An Empirical Mode-Spatial Model for Environmental Data Imputation

Complete and accurate data are necessary for analyzing and understanding trends in time-series datasets; however, many of the available time-series datasets have gaps that affect the analysis, especially in the earth sciences. As most available data have missing values, researchers use various inter...

Full description

Saved in:
Bibliographic Details
Published inHydrology Vol. 5; no. 4; p. 63
Main Authors Nelsen, Benjamin, Williams, D. Alexandra, Williams, Gustavious P., Berrett, Candace
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.12.2018
Subjects
Online AccessGet full text
ISSN2306-5338
2306-5338
DOI10.3390/hydrology5040063

Cover

Abstract Complete and accurate data are necessary for analyzing and understanding trends in time-series datasets; however, many of the available time-series datasets have gaps that affect the analysis, especially in the earth sciences. As most available data have missing values, researchers use various interpolation methods or ad hoc approaches to data imputation. Since the analysis based on inaccurate data can lead to inaccurate conclusions, more accurate data imputation methods can provide accurate analysis. We present a spatial-temporal data imputation method using Empirical Mode Decomposition (EMD) based on spatial correlations. We call this method EMD-spatial data imputation or EMD-SDI. Though this method is applicable to other time-series data sets, here we demonstrate the method using temperature data. The EMD algorithm decomposes data into periodic components called intrinsic mode functions (IMF) and exactly reconstructs the original signal by summing these IMFs. EMD-SDI initially decomposes the data from the target station and other stations in the region into IMFs. EMD-SDI evaluates each IMF from the target station in turn and selects the IMF from other stations in the region with periodic behavior most correlated to target IMF. EMD-SDI then replaces a section of missing data in the target station IMF with the section from the most closely correlated IMF from the regional stations. We found that EMD-SDI selects the IMFs used for reconstruction from different stations throughout the region, not necessarily the station closest in the geographic sense. EMD-SDI accurately filled data gaps from 3 months to 5 years in length in our tests and favorably compares to a simple temporal method. EMD-SDI leverages regional correlation and the fact that different stations can be subject to different periodic behaviors. In addition to data imputation, the EMD-SDI method provides IMFs that can be used to better understand regional correlations and processes.
AbstractList Complete and accurate data are necessary for analyzing and understanding trends in time-series datasets; however, many of the available time-series datasets have gaps that affect the analysis, especially in the earth sciences. As most available data have missing values, researchers use various interpolation methods or ad hoc approaches to data imputation. Since the analysis based on inaccurate data can lead to inaccurate conclusions, more accurate data imputation methods can provide accurate analysis. We present a spatial-temporal data imputation method using Empirical Mode Decomposition (EMD) based on spatial correlations. We call this method EMD-spatial data imputation or EMD-SDI. Though this method is applicable to other time-series data sets, here we demonstrate the method using temperature data. The EMD algorithm decomposes data into periodic components called intrinsic mode functions (IMF) and exactly reconstructs the original signal by summing these IMFs. EMD-SDI initially decomposes the data from the target station and other stations in the region into IMFs. EMD-SDI evaluates each IMF from the target station in turn and selects the IMF from other stations in the region with periodic behavior most correlated to target IMF. EMD-SDI then replaces a section of missing data in the target station IMF with the section from the most closely correlated IMF from the regional stations. We found that EMD-SDI selects the IMFs used for reconstruction from different stations throughout the region, not necessarily the station closest in the geographic sense. EMD-SDI accurately filled data gaps from 3 months to 5 years in length in our tests and favorably compares to a simple temporal method. EMD-SDI leverages regional correlation and the fact that different stations can be subject to different periodic behaviors. In addition to data imputation, the EMD-SDI method provides IMFs that can be used to better understand regional correlations and processes.
Author Nelsen, Benjamin
Williams, D. Alexandra
Williams, Gustavious P.
Berrett, Candace
Author_xml – sequence: 1
  givenname: Benjamin
  surname: Nelsen
  fullname: Nelsen, Benjamin
– sequence: 2
  givenname: D. Alexandra
  surname: Williams
  fullname: Williams, D. Alexandra
– sequence: 3
  givenname: Gustavious P.
  orcidid: 0000-0002-2781-0738
  surname: Williams
  fullname: Williams, Gustavious P.
