Quasi-adiabatic and Stochastic Heating and Particle Acceleration at Quasi-perpendicular Shocks
Based on Magnetospheric Multiscale observations from the Earth's bow shock, we have identified two plasma heating processes that operate at quasi-perpendicular shocks. Ions are subject to stochastic heating in a process controlled by the heating function for particles with mass mj and charge qj...
Saved in:
Published in | The Astrophysical journal Vol. 903; no. 1; pp. 57 - 65 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Philadelphia
The American Astronomical Society
01.11.2020
IOP Publishing |
Subjects | |
Online Access | Get full text |
ISSN | 0004-637X 1538-4357 |
DOI | 10.3847/1538-4357/abb825 |
Cover
Abstract | Based on Magnetospheric Multiscale observations from the Earth's bow shock, we have identified two plasma heating processes that operate at quasi-perpendicular shocks. Ions are subject to stochastic heating in a process controlled by the heating function for particles with mass mj and charge qj in the electric and magnetic fields and . Test-particle simulations are employed to identify the parameter ranges for bulk heating and stochastic acceleration of particles in the tail of the distribution function. The simulation results are used to show that ion heating and acceleration in the studied bow shock crossings is accomplished by waves at frequencies (2-10)fcp (proton gyrofrequency) for the bulk heating, and for the tail acceleration. When electrons are not in the stochastic heating regime, , they undergo a quasi-adiabatic heating process characterized by the isotropic temperature relation . This is obtained when the energy gain from the conservation of the magnetic moment is redistributed to the parallel energy component through the scattering by waves. The results reported in this paper may be applicable also to particle heating and acceleration at astrophysical shocks. |
---|---|
AbstractList | Based on Magnetospheric Multiscale observations from the Earth’s bow shock, we have identified two plasma heating processes that operate at quasi-perpendicular shocks. Ions are subject to stochastic heating in a process controlled by the heating function \({\chi }_{j}={m}_{j}{q}_{j}^{-1}{B}^{-2}\mathrm{div}({{\boldsymbol{E}}}_{\perp })\) for particles with mass m j and charge q j in the electric and magnetic fields \({\boldsymbol{E}}\) and \({\boldsymbol{B}}\). Test-particle simulations are employed to identify the parameter ranges for bulk heating and stochastic acceleration of particles in the tail of the distribution function. The simulation results are used to show that ion heating and acceleration in the studied bow shock crossings is accomplished by waves at frequencies (2–10)f cp (proton gyrofrequency) for the bulk heating, and \(f\gt 10{f}_{{cp}}\) for the tail acceleration. When electrons are not in the stochastic heating regime, \(| {\chi }_{e}| \lt 1\), they undergo a quasi-adiabatic heating process characterized by the isotropic temperature relation \(T/B={({T}_{0}/{B}_{0})({B}_{0}/B)}^{1/3}\). This is obtained when the energy gain from the conservation of the magnetic moment is redistributed to the parallel energy component through the scattering by waves. The results reported in this paper may be