Improved Sobel algorithm for defect detection of rail surfaces with enhanced efficiency and accuracy

A more effective and accurate improved Sobel algorithm has been developed to detect surface defects on heavy rails. The proposed method can make up for the mere sensitivity to X and Y directions of the Sobel algorithm by adding six templates at different directions. Meanwhile, an experimental platfo...

Full description

Saved in:
Bibliographic Details
Published inJournal of Central South University Vol. 23; no. 11; pp. 2867 - 2875
Main Authors Shi, Tian, Kong, Jian-yi, Wang, Xing-dong, Liu, Zhao, Zheng, Guo
Format Journal Article
LanguageEnglish
Published Changsha Central South University 01.11.2016
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN2095-2899
2227-5223
DOI10.1007/s11771-016-3350-3

Cover

Abstract A more effective and accurate improved Sobel algorithm has been developed to detect surface defects on heavy rails. The proposed method can make up for the mere sensitivity to X and Y directions of the Sobel algorithm by adding six templates at different directions. Meanwhile, an experimental platform for detecting surface defects consisting of the bed-jig, image-forming system with CCD cameras and light sources, parallel computer system and cable system has been constructed. The detection results of the backfin defects show that the improved Sobel algorithm can achieve an accurate and efficient positioning with decreasing interference noises to the defect edge. It can also extract more precise features and characteristic parameters of the backfin defect. Furthermore, the BP neural network adopted for defects classification with the inputting characteristic parameters of improved Sobel algorithm can obtain the optimal training precision of 0.0095827 with 106 iterative steps and time of 3 s less than Sobel algorithm with 146 steps and 5 s. Finally, an enhanced identification rate of 10% for the defects is also confirmed after the Sobel algorithm is improved.
AbstractList A more effective and accurate improved Sobel algorithm has been developed to detect surface defects on heavy rails. The proposed method can make up for the mere sensitivity to X and Y directions of the Sobel algorithm by adding six templates at different directions. Meanwhile, an experimental platform for detecting surface defects consisting of the bed-jig, image-forming system with CCD cameras and light sources, parallel computer system and cable system has been constructed. The detection results of the backfin defects show that the improved Sobel algorithm can achieve an accurate and efficient positioning with decreasing interference noises to the defect edge. It can also extract more precise features and characteristic parameters of the backfin defect. Furthermore, the BP neural network adopted for defects classification with the inputting characteristic parameters of improved Sobel algorithm can obtain the optimal training precision of 0.0095827 with 106 iterative steps and time of 3 s less than Sobel algorithm with 146 steps and 5 s. Finally, an enhanced identification rate of 10% for the defects is also confirmed after the Sobel algorithm is improved.
A more effective and accurate improved Sobel algorithm has been developed to detect surface defects on heavy rails. The proposed method can make up for the mere sensitivity to X and Y directions of the Sobel algorithm by adding six templates at different directions. Meanwhile, an experimental platform for detecting surface defects consisting of the bed-jig, image-forming system with CCD cameras and light sources, parallel computer system and cable system has been constructed. The detection results of the backfin defects show that the improved Sobel algorithm can achieve an accurate and efficient positioning with decreasing interference noises to the defect edge. It can also extract more precise features and characteristic parameters of the backfin defect. Furthermore, the BP neural network adopted for defects classification with the inputting characteristic parameters of improved Sobel algorithm can obtain the optimal training precision of 0.0095827 with 106 iterative steps and time of 3 s less than Sobel algorithm with 146 steps and 5 s. Finally, an enhanced identification rate of 10% for the defects is also confirmed after the Sobel algorithm is improved.
