifact from the EEG: a reviewClin Neurophysiol2000301 51910.1016/S0987-7053(00)00055-1
HePWilsonGRussellCRemoval of ocular artifacts from electro-encephalogram by adaptive filteringMed Biol Eng Comput200442340741210.1007/BF02344717
JangJ-SRSunC-TMizutaniENeuro-fuzzy and soft computing: a computational approach to learning and machine intelligence1997Upper Saddle RiverPrentice-Hall
WidrowBGloverJRAdaptive noise canceling: principles and applicationsProc IEEE197563121692171610.1109/PROC.1975.10036
CheronGCebollaAMSaedeleerCDBengoetxeaALeursFLeroyADanBPure phase-locking of beta/gamma oscillation contributes to the n30 frontal component of somatosensory evoked potentialsBMC Neurosci2007875111
LinsOPictonTBergPSchergMOcular artifacts in EEG and event-related potentials: I. scalp topographyBrain Topogr199361516310.1007/BF01234127
KierkelsJJMRianiJBergmansJWMvan BoxtelGJMUsing an eye tracker for accurate eye movement artifact correctionIEEE Trans Biomed Eng20075471256126710.1109/TBME.2006.889179
KarayiannisNBMiWGrowing radial basis neural networks: merging supervised and unsupervised learning with network growth techniquesIEEE Trans Neural Netw1997861492150610.1109/72.641471
LagerlundTSharbroughFBusackerNSpatial filtering of multichannel electroencephalographic recordings through principal component analysis by singular value decompositionClin Neurophysiol19971417382
WuSChowTSelf-organizing and self-evolving neurons: a new neural network for optimizationIEEE Trans Neural Netw200718238539610.1109/TNN.2006.887556
FatourechiMBashashatiAWardRKBirchGEEMG and EOG artifacts in brain computer interface systems: a surveyClin Neurophysiol2007118348049410.1016/j.clinph.2006.10.019
SaneiSChambersJEEG signal processing2007New YorkWiley10.1002/9780470511923
Jung T, Humphries C, Lee T, Makeig S, McKeown M, Iragui V, Sejnowski T (1998) Removing electroencephalographic artifacts: comparison between ICA and PCA. In: Proceedings of IEEE international workshop on neural networks for signal processing, pp 63–72
RoachBJMathalonDHEvent-related EEG time-frequency analysis: an overview of measures and an analysis of early gamma band phase locking in schizophreniaSchizophr Bull200834590792610.1093/schbul/sbn093
XuPChangC-HPaplinskiASelf-organizing topological tree for online vector quantization and data clusteringIEEE Trans Syst Man Cybern200535351552610.1109/TSMCB.2005.846651
GaoJFYangYLinPWangPZhengCXAutomatic removal of eye-movement and blink artifacts from eeg signalsBrain Topogr201023110511410.1007/s10548-009-0131-4
HePWilsonGRussellCGerschutzMRemoval of ocular artifacts from the EEG: a comparison between time-domain regression and adaptive filtering method using simulated dataMed Biol Eng Comput200745549550310.1007/s11517-007-0179-9
BrennerCAKrishnanGPVohsJLAhnW-YHetrickWPMorzoratiSLO’DonnellBFSteady state responses: electrophysiological assessment of sensory function in schizophreniaSchizophr Bull20093561065107710.1093/schbul/sbp091
KadirkamanathanVNiranjanMA function estimation approach to sequential learning with neural networksNeural Comput19935695497510.1162/neco.1993.5.6.954
SörnmoLLagunaPBioelectrical signal processing in cardiac an neurological applications2005BurlingtonElsevier Academic Press
PedryczWConditional fuzzy clustering in the design of radial basis function neural networksIEEE Trans Neural Netw19989460161210.1109/72.701174
