An Empirical Mode-Spatial Model for Environmental Data Imputation
Complete and accurate data are necessary for analyzing and understanding trends in time-series datasets; however, many of the available time-series datasets have gaps that affect the analysis, especially in the earth sciences. As most available data have missing values, researchers use various inter...
        Saved in:
      
    
          | Published in | Hydrology Vol. 5; no. 4; p. 63 | 
|---|---|
| Main Authors | , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Basel
          MDPI AG
    
        01.12.2018
     | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 2306-5338 2306-5338  | 
| DOI | 10.3390/hydrology5040063 | 
Cover
| Abstract | Complete and accurate data are necessary for analyzing and understanding trends in time-series datasets; however, many of the available time-series datasets have gaps that affect the analysis, especially in the earth sciences. As most available data have missing values, researchers use various interpolation methods or ad hoc approaches to data imputation. Since the analysis based on inaccurate data can lead to inaccurate conclusions, more accurate data imputation methods can provide accurate analysis. We present a spatial-temporal data imputation method using Empirical Mode Decomposition (EMD) based on spatial correlations. We call this method EMD-spatial data imputation or EMD-SDI. Though this method is applicable to other time-series data sets, here we demonstrate the method using temperature data. The EMD algorithm decomposes data into periodic components called intrinsic mode functions (IMF) and exactly reconstructs the original signal by summing these IMFs. EMD-SDI initially decomposes the data from the target station and other stations in the region into IMFs. EMD-SDI evaluates each IMF from the target station in turn and selects the IMF from other stations in the region with periodic behavior most correlated to target IMF. EMD-SDI then replaces a section of missing data in the target station IMF with the section from the most closely correlated IMF from the regional stations. We found that EMD-SDI selects the IMFs used for reconstruction from different stations throughout the region, not necessarily the station closest in the geographic sense. EMD-SDI accurately filled data gaps from 3 months to 5 years in length in our tests and favorably compares to a simple temporal method. EMD-SDI leverages regional correlation and the fact that different stations can be subject to different periodic behaviors. In addition to data imputation, the EMD-SDI method provides IMFs that can be used to better understand regional correlations and processes. | 
    
|---|---|
| AbstractList | Complete and accurate data are necessary for analyzing and understanding trends in time-series datasets; however, many of the available time-series datasets have gaps that affect the analysis, especially in the earth sciences. As most available data have missing values, researchers use various interpolation methods or ad hoc approaches to data imputation. Since the analysis based on inaccurate data can lead to inaccurate conclusions, more accurate data imputation methods can provide accurate analysis. We present a spatial-temporal data imputation method using Empirical Mode Decomposition (EMD) based on spatial correlations. We call this method EMD-spatial data imputation or EMD-SDI. Though this method is applicable to other time-series data sets, here we demonstrate the method using temperature data. The EMD algorithm decomposes data into periodic components called intrinsic mode functions (IMF) and exactly reconstructs the original signal by summing these IMFs. EMD-SDI initially decomposes the data from the target station and other stations in the region into IMFs. EMD-SDI evaluates each IMF from the target station in turn and selects the IMF from other stations in the region with periodic behavior most correlated to target IMF. EMD-SDI then replaces a section of missing data in the target station IMF with the section from the most closely correlated IMF from the regional stations. We found that EMD-SDI selects the IMFs used for reconstruction from different stations throughout the region, not necessarily the station closest in the geographic sense. EMD-SDI accurately filled data gaps from 3 months to 5 years in length in our tests and favorably compares to a simple temporal method. EMD-SDI leverages regional correlation and the fact that different stations can be subject to different periodic behaviors. In addition to data imputation, the EMD-SDI method provides IMFs that can be used to better understand regional correlations and processes. | 
    
| Author | Nelsen, Benjamin Williams, D. Alexandra Williams, Gustavious P. Berrett, Candace  | 
    
| Author_xml | – sequence: 1 givenname: Benjamin surname: Nelsen fullname: Nelsen, Benjamin – sequence: 2 givenname: D. Alexandra surname: Williams fullname: Williams, D. Alexandra – sequence: 3 givenname: Gustavious P. orcidid: 0000-0002-2781-0738 surname: Williams fullname: Williams, Gustavious P. – sequence: 4 givenname: Candace surname: Berrett fullname: Berrett, Candace  | 
    