Author Liu, Zhao
Wang, Xing-dong
Shi, Tian
Zheng, Guo
Kong, Jian-yi
Author_xml – sequence: 1
  givenname: Tian
  surname: Shi
  fullname: Shi, Tian
  organization: School of Machinery and Automation, Wuhan University of Science and Technology
– sequence: 2
  givenname: Jian-yi
  surname: Kong
  fullname: Kong, Jian-yi
  email: 15697188659@wo.com.cn
  organization: School of Machinery and Automation, Wuhan University of Science and Technology
– sequence: 3
  givenname: Xing-dong
  surname: Wang
  fullname: Wang, Xing-dong
  organization: School of Machinery and Automation, Wuhan University of Science and Technology
– sequence: 4
  givenname: Zhao
  surname: Liu
  fullname: Liu, Zhao
  organization: School of Machinery and Automation, Wuhan University of Science and Technology
– sequence: 5
  givenname: Guo
  surname: Zheng
  fullname: Zheng, Guo
  organization: School of Machinery and Automation, Wuhan University of Science and Technology
BookMark eNp9UE1LxDAQDbKC67o_wFvAczWT0LQ5yuLHwoIH9VzSdLJb6SZr0ir7702pBxH0Mm_IvDeZ987JzHmHhFwCuwbGipsIUBSQMZCZEDnLxAmZc86LLOdczFLPVJ7xUqkzsoyxrZkALoVUck6a9f4Q_Ac29NnX2FHdbX1o-92eWh9ogxZNn6BP0HpHvaVBtx2NQ7DaYKSfiUvR7bQzaQda25oWnTlS7RqqjRmCNscLcmp1F3H5jQvyen_3snrMNk8P69XtJjOiUH2GHHPFQBkwNfBGKgVSKoGyFpaloZQAvAReQ2kLm0tVGm1ylMB0eiy1WJCraW-y9D5g7Ks3PwSXvqygLFnJBc8hsYqJZYKPMaCtTNvr0V4_equAVWOq1ZRqlVKtxlRTWRD4pTyEdq_D8V8NnzQxcd0Ww4-b_hR9AYjUi4o
CitedBy_id crossref_primary_10_1007_s11227_022_04404_8
crossref_primary_10_3390_coatings13010017
crossref_primary_10_1051_itmconf_20224301012
crossref_primary_10_3390_buildings14010003
crossref_primary_10_1109_TIM_2019_2963555
crossref_primary_10_1038_s41598_024_55474_y
crossref_primary_10_1109_JSEN_2020_2977366
crossref_primary_10_1049_ipr2_12608
crossref_primary_10_1038_s41598_024_58620_8
crossref_primary_10_37434_tdnk2024_02_04
crossref_primary_10_1049_ipr2_12647
crossref_primary_10_4236_jsip_2021_122002
crossref_primary_10_1038_s41598_023_41221_2
crossref_primary_10_3390_met11030388
crossref_primary_10_1049_iet_est_2020_0041
crossref_primary_10_1007_s11771_018_3808_6
crossref_primary_10_3390_s21248480
crossref_primary_10_1016_j_measurement_2023_112614
crossref_primary_10_1109_ACCESS_2023_3291598
crossref_primary_10_1007_s13369_022_07567_x
crossref_primary_10_1109_JSEN_2024_3403137
crossref_primary_10_3390_app11062606
crossref_primary_10_2139_ssrn_4802512
crossref_primary_10_3390_s22218374
crossref_primary_10_1016_j_jmsy_2021_05_008
crossref_primary_10_1109_ACCESS_2019_2927655
crossref_primary_10_3390_s23041993
crossref_primary_10_3390_electronics11213430
crossref_primary_10_1109_JSEN_2023_3346470
crossref_primary_10_1049_ipr2_12390
crossref_primary_10_1016_j_jksuci_2024_101929
crossref_primary_10_3390_electronics12234863
crossref_primary_10_1109_JBHI_2024_3404273
crossref_primary_10_3390_su15043733
crossref_primary_10_1109_ACCESS_2024_3510746
crossref_primary_10_1016_j_eswa_2022_118966
crossref_primary_10_1016_j_eswa_2023_122225
crossref_primary_10_1177_09544097221110322
crossref_primary_10_3390_pr10040701
crossref_primary_10_1134_S1061830923600740
crossref_primary_10_3390_app8030381
crossref_primary_10_3390_app15010458
crossref_primary_10_1016_j_measurement_2022_111040
crossref_primary_10_1038_s44172_023_00135_7