ArlotSCelisseAA survey of cross-validation procedures for model selectionStat Surv20104407910.1214/09-SS0541190.620802602303
JungTMakeigSHumphriesCLeeTMcKeownMIraguiVSejnowskiTRemoving electroencephalographic artifacts by blind source separationPsychophysiology200037216317810.1111/1469-8986.3720163
J-SR Jang (9289_CR44) 1997
P Xu (9289_CR41) 2005; 35
P He (9289_CR9) 2007; 45
KZ Mao (9289_CR33) 2002; 13
T Jung (9289_CR16) 2000; 37
NB Karayiannis (9289_CR27) 2008; 19
J Bronzino (9289_CR2) 2000
S Shao (9289_CR24) 2009; 56
H Chan (9289_CR22) 2010; 38
G Cheron (9289_CR48) 2007; 8
JF Gao (9289_CR25) 2010; 23
SM Kay (9289_CR50) 1993
BJ Roach (9289_CR47) 2008; 34
NSY Lu (9289_CR40) 1997; 9
9289_CR13
9289_CR17
9289_CR19
S Sanei (9289_CR4) 2007
W Pedrycz (9289_CR30) 1998; 9
CM Bishop (9289_CR26) 1995
JJCRJ Schilling (9289_CR29) 2001; 12
K Senapati (9289_CR15) 2011; 4
T Lagerlund (9289_CR11) 1997; 14
JJM Kierkels (9289_CR20) 2006; 53
9289_CR3
R Croft (9289_CR5) 2000; 37
S Chen (9289_CR28) 1991; 2
B Widrow (9289_CR37) 1975; 63
S Wu (9289_CR43) 2007; 18
GA Barreto (9289_CR42) 2006; 19
Y Li (9289_CR14) 2006; 27
KB Cho (9289_CR45) 1996; 83
O Lins (9289_CR10) 1993; 6
NW Townsend (9289_CR31) 1999; 10
NB Karayiannis (9289_CR32) 1997; 8
CA Brenner (9289_CR49) 2009; 35
P He (9289_CR8) 2004; 42
S Arlot (9289_CR46) 2010; 4
9289_CR36
9289_CR35
L Shoker (9289_CR23) 2005; 12
9289_CR38
L Sörnmo (9289_CR1) 2005
V Kadirkamanathan (9289_CR39) 1993; 5
S Halder (9289_CR18) 2007; 2007
R Croft (9289_CR6) 2000; 30
JJM Kierkels (9289_CR21) 2007; 54
T Jung (9289_CR7) 2000; 111
M Fatourechi (9289_CR12) 2007; 118
B Lin (9289_CR34) 2007; 18
References_xml – reference: SaneiSChambersJEEG signal processing2007New YorkWiley10.1002/9780470511923
– reference: LagerlundTSharbroughFBusackerNSpatial filtering of multichannel electroencephalographic recordings through principal component analysis by singular value decompositionClin Neurophysiol19971417382
– reference: ShaoSShenKOngCJWilder-SmithEPLiXAutomatic EEG artifact removal: a weighted support vector machine approach with error correctionIEEE Trans Biomed Eng200956233634410.1109/TBME.2008.2005969
– reference: ChoKBWangBHRadial basis function based adaptive fuzzy systems and their applications to system identification and predictionFuzzy Sets Syst199683332533910.1016/0165-0114(95)00322-31417777
– reference: WidrowBGloverJRAdaptive noise canceling: principles and applicationsProc IEEE197563121692171610.1109/PROC.1975.10036
– reference: ArlotSCelisseAA survey of cross-validation procedures for model selectionStat Surv20104407910.1214/09-SS0541190.620802602303
– reference: FatourechiMBashashatiAWardRKBirchGEEMG and EOG artifacts in brain computer interface systems: a surveyClin Neurophysiol2007118348049410.1016/j.clinph.2006.10.019
– reference: CroftRBarryREOG correction: which regression should we use?Psychophysiology2000371 12312510.1111/1469-8986.3710123
– reference: BishopCMNeural networks for pattern recognition1995OxfordOxford University Press
– reference: BarretoGASouzaLGMAdaptive filtering with the self-organizing map: a performance comparisonNeural Netw2006196–778579810.1016/j.neunet.2006.05.0051102.68527
– reference: LinsOPictonTBergPSchergMOcular artifacts in EEG and event-related potentials: I. scalp topographyBrain Topogr199361516310.1007/BF01234127