applicable also to particle heating and acceleration at astrophysical shocks. Based on Magnetospheric Multiscale observations from the Earth's bow shock, we have identified two plasma heating processes that operate at quasi-perpendicular shocks. Ions are subject to stochastic heating in a process controlled by the heating function for particles with mass mj and charge qj in the electric and magnetic fields and . Test-particle simulations are employed to identify the parameter ranges for bulk heating and stochastic acceleration of particles in the tail of the distribution function. The simulation results are used to show that ion heating and acceleration in the studied bow shock crossings is accomplished by waves at frequencies (2-10)fcp (proton gyrofrequency) for the bulk heating, and for the tail acceleration. When electrons are not in the stochastic heating regime, , they undergo a quasi-adiabatic heating process characterized by the isotropic temperature relation . This is obtained when the energy gain from the conservation of the magnetic moment is redistributed to the parallel energy component through the scattering by waves. The results reported in this paper may be applicable also to particle heating and acceleration at astrophysical shocks. Based on Magnetospheric Multiscale observations from the Earth’s bow shock, we have identified two plasma heating processes that operate at quasi-perpendicular shocks. Ions are subject to stochastic heating in a process controlled by the heating function for particles with mass m j and charge q j in the electric and magnetic fields and . Test-particle simulations are employed to identify the parameter ranges for bulk heating and stochastic acceleration of particles in the tail of the distribution function. The simulation results are used to show that ion heating and acceleration in the studied bow shock crossings is accomplished by waves at frequencies (2–10) f cp (proton gyrofrequency) for the bulk heating, and for the tail acceleration. When electrons are not in the stochastic heating regime, , they undergo a quasi-adiabatic heating process characterized by the isotropic temperature relation . This is obtained when the energy gain from the conservation of the magnetic moment is redistributed to the parallel energy component through the scattering by waves. The results reported in this paper may be applicable also to particle heating and acceleration at astrophysical shocks. |
Author | Stasiewicz, Krzysztof Eliasson, Bengt |
Author_xml | – sequence: 1 givenname: Krzysztof orcidid: 0000-0002-2872-5279 surname: Stasiewicz fullname: Stasiewicz, Krzysztof email: krzy.stasiewicz@gmail.com organization: Space Research Centre , Polish Academy of Sciences, Warsaw, Poland – sequence: 2 givenname: Bengt orcidid: 0000-0001-6039-1574 surname: Eliasson fullname: Eliasson, Bengt email: bengt.eliasson@strath.ac.uk organization: University of Strathclyde SUPA, Department of Physics, Glasgow G4 0NG, UK |
BookMark | eNp9kM1LwzAYxoNMcJvePRb0aF0-mjQ9jqFOGKhMwZMhX3Wdta1Je_C_N11FQdRTeJ_8nidvngkYVXVlAThG8JzwJJ0hSnicEJrOpFIc0z0w_pJGYAwhTGJG0scDMPF-2484y8bg6a6TvoilKaSSbaEjWZlo3dZ6I30_Lm1Qq-edfCtdkEobzbW2pXXhpq4i2UZDRmNdYytT6K6ULlpvav3iD8F-Lktvjz7PKXi4vLhfLOPVzdX1Yr6KNUmzNlaIoVyRnFjDOCcKh00xZdgwRhRPKKESaZ0TqpTSKMfEGMxTzlKTJTmUnEzByZDbuPqts74V27pzVXhS4IQyniGKSaDgQGlXe-9sLhpXvEr3LhAUfYuir0z0lYmhxWBhPyy6aHcfb50syv-Mp4OxqJvvZWSzFRkkAolANiYP2Nkv2J-pH0ZLk50 |