– sequence: 4
  givenname: Candace
  surname: Berrett
  fullname: Berrett, Candace
BookMark eNqNkM1rGzEQxUVJIImbe44LOW8qaVbS-mhcJzW49NDmLMb6SGXW0ka7TvB_X7UbSjEEehDSPN77DXpX5Cym6Ai5YfQOYE4__TzanLr0dBS0oVTCB3LJgcpaALRn_7wvyPUw7CilnLG2OC_JYhGr1b4PORjsqq_Juvp7j2N4G7rKp1yt4kvIKe5dHIv-GUes1vv-MBZfih_JucducNdv94w83q9-LL_Um28P6-ViUxtQ87HeSinQWmE4CiuQb52dO8NASYUNbc3WNKhoOc6DnwMq5kFIJVEYYxkHmJH1xLUJd7rPYY_5qBMG_UdI-UljHoPpnG6s8WC5hEa1jXdlI3UAaCQyxf1WFRabWIfY4_EVu-4vkFH9u1J9WmnJ3E6ZPqfngxtGvUuHHMuXNRctb2mjqCguOrlMTsOQnf8fsDyJmDBVO2YM3fvBX21JnOg
CitedBy_id crossref_primary_10_1016_j_compag_2021_106377
crossref_primary_10_1371_journal_pone_0314005
crossref_primary_10_3390_rs12122044
crossref_primary_10_1016_j_scs_2024_105430
crossref_primary_10_1080_19942060_2020_1803971
crossref_primary_10_3390_w14142264
Cites_doi 10.1198/108571107X227603
10.1016/j.envres.2015.02.002
10.1175/JHM-D-12-027.1
10.1016/j.jhydrol.2015.08.008
10.1016/S1364-8152(01)00008-1
10.1016/j.envsoft.2018.01.012
10.1029/WR023i004p00641
10.1016/j.envsoft.2007.04.013
10.1029/WR018i004p01081
10.1029/WR006i006p01595
10.1029/WR010i001p00081
10.1080/02626669509491422
10.1002/joc.1377
10.1016/S0022-1694(01)00513-3
10.1061/(ASCE)1084-0699(2000)5:4(424)
10.1007/s00477-008-0223-9
10.1029/95WR01955
10.1007/s11269-015-0962-6
10.1007/s10649-006-7099-8
10.1029/2007RG000228
10.1142/8804
10.1016/j.envsoft.2016.04.013
10.1098/rspa.1998.0193
10.1111/j.1467-9892.2011.00733.x
10.1111/j.1752-1688.1989.tb05410.x
10.1016/j.envsoft.2005.02.004
10.1016/j.envsoft.2015.07.001
10.2307/2282437
10.2166/hydro.2013.134
10.1016/0022-1694(94)90185-6
10.1007/s10260-012-0200-9
10.1029/WR021i005p00715
10.1029/WR025i003p00345
10.1080/02664760701511398
10.1016/S0022-1694(00)00332-2
10.1016/j.jhydrol.2007.04.020
10.1080/02626660009492388
10.1007/s10596-009-9132-3
10.1109/ICASSP.2012.6288750
10.1029/2006WR005298
10.1016/j.envsoft.2016.11.005
10.1080/02626669409492784
10.1016/j.jhydrol.2011.01.017
ContentType Journal Article
Copyright 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7X2
8FE
8FH
8FK
ABUWG
AFKRA
ATCPS
AZQEC
BENPR
BHPHI
BKSAR
CCPQU
DWQXO
F1W
H98
HCIFZ
L.G
M0K
PCBAR
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
UNPAY
DOA
DOI 10.3390/hydrology5040063
DatabaseName CrossRef
ProQuest Central (Corporate)
ProQuest Agricultural Science
ProQuest SciTech Collection
ProQuest Natural Science Journals
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Agricultural & Environmental Science Collection
ProQuest Central Essentials
ProQuest Central
Natural Science Collection
Earth, Atmospheric & Aquatic Science Database
ProQuest One Community College
ProQuest Central Korea
ASFA: Aquatic Sciences and Fisheries Abstracts
Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts
SciTech Premium Collection
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Agricultural Science Database
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Agricultural Science Database
Publicly Available Content Database
Aquatic Science & Fisheries Abstracts (ASFA) Professional
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Natural Science Collection
ProQuest Central China
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Natural Science Collection
ProQuest Central Korea
Agricultural & Environmental Science Collection
ProQuest Central (New)
ProQuest One Academic Eastern Edition
Earth, Atmospheric & Aquatic Science Database
Agricultural Science Collection
ProQuest SciTech Collection
Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts
ProQuest One Academic UKI Edition
ASFA: Aquatic Sciences and Fisheries Abstracts
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Agricultural Science Database

CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: BENPR
  name: ProQuest Central
  url: http://www.proquest.com/pqcentral?accountid=15518
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2306-5338
ExternalDocumentID oai_doaj_org_article_4dcf3d2634784fe2a50e33ac6a172fb7
10.3390/hydrology5040063
10_3390_hydrology5040063
GeographicLocations United States--US
Utah
GeographicLocations_xml – name: United States--US
– name: Utah
GroupedDBID 5VS
7X2
8CJ
8FE
8FH
AADQD
AAFWJ
AAHBH
AAYXX
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ATCPS
BCNDV
BENPR
BHPHI
BKSAR
CCPQU
CITATION
D1J
GROUPED_DOAJ
HCIFZ
IAO
KQ8
M0K
MODMG
M~E
OK1
PCBAR
PHGZM
PHGZT
PIMPY
PROAC
3V.