crossref_primary_10_3390_s20185136
crossref_primary_10_3390_s23125488
crossref_primary_10_3390_app14093629
crossref_primary_10_1038_s41598_022_15855_7
crossref_primary_10_1080_0951192X_2019_1636409
crossref_primary_10_1088_1361_6501_ad1daf
crossref_primary_10_1016_j_engappai_2024_108482
crossref_primary_10_3390_app13127330
crossref_primary_10_1093_tse_tdz007
crossref_primary_10_37434_tpwj2024_08_05
crossref_primary_10_1109_TIM_2021_3056738
crossref_primary_10_3390_electronics13173580
crossref_primary_10_3390_s21196331
crossref_primary_10_1109_ACCESS_2024_3414840
crossref_primary_10_1049_ipr2_12715
crossref_primary_10_3390_app13095260
crossref_primary_10_3390_s20020544
crossref_primary_10_1007_s10462_023_10535_y
crossref_primary_10_15406_ipcse_2023_06_00129
Cites_doi 10.1784/insi.2012.55.3.126
10.1142/S0218126612500508
10.1007/s11771-014-2462-x
10.1155/2013/367045
10.1016/j.image.2012.01.012
10.1016/j.ymssp.2013.05.004
10.1080/00207210701685253
10.1016/j.patcog.2010.12.008
10.1109/TMAG.2009.2020160
10.1007/s11771-015-2657-9
10.1016/j.aeue.2013.04.001
10.1016/j.measurement.2014.01.035
10.1007/s11771-015-2788-z
10.1007/978-3-642-19712-3_30
10.5121/ijcseit.2014.4106
10.1117/1.3613941
ContentType Journal Article
Copyright Central South University Press and Springer-Verlag Berlin Heidelberg 2016
Copyright Springer Science & Business Media 2016
Copyright_xml – notice: Central South University Press and Springer-Verlag Berlin Heidelberg 2016
– notice: Copyright Springer Science & Business Media 2016
DBID AAYXX
CITATION
DOI 10.1007/s11771-016-3350-3
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2227-5223
EndPage 2875
ExternalDocumentID 10_1007_s11771_016_3350_3
GroupedDBID -03
-0C
-EM
-SC
-S~
.VR
06D
0R~
29~
2B.
2C0
2J2
2JN
2JY
2KG
2KM
2LR
30V
4.4
406
408
40E
5VR
5VS
8UJ
92H
92I
92M
92R
93N
95-
95.
95~
96X
9D9
9DC
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAXDM
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABDZT
ABECU
ABFTV
ABHQN
ABJNI
ABJOX
ABKCH
ABMQK
ABNWP
ABQBU
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACPIV
ACSNA
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFQL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFLOW
AFQWF
AFUIB
AFZKB
AGAYW
AGDGC
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARCEE
ARMRJ
AXYYD
B-.
BA0
BDATZ
BGNMA
CAJEC
CCEZO
CEKLB
CHBEP
CSCUP
DDRTE
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
FA0
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
HF~
HG6
HMJXF
HRMNR
IKXTQ
IWAJR
IXD
I~Z
J-C
JBSCW
JUIAU
JZLTJ
KOV
LLZTM
M4Y
MA-
NPVJJ
NQJWS
NU0
O9J
PF0
PT4
Q--
Q-2
R-C
R89
ROL
RPX
RSV
RT3
S16
S3B
SAP
SCL
SCLPG
SDH
SEG
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T8S
TCJ
TGT
TSG
TUC
U1F
U1G
U2A
U5C
U5M
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W48
YLTOR
Z7R
Z7V
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z88
ZMTXR
~A9
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
AEZWR
AFDZB
AFHIU
AFOHR
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
ABRTQ
ID FETCH-LOGICAL-c379t-e2e59019c1cb12d69916693e6b3f0e2e66112812b18f7f5698cac5e610a12b8a3
IEDL.DBID AGYKE
ISSN 2095-2899
IngestDate Wed Sep 17 13:41:19 EDT 2025
Thu Apr 24 23:00:54 EDT 2025
Tue Jul 01 00:29:18 EDT 2025
Fri Feb 21 02:34:54 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 11
Keywords heavy rail
Sobel algorithm
identification
experimental platform
surface defect
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c379t-e2e59019c1cb12d69916693e6b3f0e2e66112812b18f7f5698cac5e610a12b8a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 1880823251
PQPubID 2044301
PageCount 9
ParticipantIDs proquest_journals_1880823251
crossref_citationtrail_10_1007_s11771_016_3350_3
crossref_primary_10_1007_s11771_016_3350_3
springer_journals_10_1007_s11771_016_3350_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2016-11-01
PublicationDateYYYYMMDD 2016-11-01
PublicationDate_xml – month: 11
  year: 2016
  text: 2016-11-01
  day: 01
PublicationDecade 2010
PublicationPlace Changsha
PublicationPlace_xml – name: Changsha
– name: Heidelberg
PublicationSubtitle Science & Technology of Mining and Metallurgy
PublicationTitle Journal of Central South University
PublicationTitleAbbrev J. Cent. South Univ
PublicationYear 2016
Publisher Central South University
Springer Nature B.V
Publisher_xml – name: Central South University
– name: Springer Nature B.V
References Zhang, Zhu, Fan, Deng (CR13) 2013; 67
Khalid, Paily (CR7) 2012; 21
Munoz, Marquez, Papaelias (CR2) 2013; 40
Khodayari-Rostamabad, Reilly, Nikolova, Hare, Pasha (CR4) 2009; 45
Medina-Carnicer, Munoz-Salinas, Yeguasbolivar, Diaz-Mas (CR15) 2011; 44
Pandey (CR14) 2014; 4
Zhao, Wan (CR21) 2006; 27
Panetta, Agaian, Nercessian, Almunstashri (CR16) 2011; 50
Guo (CR18) 2014; 21
Zhang, Yang, Wei (CR11) 2012
Cao, Chen, Zhang (CR12) 2011; 2
Mi, Xie (CR3) 2012; 17
Zheng, Liu, Lu, Zhu, Sun (CR1) 2013
Wang, Huang (CR10) 2015; 22
Zhao, Xu, Jiao (CR20) 2008; 36
Jia, Zhao, Zhou, Chen (CR17) 2015; 22
Zheng, Zhang, Wang, Zhang, Fan (CR22) 2013; 40
Ramos, Rocha, Kral, Pasadas, Ribeiro (CR6) 2014; 54
Lei, Tian (CR5) 2013; 55
Cai, Hu (CR8) 2013; 20
Abbasi, Abbasi (CR9) 2007; 94
Martini, Hewage, Villarini (CR19) 2012; 27
Liu (CR23) 2011
Wang (CR24) 2009; 31
S-q Cao (3350_CR12) 2011; 2
Y-j Zheng (3350_CR22) 2013; 40
H Zhang (3350_CR13) 2013; 67
K A Panetta (3350_CR16) 2011; 50
J-h Cai (3350_CR8) 2013; 20
Q Zhang (3350_CR11) 2012
A R Khalid (3350_CR7) 2012; 21
Z-g Zhao (3350_CR21) 2006; 27
Y-wen Guo (3350_CR18) 2014; 21
W-yuan Wang (3350_CR24) 2009; 31
J-y Zhao (3350_CR20) 2008; 36
J M C Munoz (3350_CR2) 2013; 40
X-f Jia (3350_CR17) 2015; 22
H-m Lei (3350_CR5) 2013; 55
M G Martini (3350_CR19) 2012; 27
T A Abbasi (3350_CR9) 2007; 94
Z-j Wang (3350_CR10) 2015; 22
M Pandey (3350_CR14) 2014; 4
Y-jiong Liu (3350_CR23) 2011
A Khodayari-Rostamabad (3350_CR4) 2009; 45
H G Ramos (3350_CR6) 2014; 54
R Medina-Carnicer (3350_CR15) 2011; 44
R Zheng (3350_CR1) 2013
Z-z Mi (3350_CR3) 2012; 17
References_xml – volume: 17
  start-page: 221
  issue: 9
  year: 2012
  end-page: 225
  ident: CR3
  article-title: Theoretical and experimental research on the defects of hot rolled heavy rail [J]
  publication-title: Metalurgia International
– volume: 36
  start-page: 2195
  issue: 11
  year: 2008
  end-page: 2199
  ident: CR20
  article-title: The fast arithmetic study of image edge detection based on the order morphology [J]
  publication-title: Acta Electronica Sinica