CitedBy_id | crossref_primary_10_1093_mnrasl_slad146 crossref_primary_10_1038_s41567_021_01325_w crossref_primary_10_1063_5_0220994 crossref_primary_10_1088_1402_4896_ad87c2 crossref_primary_10_3847_1538_4357_ad1f69 crossref_primary_10_1029_2020JA028984 crossref_primary_10_1029_2021JA029295 crossref_primary_10_1063_5_0040374 crossref_primary_10_1093_mnras_stab2739 crossref_primary_10_1029_2021JA029477 crossref_primary_10_3847_1538_4357_ac53fb crossref_primary_10_5194_angeo_40_315_2022 crossref_primary_10_1093_mnrasl_slad071 crossref_primary_10_3847_1538_4357_abbffa crossref_primary_10_1093_mnras_stad361 crossref_primary_10_1093_mnras_stac1193 |
Cites_doi | 10.1007/s11214-012-9901-5 10.1007/s11214-015-0153-z 10.1063/1.861867 10.1016/0370-1573(87)90134-7 10.1029/JA088iA04p03026 10.1111/j.1365-2966.2010.17249.x 10.1029/2018JA025830 10.1103/PhysRevE.65.036407 10.1007/BF00213958 10.1029/2010JA015332 10.1007/s11214-016-0245-4 10.1887/075030183X 10.1007/s00159-009-0024-2 10.1063/1.1594724 10.1007/s11214-014-0116-9 10.1063/1.1694082 10.1103/PhysRevLett.70.1259 10.1088/0004-637X/794/2/153 10.1103/PhysRevLett.38.701 10.1029/2019JA027275 10.1063/1.3116643 10.1063/1.864380 10.1017/CBO9780511551512 10.1007/s11214-014-0057-3 10.1029/2019JA027155 10.1002/essoar.10503529.1 10.1002/jgra.50534 10.1063/1.4863836 10.1103/PhysRevLett.114.085003 10.1088/0741-3335/49/12B/S58 10.1002/2014JA019978 10.3847/2041-8213/aba11e 10.1029/2018JA026197 10.3847/2041-8213/ab5b0a 10.1209/0295-5075/102/49001 10.1093/mnrasl/slaa090 10.1029/JA092iA09p10029 10.1029/JA089iA08p06654 10.1063/1.862512 10.1007/s11214-014-0109-8 10.1007/s11214-014-0115-x 10.1103/PhysRevLett.59.1436 10.1088/0029-5515/13/2/007 10.1002/jgra.50224 10.1029/94GL00371 10.1063/1.1693632 10.1093/mnras/182.2.147 10.1063/1.5033896 10.1002/2014JA019930 10.1029/JA083iA04p01625 10.1007/s11214-013-9972-y 10.5194/angeo-31-639-2013 10.1029/94JA03369 10.1029/2003JA010180 10.1103/PhysRevA.4.2094 10.1007/BF00225185 10.1002/2013JA019372 10.1029/JA083iA11p05217 |
ContentType | Journal Article |
Copyright | 2020. The American Astronomical Society. All rights reserved. Copyright IOP Publishing Nov 01, 2020 |
Copyright_xml | – notice: 2020. The American Astronomical Society. All rights reserved. – notice: Copyright IOP Publishing Nov 01, 2020 |
DBID | AAYXX CITATION 7TG 8FD H8D KL. L7M |
DOI | 10.3847/1538-4357/abb825 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Meteorological & Geoastrophysical Abstracts - Academic Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Meteorological & Geoastrophysical Abstracts Technology Research Database Advanced Technologies Database with Aerospace Meteorological & Geoastrophysical Abstracts - Academic |
DatabaseTitleList | Aerospace Database CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
DocumentTitleAlternate | Quasi-adiabatic and Stochastic Heating and Particle Acceleration at Quasi-perpendicular Shocks |
EISSN | 1538-4357 |
ExternalDocumentID | 10_3847_1538_4357_abb825 apjabb825 |
GroupedDBID | -DZ -~X 123 1JI 23N 2FS 2WC 4.4 6J9 85S AAFWJ AAGCD AAJIO ABHWH ACBEA ACGFS ACHIP ACNCT ADACN AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 WH7 XSW AAYXX CITATION 7TG 8FD AEINN H8D KL. L7M |