– reference: Gao J, Zheng C, PW, (2010) Removal of muscle artifact from electroencephalograms signals based on canonical correlation analysis. Clin EEG Neurosci 41(1):53–59
– reference: Joyce C, Gorodnitsky I, MKM, (2004) Automatic removal of eye movement and blink artifacts from EEG data using blind component separation. Psychophysiology 41(2):313–325
– reference: KaySMFundamentals of statistical signal processing: estimation theory1993Upper Saddle RiverPrentice Hall PTR0803.62002
– reference: GaoJFYangYLinPWangPZhengCXAutomatic removal of eye-movement and blink artifacts from eeg signalsBrain Topogr201023110511410.1007/s10548-009-0131-4
– reference: KierkelsJJMvan BoxtelGJMVogtenLLMA model-based objective evaluation of eye movement correction in EEG recordingsIEEE Trans Biomed Eng200653224625310.1109/TBME.2005.862533
– reference: SchillingJJCRJAl-AjlouniAFApproximation of nonlinear systems with radial basis function neural networkIEEE Trans Neural Netw200112111510.1109/72.896792
– reference: TownsendNWTarassenkoLEstimations of error bounds for neural network function approximatorsIEEE Trans Neural Netw199910221723010.1109/72.750542
– reference: HePWilsonGRussellCRemoval of ocular artifacts from electro-encephalogram by adaptive filteringMed Biol Eng Comput200442340741210.1007/BF02344717
– reference: ChanHTsaiYMengLWuTThe removal of ocular artifacts from EEG signals using adaptive filters based on ocular source componentsAnn Biomed Eng201038113489349910.1007/s10439-010-0087-2
– reference: ChenSCowanCGrantPMOrthogonal least squares learning algorithm for radial basis function networksIEEE Trans Neural Netw19912230230910.1109/72.80341
– reference: CheronGCebollaAMSaedeleerCDBengoetxeaALeursFLeroyADanBPure phase-locking of beta/gamma oscillation contributes to the n30 frontal component of somatosensory evoked potentialsBMC Neurosci2007875111
– reference: WuSQErMJDynamic fuzzy neural networks—a novel approach to function approximationIEEE Trans Syst Man Cybern B2000302358364
– reference: LinBLinBChongFLaiFHigher order statistics based radial basis function networks for signal enhancementIEEE Trans Neural Netw200718382383210.1109/TNN.2007.891185
– reference: JungTMakeigSWesterfieldMTownsendJCourchesneESejnowskiTRemoval of eye activity artifacts from visual event-related potentials in normal and clinical subjectClin Neurophysiol2000111101745175810.1016/S1388-2457(00)00386-2
– reference: JungTMakeigSHumphriesCLeeTMcKeownMIraguiVSejnowskiTRemoving electroencephalographic artifacts by blind source separationPsychophysiology200037216317810.1111/1469-8986.3720163
– reference: KarayiannisNBMiWGrowing radial basis neural networks: merging supervised and unsupervised learning with network growth techniquesIEEE Trans Neural Netw1997861492150610.1109/72.641471
– reference: Li ZR (2003) Adaptive noise cancellation using soft computing approach, School of Electrical and Electronic Engineering, Nanyang Technological University, Nanyang, Singapore. Techical Report
– reference: JangJ-SRSunC-TMizutaniENeuro-fuzzy and soft computing: a computational approach to learning and machine intelligence1997Upper Saddle RiverPrentice-Hall
– reference: MaoKZRBF neural network center selection based on Fisher ratio class separability measureIEEE Trans Neural Netw20021351211121710.1109/TNN.2002.1031953
– reference: Jung T, Humphries C, Lee T, Makeig S, McKeown M, Iragui V, Sejnowski T (1998) Removing electroencephalographic artifacts: comparison between ICA and PCA. In: Proceedings of IEEE international workshop on neural networks for signal processing, pp 63–72
– reference: HalderSBenschMMellingerJBogdanMKüblerABirbaumerNRosenstielWOnline artifact removal for brain–computer interfaces using support vector machines and blind source separationComput Intell Neurosci200720071155116510.1155/2007/82069
– reference: Rangayyan RM (2002) Biomedical signal analysis: a case-study approach. IEEE Press, New York
– reference: SenapatiKRoutrayAComparison of ICA and WT with s-transform based method for removal of ocular artifact from EEG signalsJ Biomed Sci Eng20114534135110.4236/jbise.2011.45043
– reference: RoachBJMathalonDHEvent-related EEG time-frequency analysis: an overview of measures and an analysis of early gamma band phase locking in schizophreniaSchizophr Bull200834590792610.1093/schbul/sbn093
– reference: KarayiannisNBRandolph-GipsMMSelf-organizing radial basis function network for real-time approximation of continuous-time dynamical systemsIEEE Trans Neural Netw200819346047410.1109/TNN.2007.909842
– reference: CroftRBarryRRemoval of ocular artifact from the EEG: a reviewClin Neurophysiol2000301 51910.1016/S0987-7053(00)00055-1
– reference: MateoJTorresAGarcíaMSánchezCCervigonRRobust volterra filter design for enhancement of electroencephalogram signal processingCircuits Syst Signal Process2013321233253
– reference: XuPChangC-HPaplinskiASelf-organizing topological tree for online vector quantization and data clusteringIEEE Trans Syst Man Cybern200535351552610.1109/TSMCB.2005.846651
– reference: BrennerCAKrishnanGPVohsJLAhnW-YHetrickWPMorzoratiSLO’DonnellBFSteady state responses: electrophysiological assessment of sensory function in schizophreniaSchizophr Bull20093561065107710.1093/schbul/sbp091
– reference: WuSChowTSelf-organizing and self-evolving neurons: a new neural network for optimizationIEEE Trans Neural Netw200718238539610.1109/TNN.2006.887556
– reference: SörnmoLLagunaPBioelectrical signal processing in cardiac an neurological applications2005BurlingtonElsevier Academic Press
– reference: LiYMaZLuWLiYAutomatic removal of the eye blink artifact from EEG using an ICA-based template matching approachPhysiol Meas200627442543610.1088/0967-3334/27/4/008
– reference: ShokerLSaneiSChambersJArtifact removal from electroencephalograms using a hybrid BSSSVM algorithmIEEE Signal Process Lett2005121072172410.1109/LSP.2005.855539
– reference: KadirkamanathanVNiranjanMA function estimation approach to sequential learning with neural networksNeural Comput19935695497510.1162/neco.1993.5.6.954
– reference: HePWilsonGRussellCGerschutzMRemoval of ocular artifacts from the EEG: a comparison between time-domain regression and adaptive filtering method using simulated dataMed Biol Eng Comput200745549550310.1007/s11517-007-0179-9
– reference: KierkelsJJMRianiJBergmansJWMvan BoxtelGJMUsing an eye tracker for accurate eye movement artifact correctionIEEE Trans Biomed Eng20075471256126710.1109/TBME.2006.889179
– reference: BronzinoJThe biomedical engineering handbook20002SpringerCRC Press
– reference: PedryczWConditional fuzzy clustering in the design of radial basis function neural networksIEEE Trans Neural Netw19989460161210.1109/72.701174
– reference: LuNSYSaratchandranPA sequential learning scheme for function approximation by using minimal radial basis function networksNeural Comput19979246147810.1162/neco.1997.9.2.4611067.68586
– volume: 19
  start-page: 460
  issue: 3
  year: 2008
  ident: 9289_CR27
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2007.909842
– volume: 12
  start-page: 721
  issue: 10
  year: 2005
  ident: 9289_CR23
  publication-title: IEEE Signal Process Lett
  doi: 10.1109/LSP.2005.855539
– volume: 4
  start-page: 40
  year: 2010
  ident: 9289_CR46
  publication-title: Stat Surv
  doi: 10.1214/09-SS054
– volume: 111
  start-page: 1745
  issue: 10
  year: 2000
  ident: 9289_CR7
  publication-title: Clin Neurophysiol
  doi: 10.1016/S1388-2457(00)00386-2
– volume: 8
  start-page: 1492
  issue: 6
  year: 1997
  ident: 9289_CR32
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.641471
– volume: 118
  start-page: 480
  issue: 3
  year: 2007
  ident: 9289_CR12
  publication-title: Clin Neurophysiol
  doi: 10.1016/j.clinph.2006.10.019
– volume-title: Bioelectrical signal processing in cardiac an neurological applications
  year: 2005
  ident: 9289_CR1
– ident: 9289_CR19
  doi: 10.1177/155005941004100111
– volume: 10
  start-page: 217
  issue: 2
  year: 1999
  ident: 9289_CR31
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.750542
– volume: 37
  start-page: 163
  issue: 2
  year: 2000
  ident: 9289_CR16
  publication-title: Psychophysiology
  doi: 10.1111/1469-8986.3720163
– ident: 9289_CR17
  doi: 10.1111/j.1469-8986.2003.00141.x
– volume: 18
  start-page: 385
  issue: 2
  year: 2007
  ident: 9289_CR43
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2006.887556
– ident: 9289_CR3
  doi: 10.1109/9780470544204
– volume-title: Neural networks for pattern recognition
  year: 1995
  ident: 9289_CR26
  doi: 10.1093/oso/9780198538493.001.0001
– volume: 2
  start-page: 302
  issue: 2
  year: 1991
  ident: 9289_CR28
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.80341
– volume: 5
  start-page: 954
  issue: 6
  year: 1993
  ident: 9289_CR39
  publication-title: Neural Comput
  doi: 10.1162/neco.1993.5.6.954
– ident: 9289_CR36
  doi: 10.1007/s00034-012-9447-5
– volume: 4
  start-page: 341
  issue: 5
  year: 2011
  ident: 9289_CR15
  publication-title: J Biomed Sci Eng
  doi: 10.4236/jbise.2011.45043
– volume: 42
  start-page: 407
  issue: 3
  year: 2004
  ident: 9289_CR8
  publication-title: Med Biol Eng Comput
  doi: 10.1007/BF02344717
– volume-title: Neuro-fuzzy and soft computing: a computational approach to learning and machine intelligence
  year: 1997
  ident: 9289_CR44
– volume: 30
  start-page: 5
  issue: 1
  year: 2000
  ident: 9289_CR6
  publication-title: Clin Neurophysiol
  doi: 10.1016/S0987-7053(00)00055-1
– volume-title: Fundamentals of statistical signal processing: estimation theory
  year: 1993
  ident: 9289_CR50
– volume: 56
  start-page: 336
  issue: 2
  year: 2009
  ident: 9289_CR24
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2008.2005969
– volume: 37
  start-page: 123
  issue: 1
  year: 2000
  ident: 9289_CR5
  publication-title: Psychophysiology
  doi: 10.1111/1469-8986.3710123
– volume: 8
  start-page: 1
  issue: 75
  year: 2007
  ident: 9289_CR48
  publication-title: BMC Neurosci
– ident: 9289_CR38
– volume: 2007
  start-page: 1155
  year: 2007
  ident: 9289_CR18
  publication-title: Comput Intell Neurosci
  doi: 10.1155/2007/82069
– volume: 18
  start-page: 823
  issue: 3
  year: 2007
  ident: 9289_CR34
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2007.891185
– volume: 35
  start-page: 515
  issue: 3
  year: 2005
  ident: 9289_CR41
  publication-title: IEEE Trans Syst Man Cybern
  doi: 10.1109/TSMCB.2005.846651
– volume: 6
  start-page: 51
  issue: 1
  year: 1993
  ident: 9289_CR10
  publication-title: Brain Topogr
  doi: 10.1007/BF01234127
– ident: 9289_CR35
  doi: 10.1109/3477.836384
– ident: 9289_CR13
  doi: 10.1109/NNSP.1998.710633
– volume: 9
  start-page: 461
  issue: 2
  year: 1997
  ident: 9289_CR40
  publication-title: Neural Comput
  doi: 10.1162/neco.1997.9.2.461
– volume: 34
  start-page: 907
  issue: 5
  year: 2008
  ident: 9289_CR47
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbn093
– volume-title: EEG signal processing
  year: 2007
  ident: 9289_CR4
  doi: 10.1002/9780470511923
– volume: 23
  start-page: 105
  issue: 1
  year: 2010
  ident: 9289_CR25
  publication-title: Brain Topogr
  doi: 10.1007/s10548-009-0131-4
– volume: 12
  start-page: 1
  issue: 1
  year: 2001
  ident: 9289_CR29
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.896792
– volume: 53
  start-page: 246
  issue: 2
  year: 2006
  ident: 9289_CR20
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2005.862533
– volume: 63
  start-page: 1692
  issue: 12
  year: 1975
  ident: 9289_CR37
  publication-title: Proc IEEE
  doi: 10.1109/PROC.1975.10036
– volume: 19
  start-page: 785
  issue: 6–7
  year: 2006
  ident: 9289_CR42
  publication-title: Neural Netw
  doi: 10.1016/j.neunet.2006.05.005
– volume: 35
  start-page: 1065
  issue: 6
  year: 2009
  ident: 9289_CR49
  publication-title: Schizophr Bull
  doi: 10.1093/schbul/sbp091
– volume: 54
  start-page: 1256
  issue: 7
  year: 2007
  ident: 9289_CR21
  publication-title: IEEE Trans Biomed Eng
  doi: 10.1109/TBME.2006.889179
– volume: 13
  start-page: 1211
  issue: 5
  year: 2002
  ident: 9289_CR33
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/TNN.2002.1031953
– volume: 9
  start-page: 601
  issue: 4
  year: 1998
  ident: 9289_CR30
  publication-title: IEEE Trans Neural Netw
  doi: 10.1109/72.701174
– volume-title: The biomedical engineering handbook
  year: 2000
  ident: 9289_CR2
– volume: 27
  start-page: 425
  issue: 4
  year: 2006
  ident: 9289_CR14
  publication-title: Physiol Meas
  doi: 10.1088/0967-3334/27/4/008
– volume: 45
  start-page: 495
  issue: 5
  year: 2007
  ident: 9289_CR9
  publication-title: Med Biol Eng Comput
  doi: 10.1007/s11517-007-0179-9
– volume: 14
  start-page: 73
  issue: 1
  year: 1997
  ident: 9289_CR11
  publication-title: Clin Neurophysiol
  doi: 10.1097/00004691-199701000-00007
– volume: 38
  start-page: 3489
  issue: 11
  year: 2010
  ident: 9289_CR22
  publication-title: Ann Biomed Eng
  doi: 10.1007/s10439-010-0087-2
– volume: 83
  start-page: 325
  issue: 3
  year: 1996
  ident: 9289_CR45
  publication-title: Fuzzy Sets Syst
  doi: 10.1016/0165-0114(95)00322-3
SSID ssj0010020
Score 2.029511
Snippet Frequent occurrence of ocular artefacts leads to serious problems in reading and analysing the electroencephalogram (EEG) signal. These artefacts have high...
SourceID proquest
pascalfrancis
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 45
SubjectTerms Algorithms
Applied sciences
Artificial Intelligence
Artificial neural networks
Biological and medical sciences
Brain
Clustering
Complex Systems
Computational Intelligence
Computer Science
Computer science; control theory; systems
Connectionism. Neural networks
Electric fields
Electrodes
Electrodiagnosis. Electric activity recording
Electroencephalography
Exact sciences and technology
Eye movements
Frequencies
Fuzzy logic
Investigative techniques, diagnostic techniques (general aspects)
Kalman filters
Machine learning
Medical sciences
Methods
Nervous system
Neural networks
Pattern recognition. Digital image processing. Computational geometry
Radial basis function
Reduction
Support vector machines
SummonAdditionalLinks – databaseName: ProQuest Central Database Suite (ProQuest)
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3dS8MwED90vgjit1idEsEnJdilWds8iEzdFMEpouBbWZZkCtpNtz3oX-9dPzYmaF_ba9pckvtd7vI7gMM4MMpEkaGTuYJLvHgcGsPrlmJUPpq8jKz6th1eP8mb5_rzHLTLszCUVlmuidlCbfpd2iM_EQoHH1pXKc8GH5yqRlF0tSyh0SlKK5jTjGJsHhYEMWNVYOG82b5_mMQVCB1lLljkcxmKWhnnzA7ToXdEuUUBV-iF8HDGUi0NOkPsNJdXu5iBo78iqJlhaq3CcoEoWSMfAmswZ9N1WCmrNbBi8m6Au8yLz7PW-Pv7ixErB4q18zRwdo7WzLCCbbXHGm89_PnRy_uQIapld1m2KrVh6SQEeyDCV1Ipe01Zs3nFci-Wdt034anVfLy45kWVBd4NIjXiLpA61sbXSgkXq9g3iKGc0cLWLLovXedqfoAgEHsfJ7DoEMJBPy10QkmlZRRsQSXtp3YbmEX3S7vYST8gYKB1iIKhrRv0v2PjfA_8skeTbkFBTpUw3pIpeTIpIUElJKSEJPTgaCIyyPk3_nt4f0ZNEwkKHxMy8aBa6i0p5uowmY4sDw4mt3GWUeikk9r-eJigXZAxoUXhwXGp7-kr_vyinf8b3IVFBGAyzwKvQmX0ObZ7CHJGer8YuT-LevUP
  priority: 102
  providerName: ProQuest
Title Dynamic Fuzzy Neural Network Based Learning Algorithms for Ocular Artefact Reduction in EEG Recordings
URI https://link.springer.com/article/10.1007/s11063-013-9289-6
https://www.proquest.com/docview/2918338944
https://www.proquest.com/docview/1534825052
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-773X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: AFBBN
  dateStart: 19970201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-773X
  dateEnd: 20241102
  omitProxy: true
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: BENPR
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: HAS SpringerNature Open Access 2022
  customDbUrl:
  eissn: 1573-773X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: AAJSJ
  dateStart: 19970201
  isFulltext: true
  titleUrlDefault: https://www.springernature.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-773X
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-773X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0010020
  issn: 1370-4621
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3da9swED_W9mUw2n0yt13QYE8bAkdWbOkxae2UjWWjLNA9mSiS2kLnlDh5aP763vkjIaUtzC96sE62dZLud74vgC8qstomiaXIXMElXlzF1vKeIxtViCKvSlb9cxSfjeX3i95FE8ddtt7urUmyOqk3wW6ovZDvT8Q1agk83oG9HmXzwkU8Fv216YAAUKVlJSGXsei2pszHhtgSRq9uJyXOi68LWmwhzgdG0kr2ZK9hvwGNrF9z-Q28cMVbOGgLMrBmf74Df1rXl2fZcrW6Y5R4A8lGtac3G6DAsqxJqHrJ-jeXs_n14upfyRC4sl-VQyo9w1GwAzunnK7ENXZdsDQdslpRpR_r72GcpX9OznhTSIFPo0QvuI-kUcaGRmvhlVahRZjkrRGu61BDmXrfDSPEeSrC3d8VEwIxqIrFXmipjUyiD7BbzAr3EZhDDct45WUYkew3JkbC2PUsqtjK-jCAsJ3RfNpkGadiFzf5Jj8yMSFHJuTEhDwO4Oua5LZOsfFc584Wm9YUZCEm8BHAccu3vNmOZS40nlz4VVIG8Hl9GzcSWUcmhZstyxyPfqkIEIoAvrX83gzx5Bsd_lfvI3iJkEvWft_HsLuYL90nhDUL04EdlQ07sNfPBoMRtcO_P1JsB-no93mnWuT3M5rwlw
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3dT9swED8xeNgkxL61MMY8aXvZZC113CR-QBOMdmVANyGQePPq2oZJLC2k1QR_3P623SVOq04ab-Q1cRz5Lr7fz_cF8DZPrLJZZikzV3CJF89Ta3nbkY8qRpNXFas-7Ke9E_n1tH26BH-aXBgKq2z2xGqjtqMhnZF_FAqVD62rlJ_Gl5y6RpF3tWmhMQitFexWVWIsJHbsu-vfSOHKrb1dlPc7Ibqd4889HroM8GGSqQn3iTS5sbFRSvhc5bFFDOGtEa7lEL4PvW_FCYIgnB0VWAzIwiNPSb1QUhmZJfjee7AiE6mQ_K3sdPrfj2Z-DEJjFeXLYi5T0Wr8qlXyHrIximVKuELWw9MFy7g6HpQoJF9311iAv_94bCtD2H0EawHBsu1a5R7DkiuewMOmOwQLm8VT8Lt1s3vWnd7cXDOqAoLD-nXYOdtB62lZqO56xrYvznCxJ-e_SoYomn2romNpDkeZF-yICsySCrGfBet0vrCaNdMp_zM4uZP1fg7LxahwL4A5pHvG517GCQERY1IcmLq2Rb6fWx9HEDcrqoeh5Dl13rjQ82LNJASNQtAkBJ1G8H42ZFzX-7jt4c0FMc1GkLuakFAEG43cdNgbSj3X5AjezG7jX02umkHhRtNSox2SOaFTEcGHRt7zV_z3i9Zvn_A13O8dHx7og73-_kt4gOBP1hHoG7A8uZq6VwiwJmYzaDGDH3f94_wFVdAvqg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED8NJiGkaR9saNkY8ySemCxSx03sx260AzYKQqvEm1XXNiCxtCLpw_jrd5ePVp02JPIan5P4bN_vcuffAeypxGmXZY5O5gou8eIqdY53PcWoYjR5FVn16TA9GsmTy-5lU-e0aLPd25BkfaaBWJry8mDmwsHy4Bt6MpQHlHCNHgNP1-CpJJ4EnNAj0VuEEQgMVR5XFnOZik4b1vxXFyuG6dlsXOAYhbq4xQr6_CtgWtmhwUt43gBI1qs1_gqe-HwLXrTFGVizVl9DOKxrzbPB_P7-NyMSDhQb1lnf7AsaL8cactUr1ru9mt7dlNe_CoYglp1Vyan0DE8HH9gF8buSBtlNzvr9b6x2Wukn-xsYDfo_vx7xpqgCnySZLnlIpFXWxVZrEZRWsUPIFJwVvuPRW5mE0IkTxHwqwZ2gI8YEaNAtS4PQUluZJduwnk9z_xaYR2_LBhVknBAOsDZFwdR3HbrbyoU4grgdUTNpGMep8MWtWXIlkxIMKsGQEkwawf5CZFbTbTzUeHdFTQsJihYTEIlgp9WbaZZmYYTGXQy_SsoIPi1u46KiSMk499N5YdAMSEXgUETwudX3sov_vtG7R7X-CBvnhwPz43j4_T1sIhKTdTr4DqyXd3P_AdFOaXerGf0HWRbyLw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamic+Fuzzy+Neural+Network+Based+Learning+Algorithms+for+Ocular+Artefact+Reduction+in+EEG+Recordings&rft.jtitle=Neural+processing+letters&rft.au=Mateo%2C+J&rft.au=Torres%2C+A&rft.au=Garcia%2C+M&rft.date=2014-02-01&rft.issn=1370-4621&rft.eissn=1573-773X&rft.volume=39&rft.issue=1&rft.spage=45&rft.epage=67&rft_id=info:doi/10.1007%2Fs11063-013-9289-6&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1370-4621&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1370-4621&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1370-4621&client=summon