Improved Sobel algorithm for defect detection of rail surfaces with enhanced efficiency and accuracy
A more effective and accurate improved Sobel algorithm has been developed to detect surface defects on heavy rails. The proposed method can make up for the mere sensitivity to X and Y directions of the Sobel algorithm by adding six templates at different directions. Meanwhile, an experimental platfo...
Saved in:
Published in | Journal of Central South University Vol. 23; no. 11; pp. 2867 - 2875 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Changsha
Central South University
01.11.2016
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
ISSN | 2095-2899 2227-5223 |
DOI | 10.1007/s11771-016-3350-3 |
Cover
Abstract | A more effective and accurate improved Sobel algorithm has been developed to detect surface defects on heavy rails. The proposed method can make up for the mere sensitivity to
X
and
Y
directions of the Sobel algorithm by adding six templates at different directions. Meanwhile, an experimental platform for detecting surface defects consisting of the bed-jig, image-forming system with CCD cameras and light sources, parallel computer system and cable system has been constructed. The detection results of the backfin defects show that the improved Sobel algorithm can achieve an accurate and efficient positioning with decreasing interference noises to the defect edge. It can also extract more precise features and characteristic parameters of the backfin defect. Furthermore, the BP neural network adopted for defects classification with the inputting characteristic parameters of improved Sobel algorithm can obtain the optimal training precision of 0.0095827 with 106 iterative steps and time of 3 s less than Sobel algorithm with 146 steps and 5 s. Finally, an enhanced identification rate of 10% for the defects is also confirmed after the Sobel algorithm is improved. |
---|---|
AbstractList | A more effective and accurate improved Sobel algorithm has been developed to detect surface defects on heavy rails. The proposed method can make up for the mere sensitivity to X and Y directions of the Sobel algorithm by adding six templates at different directions. Meanwhile, an experimental platform for detecting surface defects consisting of the bed-jig, image-forming system with CCD cameras and light sources, parallel computer system and cable system has been constructed. The detection results of the backfin defects show that the improved Sobel algorithm can achieve an accurate and efficient positioning with decreasing interference noises to the defect edge. It can also extract more precise features and characteristic parameters of the backfin defect. Furthermore, the BP neural network adopted for defects classification with the inputting characteristic parameters of improved Sobel algorithm can obtain the optimal training precision of 0.0095827 with 106 iterative steps and time of 3 s less than Sobel algorithm with 146 steps and 5 s. Finally, an enhanced identification rate of 10% for the defects is also confirmed after the Sobel algorithm is improved. A more effective and accurate improved Sobel algorithm has been developed to detect surface defects on heavy rails. The proposed method can make up for the mere sensitivity to X and Y directions