ID | FETCH-LOGICAL-c379t-b161fb3f3ed6883b26372562d663b84535a1ccf35bbbc1f23dd287867d94f0a83 |
IEDL.DBID | IOP |
ISSN | 0004-637X |
IngestDate | Wed Aug 13 09:45:44 EDT 2025 Tue Jul 01 03:24:29 EDT 2025 Thu Apr 24 22:59:13 EDT 2025 Thu Jan 07 14:56:15 EST 2021 Wed Aug 21 03:33:30 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c379t-b161fb3f3ed6883b26372562d663b84535a1ccf35bbbc1f23dd287867d94f0a83 |
Notes | AAS26370 High-Energy Phenomena and Fundamental Physics ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2872-5279 0000-0001-6039-1574 |
OpenAccessLink | https://iopscience.iop.org/article/10.3847/1538-4357/abb825/pdf |
PQID | 2456891523 |
PQPubID | 4562441 |
PageCount | 9 |
ParticipantIDs | proquest_journals_2456891523 crossref_citationtrail_10_3847_1538_4357_abb825 crossref_primary_10_3847_1538_4357_abb825 iop_journals_10_3847_1538_4357_abb825 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-11-01 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: 2020-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Philadelphia |
PublicationPlace_xml | – name: Philadelphia |
PublicationTitle | The Astrophysical journal |
PublicationTitleAbbrev | APJ |
PublicationTitleAlternate | Astrophys. J |
PublicationYear | 2020 |
Publisher | The American Astronomical Society IOP Publishing |
Publisher_xml | – name: The American Astronomical Society – name: IOP Publishing |
References | Stasiewicz (apjabb825bib46) 2007; 49 Stasiewicz (apjabb825bib47) 2020a; 496 Vranjes (apjabb825bib54) 2010; 408 Mozer (apjabb825bib38) 2013; 118 Pollock (apjabb825bib41) 2016; 199 Balikhin (apjabb825bib2) 1993; 70 McChesney (apjabb825bib37) 1987; 59 Ergun (apjabb825bib12) 2019; 124 See (apjabb825bib44) 2013; 31 Burch (apjabb825bib6) 2016; 199 Blandford (apjabb825bib4) 1987; 154 Gedalin (apjabb825bib18) 1995; 100 Stasiewicz (apjabb825bib49) 2020 Janhunen (apjabb825bib27) 2018; 25 Stasiewicz (apjabb825bib50) 2013; 102 Davidson (apjabb825bib10) 1977; 20 Russell (apjabb825bib43) 2016; 199 Zhou (apjabb825bib62) 1983; 88 Stasiewicz (apjabb825bib48) 2020b Xu (apjabb825bib58) 2020; 897 Balikhin (apjabb825bib1) 1994; 21 Forslund (apjabb825bib14) 1972; 15 Wilson III (apjabb825bib55) 2010; 115 Graham (apjabb825bib22) 2019; 124 Breneman (apjabb825bib5) 2013; 118 Guo (apjabb825bib23) 2014; 794 Treumann (apjabb825bib52) 2009; 17 Lemons (apjabb825bib34) 1978; 83 Gary (apjabb825bib16) 1993 Press (apjabb825bib42) 2007 Yoon (apjabb825bib59) 2004; 109 Yoon (apjabb825bib60) 2019; 887 Silveira (apjabb825bib45) 2002; 65 Huang (apjabb825bib25) 2009; 16 Krasnoselskikh (apjabb825bib30) 2013; 178 Drake (apjabb825bib11) 1983; 26 Huba (apjabb825bib26) 1978; A11 Fukuyama (apjabb825bib15) 1977; 38 Cohen (apjabb825bib8) 2019; 124 Goodrich (apjabb825bib20) 1984; 89 Umeda (apjabb825bib53) 2014; 21 Lee (apjabb825bib33) 1982; 32 Burgess (apjabb825bib7) 2012; 173 Zhou (apjabb825bib61) 2014; 119 Bell (apjabb825bib3) 1978; 182 Ergun (apjabb825bib13) 2016; 199 Karney (apjabb825bib28) 1979; 22 Muschietti (apjabb825bib39) 2013; 118 Gary (apjabb825bib17) 1987; 92 Daughton (apjabb825bib9) 2003; 10 Lindqvist (apjabb825bib35) 2016; 199 Wilson (apjabb825bib56) 2014; 119 Wu (apjabb825bib57) 1984; 37 Goldston (apjabb825bib19) 1995 Lashmore-Davies (apjabb825bib32) 1971; 14 Park (apjabb825bib40) 2015; 114 Torbert (apjabb825bib51) 2016; 199 Krall (apjabb825bib29) 1971; 4 Lashmore-Davies (apjabb825bib31) 1973; 13 Mallat (apjabb825bib36) 1999 Goodrich (apjabb825bib21) 2018; 123 Harvey (apjabb825bib24) 1998 |