| BookMark | eNqNkM1rGzEQxUVJIImbe44LOW8qaVbS-mhcJzW49NDmLMb6SGXW0ka7TvB_X7UbSjEEehDSPN77DXpX5Cym6Ai5YfQOYE4__TzanLr0dBS0oVTCB3LJgcpaALRn_7wvyPUw7CilnLG2OC_JYhGr1b4PORjsqq_Juvp7j2N4G7rKp1yt4kvIKe5dHIv-GUes1vv-MBZfih_JucducNdv94w83q9-LL_Um28P6-ViUxtQ87HeSinQWmE4CiuQb52dO8NASYUNbc3WNKhoOc6DnwMq5kFIJVEYYxkHmJH1xLUJd7rPYY_5qBMG_UdI-UljHoPpnG6s8WC5hEa1jXdlI3UAaCQyxf1WFRabWIfY4_EVu-4vkFH9u1J9WmnJ3E6ZPqfngxtGvUuHHMuXNRctb2mjqCguOrlMTsOQnf8fsDyJmDBVO2YM3fvBX21JnOg | 
    
| CitedBy_id | crossref_primary_10_1016_j_compag_2021_106377 crossref_primary_10_1371_journal_pone_0314005 crossref_primary_10_3390_rs12122044 crossref_primary_10_1016_j_scs_2024_105430 crossref_primary_10_1080_19942060_2020_1803971 crossref_primary_10_3390_w14142264  | 
    
| Cites_doi | 10.1198/108571107X227603 10.1016/j.envres.2015.02.002 10.1175/JHM-D-12-027.1 10.1016/j.jhydrol.2015.08.008 10.1016/S1364-8152(01)00008-1 10.1016/j.envsoft.2018.01.012 10.1029/WR023i004p00641 10.1016/j.envsoft.2007.04.013 10.1029/WR018i004p01081 10.1029/WR006i006p01595 10.1029/WR010i001p00081 10.1080/02626669509491422 10.1002/joc.1377 10.1016/S0022-1694(01)00513-3 10.1061/(ASCE)1084-0699(2000)5:4(424) 10.1007/s00477-008-0223-9 10.1029/95WR01955 10.1007/s11269-015-0962-6 10.1007/s10649-006-7099-8 10.1029/2007RG000228 10.1142/8804 10.1016/j.envsoft.2016.04.013 10.1098/rspa.1998.0193 10.1111/j.1467-9892.2011.00733.x 10.1111/j.1752-1688.1989.tb05410.x 10.1016/j.envsoft.2005.02.004 10.1016/j.envsoft.2015.07.001 10.2307/2282437 10.2166/hydro.2013.134 10.1016/0022-1694(94)90185-6 10.1007/s10260-012-0200-9 10.1029/WR021i005p00715 10.1029/WR025i003p00345 10.1080/02664760701511398 10.1016/S0022-1694(00)00332-2 10.1016/j.jhydrol.2007.04.020 10.1080/02626660009492388 10.1007/s10596-009-9132-3 10.1109/ICASSP.2012.6288750 10.1029/2006WR005298 10.1016/j.envsoft.2016.11.005 10.1080/02626669409492784 10.1016/j.jhydrol.2011.01.017  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| Copyright_xml | – notice: 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. | 
    
| DBID | AAYXX CITATION 3V. 7X2 8FE 8FH 8FK ABUWG AFKRA ATCPS AZQEC BENPR BHPHI BKSAR CCPQU DWQXO F1W H98 HCIFZ L.G M0K PCBAR PHGZM PHGZT PIMPY PKEHL PQEST PQQKQ PQUKI PRINS ADTOC UNPAY DOA  | 
    
| DOI | 10.3390/hydrology5040063 | 
    
| DatabaseName | CrossRef ProQuest Central (Corporate) ProQuest Agricultural Science ProQuest SciTech Collection ProQuest Natural Science Journals ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Agricultural & Environmental Science Collection ProQuest Central Essentials ProQuest Central Natural Science Collection Earth, Atmospheric & Aquatic Science Database ProQuest One Community College ProQuest Central Korea ASFA: Aquatic Sciences and Fisheries Abstracts Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts SciTech Premium Collection Aquatic Science & Fisheries Abstracts (ASFA) Professional Agricultural Science Database Earth, Atmospheric & Aquatic Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals  | 
    
| DatabaseTitle | CrossRef Agricultural Science Database Publicly Available Content Database Aquatic Science & Fisheries Abstracts (ASFA) Professional ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China Earth, Atmospheric & Aquatic Science Collection ProQuest Central Natural Science Collection ProQuest Central Korea Agricultural & Environmental Science Collection ProQuest Central (New) ProQuest One Academic Eastern Edition Earth, Atmospheric & Aquatic Science Database Agricultural Science Collection ProQuest SciTech Collection Aquatic Science & Fisheries Abstracts (ASFA) Aquaculture Abstracts ProQuest One Academic UKI Edition ASFA: Aquatic Sciences and Fisheries Abstracts ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni)  | 
    
| DatabaseTitleList | Agricultural Science Database CrossRef  | 
    
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: BENPR name: ProQuest Central url: http://www.proquest.com/pqcentral?accountid=15518 sourceTypes: Aggregation Database  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Geography | 
    
| EISSN | 2306-5338 | 
    
| ExternalDocumentID | oai_doaj_org_article_4dcf3d2634784fe2a50e33ac6a172fb7 10.3390/hydrology5040063 10_3390_hydrology5040063  | 
    
| GeographicLocations | United States--US Utah  | 
    
| GeographicLocations_xml | – name: United States--US – name: Utah  | 
    
| GroupedDBID | 5VS 7X2 8CJ 8FE 8FH AADQD AAFWJ AAHBH AAYXX ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ATCPS BCNDV BENPR BHPHI BKSAR CCPQU CITATION D1J GROUPED_DOAJ HCIFZ IAO KQ8 M0K MODMG M~E OK1 PCBAR PHGZM PHGZT PIMPY PROAC 3V. 8FK ABUWG AZQEC DWQXO F1W H98 L.G PKEHL PQEST PQQKQ PQUKI PRINS ADTOC EDH IEP IPNFZ ITC PUEGO RIG UNPAY  | 
    
| ID | FETCH-LOGICAL-c379t-b665add5c2a5d5a2bed9ec13767a408cbc4a704a7ef3f93a71f35676a5ccd1233 | 
    
| IEDL.DBID | BENPR | 
    
| ISSN | 2306-5338 | 
    
| IngestDate | Tue Oct 14 18:47:10 EDT 2025 Wed Oct 01 15:14:49 EDT 2025 Mon Jun 30 11:12:06 EDT 2025 Thu Oct 16 04:44:41 EDT 2025 Thu Apr 24 23:06:39 EDT 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 4 | 
    
| Language | English | 
    
| License | cc-by | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c379t-b665add5c2a5d5a2bed9ec13767a408cbc4a704a7ef3f93a71f35676a5ccd1233 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0002-2781-0738 | 
    
| OpenAccessLink | https://www.proquest.com/docview/2582804705?pq-origsite=%requestingapplication%&accountid=15518 | 
    
| PQID | 2582804705 | 
    
| PQPubID | 2055406 | 
    
| ParticipantIDs | doaj_primary_oai_doaj_org_article_4dcf3d2634784fe2a50e33ac6a172fb7 unpaywall_primary_10_3390_hydrology5040063 proquest_journals_2582804705 crossref_primary_10_3390_hydrology5040063 crossref_citationtrail_10_3390_hydrology5040063  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | 2018-12-01 | 
    
| PublicationDateYYYYMMDD | 2018-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2018 text: 2018-12-01 day: 01  | 
    
| PublicationDecade | 2010 | 
    
| PublicationPlace | Basel | 
    
| PublicationPlace_xml | – name: Basel | 
    
| PublicationTitle | Hydrology | 
    
| PublicationYear | 2018 | 
    
| Publisher | MDPI AG | 
    
| Publisher_xml | – name: MDPI AG | 
    
| References | Hsu (ref_42) 1995; 31 Auer (ref_15) 2007; 27 Henn (ref_12) 2012; 14 Taormina (ref_17) 2015; 529 Elshorbagy (ref_43) 2000; 45 Fotovatikhah (ref_35) 2018; 12 Jayawardena (ref_41) 1994; 153 Conti (ref_7) 2011; 13 Giustarini (ref_26) 2016; 82 Wu (ref_18) 2011; 399 Raman (ref_39) 1995; 40 Romanowicz (ref_22) 2006; 21 ref_23 Wang (ref_37) 2015; 29 Schultz (ref_8) 1994; 39 Elshorbagy (ref_44) 2002; 5 Mariethoz (ref_10) 2015; 72 Moran (ref_25) 1974; 10 Wang (ref_36) 2015; 139 Gilroy (ref_11) 1970; 6 Khalil (ref_5) 2001; 241 Elshorbagy (ref_33) 2002; 255 Fiering (ref_24) 1962; 57 (ref_27) 2017; 89 Vogel (ref_29) 1985; 21 Rilling (ref_45) 2003; 3 Wang (ref_34) 2013; 15 Wang (ref_30) 2008; 23 Jeffrey (ref_21) 2001; 16 Kuczera (ref_28) 1987; 23 Kim (ref_32) 2009; 23 Grygier (ref_13) 1989; 25 Coulibaly (ref_31) 2007; 341 Williams (ref_3) 2018; 102 Battaglia (ref_14) 2012; 21 ref_47 ref_46 Beauchamp (ref_38) 1989; 25 Craigmile (ref_16) 2011; 32 Hirsch (ref_40) 1982; 18 ref_1 ref_2 Gill (ref_6) 2007; 43 Benth (ref_19) 2007; 34 ref_48 Sorjamaa (ref_9) 2010; 14 ref_4 Lemos (ref_20) 2007; 12 Bakker (ref_49) 2006; 62  | 
    