of the Sobel algorithm by adding six templates at different directions. Meanwhile, an experimental platform for detecting surface defects consisting of the bed-jig, image-forming system with CCD cameras and light sources, parallel computer system and cable system has been constructed. The detection results of the backfin defects show that the improved Sobel algorithm can achieve an accurate and efficient positioning with decreasing interference noises to the defect edge. It can also extract more precise features and characteristic parameters of the backfin defect. Furthermore, the BP neural network adopted for defects classification with the inputting characteristic parameters of improved Sobel algorithm can obtain the optimal training precision of 0.0095827 with 106 iterative steps and time of 3 s less than Sobel algorithm with 146 steps and 5 s. Finally, an enhanced identification rate of 10% for the defects is also confirmed after the Sobel algorithm is improved. |
Author | Liu, Zhao Wang, Xing-dong Shi, Tian Zheng, Guo Kong, Jian-yi |
Author_xml | – sequence: 1 givenname: Tian surname: Shi fullname: Shi, Tian organization: School of Machinery and Automation, Wuhan University of Science and Technology – sequence: 2 givenname: Jian-yi surname: Kong fullname: Kong, Jian-yi email: 15697188659@wo.com.cn organization: School of Machinery and Automation, Wuhan University of Science and Technology – sequence: 3 givenname: Xing-dong surname: Wang fullname: Wang, Xing-dong organization: School of Machinery and Automation, Wuhan University of Science and Technology – sequence: 4 givenname: Zhao surname: Liu fullname: Liu, Zhao organization: School of Machinery and Automation, Wuhan University of Science and Technology – sequence: 5 givenname: Guo surname: Zheng fullname: Zheng, Guo organization: School of Machinery and Automation, Wuhan University of Science and Technology |
BookMark | eNp9UE1LxDAQDbKC67o_wFvAczWT0LQ5yuLHwoIH9VzSdLJb6SZr0ir7702pBxH0Mm_IvDeZ987JzHmHhFwCuwbGipsIUBSQMZCZEDnLxAmZc86LLOdczFLPVJ7xUqkzsoyxrZkALoVUck6a9f4Q_Ac29NnX2FHdbX1o-92eWh9ogxZNn6BP0HpHvaVBtx2NQ7DaYKSfiUvR7bQzaQda25oWnTlS7RqqjRmCNscLcmp1F3H5jQvyen_3snrMNk8P69XtJjOiUH2GHHPFQBkwNfBGKgVSKoGyFpaloZQAvAReQ2kLm0tVGm1ylMB0eiy1WJCraW-y9D5g7Ks3PwSXvqygLFnJBc8hsYqJZYKPMaCtTNvr0V4_equAVWOq1ZRqlVKtxlRTWRD4pTyEdq_D8V8NnzQxcd0Ww4-b_hR9AYjUi4o |
CitedBy_id | crossref_primary_10_1007_s11227_022_04404_8 crossref_primary_10_3390_coatings13010017 crossref_primary_10_1051_itmconf_20224301012 crossref_primary_10_3390_buildings14010003 crossref_primary_10_1109_TIM_2019_2963555 crossref_primary_10_1038_s41598_024_55474_y crossref_primary_10_1109_JSEN_2020_2977366 crossref_primary_10_1049_ipr2_12608 crossref_primary_10_1038_s41598_024_58620_8 crossref_primary_10_37434_tdnk2024_02_04 crossref_primary_10_1049_ipr2_12647 crossref_primary_10_4236_jsip_2021_122002 crossref_primary_10_1038_s41598_023_41221_2 crossref_primary_10_3390_met11030388 crossref_primary_10_1049_iet_est_2020_0041 crossref_primary_10_1007_s11771_018_3808_6 crossref_primary_10_3390_s21248480 crossref_primary_10_1016_j_measurement_2023_112614 crossref_primary_10_1109_ACCESS_2023_3291598 crossref_primary_10_1007_s13369_022_07567_x crossref_primary_10_1109_JSEN_2024_3403137 crossref_primary_10_3390_app11062606 crossref_primary_10_2139_ssrn_4802512 