8FK
ABUWG
AZQEC
DWQXO
F1W
H98
L.G
PKEHL
PQEST
PQQKQ
PQUKI
PRINS
ADTOC
EDH
IEP
IPNFZ
ITC
PUEGO
RIG
UNPAY
ID FETCH-LOGICAL-c379t-b665add5c2a5d5a2bed9ec13767a408cbc4a704a7ef3f93a71f35676a5ccd1233
IEDL.DBID BENPR
ISSN 2306-5338
IngestDate Tue Oct 14 18:47:10 EDT 2025
Wed Oct 01 15:14:49 EDT 2025
Mon Jun 30 11:12:06 EDT 2025
Thu Oct 16 04:44:41 EDT 2025
Thu Apr 24 23:06:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c379t-b665add5c2a5d5a2bed9ec13767a408cbc4a704a7ef3f93a71f35676a5ccd1233
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2781-0738
OpenAccessLink https://www.proquest.com/docview/2582804705?pq-origsite=%requestingapplication%&accountid=15518
PQID 2582804705
PQPubID 2055406
ParticipantIDs doaj_primary_oai_doaj_org_article_4dcf3d2634784fe2a50e33ac6a172fb7
unpaywall_primary_10_3390_hydrology5040063
proquest_journals_2582804705
crossref_primary_10_3390_hydrology5040063
crossref_citationtrail_10_3390_hydrology5040063
PublicationCentury 2000
PublicationDate 2018-12-01
PublicationDateYYYYMMDD 2018-12-01
PublicationDate_xml – month: 12
  year: 2018
  text: 2018-12-01
  day: 01
PublicationDecade 2010
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Hydrology
PublicationYear 2018
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Hsu (ref_42) 1995; 31
Auer (ref_15) 2007; 27
Henn (ref_12) 2012; 14
Taormina (ref_17) 2015; 529
Elshorbagy (ref_43) 2000; 45
Fotovatikhah (ref_35) 2018; 12
Jayawardena (ref_41) 1994; 153
Conti (ref_7) 2011; 13
Giustarini (ref_26) 2016; 82
Wu (ref_18) 2011; 399
Raman (ref_39) 1995; 40
Romanowicz (ref_22) 2006; 21
ref_23
Wang (ref_37) 2015; 29
Schultz (ref_8) 1994; 39
Elshorbagy (ref_44) 2002; 5
Mariethoz (ref_10) 2015; 72
Moran (ref_25) 1974; 10
Wang (ref_36) 2015; 139
Gilroy (ref_11) 1970; 6
Khalil (ref_5) 2001; 241
Elshorbagy (ref_33) 2002; 255
Fiering (ref_24) 1962; 57
(ref_27) 2017; 89
Vogel (ref_29) 1985; 21
Rilling (ref_45) 2003; 3
Wang (ref_34) 2013; 15
Wang (ref_30) 2008; 23
Jeffrey (ref_21) 2001; 16
Kuczera (ref_28) 1987; 23
Kim (ref_32) 2009; 23
Grygier (ref_13) 1989; 25
Coulibaly (ref_31) 2007; 341
Williams (ref_3) 2018; 102
Battaglia (ref_14) 2012; 21
ref_47
ref_46
Beauchamp (ref_38) 1989; 25
Craigmile (ref_16) 2011; 32
Hirsch (ref_40) 1982; 18
ref_1
ref_2
Gill (ref_6) 2007; 43
Benth (ref_19) 2007; 34
ref_48
Sorjamaa (ref_9) 2010; 14
ref_4
Lemos (ref_20) 2007; 12
Bakker (ref_49) 2006; 62
References_xml – volume: 12
  start-page: 379
  year: 2007
  ident: ref_20
  article-title: Spatially varying temperature trends in a central california estuary
  publication-title: JABES
  doi: 10.1198/108571107X227603
– volume: 139
  start-page: 46
  year: 2015
  ident: ref_36
  article-title: Improving forecasting accuracy of medium and long-term runoff using artificial neural network based on eemd decomposition
  publication-title: Environ. Res.
  doi: 10.1016/j.envres.2015.02.002
– volume: 14
  start-page: 929
  year: 2012
  ident: ref_12
  article-title: A comparison of methods for filling gaps in hourly near-surface air temperature data
  publication-title: J. Hydrometeorol.
  doi: 10.1175/JHM-D-12-027.1
– volume: 529
  start-page: 1788
  year: 2015
  ident: ref_17
  article-title: Neural network river forecasting through baseflow separation and binary-coded swarm optimization
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2015.08.008
– volume: 16
  start-page: 309
  year: 2001
  ident: ref_21
  article-title: Using spatial interpolation to construct a comprehensive archive of australian climate data
  publication-title: Environ. Model. Softw.
  doi: 10.1016/S1364-8152(01)00008-1
– volume: 102
  start-page: 172
  year: 2018
  ident: ref_3
  article-title: A comparison of data imputation methods using bayesian compressive sensing and empirical mode decomposition for environmental temperature data
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2018.01.012
– volume: 23
  start-page: 641
  year: 1987
  ident: ref_28
  article-title: On maximum likelihood estimators for the multisite lag-one streamflow model: Complete and incomplete data cases
  publication-title: Water Resour. Res.
  doi: 10.1029/WR023i004p00641
– volume: 13
  start-page: 396
  year: 2011
  ident: ref_7
  article-title: Comparative analysis of different techniques for spatial interpolation of rainfall data to create a serially complete monthly time series of precipitation for sicily, italy
  publication-title: Int. J. Appl. Earth Obs. Geoinf.
– volume: 23
  start-page: 412
  year: 2008
  ident: ref_30
  article-title: A bayesian method for multi-site stochastic data generation: Dealing with non-concurrent and missing data, variable transformation and parameter uncertainty
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2007.04.013
– volume: 18
  start-page: 1081
  year: 1982
  ident: ref_40
  article-title: A comparison of four streamflow record extension techniques
  publication-title: Water Resour. Res.
  doi: 10.1029/WR018i004p01081
– volume: 6
  start-page: 1595
  year: 1970
  ident: ref_11
  article-title: Reliability of a variance estimate obtained from a sample augmented by multivariate regression
  publication-title: Water Resour. Res.
  doi: 10.1029/WR006i006p01595
– volume: 10
  start-page: 81
  year: 1974
  ident: ref_25
  article-title: On estimators obtained from a sample augmented by multiple regression
  publication-title: Water Resour. Res.
  doi: 10.1029/WR010i001p00081
– ident: ref_23
– volume: 40
  start-page: 381
  year: 1995
  ident: ref_39
  article-title: Models for extending streamflow data: A case study
  publication-title: Hydrol. Sci. J.
  doi: 10.1080/02626669509491422
– volume: 27
  start-page: 17
  year: 2007
  ident: ref_15
  article-title: Histalp—Historical instrumental climatological surface time series of the greater alpine region
  publication-title: Int. J. Climatol.
  doi: 10.1002/joc.1377
– volume: 255
  start-page: 123
  year: 2002
  ident: ref_33
  article-title: Estimation of missing streamflow data using principles of chaos theory
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(01)00513-3
– ident: ref_4
– volume: 5
  start-page: 424
  year: 2002
  ident: ref_44
  article-title: Performance evaluation of artificial neural networks for runoff prediction
  publication-title: J. Hydrol. Eng.
  doi: 10.1061/(ASCE)1084-0699(2000)5:4(424)
– volume: 23
  start-page: 367
  year: 2009
  ident: ref_32
  article-title: Spatial rainfall model using a pattern classifier for estimating missing daily rainfall data
  publication-title: Stoch. Environ. Res. Risk Assess.
  doi: 10.1007/s00477-008-0223-9
– volume: 31
  start-page: 2517
  year: 1995
  ident: ref_42
  article-title: Artificial neural network modeling of the rainfall-runoff process
  publication-title: Water Resour. Res.
  doi: 10.1029/95WR01955
– volume: 29
  start-page: 2655
  year: 2015
  ident: ref_37
  article-title: Improving forecasting accuracy of annual runoff time series using arima based on eemd decomposition
  publication-title: Water Resour. Manag.
  doi: 10.1007/s11269-015-0962-6
– ident: ref_48
– volume: 62
  start-page: 149
  year: 2006
  ident: ref_49
  article-title: An historical phenomenology of mean and median
  publication-title: Educ. Stud. Math.
  doi: 10.1007/s10649-006-7099-8
– ident: ref_2
  doi: 10.1029/2007RG000228
– ident: ref_46
  doi: 10.1142/8804
– volume: 82
  start-page: 308
  year: 2016
  ident: ref_26
  article-title: A user-driven case-based reasoning tool for infilling missing values in daily mean river flow records
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2016.04.013
– volume: 3
  start-page: 8
  year: 2003
  ident: ref_45
  article-title: On empirical mode decomposition and its algorithms
  publication-title: IEEE-EURASIP Workshop Nonlinear Signal Image Process.
– ident: ref_1
  doi: 10.1098/rspa.1998.0193
– volume: 32
  start-page: 378
  year: 2011
  ident: ref_16
  article-title: Space-time modelling of trends in temperature series
  publication-title: J. Time Ser. Anal.
  doi: 10.1111/j.1467-9892.2011.00733.x
– volume: 25
  start-page: 961
  year: 1989
  ident: ref_38
  article-title: Comparison of regression and time-series methods for synthesizing missing streamflow records
  publication-title: JAWRA J. Am. Water Resour. Assoc.
  doi: 10.1111/j.1752-1688.1989.tb05410.x
– volume: 21
  start-page: 759
  year: 2006
  ident: ref_22
  article-title: A recursive estimation approach to the spatio-temporal analysis and modelling of air quality data
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2005.02.004
– volume: 72
  start-page: 71
  year: 2015
  ident: ref_10
  article-title: Feature-preserving interpolation and filtering of environmental time series
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2015.07.001
– volume: 57
  start-page: 20
  year: 1962
  ident: ref_24
  article-title: On the use of correlation to augment data
  publication-title: J. Am. Stat. Assoc.
  doi: 10.2307/2282437
– volume: 15
  start-page: 1377
  year: 2013
  ident: ref_34
  article-title: Improved annual rainfall-runoff forecasting using PSO–SVM model based on EEMD
  publication-title: J. Hydroinform.
  doi: 10.2166/hydro.2013.134
– volume: 153
  start-page: 23
  year: 1994
  ident: ref_41
  article-title: Analysis and prediction of chaos in rainfall and stream flow time series
  publication-title: J. Hydrol.
  doi: 10.1016/0022-1694(94)90185-6
– volume: 21
  start-page: 315
  year: 2012
  ident: ref_14
  article-title: An analysis of global warming in the alpine region based on nonlinear nonstationary time series models
  publication-title: Stat. Methods Appl.
  doi: 10.1007/s10260-012-0200-9
– volume: 21
  start-page: 715
  year: 1985
  ident: ref_29
  article-title: Minimum variance streamflow record augmentation procedures
  publication-title: Water Resour. Res.
  doi: 10.1029/WR021i005p00715
– volume: 12
  start-page: 411
  year: 2018
  ident: ref_35
  article-title: Survey of computational intelligence as basis to big flood management: Challenges, research directions and future work
  publication-title: Eng. Appl. Comput. Fluid Mech.
– volume: 25
  start-page: 345
  year: 1989
  ident: ref_13
  article-title: A generalized maintenance of variance extension procedure for extending correlated series
  publication-title: Water Resour. Res.
  doi: 10.1029/WR025i003p00345
– volume: 34
  start-page: 823
  year: 2007
  ident: ref_19
  article-title: A spatial-temporal model for temperature with seasonal variance
  publication-title: J. Appl. Stat.
  doi: 10.1080/02664760701511398
– volume: 241
  start-page: 153
  year: 2001
  ident: ref_5
  article-title: Groups and neural networks based streamflow data infilling procedures
  publication-title: J. Hydrol.
  doi: 10.1016/S0022-1694(00)00332-2
– volume: 341
  start-page: 27
  year: 2007
  ident: ref_31
  article-title: Comparison of neural network methods for infilling missing daily weather records
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2007.04.020
– volume: 45
  start-page: 849
  year: 2000
  ident: ref_43
  article-title: Group-based estimation of missing hydrological data: I. Approach and general methodology
  publication-title: Hydrol. Sci. J.
  doi: 10.1080/02626660009492388
– volume: 14
  start-page: 55
  year: 2010
  ident: ref_9
  article-title: An improved methodology for filling missing values in spatiotemporal climate data set
  publication-title: Comput. Geosci.
  doi: 10.1007/s10596-009-9132-3
– ident: ref_47
  doi: 10.1109/ICASSP.2012.6288750
– volume: 43
  start-page: W07416
  year: 2007
  ident: ref_6
  article-title: Effect of missing data on performance of learning algorithms for hydrologic predictions: Implications to an imputation technique
  publication-title: Water Resour. Res.
  doi: 10.1029/2006WR005298
– volume: 89
  start-page: 190
  year: 2017
  ident: ref_27
  article-title: An r package for daily precipitation climate series reconstruction
  publication-title: Environ. Model. Softw.
  doi: 10.1016/j.envsoft.2016.11.005
– volume: 39
  start-page: 621
  year: 1994
  ident: ref_8
  article-title: Filling gaps in runoff time series in west africa
  publication-title: Hydrol. Sci. J.
  doi: 10.1080/02626669409492784
– volume: 399
  start-page: 394
  year: 2011
  ident: ref_18
  article-title: Rainfall–runoff modeling using artificial neural network coupled with singular spectrum analysis
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2011.01.017
SSID ssj0002118400
Score 2.1092126
Snippet Complete and accurate data are necessary for analyzing and understanding trends in time-series datasets; however, many of the available time-series datasets...
SourceID doaj
unpaywall
proquest
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
StartPage 63
SubjectTerms Algorithms
Analysis
Archives & records
Correlation
Data analysis
Datasets
Decomposition
Earth science
Earth sciences
Empirical analysis
Empirical Mode Decomposition
environmental data imputation
Hydrology
Interpolation
Methods
Missing data
missing values
Precipitation
Spatial data
Stream flow
Temperature data
Time series
Water quality
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQl7IgniJQUAYWkKI69SPJWKBVQYKJSt2iix9qpRCq0gr133NO0tIy0IUhQywnsr6zfXd-fB8hN2CVkRGFwBhlAh5CFkAsRRCGmWRUYUah3XrHy6scDPnzSIw2pL7cmbCKHrgCrs21skx3JONRzK3pgKCGMVAS0PXarLxHTuNkI5lyczCmNZi50GpfkmFe3x4v9axcqBau20q25YdKuv6tGLO5KKaw_II833A3_UNyUMeJfrdq3xHZM8UxadaS5ePlCel2C7_3Pp2UFB--kzQLnLzwpH7JfYxG_d7PNTYsf4Q5-E9OxaE0xykZ9ntvD4Og1kMIFIuSeZBJKXA6EgpB0AI6mdGJUaHjYwFOY5UpDhHFx1hmEwZRaJmQkQShlEYPxc5Io_gozDnx3UDXOuGW84gbwDARfxNrBjqxMdWZR9ordFJVk4U7zYo8xaTB4Zn-xtMjt-svphVRxh917x3g63qO4rosQMOnteHTXYb3SGtlrrQed59px-0CUh5R4ZG7tQl3NujiPxp0SfYxmoqrsy4t0pjPFuYKI5Z5dl12zm_lLeue
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V20O50PISWwrKgQtIbh5-JVKlaoGtChIVB1YqBxT52a5Y0tWSBW1_PePEu9AeQHDIIZYd2Zmx55uxPR_Ac-WNEzJTxDnjCMuVJqoUnOS5FjQz6FHYEO94fyZOJ-zdOT_fgqP1XZhwrBJd8Wm3SAd4TBCPlClPWSpoOrf--HuMI6HtL9CaCoEO-7bgiMQHsD05-zD61PHJxZb9ziRFzz69XNlFF6rmQXEFvWGJuoT9N1DmzrKZq9UPNZv9ZnBOduHzuqv9OZMvh8tWH5rrW1kc_3cse3A3ItFk1KvOPdhyzX3YiaTol6sHMBo1yfjrfNolEUkCaRoJBMbT-DJLEO8m418X5bD8jWpV8jbwRHQCfwiTk_HH16ckMi4QQ2XVEi0ExwWPm0Jxy1Whna2cyUPGF8Wy0mjDlMzwcZ76iiqZe8qFFIobY9EG0kcwaK4a9xiSsJRYWzHPmGROIRDFz5SWKlv5MrN6COn679cmpiMPrBizGt2SIK_6tryG8GLTYt6n4vhD3VdBoJt6IYl2V3C1uKjjnKyZNZ7aQlAmS-YdjjlzlCojFKI6r-UQDtbqUMeZ_a0uwj5jxmTGh_ByoyJ_7dD-v1R-AncQl5X9qZkDGLSLpXuK2KfVz6KK_wQMlQH2
  priority: 102
  providerName: Unpaywall
Title An Empirical Mode-Spatial Model for Environmental Data Imputation
URI https://www.proquest.com/docview/2582804705
https://www.mdpi.com/2306-5338/5/4/63/pdf?version=1542439660
https://doaj.org/article/4dcf3d2634784fe2a50e33ac6a172fb7
UnpaywallVersion publishedVersion
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2306-5338
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002118400
  issn: 2306-5338
  databaseCode: KQ8
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2306-5338
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002118400
  issn: 2306-5338
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2306-5338
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002118400
  issn: 2306-5338
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2306-5338
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002118400
  issn: 2306-5338
  databaseCode: BENPR
  dateStart: 20141201
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LbxMxEB6V9FAuiKcIlGoPXECy4l2_dg8IpZCqIBFViEjltJr1o60UNiGkQvn3jDfelHIohz3Y8lq7M_Z4Zmx_H8BrDNZrw5F5bz2TOTYMS61YnjdacEsRhYv5ji9TfTqTn8_V-R5M-7sw8VhlbxM7Q-0WNubIR0Xc3-HScPV--ZNF1qi4u9pTaGCiVnDvOoixe7BfRGSsAewfT6ZnX3dZFwp3KKLh2_1KQfH-6HLjVl0CW8XhrMWt9amD8b_lex5ct0vc_Mb5_K9l6OQhPEj-YzbeKvwR7Pn2MRwkKvPLzRMYj9ts8mN51UF_ZJHqjEXa4atUmGfkpWaTm-ttVP8R15h9iuwOnZqewuxk8u3DKUs8CcwKU61Zo7UiM6VsgcopLBrvKm_ziNOCkpe2sRINp8cHESqBJg9CaaNRWeto5RLPYNAuWv8csmgAnKtkkNJIj-Q-UjelE-iqUHLXDGHUS6e2CUQ8clnMawomojzrf-U5hDe7N5ZbAI072h5Hge_aRejrrmKxuqjTTKqls0G4QgtpShk8_TP3QqDVSL5YaMwQDnt11Wk-_qpvRs8Q3u5U-N8PenF3Xy_hPvlP5fZ0yyEM1qtr_4p8lHVzlAbeURfjU2k2PRt__wPTxuvW
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9hAuiKcIFPABDiCtsvY-bB8qlNJUCW0jhFqpNzPeXbeVghPSVFX-HL-NWWedUg7l1IMPttYre3Zm9pvZ3fkA3mNlnE45MueMYzLGkmGmFYvjUgtuKKKwPt9xNNbDE_n1VJ1uwO_2LIzfVtn6xMZR26nxOfJe4td3uEy5-jz7xTxrlF9dbSk0MFAr2J2mxFg42HHgltcUwl3ujPZovD8kyf7g-MuQBZYBZkSaL1iptSIjVyZBZRUmpbO5M7GvcoKSZ6Y0ElNOl6tElQtM40oonWpUxljy-4L6fQBbUsicgr-t3cH42_d1lofCK4qg-Gp9VIic986Xdt4kzJU3Hy1uzYcNbcAtrNu5qme4vMbJ5K9pb_8xPAp4NeqvFOwJbLj6KXQCdfr58hn0-3U0-Dm7aEqNRJ5ajXma44twM4kIFUeDm-N09HwPFxiNPJtEoxbP4eReJPYCNutp7V5C5B2OtbmspEylQ4Kr1E1mBdq8yrgtu9BrpVOYULTcc2dMCgpevDyLf-XZhY_rN2argh13tN31Al-386W2mwfT-VkRLLeQ1lTCJlrINJOVo3_mTgg0Ggn7VWXahe12uIpg_5fFjbZ24dN6CP_7Qa_u7usddIbHR4fF4Wh88BoeEnbLVjtrtmFzMb9ybwgfLcq3QQkj-HHfev8HUBondA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVqJcEE-RUsAHOIBkZe192D5UKCWJGgpRhajUmxnvg1YKTpqmqvIX-VXMOuuUciinHnywtV7Zs7Oz38zszgfwFp22KmMYW6ttLBKsYsyVjJOkUpxp8iiMj3d8HauDY_H5RJ5swO_2LIzfVtnaxMZQm6n2MfJu6vM7TGRMdl3YFnHUH36cnceeQcpnWls6DQw0C2avKTcWDnkc2uUVuXMXe6M-jf27NB0Ovn86iAPjQKx5ViziSilJE17qFKWRmFbWFFYnvuIJCpbrSgvMGF3WcVdwzBLHpcoUSq0NrQGc-r0HWz75RUZia38wPvq2jviQq0XeFFvlSjkvWPd0aeZN8Fz6qaT4jbWxoRC4gXu3L-sZLq9wMvlrCRw-gocBu0a9lbI9hg1bP4HtQKN-unwKvV4dDX7NzpqyI5GnWYs95fFZuJlEhJCjwfXROnrexwVGI88s0ajIMzi-E4k9h816WtsXEHnjY0whnBCZsEjQlbrJDUdTuJyZqgPdVjqlDgXMPY_GpCRHxsuz_FeeHXi_fmO2Kt5xS9t9L_B1O192u3kwnf8swywuhdGOm1RxkeXCWfpnZjlHrZBwoKuyDuy2w1UGW3BRXmtuBz6sh_C_H7Rze19v4D7pf_llND58CQ8IxuWrTTa7sLmYX9pXBJUW1euggxH8uGu1_wOlBCuj
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V20O50PISWwrKgQtIbh5-JVKlaoGtChIVB1YqBxT52a5Y0tWSBW1_PePEu9AeQHDIIZYd2Zmx55uxPR_Ac-WNEzJTxDnjCMuVJqoUnOS5FjQz6FHYEO94fyZOJ-zdOT_fgqP1XZhwrBJd8Wm3SAd4TBCPlClPWSpoOrf--HuMI6HtL9CaCoEO-7bgiMQHsD05-zD61PHJxZb9ziRFzz69XNlFF6rmQXEFvWGJuoT9N1DmzrKZq9UPNZv9ZnBOduHzuqv9OZMvh8tWH5rrW1kc_3cse3A3ItFk1KvOPdhyzX3YiaTol6sHMBo1yfjrfNolEUkCaRoJBMbT-DJLEO8m418X5bD8jWpV8jbwRHQCfwiTk_HH16ckMi4QQ2XVEi0ExwWPm0Jxy1Whna2cyUPGF8Wy0mjDlMzwcZ76iiqZe8qFFIobY9EG0kcwaK4a9xiSsJRYWzHPmGROIRDFz5SWKlv5MrN6COn679cmpiMPrBizGt2SIK_6tryG8GLTYt6n4vhD3VdBoJt6IYl2V3C1uKjjnKyZNZ7aQlAmS-YdjjlzlCojFKI6r-UQDtbqUMeZ_a0uwj5jxmTGh_ByoyJ_7dD-v1R-AncQl5X9qZkDGLSLpXuK2KfVz6KK_wQMlQH2
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Empirical+Mode-Spatial+Model+for+Environmental+Data+Imputation&rft.jtitle=Hydrology&rft.au=Nelsen%2C+Benjamin&rft.au=Williams%2C+D+Alexandra&rft.au=Williams%2C+Gustavious+P&rft.au=Berrett%2C+Candace&rft.date=2018-12-01&rft.pub=MDPI+AG&rft.eissn=2306-5338&rft.volume=5&rft.issue=4&rft.spage=63&rft_id=info:doi/10.3390%2Fhydrology5040063&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-5338&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-5338&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-5338&client=summon