| References_xml | – volume: 12 start-page: 379 year: 2007 ident: ref_20 article-title: Spatially varying temperature trends in a central california estuary publication-title: JABES doi: 10.1198/108571107X227603 – volume: 139 start-page: 46 year: 2015 ident: ref_36 article-title: Improving forecasting accuracy of medium and long-term runoff using artificial neural network based on eemd decomposition publication-title: Environ. Res. doi: 10.1016/j.envres.2015.02.002 – volume: 14 start-page: 929 year: 2012 ident: ref_12 article-title: A comparison of methods for filling gaps in hourly near-surface air temperature data publication-title: J. Hydrometeorol. doi: 10.1175/JHM-D-12-027.1 – volume: 529 start-page: 1788 year: 2015 ident: ref_17 article-title: Neural network river forecasting through baseflow separation and binary-coded swarm optimization publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2015.08.008 – volume: 16 start-page: 309 year: 2001 ident: ref_21 article-title: Using spatial interpolation to construct a comprehensive archive of australian climate data publication-title: Environ. Model. Softw. doi: 10.1016/S1364-8152(01)00008-1 – volume: 102 start-page: 172 year: 2018 ident: ref_3 article-title: A comparison of data imputation methods using bayesian compressive sensing and empirical mode decomposition for environmental temperature data publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2018.01.012 – volume: 23 start-page: 641 year: 1987 ident: ref_28 article-title: On maximum likelihood estimators for the multisite lag-one streamflow model: Complete and incomplete data cases publication-title: Water Resour. Res. doi: 10.1029/WR023i004p00641 – volume: 13 start-page: 396 year: 2011 ident: ref_7 article-title: Comparative analysis of different techniques for spatial interpolation of rainfall data to create a serially complete monthly time series of precipitation for sicily, italy publication-title: Int. J. Appl. Earth Obs. Geoinf. – volume: 23 start-page: 412 year: 2008 ident: ref_30 article-title: A bayesian method for multi-site stochastic data generation: Dealing with non-concurrent and missing data, variable transformation and parameter uncertainty publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2007.04.013 – volume: 18 start-page: 1081 year: 1982 ident: ref_40 article-title: A comparison of four streamflow record extension techniques publication-title: Water Resour. Res. doi: 10.1029/WR018i004p01081 – volume: 6 start-page: 1595 year: 1970 ident: ref_11 article-title: Reliability of a variance estimate obtained from a sample augmented by multivariate regression publication-title: Water Resour. Res. doi: 10.1029/WR006i006p01595 – volume: 10 start-page: 81 year: 1974 ident: ref_25 article-title: On estimators obtained from a sample augmented by multiple regression publication-title: Water Resour. Res. doi: 10.1029/WR010i001p00081 – ident: ref_23 – volume: 40 start-page: 381 year: 1995 ident: ref_39 article-title: Models for extending streamflow data: A case study publication-title: Hydrol. Sci. J. doi: 10.1080/02626669509491422 – volume: 27 start-page: 17 year: 2007 ident: ref_15 article-title: Histalp—Historical instrumental climatological surface time series of the greater alpine region publication-title: Int. J. Climatol. doi: 10.1002/joc.1377 – volume: 255 start-page: 123 year: 2002 ident: ref_33 article-title: Estimation of missing streamflow data using principles of chaos theory publication-title: J. Hydrol. doi: 10.1016/S0022-1694(01)00513-3 – ident: ref_4 – volume: 5 start-page: 424 year: 2002 ident: ref_44 article-title: Performance evaluation of artificial neural networks for runoff prediction publication-title: J. Hydrol. Eng. doi: 10.1061/(ASCE)1084-0699(2000)5:4(424) – volume: 23 start-page: 367 year: 2009 ident: ref_32 article-title: Spatial rainfall model using a pattern classifier for estimating missing daily rainfall data publication-title: Stoch. Environ. Res. Risk Assess. doi: 10.1007/s00477-008-0223-9 – volume: 31 start-page: 2517 year: 1995 ident: ref_42 article-title: Artificial neural network modeling of the rainfall-runoff process publication-title: Water Resour. Res. doi: 10.1029/95WR01955 – volume: 29 start-page: 2655 year: 2015 ident: ref_37 article-title: Improving forecasting accuracy of annual runoff time series using arima based on eemd decomposition publication-title: Water Resour. Manag. doi: 10.1007/s11269-015-0962-6 – ident: ref_48 – volume: 62 start-page: 149 year: 2006 ident: ref_49 article-title: An historical phenomenology of mean and median publication-title: Educ. Stud. Math. doi: 10.1007/s10649-006-7099-8 – ident: ref_2 doi: 10.1029/2007RG000228 – ident: ref_46 doi: 10.1142/8804 – volume: 82 start-page: 308 year: 2016 ident: ref_26 article-title: A user-driven case-based reasoning tool for infilling missing values in daily mean river flow records publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2016.04.013 – volume: 3 start-page: 8 year: 2003 ident: ref_45 article-title: On empirical mode decomposition and its algorithms publication-title: IEEE-EURASIP Workshop Nonlinear Signal Image Process. – ident: ref_1 doi: 10.1098/rspa.1998.0193 – volume: 32 start-page: 378 year: 2011 ident: ref_16 article-title: Space-time modelling of trends in temperature series publication-title: J. Time Ser. Anal. doi: 10.1111/j.1467-9892.2011.00733.x – volume: 25 start-page: 961 year: 1989 ident: ref_38 article-title: Comparison of regression and time-series methods for synthesizing missing streamflow records publication-title: JAWRA J. Am. Water Resour. Assoc. doi: 10.1111/j.1752-1688.1989.tb05410.x – volume: 21 start-page: 759 year: 2006 ident: ref_22 article-title: A recursive estimation approach to the spatio-temporal analysis and modelling of air quality data publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2005.02.004 – volume: 72 start-page: 71 year: 2015 ident: ref_10 article-title: Feature-preserving interpolation and filtering of environmental time series publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2015.07.001 – volume: 57 start-page: 20 year: 1962 ident: ref_24 article-title: On the use of correlation to augment data publication-title: J. Am. Stat. Assoc. doi: 10.2307/2282437 – volume: 15 start-page: 1377 year: 2013 ident: ref_34 article-title: Improved annual rainfall-runoff forecasting using PSO–SVM model based on EEMD publication-title: J. Hydroinform. doi: 10.2166/hydro.2013.134 – volume: 153 start-page: 23 year: 1994 ident: ref_41 article-title: Analysis and prediction of chaos in rainfall and stream flow time series publication-title: J. Hydrol. doi: 10.1016/0022-1694(94)90185-6 – volume: 21 start-page: 315 year: 2012 ident: ref_14 article-title: An analysis of global warming in the alpine region based on nonlinear nonstationary time series models publication-title: Stat. Methods Appl. doi: 10.1007/s10260-012-0200-9 – volume: 21 start-page: 715 year: 1985 ident: ref_29 article-title: Minimum variance streamflow record augmentation procedures publication-title: Water Resour. Res. doi: 10.1029/WR021i005p00715 – volume: 12 start-page: 411 year: 2018 ident: ref_35 article-title: Survey of computational intelligence as basis to big flood management: Challenges, research directions and future work publication-title: Eng. Appl. Comput. Fluid Mech. – volume: 25 start-page: 345 year: 1989 ident: ref_13 article-title: A generalized maintenance of variance extension procedure for extending correlated series publication-title: Water Resour. Res. doi: 10.1029/WR025i003p00345 – volume: 34 start-page: 823 year: 2007 ident: ref_19 article-title: A spatial-temporal model for temperature with seasonal variance publication-title: J. Appl. Stat. doi: 10.1080/02664760701511398 – volume: 241 start-page: 153 year: 2001 ident: ref_5 article-title: Groups and neural networks based streamflow data infilling procedures publication-title: J. Hydrol. doi: 10.1016/S0022-1694(00)00332-2 – volume: 341 start-page: 27 year: 2007 ident: ref_31 article-title: Comparison of neural network methods for infilling missing daily weather records publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2007.04.020 – volume: 45 start-page: 849 year: 2000 ident: ref_43 article-title: Group-based estimation of missing hydrological data: I. Approach and general methodology publication-title: Hydrol. Sci. J. doi: 10.1080/02626660009492388 – volume: 14 start-page: 55 year: 2010 ident: ref_9 article-title: An improved methodology for filling missing values in spatiotemporal climate data set publication-title: Comput. Geosci. doi: 10.1007/s10596-009-9132-3 – ident: ref_47 doi: 10.1109/ICASSP.2012.6288750 – volume: 43 start-page: W07416 year: 2007 ident: ref_6 article-title: Effect of missing data on performance of learning algorithms for hydrologic predictions: Implications to an imputation technique publication-title: Water Resour. Res. doi: 10.1029/2006WR005298 – volume: 89 start-page: 190 year: 2017 ident: ref_27 article-title: An r package for daily precipitation climate series reconstruction publication-title: Environ. Model. Softw. doi: 10.1016/j.envsoft.2016.11.005 – volume: 39 start-page: 621 year: 1994 ident: ref_8 article-title: Filling gaps in runoff time series in west africa publication-title: Hydrol. Sci. J. doi: 10.1080/02626669409492784 – volume: 399 start-page: 394 year: 2011 ident: ref_18 article-title: Rainfall–runoff modeling using artificial neural network coupled with singular spectrum analysis publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2011.01.017  | 
    
| SSID | ssj0002118400 | 
    
| Score | 2.1092126 | 
    
| Snippet | Complete and accurate data are necessary for analyzing and understanding trends in time-series datasets; however, many of the available time-series datasets... | 
    
| SourceID | doaj unpaywall proquest crossref  | 
    
| SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database  | 
    
| StartPage | 63 | 
    
| SubjectTerms | Algorithms Analysis Archives & records Correlation Data analysis Datasets Decomposition Earth science Earth sciences Empirical analysis Empirical Mode Decomposition environmental data imputation Hydrology Interpolation Methods Missing data missing values Precipitation Spatial data Stream flow Temperature data Time series Water quality  | 
    
| SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQl7IgniJQUAYWkKI69SPJWKBVQYKJSt2iix9qpRCq0gr133NO0tIy0IUhQywnsr6zfXd-fB8hN2CVkRGFwBhlAh5CFkAsRRCGmWRUYUah3XrHy6scDPnzSIw2pL7cmbCKHrgCrs21skx3JONRzK3pgKCGMVAS0PXarLxHTuNkI5lyczCmNZi50GpfkmFe3x4v9axcqBau20q25YdKuv6tGLO5KKaw_II833A3_UNyUMeJfrdq3xHZM8UxadaS5ePlCel2C7_3Pp2UFB--kzQLnLzwpH7JfYxG_d7PNTYsf4Q5-E9OxaE0xykZ9ntvD4Og1kMIFIuSeZBJKXA6EgpB0AI6mdGJUaHjYwFOY5UpDhHFx1hmEwZRaJmQkQShlEYPxc5Io_gozDnx3UDXOuGW84gbwDARfxNrBjqxMdWZR9ordFJVk4U7zYo8xaTB4Zn-xtMjt-svphVRxh917x3g63qO4rosQMOnteHTXYb3SGtlrrQed59px-0CUh5R4ZG7tQl3NujiPxp0SfYxmoqrsy4t0pjPFuYKI5Z5dl12zm_lLeue priority: 102 providerName: Directory of Open Access Journals – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V20O50PISWwrKgQtIbh5-JVKlaoGtChIVB1YqBxT52a5Y0tWSBW1_PePEu9AeQHDIIZYd2Zmx55uxPR_Ac-WNEzJTxDnjCMuVJqoUnOS5FjQz6FHYEO94fyZOJ-zdOT_fgqP1XZhwrBJd8Wm3SAd4TBCPlClPWSpoOrf--HuMI6HtL9CaCoEO-7bgiMQHsD05-zD61PHJxZb9ziRFzz69XNlFF6rmQXEFvWGJuoT9N1DmzrKZq9UPNZv9ZnBOduHzuqv9OZMvh8tWH5rrW1kc_3cse3A3ItFk1KvOPdhyzX3YiaTol6sHMBo1yfjrfNolEUkCaRoJBMbT-DJLEO8m418X5bD8jWpV8jbwRHQCfwiTk_HH16ckMi4QQ2XVEi0ExwWPm0Jxy1Whna2cyUPGF8Wy0mjDlMzwcZ76iiqZe8qFFIobY9EG0kcwaK4a9xiSsJRYWzHPmGROIRDFz5SWKlv5MrN6COn679cmpiMPrBizGt2SIK_6tryG8GLTYt6n4vhD3VdBoJt6IYl2V3C1uKjjnKyZNZ7aQlAmS-YdjjlzlCojFKI6r-UQDtbqUMeZ_a0uwj5jxmTGh_ByoyJ_7dD-v1R-AncQl5X9qZkDGLSLpXuK2KfVz6KK_wQMlQH2 priority: 102 providerName: Unpaywall  | 
    
| Title | An Empirical Mode-Spatial Model for Environmental Data Imputation | 
    
| URI | https://www.proquest.com/docview/2582804705 https://www.mdpi.com/2306-5338/5/4/63/pdf?version=1542439660 https://doaj.org/article/4dcf3d2634784fe2a50e33ac6a172fb7  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 5 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2306-5338 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002118400 issn: 2306-5338 databaseCode: KQ8 dateStart: 20140101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2306-5338 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002118400 issn: 2306-5338 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2306-5338 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002118400 issn: 2306-5338 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2306-5338 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002118400 issn: 2306-5338 databaseCode: BENPR dateStart: 20141201 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwhV1LbxMxEB6V9FAuiKcIlGoPXECy4l2_dg8IpZCqIBFViEjltJr1o60UNiGkQvn3jDfelHIohz3Y8lq7M_Z4Zmx_H8BrDNZrw5F5bz2TOTYMS61YnjdacEsRhYv5ji9TfTqTn8_V-R5M-7sw8VhlbxM7Q-0WNubIR0Xc3-HScPV--ZNF1qi4u9pTaGCiVnDvOoixe7BfRGSsAewfT6ZnX3dZFwp3KKLh2_1KQfH-6HLjVl0CW8XhrMWt9amD8b_lex5ct0vc_Mb5_K9l6OQhPEj-YzbeKvwR7Pn2MRwkKvPLzRMYj9ts8mN51UF_ZJHqjEXa4atUmGfkpWaTm-ttVP8R15h9iuwOnZqewuxk8u3DKUs8CcwKU61Zo7UiM6VsgcopLBrvKm_ziNOCkpe2sRINp8cHESqBJg9CaaNRWeto5RLPYNAuWv8csmgAnKtkkNJIj-Q-UjelE-iqUHLXDGHUS6e2CUQ8clnMawomojzrf-U5hDe7N5ZbAI072h5Hge_aRejrrmKxuqjTTKqls0G4QgtpShk8_TP3QqDVSL5YaMwQDnt11Wk-_qpvRs8Q3u5U-N8PenF3Xy_hPvlP5fZ0yyEM1qtr_4p8lHVzlAbeURfjU2k2PRt__wPTxuvW | 
    
| linkProvider | ProQuest | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6V9hAuiKcIFPABDiCtsvY-bB8qlNJUCW0jhFqpNzPeXbeVghPSVFX-HL-NWWedUg7l1IMPttYre3Zm9pvZ3fkA3mNlnE45MueMYzLGkmGmFYvjUgtuKKKwPt9xNNbDE_n1VJ1uwO_2LIzfVtn6xMZR26nxOfJe4td3uEy5-jz7xTxrlF9dbSk0MFAr2J2mxFg42HHgltcUwl3ujPZovD8kyf7g-MuQBZYBZkSaL1iptSIjVyZBZRUmpbO5M7GvcoKSZ6Y0ElNOl6tElQtM40oonWpUxljy-4L6fQBbUsicgr-t3cH42_d1lofCK4qg-Gp9VIic986Xdt4kzJU3Hy1uzYcNbcAtrNu5qme4vMbJ5K9pb_8xPAp4NeqvFOwJbLj6KXQCdfr58hn0-3U0-Dm7aEqNRJ5ajXma44twM4kIFUeDm-N09HwPFxiNPJtEoxbP4eReJPYCNutp7V5C5B2OtbmspEylQ4Kr1E1mBdq8yrgtu9BrpVOYULTcc2dMCgpevDyLf-XZhY_rN2argh13tN31Al-386W2mwfT-VkRLLeQ1lTCJlrINJOVo3_mTgg0Ggn7VWXahe12uIpg_5fFjbZ24dN6CP_7Qa_u7usddIbHR4fF4Wh88BoeEnbLVjtrtmFzMb9ybwgfLcq3QQkj-HHfev8HUBondA | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VVqJcEE-RUsAHOIBkZe192D5UKCWJGgpRhajUmxnvg1YKTpqmqvIX-VXMOuuUciinHnywtV7Zs7Oz38zszgfwFp22KmMYW6ttLBKsYsyVjJOkUpxp8iiMj3d8HauDY_H5RJ5swO_2LIzfVtnaxMZQm6n2MfJu6vM7TGRMdl3YFnHUH36cnceeQcpnWls6DQw0C2avKTcWDnkc2uUVuXMXe6M-jf27NB0Ovn86iAPjQKx5ViziSilJE17qFKWRmFbWFFYnvuIJCpbrSgvMGF3WcVdwzBLHpcoUSq0NrQGc-r0HWz75RUZia38wPvq2jviQq0XeFFvlSjkvWPd0aeZN8Fz6qaT4jbWxoRC4gXu3L-sZLq9wMvlrCRw-gocBu0a9lbI9hg1bP4HtQKN-unwKvV4dDX7NzpqyI5GnWYs95fFZuJlEhJCjwfXROnrexwVGI88s0ajIMzi-E4k9h816WtsXEHnjY0whnBCZsEjQlbrJDUdTuJyZqgPdVjqlDgXMPY_GpCRHxsuz_FeeHXi_fmO2Kt5xS9t9L_B1O192u3kwnf8swywuhdGOm1RxkeXCWfpnZjlHrZBwoKuyDuy2w1UGW3BRXmtuBz6sh_C_H7Rze19v4D7pf_llND58CQ8IxuWrTTa7sLmYX9pXBJUW1euggxH8uGu1_wOlBCuj | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB5V20O50PISWwrKgQtIbh5-JVKlaoGtChIVB1YqBxT52a5Y0tWSBW1_PePEu9AeQHDIIZYd2Zmx55uxPR_Ac-WNEzJTxDnjCMuVJqoUnOS5FjQz6FHYEO94fyZOJ-zdOT_fgqP1XZhwrBJd8Wm3SAd4TBCPlClPWSpoOrf--HuMI6HtL9CaCoEO-7bgiMQHsD05-zD61PHJxZb9ziRFzz69XNlFF6rmQXEFvWGJuoT9N1DmzrKZq9UPNZv9ZnBOduHzuqv9OZMvh8tWH5rrW1kc_3cse3A3ItFk1KvOPdhyzX3YiaTol6sHMBo1yfjrfNolEUkCaRoJBMbT-DJLEO8m418X5bD8jWpV8jbwRHQCfwiTk_HH16ckMi4QQ2XVEi0ExwWPm0Jxy1Whna2cyUPGF8Wy0mjDlMzwcZ76iiqZe8qFFIobY9EG0kcwaK4a9xiSsJRYWzHPmGROIRDFz5SWKlv5MrN6COn679cmpiMPrBizGt2SIK_6tryG8GLTYt6n4vhD3VdBoJt6IYl2V3C1uKjjnKyZNZ7aQlAmS-YdjjlzlCojFKI6r-UQDtbqUMeZ_a0uwj5jxmTGh_ByoyJ_7dD-v1R-AncQl5X9qZkDGLSLpXuK2KfVz6KK_wQMlQH2 | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+Empirical+Mode-Spatial+Model+for+Environmental+Data+Imputation&rft.jtitle=Hydrology&rft.au=Nelsen%2C+Benjamin&rft.au=Williams%2C+D+Alexandra&rft.au=Williams%2C+Gustavious+P&rft.au=Berrett%2C+Candace&rft.date=2018-12-01&rft.pub=MDPI+AG&rft.eissn=2306-5338&rft.volume=5&rft.issue=4&rft.spage=63&rft_id=info:doi/10.3390%2Fhydrology5040063&rft.externalDBID=HAS_PDF_LINK | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2306-5338&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2306-5338&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2306-5338&client=summon |