crossref_primary_10_3390_s22218374 crossref_primary_10_1016_j_jmsy_2021_05_008 crossref_primary_10_1109_ACCESS_2019_2927655 crossref_primary_10_3390_s23041993 crossref_primary_10_3390_electronics11213430 crossref_primary_10_1109_JSEN_2023_3346470 crossref_primary_10_1049_ipr2_12390 crossref_primary_10_1016_j_jksuci_2024_101929 crossref_primary_10_3390_electronics12234863 crossref_primary_10_1109_JBHI_2024_3404273 crossref_primary_10_3390_su15043733 crossref_primary_10_1109_ACCESS_2024_3510746 crossref_primary_10_1016_j_eswa_2022_118966 crossref_primary_10_1016_j_eswa_2023_122225 crossref_primary_10_1177_09544097221110322 crossref_primary_10_3390_pr10040701 crossref_primary_10_1134_S1061830923600740 crossref_primary_10_3390_app8030381 crossref_primary_10_3390_app15010458 crossref_primary_10_1016_j_measurement_2022_111040 crossref_primary_10_1038_s44172_023_00135_7 crossref_primary_10_3390_s20185136 crossref_primary_10_3390_s23125488 crossref_primary_10_3390_app14093629 crossref_primary_10_1038_s41598_022_15855_7 crossref_primary_10_1080_0951192X_2019_1636409 crossref_primary_10_1088_1361_6501_ad1daf crossref_primary_10_1016_j_engappai_2024_108482 crossref_primary_10_3390_app13127330 crossref_primary_10_1093_tse_tdz007 crossref_primary_10_37434_tpwj2024_08_05 crossref_primary_10_1109_TIM_2021_3056738 crossref_primary_10_3390_electronics13173580 crossref_primary_10_3390_s21196331 crossref_primary_10_1109_ACCESS_2024_3414840 crossref_primary_10_1049_ipr2_12715 crossref_primary_10_3390_app13095260 crossref_primary_10_3390_s20020544 crossref_primary_10_1007_s10462_023_10535_y crossref_primary_10_15406_ipcse_2023_06_00129 |
Cites_doi | 10.1784/insi.2012.55.3.126 10.1142/S0218126612500508 10.1007/s11771-014-2462-x 10.1155/2013/367045 10.1016/j.image.2012.01.012 10.1016/j.ymssp.2013.05.004 10.1080/00207210701685253 10.1016/j.patcog.2010.12.008 10.1109/TMAG.2009.2020160 10.1007/s11771-015-2657-9 10.1016/j.aeue.2013.04.001 10.1016/j.measurement.2014.01.035 10.1007/s11771-015-2788-z 10.1007/978-3-642-19712-3_30 10.5121/ijcseit.2014.4106 10.1117/1.3613941 |
ContentType | Journal Article |
Copyright | Central South University Press and Springer-Verlag Berlin Heidelberg 2016 Copyright Springer Science & Business Media 2016 |
Copyright_xml | – notice: Central South University Press and Springer-Verlag Berlin Heidelberg 2016 – notice: Copyright Springer Science & Business Media 2016 |
DBID | AAYXX CITATION |
DOI | 10.1007/s11771-016-3350-3 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2227-5223 |
EndPage | 2875 |
ExternalDocumentID | 10_1007_s11771_016_3350_3 |
GroupedDBID | -03 -0C -EM -SC -S~ .VR 06D 0R~ 29~ 2B. 2C0 2J2 2JN 2JY 2KG 2KM 2LR 30V 4.4 406 408 40E 5VR 5VS 8UJ 92H 92I 92M 92R 93N 95- 95. 95~ 96X 9D9 9DC AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAXDM AAYIU AAYQN AAYTO AAYZH ABAKF ABDZT ABECU ABFTV ABHQN ABJNI ABJOX ABKCH ABMQK ABNWP ABQBU ABSXP ABTEG ABTHY ABTKH ABTMW ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACPIV ACSNA ACZOJ ADHIR ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFQL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFLOW AFQWF AFUIB AFZKB AGAYW AGDGC AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARCEE ARMRJ AXYYD B-. BA0 BDATZ BGNMA CAJEC CCEZO CEKLB CHBEP CSCUP DDRTE DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG FA0 FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 HF~ HG6 HMJXF HRMNR IKXTQ IWAJR IXD I~Z J-C JBSCW JUIAU JZLTJ KOV LLZTM M4Y MA- NPVJJ NQJWS NU0 O9J PF0 PT4 Q-- Q-2 R-C R89 ROL RPX RSV RT3 S16 S3B SAP SCL SCLPG SDH SEG SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T8S TCJ TGT TSG TUC U1F U1G U2A U5C U5M UG4 UOJIU UTJUX UZXMN VC2 VFIZW W48 YLTOR Z7R Z7V Z7X Z7Y Z7Z Z81 Z83 Z85 Z88 ZMTXR ~A9 AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC AEZWR AFDZB AFHIU AFOHR AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION ABRTQ |
ID | FETCH-LOGICAL-c379t-e2e59019c1cb12d69916693e6b3f0e2e66112812b18f7f5698cac5e610a12b8a3 |
IEDL.DBID | AGYKE |
ISSN | 2095-2899 |
IngestDate | Wed Sep 17 13:41:19 EDT 2025 Thu Apr 24 23:00:54 EDT 2025 Tue Jul 01 00:29:18 EDT 2025 Fri Feb 21 02:34:54 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Keywords | heavy rail Sobel algorithm identification experimental platform surface defect |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c379t-e2e59019c1cb12d69916693e6b3f0e2e66112812b18f7f5698cac5e610a12b8a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 1880823251 |
PQPubID | 2044301 |
PageCount | 9 |
ParticipantIDs | proquest_journals_1880823251 crossref_citationtrail_10_1007_s11771_016_3350_3 crossref_primary_10_1007_s11771_016_3350_3 springer_journals_10_1007_s11771_016_3350_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-11-01 |
PublicationDateYYYYMMDD | 2016-11-01 |
PublicationDate_xml | – month: 11 year: 2016 text: 2016-11-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | Changsha |
PublicationPlace_xml | – name: Changsha – name: Heidelberg |
PublicationSubtitle | Science & Technology of Mining and Metallurgy |
PublicationTitle | Journal of Central South University |
PublicationTitleAbbrev | J. Cent. South Univ |
PublicationYear | 2016 |
Publisher | Central South University Springer Nature B.V |
Publisher_xml | – name: Central South University – name: Springer Nature B.V |
References | Zhang, Zhu, Fan, Deng (CR13) 2013; 67 Khalid, Paily (CR7) 2012; 21 Munoz, Marquez, Papaelias (CR2) 2013; 40 Khodayari-Rostamabad, Reilly, Nikolova, Hare, Pasha (CR4) 2009; 45 Medina-Carnicer, Munoz-Salinas, Yeguasbolivar, Diaz-Mas (CR15) 2011; 44 Pandey (CR14) 2014; 4 Zhao, Wan (CR21) 2006; 27 Panetta, Agaian, Nercessian, Almunstashri (CR16) 2011; 50 Guo (CR18) 2014; 21 Zhang, Yang, Wei (CR11) 2012 Cao, Chen, Zhang (CR12) 2011; 2 Mi, Xie (CR3) 2012; 17 Zheng, Liu, Lu, Zhu, Sun (CR1) 2013 Wang, Huang (CR10) 2015; 22 Zhao, Xu, Jiao (CR20) 2008; 36 Jia, Zhao, Zhou, Chen (CR17) 2015; 22 Zheng, Zhang, Wang, Zhang, Fan (CR22) 2013; 40 Ramos, Rocha, Kral, Pasadas, Ribeiro (CR6) 2014; 54 Lei, Tian (CR5) 2013; 55 Cai, Hu (CR8) 2013; 20 Abbasi, Abbasi (CR9) 2007; 94 Martini, Hewage, Villarini (CR19) 2012; 27 Liu (CR23) 2011 Wang (CR24) 2009; 31 S-q Cao (3350_CR12) 2011; 2 Y-j Zheng (3350_CR22) 2013; 40 H Zhang (3350_CR13) 2013; 67 K A Panetta (3350_CR16) 2011; 50 J-h Cai (3350_CR8) 2013; 20 Q Zhang (3350_CR11) 2012 A R Khalid (3350_CR7) 2012; 21 Z-g Zhao (3350_CR21) 2006; 27 Y-wen Guo (3350_CR18) 2014; 21 W-yuan Wang (3350_CR24) 2009; 31 J-y Zhao (3350_CR20) 2008; 36 J M C Munoz (3350_CR2) 2013; 40 X-f Jia (3350_CR17) 2015; 22 H-m Lei (3350_CR5) 2013; 55 M G Martini (3350_CR19) 2012; 27 T A Abbasi (3350_CR9) 2007; 94 Z-j Wang (3350_CR10) 2015; 22 M Pandey (3350_CR14) 2014; 4 Y-jiong Liu (3350_CR23) 2011 A Khodayari-Rostamabad (3350_CR4) 2009; 45 H G Ramos (3350_CR6) 2014; 54 R Medina-Carnicer (3350_CR15) 2011; 44 R Zheng (3350_CR1) 2013 Z-z Mi (3350_CR3) 2012; 17 |
References_xml | – volume: 17 start-page: 221 issue: 9 year: 2012 end-page: 225 ident: CR3 article-title: Theoretical and experimental research on the defects of hot rolled heavy rail [J] publication-title: Metalurgia International – volume: 36 start-page: 2195 issue: 11 year: 2008 end-page: 2199 ident: CR20 article-title: The fast arithmetic study of image edge detection based on the order morphology [J] publication-title: Acta Electronica Sinica – volume: 55 start-page: 126 issue: 3 year: 2013 end-page: 131 ident: CR5 article-title: Broken wire detection in coated steel belts using the magnetic flux leakage method [J] publication-title: Insight doi: 10.1784/insi.2012.55.3.126 – volume: 21 start-page: 125005 issue: 7 year: 2012 ident: CR7 article-title: FPGA implementation of high speed and low power architectures for image segmentation using Sobel operators [J] publication-title: Journal of Circuits Systems and Computers doi: 10.1142/S0218126612500508 – volume: 21 start-page: 4571 issue: 12 year: 2014 end-page: 4576 ident: CR18 article-title: Adaptive preprocessing algorithms of corneal topography in polar coordinate system [J] publication-title: Journal of Central South University doi: 10.1007/s11771-014-2462-x – volume: 20 start-page: 551 issue: 3 year: 2013 end-page: 559 ident: CR8 article-title: Feature extraction of gear fault signal based on Sobel operator and WHT [J] publication-title: Shock and Vibration doi: 10.1155/2013/367045 – volume: 27 start-page: 875 issue: 8 year: 2012 end-page: 882 ident: CR19 article-title: Image quality assessment based on edge preservation [J] publication-title: Signal Processing-Image Communication doi: 10.1016/j.image.2012.01.012 – volume: 40 start-page: 605 issue: 2 year: 2013 end-page: 617 ident: CR2 article-title: Railroad inspection based on ACFM employing a non-uniform B-spline approach [J] publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2013.05.004 – volume: 94 start-page: 889 issue: 9 year: 2007 end-page: 896 ident: CR9 article-title: A novel FPGA-based architecture for Sobel edge detection operator [J] publication-title: Internatinal Journal of Electronics doi: 10.1080/00207210701685253 – volume: 44 start-page: 1201 issue: 6 year: 2011 end-page: 1211 ident: CR15 article-title: A novel method to look for the hysteresis thresholds for the Canny edge detector [J] publication-title: Pattern Recognition doi: 10.1016/j.patcog.2010.12.008 – start-page: 363 year: 2013 end-page: 365 ident: CR1 article-title: Multi-frequency least squares demodulation method in electromagnetic rail inspection publication-title: IEEE International Conference on Imaging Systems and Techniques – volume: 45 start-page: 3073 issue: 8 year: 2009 end-page: 3084 ident: CR4 article-title: Machine learning techniques for the analysis of magnetic flux leakage images in pipeline inspection [J] publication-title: IEEE Transaction on Magnetic doi: 10.1109/TMAG.2009.2020160 – volume: 40 start-page: 354 issue: 