References_xml | – volume: 173 start-page: 5 year: 2012 ident: apjabb825bib7 publication-title: SSRv doi: 10.1007/s11214-012-9901-5 – volume: 199 start-page: 1 year: 2016 ident: apjabb825bib6 publication-title: SSRv doi: 10.1007/s11214-015-0153-z – volume: 20 start-page: 301 year: 1977 ident: apjabb825bib10 publication-title: PhFl doi: 10.1063/1.861867 – volume: 154 start-page: 1 year: 1987 ident: apjabb825bib4 publication-title: PhR doi: 10.1016/0370-1573(87)90134-7 – volume: 88 start-page: 3026 year: 1983 ident: apjabb825bib62 publication-title: JGRA doi: 10.1029/JA088iA04p03026 – volume: 408 start-page: 1835 year: 2010 ident: apjabb825bib54 publication-title: MNRAS doi: 10.1111/j.1365-2966.2010.17249.x – volume: 123 start-page: 9430 year: 2018 ident: apjabb825bib21 publication-title: JGRA doi: 10.1029/2018JA025830 – volume: 65 year: 2002 ident: apjabb825bib45 publication-title: PhRvE doi: 10.1103/PhysRevE.65.036407 – volume: 37 start-page: 63 year: 1984 ident: apjabb825bib57 publication-title: SSRv doi: 10.1007/BF00213958 – volume: 115 start-page: A12104 year: 2010 ident: apjabb825bib55 publication-title: JGRA doi: 10.1029/2010JA015332 – volume: 199 start-page: 331 year: 2016 ident: apjabb825bib41 publication-title: SSRv doi: 10.1007/s11214-016-0245-4 – year: 1995 ident: apjabb825bib19 doi: 10.1887/075030183X – volume: 17 start-page: 409 year: 2009 ident: apjabb825bib52 publication-title: A&ARv doi: 10.1007/s00159-009-0024-2 – volume: 10 start-page: 3103 year: 2003 ident: apjabb825bib9 publication-title: PhPl doi: 10.1063/1.1594724 – volume: 199 start-page: 137 year: 2016 ident: apjabb825bib35 publication-title: SSRv doi: 10.1007/s11214-014-0116-9 – volume: 15 start-page: 1303 year: 1972 ident: apjabb825bib14 publication-title: PhFl doi: 10.1063/1.1694082 – volume: 70 start-page: 1259 year: 1993 ident: apjabb825bib2 publication-title: PhRvL doi: 10.1103/PhysRevLett.70.1259 – volume: 794 start-page: 153 year: 2014 ident: apjabb825bib23 publication-title: ApJ doi: 10.1088/0004-637X/794/2/153 – volume: 38 start-page: 701 year: 1977 ident: apjabb825bib15 publication-title: PhRvL doi: 10.1103/PhysRevLett.38.701 – volume: 124 start-page: 10085 year: 2019 ident: apjabb825bib12 publication-title: JGRA doi: 10.1029/2019JA027275 – volume: 16 year: 2009 ident: apjabb825bib25 publication-title: PhPl doi: 10.1063/1.3116643 – volume: 26 start-page: 2247 year: 1983 ident: apjabb825bib11 publication-title: PhFl doi: 10.1063/1.864380 – year: 1993 ident: apjabb825bib16 doi: 10.1017/CBO9780511551512 – volume: 199 start-page: 189 year: 2016 ident: apjabb825bib43 publication-title: SSRv doi: 10.1007/s11214-014-0057-3 – volume: 124 start-page: 8727 year: 2019 ident: apjabb825bib22 publication-title: JGRA doi: 10.1029/2019JA027155 – year: 2007 ident: apjabb825bib42 – year: 2020b ident: apjabb825bib48 publication-title: Earth Space Sci. Open Arch. doi: 10.1002/essoar.10503529.1 – volume: 118 start-page: 5415 year: 2013 ident: apjabb825bib38 publication-title: JGRA doi: 10.1002/jgra.50534 – year: 1999 ident: apjabb825bib36 – volume: 21 year: 2014 ident: apjabb825bib53 publication-title: PhPl doi: 10.1063/1.4863836 – volume: 114 year: 2015 ident: apjabb825bib40 publication-title: PhRvL doi: 10.1103/PhysRevLett.114.085003 – volume: 49 start-page: B621 year: 2007 ident: apjabb825bib46 publication-title: PPCF doi: 10.1088/0741-3335/49/12B/S58 – volume: 119 start-page: 8228 year: 2014 ident: apjabb825bib61 publication-title: JGRA doi: 10.1002/2014JA019978 – volume: 897 start-page: L41 year: 2020 ident: apjabb825bib58 publication-title: ApJL doi: 10.3847/2041-8213/aba11e – volume: 124 start-page: 3961 year: 2019 ident: apjabb825bib8 publication-title: JGRA doi: 10.1029/2018JA026197 – volume: 887 start-page: L29 year: 2019 ident: apjabb825bib60 publication-title: ApJL doi: 10.3847/2041-8213/ab5b0a – volume: 102 start-page: 49001 year: 2013 ident: apjabb825bib50 publication-title: EL doi: 10.1209/0295-5075/102/49001 – volume: 496 start-page: L133 year: 2020a ident: apjabb825bib47 publication-title: MNRAS doi: 10.1093/mnrasl/slaa090 – year: 2020 ident: apjabb825bib49 publication-title: ApJ – volume: 92 start-page: 10029 year: 1987 ident: apjabb825bib17 publication-title: JGR doi: 10.1029/JA092iA09p10029 – volume: 89 start-page: 6654 year: 1984 ident: apjabb825bib20 publication-title: JGR doi: 10.1029/JA089iA08p06654 – volume: 22 start-page: 2188 year: 1979 ident: apjabb825bib28 publication-title: PhFl doi: 10.1063/1.862512 – volume: 199 start-page: 105 year: 2016 ident: apjabb825bib51 publication-title: SSRv doi: 10.1007/s11214-014-0109-8 – volume: 199 start-page: 167 year: 2016 ident: apjabb825bib13 publication-title: SSRv doi: 10.1007/s11214-014-0115-x – volume: 59 start-page: 1436 year: 1987 ident: apjabb825bib37 publication-title: PhRvL doi: 10.1103/PhysRevLett.59.1436 – volume: 13 start-page: 193 year: 1973 ident: apjabb825bib31 publication-title: NucFu doi: 10.1088/0029-5515/13/2/007 – volume: 118 start-page: 2267 year: 2013 ident: apjabb825bib39 publication-title: JGRA doi: 10.1002/jgra.50224 – volume: 21 start-page: 841 year: 1994 ident: apjabb825bib1 publication-title: GeoRL doi: 10.1029/94GL00371 – volume: 14 start-page: 1481 year: 1971 ident: apjabb825bib32 publication-title: PhFl doi: 10.1063/1.1693632 – start-page: 307 year: 1998 ident: apjabb825bib24 – volume: 182 start-page: 147 year: 1978 ident: apjabb825bib3 publication-title: MNRAS doi: 10.1093/mnras/182.2.147 – volume: 25 year: 2018 ident: apjabb825bib27 publication-title: PhPl doi: 10.1063/1.5033896 – volume: 119 start-page: 6475 year: 2014 ident: apjabb825bib56 publication-title: JGRA doi: 10.1002/2014JA019930 – volume: 83 start-page: 1625 year: 1978 ident: apjabb825bib34 publication-title: JGR doi: 10.1029/JA083iA04p01625 – volume: 178 start-page: 535 year: 2013 ident: apjabb825bib30 publication-title: SSRv doi: 10.1007/s11214-013-9972-y – volume: 31 start-page: 639 year: 2013 ident: apjabb825bib44 publication-title: AnGeo doi: 10.5194/angeo-31-639-2013 – volume: 100 start-page: 9481 year: 1995 ident: apjabb825bib18 publication-title: JGR doi: 10.1029/94JA03369 – volume: 109 start-page: 2210 year: 2004 ident: apjabb825bib59 publication-title: JGRA doi: 10.1029/2003JA010180 – volume: 4 start-page: 2094 year: 1971 ident: apjabb825bib29 publication-title: PhRvA doi: 10.1103/PhysRevA.4.2094 – volume: 32 start-page: 205 year: 1982 ident: apjabb825bib33 publication-title: SSRv doi: 10.1007/BF00225185 – volume: 118 start-page: 7654 year: 2013 ident: apjabb825bib5 publication-title: JGRA doi: 10.1002/2013JA019372 – volume: A11 start-page: 5217 year: 1978 ident: apjabb825bib26 publication-title: JGR doi: 10.1029/JA083iA11p05217 |