– volume: 55
  start-page: 126
  issue: 3
  year: 2013
  end-page: 131
  ident: CR5
  article-title: Broken wire detection in coated steel belts using the magnetic flux leakage method [J]
  publication-title: Insight
  doi: 10.1784/insi.2012.55.3.126
– volume: 21
  start-page: 125005
  issue: 7
  year: 2012
  ident: CR7
  article-title: FPGA implementation of high speed and low power architectures for image segmentation using Sobel operators [J]
  publication-title: Journal of Circuits Systems and Computers
  doi: 10.1142/S0218126612500508
– volume: 21
  start-page: 4571
  issue: 12
  year: 2014
  end-page: 4576
  ident: CR18
  article-title: Adaptive preprocessing algorithms of corneal topography in polar coordinate system [J]
  publication-title: Journal of Central South University
  doi: 10.1007/s11771-014-2462-x
– volume: 20
  start-page: 551
  issue: 3
  year: 2013
  end-page: 559
  ident: CR8
  article-title: Feature extraction of gear fault signal based on Sobel operator and WHT [J]
  publication-title: Shock and Vibration
  doi: 10.1155/2013/367045
– volume: 27
  start-page: 875
  issue: 8
  year: 2012
  end-page: 882
  ident: CR19
  article-title: Image quality assessment based on edge preservation [J]
  publication-title: Signal Processing-Image Communication
  doi: 10.1016/j.image.2012.01.012
– volume: 40
  start-page: 605
  issue: 2
  year: 2013
  end-page: 617
  ident: CR2
  article-title: Railroad inspection based on ACFM employing a non-uniform B-spline approach [J]
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2013.05.004
– volume: 94
  start-page: 889
  issue: 9
  year: 2007
  end-page: 896
  ident: CR9
  article-title: A novel FPGA-based architecture for Sobel edge detection operator [J]
  publication-title: Internatinal Journal of Electronics
  doi: 10.1080/00207210701685253
– volume: 44
  start-page: 1201
  issue: 6
  year: 2011
  end-page: 1211
  ident: CR15
  article-title: A novel method to look for the hysteresis thresholds for the Canny edge detector [J]
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2010.12.008
– start-page: 363
  year: 2013
  end-page: 365
  ident: CR1
  article-title: Multi-frequency least squares demodulation method in electromagnetic rail inspection
  publication-title: IEEE International Conference on Imaging Systems and Techniques
– volume: 45
  start-page: 3073
  issue: 8
  year: 2009
  end-page: 3084
  ident: CR4
  article-title: Machine learning techniques for the analysis of magnetic flux leakage images in pipeline inspection [J]
  publication-title: IEEE Transaction on Magnetic
  doi: 10.1109/TMAG.2009.2020160
– volume: 40
  start-page: 354
  issue: 11
  year: 2013
  end-page: 356
  ident: CR22
  article-title: Edge detection algorithm based on the eight directions sobel operator [J]
  publication-title: Computer Science A
– volume: 22
  start-page: 1397
  issue: 4
  year: 2015
  end-page: 1404
  ident: CR17
  article-title: An edge-adaptive demosaicking method based on image correlation [J]
  publication-title: Journal of Central South University
  doi: 10.1007/s11771-015-2657-9
– volume: 31
  start-page: 2483
  issue: 10
  year: 2009
  end-page: 2487
  ident: CR24
  article-title: Selecting the optimal gaussian filtering scale via the SNR of image [J]
  publication-title: Journal of Electronics & Information Technology
– start-page: 675
  year: 2012
  end-page: 680
  ident: CR11
  article-title: Selection of destination ports of inland-port-transferring RHCTS based on sea-rail combined container transportation
  publication-title: 3rd International Symposium on Innovation and Sustainability of Modern Railway
– volume: 67
  start-page: 799
  issue: 9
  year: 2013
  end-page: 803
  ident: CR13
  article-title: Image quality assessment based on Prewitt magnitude [J]
  publication-title: AEU-International Journal of Electronics and Communications
  doi: 10.1016/j.aeue.2013.04.001
– volume: 27
  start-page: 821
  issue: 8
  year: 2006
  end-page: 824
  ident: CR21
  article-title: New method for image edge detection based on gradient and zero crossing [J]
  publication-title: Chinese Journal of Scientific Instrument
– volume: 54
  start-page: 201
  year: 2014
  end-page: 206
  ident: CR6
  article-title: An SVM approach with electromagnetic methods to assess metal plate thickness [J]
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.01.035
– year: 2011
  ident: CR23
  publication-title: Research on imaging optimization and depth information extraction of steel plate surface defects based on image processing [D]
– volume: 22
  start-page: 2586
  issue: 7
  year: 2015
  end-page: 2595
  ident: CR10
  article-title: Visual positioning of rectangular lead components based on Harris corners and Zernike moments [J]
  publication-title: Journal of Central South University
  doi: 10.1007/s11771-015-2788-z
– volume: 2
  start-page: 243
  year: 2011
  end-page: 249
  ident: CR12
  article-title: An integration method for edge detection [J]
  publication-title: Advanced Electrical and Electronics Engineering
  doi: 10.1007/978-3-642-19712-3_30
– volume: 4
  start-page: 57
  issue: 1
  year: 2014
  end-page: 61
  ident: CR14
  article-title: Different operator using in edge detection for image processing [J]
  publication-title: International Journal of Computer Science Engineering and Information Technology Research
  doi: 10.5121/ijcseit.2014.4106
– volume: 50
  start-page: 087008
  issue: 8
  year: 2011
  ident: CR16
  article-title: Shape-dependent canny edge detector [J]
  publication-title: Optical Engineering
  doi: 10.1117/1.3613941
– volume: 54
  start-page: 201
  year: 2014
  ident: 3350_CR6
  publication-title: Measurement
  doi: 10.1016/j.measurement.2014.01.035
– volume: 94
  start-page: 889
  issue: 9
  year: 2007
  ident: 3350_CR9
  publication-title: Internatinal Journal of Electronics
  doi: 10.1080/00207210701685253
– volume: 31
  start-page: 2483
  issue: 10
  year: 2009
  ident: 3350_CR24
  publication-title: Journal of Electronics & Information Technology
– volume: 45
  start-page: 3073
  issue: 8
  year: 2009
  ident: 3350_CR4
  publication-title: IEEE Transaction on Magnetic
  doi: 10.1109/TMAG.2009.2020160
– start-page: 675
  volume-title: 3rd International Symposium on Innovation and Sustainability of Modern Railway
  year: 2012
  ident: 3350_CR11
– volume: 21
  start-page: 4571
  issue: 12
  year: 2014
  ident: 3350_CR18
  publication-title: Journal of Central South University
  doi: 10.1007/s11771-014-2462-x
– volume: 27
  start-page: 875
  issue: 8
  year: 2012
  ident: 3350_CR19
  publication-title: Signal Processing-Image Communication
  doi: 10.1016/j.image.2012.01.012
– volume: 40
  start-page: 354
  issue: 11
  year: 2013
  ident: 3350_CR22
  publication-title: Computer Science A
– volume-title: Research on imaging optimization and depth information extraction of steel plate surface defects based on image processing [D]
  year: 2011
  ident: 3350_CR23
– volume: 21
  start-page: 125005
  issue: 7
  year: 2012
  ident: 3350_CR7
  publication-title: Journal of Circuits Systems and Computers
  doi: 10.1142/S0218126612500508
– volume: 22
  start-page: 1397
  issue: 4
  year: 2015
  ident: 3350_CR17
  publication-title: Journal of Central South University
  doi: 10.1007/s11771-015-2657-9
– volume: 27
  start-page: 821
  issue: 8
  year: 2006
  ident: 3350_CR21
  publication-title: Chinese Journal of Scientific Instrument
– volume: 44
  start-page: 1201
  issue: 6
  year: 2011
  ident: 3350_CR15
  publication-title: Pattern Recognition
  doi: 10.1016/j.patcog.2010.12.008
– volume: 50
  start-page: 087008
  issue: 8
  year: 2011
  ident: 3350_CR16
  publication-title: Optical Engineering
  doi: 10.1117/1.3613941
– volume: 17
  start-page: 221
  issue: 9
  year: 2012
  ident: 3350_CR3
  publication-title: Metalurgia International
– volume: 55
  start-page: 126
  issue: 3
  year: 2013
  ident: 3350_CR5
  publication-title: Insight
  doi: 10.1784/insi.2012.55.3.126
– volume: 4
  start-page: 57
  issue: 1
  year: 2014
  ident: 3350_CR14
  publication-title: International Journal of Computer Science Engineering and Information Technology Research
  doi: 10.5121/ijcseit.2014.4106
– start-page: 363
  volume-title: IEEE International Conference on Imaging Systems and Techniques
  year: 2013
  ident: 3350_CR1
– volume: 36
  start-page: 2195
  issue: 11
  year: 2008
  ident: 3350_CR20
  publication-title: Acta Electronica Sinica
– volume: 20
  start-page: 551
  issue: 3
  year: 2013
  ident: 3350_CR8
  publication-title: Shock and Vibration
  doi: 10.1155/2013/367045
– volume: 67
  start-page: 799
  issue: 9
  year: 2013
  ident: 3350_CR13
  publication-title: AEU-International Journal of Electronics and Communications
  doi: 10.1016/j.aeue.2013.04.001
– volume: 40
  start-page: 605
  issue: 2
  year: 2013
  ident: 3350_CR2
  publication-title: Mechanical Systems and Signal Processing
  doi: 10.1016/j.ymssp.2013.05.004
– volume: 22
  start-page: 2586
  issue: 7
  year: 2015
  ident: 3350_CR10
  publication-title: Journal of Central South University
  doi: 10.1007/s11771-015-2788-z
– volume: 2
  start-page: 243
  year: 2011
  ident: 3350_CR12
  publication-title: Advanced Electrical and Electronics Engineering
  doi: 10.1007/978-3-642-19712-3_30
SSID ssib031263696
ssib051367662
ssib026412149
ssib016993150
ssib024508231
ssj0001192107
ssib009883398
ssib016971650
Score 2.3340619
Snippet A more effective and accurate improved Sobel algorithm has been developed to detect surface defects on heavy rails. The proposed method can make up for the...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2867
SubjectTerms Algorithms
CCD cameras
Control Science and Information Engineering
Defects
Engineering
Feature extraction
Iterative methods
Light sources
Mechanical Engineering
Metallic Materials
Neural networks
Rails
Surface defects
Title Improved Sobel algorithm for defect detection of rail surfaces with enhanced efficiency and accuracy
URI https://link.springer.com/article/10.1007/s11771-016-3350-3
https://www.proquest.com/docview/1880823251
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELb6uMCBPgB16UM-cAK5iu3ESY4r1FKB2gtdqT1FftKq2yzKZg_w65nxJpulAqSeIsdOFM3Yk288M58JeZ95DG-FlHGTSpbaYJgBO8gAKmgni9y7mE14eaUuJumXm-ymq-Oe99nufUgyWuqh2I3nObq-ikmZgfHYJNsZ-CewGrfHn2-_nq2mUYkH6A5eBFdIkzQE76BdSj60RZol68EwgAhc8MErkVyo1al30M4iy1nHshe3cpBTLBZmCwAsDF2YPn76t-_-8w84wNonkdj4gzvfIde9aJZ5LQ-ni9ac2l9PWCOfKbtd8qoDvHS8nKF7ZMPX--TlGg3ia-KWOxve0W8z46dUT7_Pmvv27pECoqbOY8YJXNqYNVbTWaCNvp_S-aIJmFBGcS-Z-vouJjNQH0kxsKKU6tpRbe2i0fbnGzI5P7v-dMG60x-YlXnZMi881sWWllvDhVMIZFUpvTIyJNAJwAKjgMLwIuQhU2Vhtc08wEENNwst35Ktelb7A0KLoPI81z5JHLjD3GutgzHg_FsVnFR-RJJeI5XtqNHxhI5pNZA6owArTIdDAVZyRD6sHvmx5AX53-CjXs1VZyLmFRLhwbQDfDkiH3utrXX_62XvnjX6kLwQqPZYPXlEttpm4Y8BRrXmpFs2J2RzIsa_AU3IBpk
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWgHIAD4lNsKeADJ5Cl2E6c5FghqgXaXuhKvUX-GNNK2yzKZg_8-854k82CAIlT5NiJIntiv_GbeWbsXQFEb8VcSJdrkfvohMN5UCBUsEFXJYQUTXh2buaL_MtlcTnkca_HaPeRkkwz9ZTsJsuSXF8jtC5w8rjL7hHLSB7XQh3vjKim43MnH0IaEkmaqDss11pOZZUX2T4VhgBBKjn5JFoqszvzDstF0jgbNPbSRg4piqW0bIVwRZADM7Knf_rqX9e_CdT-xsOm5e3kMXs04FJ-vDWkJ-wOtE_Zwz21wmcsbDcgIPBvKwdLbpffV911f3XDEfjyABQYgpc-BXe1fBV5Z6-XfL3pIsV9cdry5dBepZgDDkm7ghI_uW0Dt95vOut_PmeLk08XH-diOKRBeF3WvQAFlL5ae-mdVMEQ3jS1BuN0zLAS138i65STVSxjYerKW18AojaLNyurX7CDdtXCS8araMqytJBlAb1WCdba6Bz66N7EoA3MWDZ2XeMHBXM6SGPZTNrL1NsNRa1Rbzd6xt7vHvmxle_4V-OjcTya4U9eN6RXh_aBMHDGPoxjtFf9t5cd_lfrt-z-_OLstDn9fP71FXugyF5SwuMRO-i7DbxG5NO7N8nSbwER6OvM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BVkJw4I1YKOADJ5DbOE7s5FhBl0KhQoJK5RT8pBVLtspmD_Dr8TjJZqkACXGKHDtRNJ7Y33hmvgF4mjt0b_mMMp1xmhmvqQ7rIA1QQVleSGdjNOG7I3FwnL05yU_6OqfLIdp9cEl2OQ3I0lS3u-fW746Jb0xKNIMF5TwPC8ll2MqwhMQEtvZefTrcX6tUicV0R4uCCaRMGh15oV1yNrbTLE82HWMBLrCUjRYKZ6lYV8AL7TwynvWMe_FYB_nFYpJ2GsALRXNm8KX-7rt_3Q1HiHvBKxs3u9kN-DyIqYtx-bqzavWO-XGBQfI_5HgTrvdAmOx1mnsLLrn6NlzboEe8A7Y78XCWfFhoNydq_mXRnLWn30hA2sQ6jEQJlzZGk9Vk4UmjzuZkuWo8BpoRPGMmrj6NQQ7ERbIMzDQlqrZEGbNqlPl-F45n-x9fHNC-KgQ1XJYtdanDfNnSMKNZagUCXFFyJzT3SegMgAO9g6lmhZc-F2VhlMldgIkq3CwUvweTelG7-0AKL6SUyiWJDWYyc0opr7UsCiO85cJNIRlmpzI9ZTpW7phXI9kzCrDCMDkUYMWn8Gz9yHnHF_K3wdvDlFf90rGskCAvqGDAnVN4PszgRvefXvbgn0Y_gSvvX86qt6-PDh_C1RQ1ICZYbsOkbVbuUUBarX7c_00_AYseEXw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Sobel+algorithm+for+defect+detection+of+rail+surfaces+with+enhanced+efficiency+and+accuracy&rft.jtitle=Journal+of+Central+South+University&rft.au=Shi%2C+Tian&rft.au=Jian-yi%2C+Kong&rft.au=Xing-dong%2C+Wang&rft.au=Liu%2C+Zhao&rft.date=2016-11-01&rft.pub=Springer+Nature+B.V&rft.issn=2095-2899&rft.eissn=2227-5223&rft.volume=23&rft.issue=11&rft.spage=2867&rft.epage=2875&rft_id=info:doi/10.1007%2Fs11771-016-3350-3&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-2899&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-2899&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-2899&client=summon