11 year: 2013 end-page: 356 ident: CR22 article-title: Edge detection algorithm based on the eight directions sobel operator [J] publication-title: Computer Science A – volume: 22 start-page: 1397 issue: 4 year: 2015 end-page: 1404 ident: CR17 article-title: An edge-adaptive demosaicking method based on image correlation [J] publication-title: Journal of Central South University doi: 10.1007/s11771-015-2657-9 – volume: 31 start-page: 2483 issue: 10 year: 2009 end-page: 2487 ident: CR24 article-title: Selecting the optimal gaussian filtering scale via the SNR of image [J] publication-title: Journal of Electronics & Information Technology – start-page: 675 year: 2012 end-page: 680 ident: CR11 article-title: Selection of destination ports of inland-port-transferring RHCTS based on sea-rail combined container transportation publication-title: 3rd International Symposium on Innovation and Sustainability of Modern Railway – volume: 67 start-page: 799 issue: 9 year: 2013 end-page: 803 ident: CR13 article-title: Image quality assessment based on Prewitt magnitude [J] publication-title: AEU-International Journal of Electronics and Communications doi: 10.1016/j.aeue.2013.04.001 – volume: 27 start-page: 821 issue: 8 year: 2006 end-page: 824 ident: CR21 article-title: New method for image edge detection based on gradient and zero crossing [J] publication-title: Chinese Journal of Scientific Instrument – volume: 54 start-page: 201 year: 2014 end-page: 206 ident: CR6 article-title: An SVM approach with electromagnetic methods to assess metal plate thickness [J] publication-title: Measurement doi: 10.1016/j.measurement.2014.01.035 – year: 2011 ident: CR23 publication-title: Research on imaging optimization and depth information extraction of steel plate surface defects based on image processing [D] – volume: 22 start-page: 2586 issue: 7 year: 2015 end-page: 2595 ident: CR10 article-title: Visual positioning of rectangular lead components based on Harris corners and Zernike moments [J] publication-title: Journal of Central South University doi: 10.1007/s11771-015-2788-z – volume: 2 start-page: 243 year: 2011 end-page: 249 ident: CR12 article-title: An integration method for edge detection [J] publication-title: Advanced Electrical and Electronics Engineering doi: 10.1007/978-3-642-19712-3_30 – volume: 4 start-page: 57 issue: 1 year: 2014 end-page: 61 ident: CR14 article-title: Different operator using in edge detection for image processing [J] publication-title: International Journal of Computer Science Engineering and Information Technology Research doi: 10.5121/ijcseit.2014.4106 – volume: 50 start-page: 087008 issue: 8 year: 2011 ident: CR16 article-title: Shape-dependent canny edge detector [J] publication-title: Optical Engineering doi: 10.1117/1.3613941 – volume: 54 start-page: 201 year: 2014 ident: 3350_CR6 publication-title: Measurement doi: 10.1016/j.measurement.2014.01.035 – volume: 94 start-page: 889 issue: 9 year: 2007 ident: 3350_CR9 publication-title: Internatinal Journal of Electronics doi: 10.1080/00207210701685253 – volume: 31 start-page: 2483 issue: 10 year: 2009 ident: 3350_CR24 publication-title: Journal of Electronics & Information Technology – volume: 45 start-page: 3073 issue: 8 year: 2009 ident: 3350_CR4 publication-title: IEEE Transaction on Magnetic doi: 10.1109/TMAG.2009.2020160 – start-page: 675 volume-title: 3rd International Symposium on Innovation and Sustainability of Modern Railway year: 2012 ident: 3350_CR11 – volume: 21 start-page: 4571 issue: 12 year: 2014 ident: 3350_CR18 publication-title: Journal of Central South University doi: 10.1007/s11771-014-2462-x – volume: 27 start-page: 875 issue: 8 year: 2012 ident: 3350_CR19 publication-title: Signal Processing-Image Communication doi: 10.1016/j.image.2012.01.012 – volume: 40 start-page: 354 issue: 11 year: 2013 ident: 3350_CR22 publication-title: Computer Science A – volume-title: Research on imaging optimization and depth information extraction of steel plate surface defects based on image processing [D] year: 2011 ident: 3350_CR23 – volume: 21 start-page: 125005 issue: 7 year: 2012 ident: 3350_CR7 publication-title: Journal of Circuits Systems and Computers doi: 10.1142/S0218126612500508 – volume: 22 start-page: 1397 issue: 4 year: 2015 ident: 3350_CR17 publication-title: Journal of Central South University doi: 10.1007/s11771-015-2657-9 – volume: 27 start-page: 821 issue: 8 year: 2006 ident: 3350_CR21 publication-title: Chinese Journal of Scientific Instrument – volume: 44 start-page: 1201 issue: 6 year: 2011 ident: 3350_CR15 publication-title: Pattern Recognition doi: 10.1016/j.patcog.2010.12.008 – volume: 50 start-page: 087008 issue: 8 year: 2011 ident: 3350_CR16 publication-title: Optical Engineering doi: 10.1117/1.3613941 – volume: 17 start-page: 221 issue: 9 year: 2012 ident: 3350_CR3 publication-title: Metalurgia International – volume: 55 start-page: 126 issue: 3 year: 2013 ident: 3350_CR5 publication-title: Insight doi: 10.1784/insi.2012.55.3.126 – volume: 4 start-page: 57 issue: 1 year: 2014 ident: 3350_CR14 publication-title: International Journal of Computer Science Engineering and Information Technology Research doi: 10.5121/ijcseit.2014.4106 – start-page: 363 volume-title: IEEE International Conference on Imaging Systems and Techniques year: 2013 ident: 3350_CR1 – volume: 36 start-page: 2195 issue: 11 year: 2008 ident: 3350_CR20 publication-title: Acta Electronica Sinica – volume: 20 start-page: 551 issue: 3 year: 2013 ident: 3350_CR8 publication-title: Shock and Vibration doi: 10.1155/2013/367045 – volume: 67 start-page: 799 issue: 9 year: 2013 ident: 3350_CR13 publication-title: AEU-International Journal of Electronics and Communications doi: 10.1016/j.aeue.2013.04.001 – volume: 40 start-page: 605 issue: 2 year: 2013 ident: 3350_CR2 publication-title: Mechanical Systems and Signal Processing doi: 10.1016/j.ymssp.2013.05.004 – volume: 22 start-page: 2586 issue: 7 year: 2015 ident: 3350_CR10 publication-title: Journal of Central South University doi: 10.1007/s11771-015-2788-z – volume: 2 start-page: 243 year: 2011 ident: 3350_CR12 publication-title: Advanced Electrical and Electronics Engineering doi: 10.1007/978-3-642-19712-3_30 |
SSID | ssib031263696 ssib051367662 ssib026412149 ssib016993150 ssib024508231 ssj0001192107 ssib009883398 ssib016971650 |
Score | 2.3340619 |
Snippet | A more effective and accurate improved Sobel algorithm has been developed to detect surface defects on heavy rails. The proposed method can make up for the... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2867 |
SubjectTerms | Algorithms CCD cameras Control Science and Information Engineering Defects Engineering Feature extraction Iterative methods Light sources Mechanical Engineering Metallic Materials Neural networks Rails Surface defects |
Title | Improved Sobel algorithm for defect detection of rail surfaces with enhanced efficiency and accuracy |
URI | https://link.springer.com/article/10.1007/s11771-016-3350-3 https://www.proquest.com/docview/1880823251 |
Volume | 23 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELb6uMCBPgB16UM-cAK5iu3ESY4r1FKB2gtdqT1FftKq2yzKZg_w65nxJpulAqSeIsdOFM3Yk288M58JeZ95DG-FlHGTSpbaYJgBO8gAKmgni9y7mE14eaUuJumXm-ymq-Oe99nufUgyWuqh2I3nObq-ikmZgfHYJNsZ-CewGrfHn2-_nq2mUYkH6A5eBFdIkzQE76BdSj60RZol68EwgAhc8MErkVyo1al30M4iy1nHshe3cpBTLBZmCwAsDF2YPn76t-_-8w84wNonkdj4gzvfIde9aJZ5LQ-ni9ac2l9PWCOfKbtd8qoDvHS8nKF7ZMPX--TlGg3ia-KWOxve0W8z46dUT7_Pmvv27pECoqbOY8YJXNqYNVbTWaCNvp_S-aIJmFBGcS-Z-vouJjNQH0kxsKKU6tpRbe2i0fbnGzI5P7v-dMG60x-YlXnZMi881sWWllvDhVMIZFUpvTIyJNAJwAKjgMLwIuQhU2Vhtc08wEENNwst35Ktelb7A0KLoPI81z5JHLjD3GutgzHg_FsVnFR-RJJeI5XtqNHxhI5pNZA6owArTIdDAVZyRD6sHvmx5AX53-CjXs1VZyLmFRLhwbQDfDkiH3utrXX_62XvnjX6kLwQqPZYPXlEttpm4Y8BRrXmpFs2J2RzIsa_AU3IBpk |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwELWgHIAD4lNsKeADJ5Cl2E6c5FghqgXaXuhKvUX-GNNK2yzKZg_8-854k82CAIlT5NiJIntiv_GbeWbsXQFEb8VcSJdrkfvohMN5UCBUsEFXJYQUTXh2buaL_MtlcTnkca_HaPeRkkwz9ZTsJsuSXF8jtC5w8rjL7hHLSB7XQh3vjKim43MnH0IaEkmaqDss11pOZZUX2T4VhgBBKjn5JFoqszvzDstF0jgbNPbSRg4piqW0bIVwRZADM7Knf_rqX9e_CdT-xsOm5e3kMXs04FJ-vDWkJ-wOtE_Zwz21wmcsbDcgIPBvKwdLbpffV911f3XDEfjyABQYgpc-BXe1fBV5Z6-XfL3pIsV9cdry5dBepZgDDkm7ghI_uW0Dt95vOut_PmeLk08XH-diOKRBeF3WvQAFlL5ae-mdVMEQ3jS1BuN0zLAS138i65STVSxjYerKW18AojaLNyurX7CDdtXCS8araMqytJBlAb1WCdba6Bz66N7EoA3MWDZ2XeMHBXM6SGPZTNrL1NsNRa1Rbzd6xt7vHvmxle_4V-OjcTya4U9eN6RXh_aBMHDGPoxjtFf9t5cd_lfrt-z-_OLstDn9fP71FXugyF5SwuMRO-i7DbxG5NO7N8nSbwER6OvM |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwEB7BVkJw4I1YKOADJ5DbOE7s5FhBl0KhQoJK5RT8pBVLtspmD_Dr8TjJZqkACXGKHDtRNJ7Y33hmvgF4mjt0b_mMMp1xmhmvqQ7rIA1QQVleSGdjNOG7I3FwnL05yU_6OqfLIdp9cEl2OQ3I0lS3u-fW746Jb0xKNIMF5TwPC8ll2MqwhMQEtvZefTrcX6tUicV0R4uCCaRMGh15oV1yNrbTLE82HWMBLrCUjRYKZ6lYV8AL7TwynvWMe_FYB_nFYpJ2GsALRXNm8KX-7rt_3Q1HiHvBKxs3u9kN-DyIqYtx-bqzavWO-XGBQfI_5HgTrvdAmOx1mnsLLrn6NlzboEe8A7Y78XCWfFhoNydq_mXRnLWn30hA2sQ6jEQJlzZGk9Vk4UmjzuZkuWo8BpoRPGMmrj6NQQ7ERbIMzDQlqrZEGbNqlPl-F45n-x9fHNC-KgQ1XJYtdanDfNnSMKNZagUCXFFyJzT3SegMgAO9g6lmhZc-F2VhlMldgIkq3CwUvweTelG7-0AKL6SUyiWJDWYyc0opr7UsCiO85cJNIRlmpzI9ZTpW7phXI9kzCrDCMDkUYMWn8Gz9yHnHF_K3wdvDlFf90rGskCAvqGDAnVN4PszgRvefXvbgn0Y_gSvvX86qt6-PDh_C1RQ1ICZYbsOkbVbuUUBarX7c_00_AYseEXw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Improved+Sobel+algorithm+for+defect+detection+of+rail+surfaces+with+enhanced+efficiency+and+accuracy&rft.jtitle=Journal+of+Central+South+University&rft.au=Shi%2C+Tian&rft.au=Jian-yi%2C+Kong&rft.au=Xing-dong%2C+Wang&rft.au=Liu%2C+Zhao&rft.date=2016-11-01&rft.pub=Springer+Nature+B.V&rft.issn=2095-2899&rft.eissn=2227-5223&rft.volume=23&rft.issue=11&rft.spage=2867&rft.epage=2875&rft_id=info:doi/10.1007%2Fs11771-016-3350-3&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2095-2899&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2095-2899&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2095-2899&client=summon |