SSID | ssj0004299 |
Score | 2.445395 |
Snippet | Based on Magnetospheric Multiscale observations from the Earth's bow shock, we have identified two plasma heating processes that operate at quasi-perpendicular... Based on Magnetospheric Multiscale observations from the Earth’s bow shock, we have identified two plasma heating processes that operate at quasi-perpendicular... |
SourceID | proquest crossref iop |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 57 |
SubjectTerms | Adiabatic flow Astrophysics Distribution functions Earth magnetosphere Energy conservation Gyrofrequency Heating Interplanetary physics Ion heating Magnetic fields Magnetic moments Parameter identification Particle acceleration Particle physics Plasma heating Shocks Stochastic processes |
Title | Quasi-adiabatic and Stochastic Heating and Particle Acceleration at Quasi-perpendicular Shocks |
URI | https://iopscience.iop.org/article/10.3847/1538-4357/abb825 https://www.proquest.com/docview/2456891523 |
Volume | 903 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BVaVegNJWbAvIB1qpBy9JnIejnlYVaMUBtqKoe6hq-VkokI1I9kB_fcdxFkRBqOolsqKJ7YztediebwB2XYxa1kpGy7yIaKplRrmUETXWMOVkzHPboX0e5ePT9HCaTZfg020szKzuRf8QiwEoOLDQr2-GsnSvW6Oo5QufbgsdnGV4xnwmJR-9dzy5C4pMyt72TWnOimk4o3y0hns6aRnbfSCYO21zsAbfF_0Ml0wuhvNWDfXvvyAc__NH1mG1t0LJKJC-hCVbbcDmqPH74rOrG_KBdOWw7dFswPNJKL2CH1_msjmnHtFAebBXIitDTtqZPpMe8ZmMvQ1a_exeT_qukJHWqN3CXCOyJaGO2l77BLzn3U1YcnKGkrl5DacH-18_j2mfo4FqVpQtVWgxOsUcsybnnKkEWY1WVGLQklE8zVgmY60dy5RSOnYJMwZ9NJ4XpkxdJDl7AyvVrLKbQJwqI8M9PI5J0kwmMk11zmNr4kiaKDED2FuMktA9gLnPo3Ep0JHxDBWeocIzVASGDuDj7Rd1AO94gvY9jpPoV3DzBN32PTpZ_xJlxEQskKQ2bgBbi6lzR-RPl3mJphJ7-4_NvIMXiffsu6jHLVhpr-d2G82fVu100xyfx-zbH2sg_eo |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RViAuFS2gLn3gA0XiYDaJ83COK2C1PNRuVSr2hOUnbVWyUZMe-PeM7bRVVVRxs6KJk4zHM9_Y8TcAb1yKUdZKRuuySmiuZUG5lAk11jDlZMpLG9g-D8rZSf5lUSyGOqfhLMyyHVz_e2xGouCoQj-_GfrScZijGOUrX24LE5xxa9wKrBUMsTEa9CH7cXswMqsH_JvTklWLuE_5z17uxKUVfPY95xwizvQZrA9QkUzii23AI9tswtak84vXy99_yFsS2nFtotuEx_PYeg4_j65kd0Y97YDyjKxENoYc90t9Kj0tM5l5oNj8Cpfnw4eTidYYgqJBENmT2EdrL32V3LPwuyo5PkX32b2Ak-mn7x9mdCikQDWr6p4qhHVOMcesKTlnKkNdINTJDMINxXPUnEy1dqxQSunUZcwYTKR4WZk6d4nk7CWsNsvGbgFxqk4M9xw2JssLmck81yVPrUkTaZLMjGB8rUahB5ZxX-ziQmC24RUvvOKFV7yIih_Bu5s72siw8YDsPo6MGKZZ94Dc7h052Z6LOmEiFSiC5jKCneuxvRXyW8C8RjzDXv3nY17Dk_nHqfj2-eDrNjzNfCYeTinuwGp_eWV3Ea70ai-Y5F_cLuG3 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quasi-adiabatic+and+Stochastic+Heating+and+Particle+Acceleration+at+Quasi-perpendicular+Shocks&rft.jtitle=The+Astrophysical+journal&rft.au=Stasiewicz%2C+Krzysztof&rft.au=Eliasson%2C+Bengt&rft.date=2020-11-01&rft.pub=IOP+Publishing&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=903&rft.issue=1&rft_id=info:doi/10.3847%2F1538-4357%2Fabb825&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |