Quasi-adiabatic and Stochastic Heating and Particle Acceleration at Quasi-perpendicular Shocks

Based on Magnetospheric Multiscale observations from the Earth's bow shock, we have identified two plasma heating processes that operate at quasi-perpendicular shocks. Ions are subject to stochastic heating in a process controlled by the heating function for particles with mass mj and charge qj...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 903; no. 1; pp. 57 - 65
Main Authors Stasiewicz, Krzysztof, Eliasson, Bengt
Format Journal Article
LanguageEnglish
Published Philadelphia The American Astronomical Society 01.11.2020
IOP Publishing
Subjects
Online AccessGet full text
ISSN0004-637X
1538-4357
DOI10.3847/1538-4357/abb825

Cover

Abstract Based on Magnetospheric Multiscale observations from the Earth's bow shock, we have identified two plasma heating processes that operate at quasi-perpendicular shocks. Ions are subject to stochastic heating in a process controlled by the heating function for particles with mass mj and charge qj in the electric and magnetic fields and . Test-particle simulations are employed to identify the parameter ranges for bulk heating and stochastic acceleration of particles in the tail of the distribution function. The simulation results are used to show that ion heating and acceleration in the studied bow shock crossings is accomplished by waves at frequencies (2-10)fcp (proton gyrofrequency) for the bulk heating, and for the tail acceleration. When electrons are not in the stochastic heating regime, , they undergo a quasi-adiabatic heating process characterized by the isotropic temperature relation . This is obtained when the energy gain from the conservation of the magnetic moment is redistributed to the parallel energy component through the scattering by waves. The results reported in this paper may be applicable also to particle heating and acceleration at astrophysical shocks.
AbstractList Based on Magnetospheric Multiscale observations from the Earth’s bow shock, we have identified two plasma heating processes that operate at quasi-perpendicular shocks. Ions are subject to stochastic heating in a process controlled by the heating function \({\chi }_{j}={m}_{j}{q}_{j}^{-1}{B}^{-2}\mathrm{div}({{\boldsymbol{E}}}_{\perp })\) for particles with mass m j and charge q j in the electric and magnetic fields \({\boldsymbol{E}}\) and \({\boldsymbol{B}}\). Test-particle simulations are employed to identify the parameter ranges for bulk heating and stochastic acceleration of particles in the tail of the distribution function. The simulation results are used to show that ion heating and acceleration in the studied bow shock crossings is accomplished by waves at frequencies (2–10)f cp (proton gyrofrequency) for the bulk heating, and \(f\gt 10{f}_{{cp}}\) for the tail acceleration. When electrons are not in the stochastic heating regime, \(| {\chi }_{e}| \lt 1\), they undergo a quasi-adiabatic heating process characterized by the isotropic temperature relation \(T/B={({T}_{0}/{B}_{0})({B}_{0}/B)}^{1/3}\). This is obtained when the energy gain from the conservation of the magnetic moment is redistributed to the parallel energy component through the scattering by waves. The results reported in this paper may be applicable also to particle heating and acceleration at astrophysical shocks.
Based on Magnetospheric Multiscale observations from the Earth's bow shock, we have identified two plasma heating processes that operate at quasi-perpendicular shocks. Ions are subject to stochastic heating in a process controlled by the heating function for particles with mass mj and charge qj in the electric and magnetic fields and . Test-particle simulations are employed to identify the parameter ranges for bulk heating and stochastic acceleration of particles in the tail of the distribution function. The simulation results are used to show that ion heating and acceleration in the studied bow shock crossings is accomplished by waves at frequencies (2-10)fcp (proton gyrofrequency) for the bulk heating, and for the tail acceleration. When electrons are not in the stochastic heating regime, , they undergo a quasi-adiabatic heating process characterized by the isotropic temperature relation . This is obtained when the energy gain from the conservation of the magnetic moment is redistributed to the parallel energy component through the scattering by waves. The results reported in this paper may be applicable also to particle heating and acceleration at astrophysical shocks.
Based on Magnetospheric Multiscale observations from the Earth’s bow shock, we have identified two plasma heating processes that operate at quasi-perpendicular shocks. Ions are subject to stochastic heating in a process controlled by the heating function for particles with mass m j and charge q j in the electric and magnetic fields and . Test-particle simulations are employed to identify the parameter ranges for bulk heating and stochastic acceleration of particles in the tail of the distribution function. The simulation results are used to show that ion heating and acceleration in the studied bow shock crossings is accomplished by waves at frequencies (2–10) f cp (proton gyrofrequency) for the bulk heating, and for the tail acceleration. When electrons are not in the stochastic heating regime, , they undergo a quasi-adiabatic heating process characterized by the isotropic temperature relation . This is obtained when the energy gain from the conservation of the magnetic moment is redistributed to the parallel energy component through the scattering by waves. The results reported in this paper may be applicable also to particle heating and acceleration at astrophysical shocks.
Author Stasiewicz, Krzysztof
Eliasson, Bengt
Author_xml – sequence: 1
  givenname: Krzysztof
  orcidid: 0000-0002-2872-5279
  surname: Stasiewicz
  fullname: Stasiewicz, Krzysztof
  email: krzy.stasiewicz@gmail.com
  organization: Space Research Centre , Polish Academy of Sciences, Warsaw, Poland
– sequence: 2
  givenname: Bengt
  orcidid: 0000-0001-6039-1574
  surname: Eliasson
  fullname: Eliasson, Bengt
  email: bengt.eliasson@strath.ac.uk
  organization: University of Strathclyde SUPA, Department of Physics, Glasgow G4 0NG, UK
BookMark eNp9kM1LwzAYxoNMcJvePRb0aF0-mjQ9jqFOGKhMwZMhX3Wdta1Je_C_N11FQdRTeJ_8nidvngkYVXVlAThG8JzwJJ0hSnicEJrOpFIc0z0w_pJGYAwhTGJG0scDMPF-2484y8bg6a6TvoilKaSSbaEjWZlo3dZ6I30_Lm1Qq-edfCtdkEobzbW2pXXhpq4i2UZDRmNdYytT6K6ULlpvav3iD8F-Lktvjz7PKXi4vLhfLOPVzdX1Yr6KNUmzNlaIoVyRnFjDOCcKh00xZdgwRhRPKKESaZ0TqpTSKMfEGMxTzlKTJTmUnEzByZDbuPqts74V27pzVXhS4IQyniGKSaDgQGlXe-9sLhpXvEr3LhAUfYuir0z0lYmhxWBhPyy6aHcfb50syv-Mp4OxqJvvZWSzFRkkAolANiYP2Nkv2J-pH0ZLk50
CitedBy_id crossref_primary_10_1093_mnrasl_slad146
crossref_primary_10_1038_s41567_021_01325_w
crossref_primary_10_1063_5_0220994
crossref_primary_10_1088_1402_4896_ad87c2
crossref_primary_10_3847_1538_4357_ad1f69
crossref_primary_10_1029_2020JA028984
crossref_primary_10_1029_2021JA029295
crossref_primary_10_1063_5_0040374
crossref_primary_10_1093_mnras_stab2739
crossref_primary_10_1029_2021JA029477
crossref_primary_10_3847_1538_4357_ac53fb
crossref_primary_10_5194_angeo_40_315_2022
crossref_primary_10_1093_mnrasl_slad071
crossref_primary_10_3847_1538_4357_abbffa
crossref_primary_10_1093_mnras_stad361
crossref_primary_10_1093_mnras_stac1193
Cites_doi 10.1007/s11214-012-9901-5
10.1007/s11214-015-0153-z
10.1063/1.861867
10.1016/0370-1573(87)90134-7
10.1029/JA088iA04p03026
10.1111/j.1365-2966.2010.17249.x
10.1029/2018JA025830
10.1103/PhysRevE.65.036407
10.1007/BF00213958
10.1029/2010JA015332
10.1007/s11214-016-0245-4
10.1887/075030183X
10.1007/s00159-009-0024-2
10.1063/1.1594724
10.1007/s11214-014-0116-9
10.1063/1.1694082
10.1103/PhysRevLett.70.1259
10.1088/0004-637X/794/2/153
10.1103/PhysRevLett.38.701
10.1029/2019JA027275
10.1063/1.3116643
10.1063/1.864380
10.1017/CBO9780511551512
10.1007/s11214-014-0057-3
10.1029/2019JA027155
10.1002/essoar.10503529.1
10.1002/jgra.50534
10.1063/1.4863836
10.1103/PhysRevLett.114.085003
10.1088/0741-3335/49/12B/S58
10.1002/2014JA019978
10.3847/2041-8213/aba11e
10.1029/2018JA026197
10.3847/2041-8213/ab5b0a
10.1209/0295-5075/102/49001
10.1093/mnrasl/slaa090
10.1029/JA092iA09p10029
10.1029/JA089iA08p06654
10.1063/1.862512
10.1007/s11214-014-0109-8
10.1007/s11214-014-0115-x
10.1103/PhysRevLett.59.1436
10.1088/0029-5515/13/2/007
10.1002/jgra.50224
10.1029/94GL00371
10.1063/1.1693632
10.1093/mnras/182.2.147
10.1063/1.5033896
10.1002/2014JA019930
10.1029/JA083iA04p01625
10.1007/s11214-013-9972-y
10.5194/angeo-31-639-2013
10.1029/94JA03369
10.1029/2003JA010180
10.1103/PhysRevA.4.2094
10.1007/BF00225185
10.1002/2013JA019372
10.1029/JA083iA11p05217
ContentType Journal Article
Copyright 2020. The American Astronomical Society. All rights reserved.
Copyright IOP Publishing Nov 01, 2020
Copyright_xml – notice: 2020. The American Astronomical Society. All rights reserved.
– notice: Copyright IOP Publishing Nov 01, 2020
DBID AAYXX
CITATION
7TG
8FD
H8D
KL.
L7M
DOI 10.3847/1538-4357/abb825
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Meteorological & Geoastrophysical Abstracts - Academic
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Advanced Technologies Database with Aerospace
Meteorological & Geoastrophysical Abstracts - Academic
DatabaseTitleList Aerospace Database

CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
DocumentTitleAlternate Quasi-adiabatic and Stochastic Heating and Particle Acceleration at Quasi-perpendicular Shocks
EISSN 1538-4357
ExternalDocumentID 10_3847_1538_4357_abb825
apjabb825
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
2WC
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
WH7
XSW
AAYXX
CITATION
7TG
8FD
AEINN
H8D
KL.
L7M
ID FETCH-LOGICAL-c379t-b161fb3f3ed6883b26372562d663b84535a1ccf35bbbc1f23dd287867d94f0a83
IEDL.DBID IOP
ISSN 0004-637X
IngestDate Wed Aug 13 09:45:44 EDT 2025
Tue Jul 01 03:24:29 EDT 2025
Thu Apr 24 22:59:13 EDT 2025
Thu Jan 07 14:56:15 EST 2021
Wed Aug 21 03:33:30 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c379t-b161fb3f3ed6883b26372562d663b84535a1ccf35bbbc1f23dd287867d94f0a83
Notes AAS26370
High-Energy Phenomena and Fundamental Physics
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-2872-5279
0000-0001-6039-1574
OpenAccessLink https://iopscience.iop.org/article/10.3847/1538-4357/abb825/pdf
PQID 2456891523
PQPubID 4562441
PageCount 9
ParticipantIDs proquest_journals_2456891523
crossref_citationtrail_10_3847_1538_4357_abb825
crossref_primary_10_3847_1538_4357_abb825
iop_journals_10_3847_1538_4357_abb825
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 2020-11-01
  day: 01
PublicationDecade 2020
PublicationPlace Philadelphia
PublicationPlace_xml – name: Philadelphia
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2020
Publisher The American Astronomical Society
IOP Publishing
Publisher_xml – name: The American Astronomical Society
– name: IOP Publishing
References Stasiewicz (apjabb825bib46) 2007; 49
Stasiewicz (apjabb825bib47) 2020a; 496
Vranjes (apjabb825bib54) 2010; 408
Mozer (apjabb825bib38) 2013; 118
Pollock (apjabb825bib41) 2016; 199
Balikhin (apjabb825bib2) 1993; 70
McChesney (apjabb825bib37) 1987; 59
Ergun (apjabb825bib12) 2019; 124
See (apjabb825bib44) 2013; 31
Burch (apjabb825bib6) 2016; 199
Blandford (apjabb825bib4) 1987; 154
Gedalin (apjabb825bib18) 1995; 100
Stasiewicz (apjabb825bib49) 2020
Janhunen (apjabb825bib27) 2018; 25
Stasiewicz (apjabb825bib50) 2013; 102
Davidson (apjabb825bib10) 1977; 20
Russell (apjabb825bib43) 2016; 199
Zhou (apjabb825bib62) 1983; 88
Stasiewicz (apjabb825bib48) 2020b
Xu (apjabb825bib58) 2020; 897
Balikhin (apjabb825bib1) 1994; 21
Forslund (apjabb825bib14) 1972; 15
Wilson III (apjabb825bib55) 2010; 115
Graham (apjabb825bib22) 2019; 124
Breneman (apjabb825bib5) 2013; 118
Guo (apjabb825bib23) 2014; 794
Treumann (apjabb825bib52) 2009; 17
Lemons (apjabb825bib34) 1978; 83
Gary (apjabb825bib16) 1993
Press (apjabb825bib42) 2007
Yoon (apjabb825bib59) 2004; 109
Yoon (apjabb825bib60) 2019; 887
Silveira (apjabb825bib45) 2002; 65
Huang (apjabb825bib25) 2009; 16
Krasnoselskikh (apjabb825bib30) 2013; 178
Drake (apjabb825bib11) 1983; 26
Huba (apjabb825bib26) 1978; A11
Fukuyama (apjabb825bib15) 1977; 38
Cohen (apjabb825bib8) 2019; 124
Goodrich (apjabb825bib20) 1984; 89
Umeda (apjabb825bib53) 2014; 21
Lee (apjabb825bib33) 1982; 32
Burgess (apjabb825bib7) 2012; 173
Zhou (apjabb825bib61) 2014; 119
Bell (apjabb825bib3) 1978; 182
Ergun (apjabb825bib13) 2016; 199
Karney (apjabb825bib28) 1979; 22
Muschietti (apjabb825bib39) 2013; 118
Gary (apjabb825bib17) 1987; 92
Daughton (apjabb825bib9) 2003; 10
Lindqvist (apjabb825bib35) 2016; 199
Wilson (apjabb825bib56) 2014; 119
Wu (apjabb825bib57) 1984; 37
Goldston (apjabb825bib19) 1995
Lashmore-Davies (apjabb825bib32) 1971; 14
Park (apjabb825bib40) 2015; 114
Torbert (apjabb825bib51) 2016; 199
Krall (apjabb825bib29) 1971; 4
Lashmore-Davies (apjabb825bib31) 1973; 13
Mallat (apjabb825bib36) 1999
Goodrich (apjabb825bib21) 2018; 123
Harvey (apjabb825bib24) 1998
References_xml – volume: 173
  start-page: 5
  year: 2012
  ident: apjabb825bib7
  publication-title: SSRv
  doi: 10.1007/s11214-012-9901-5
– volume: 199
  start-page: 1
  year: 2016
  ident: apjabb825bib6
  publication-title: SSRv
  doi: 10.1007/s11214-015-0153-z
– volume: 20
  start-page: 301
  year: 1977
  ident: apjabb825bib10
  publication-title: PhFl
  doi: 10.1063/1.861867
– volume: 154
  start-page: 1
  year: 1987
  ident: apjabb825bib4
  publication-title: PhR
  doi: 10.1016/0370-1573(87)90134-7
– volume: 88
  start-page: 3026
  year: 1983
  ident: apjabb825bib62
  publication-title: JGRA
  doi: 10.1029/JA088iA04p03026
– volume: 408
  start-page: 1835
  year: 2010
  ident: apjabb825bib54
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2010.17249.x
– volume: 123
  start-page: 9430
  year: 2018
  ident: apjabb825bib21
  publication-title: JGRA
  doi: 10.1029/2018JA025830
– volume: 65
  year: 2002
  ident: apjabb825bib45
  publication-title: PhRvE
  doi: 10.1103/PhysRevE.65.036407
– volume: 37
  start-page: 63
  year: 1984
  ident: apjabb825bib57
  publication-title: SSRv
  doi: 10.1007/BF00213958
– volume: 115
  start-page: A12104
  year: 2010
  ident: apjabb825bib55
  publication-title: JGRA
  doi: 10.1029/2010JA015332
– volume: 199
  start-page: 331
  year: 2016
  ident: apjabb825bib41
  publication-title: SSRv
  doi: 10.1007/s11214-016-0245-4
– year: 1995
  ident: apjabb825bib19
  doi: 10.1887/075030183X
– volume: 17
  start-page: 409
  year: 2009
  ident: apjabb825bib52
  publication-title: A&ARv
  doi: 10.1007/s00159-009-0024-2
– volume: 10
  start-page: 3103
  year: 2003
  ident: apjabb825bib9
  publication-title: PhPl
  doi: 10.1063/1.1594724
– volume: 199
  start-page: 137
  year: 2016
  ident: apjabb825bib35
  publication-title: SSRv
  doi: 10.1007/s11214-014-0116-9
– volume: 15
  start-page: 1303
  year: 1972
  ident: apjabb825bib14
  publication-title: PhFl
  doi: 10.1063/1.1694082
– volume: 70
  start-page: 1259
  year: 1993
  ident: apjabb825bib2
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.70.1259
– volume: 794
  start-page: 153
  year: 2014
  ident: apjabb825bib23
  publication-title: ApJ
  doi: 10.1088/0004-637X/794/2/153
– volume: 38
  start-page: 701
  year: 1977
  ident: apjabb825bib15
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.38.701
– volume: 124
  start-page: 10085
  year: 2019
  ident: apjabb825bib12
  publication-title: JGRA
  doi: 10.1029/2019JA027275
– volume: 16
  year: 2009
  ident: apjabb825bib25
  publication-title: PhPl
  doi: 10.1063/1.3116643
– volume: 26
  start-page: 2247
  year: 1983
  ident: apjabb825bib11
  publication-title: PhFl
  doi: 10.1063/1.864380
– year: 1993
  ident: apjabb825bib16
  doi: 10.1017/CBO9780511551512
– volume: 199
  start-page: 189
  year: 2016
  ident: apjabb825bib43
  publication-title: SSRv
  doi: 10.1007/s11214-014-0057-3
– volume: 124
  start-page: 8727
  year: 2019
  ident: apjabb825bib22
  publication-title: JGRA
  doi: 10.1029/2019JA027155
– year: 2007
  ident: apjabb825bib42
– year: 2020b
  ident: apjabb825bib48
  publication-title: Earth Space Sci. Open Arch.
  doi: 10.1002/essoar.10503529.1
– volume: 118
  start-page: 5415
  year: 2013
  ident: apjabb825bib38
  publication-title: JGRA
  doi: 10.1002/jgra.50534
– year: 1999
  ident: apjabb825bib36
– volume: 21
  year: 2014
  ident: apjabb825bib53
  publication-title: PhPl
  doi: 10.1063/1.4863836
– volume: 114
  year: 2015
  ident: apjabb825bib40
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.114.085003
– volume: 49
  start-page: B621
  year: 2007
  ident: apjabb825bib46
  publication-title: PPCF
  doi: 10.1088/0741-3335/49/12B/S58
– volume: 119
  start-page: 8228
  year: 2014
  ident: apjabb825bib61
  publication-title: JGRA
  doi: 10.1002/2014JA019978
– volume: 897
  start-page: L41
  year: 2020
  ident: apjabb825bib58
  publication-title: ApJL
  doi: 10.3847/2041-8213/aba11e
– volume: 124
  start-page: 3961
  year: 2019
  ident: apjabb825bib8
  publication-title: JGRA
  doi: 10.1029/2018JA026197
– volume: 887
  start-page: L29
  year: 2019
  ident: apjabb825bib60
  publication-title: ApJL
  doi: 10.3847/2041-8213/ab5b0a
– volume: 102
  start-page: 49001
  year: 2013
  ident: apjabb825bib50
  publication-title: EL
  doi: 10.1209/0295-5075/102/49001
– volume: 496
  start-page: L133
  year: 2020a
  ident: apjabb825bib47
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slaa090
– year: 2020
  ident: apjabb825bib49
  publication-title: ApJ
– volume: 92
  start-page: 10029
  year: 1987
  ident: apjabb825bib17
  publication-title: JGR
  doi: 10.1029/JA092iA09p10029
– volume: 89
  start-page: 6654
  year: 1984
  ident: apjabb825bib20
  publication-title: JGR
  doi: 10.1029/JA089iA08p06654
– volume: 22
  start-page: 2188
  year: 1979
  ident: apjabb825bib28
  publication-title: PhFl
  doi: 10.1063/1.862512
– volume: 199
  start-page: 105
  year: 2016
  ident: apjabb825bib51
  publication-title: SSRv
  doi: 10.1007/s11214-014-0109-8
– volume: 199
  start-page: 167
  year: 2016
  ident: apjabb825bib13
  publication-title: SSRv
  doi: 10.1007/s11214-014-0115-x
– volume: 59
  start-page: 1436
  year: 1987
  ident: apjabb825bib37
  publication-title: PhRvL
  doi: 10.1103/PhysRevLett.59.1436
– volume: 13
  start-page: 193
  year: 1973
  ident: apjabb825bib31
  publication-title: NucFu
  doi: 10.1088/0029-5515/13/2/007
– volume: 118
  start-page: 2267
  year: 2013
  ident: apjabb825bib39
  publication-title: JGRA
  doi: 10.1002/jgra.50224
– volume: 21
  start-page: 841
  year: 1994
  ident: apjabb825bib1
  publication-title: GeoRL
  doi: 10.1029/94GL00371
– volume: 14
  start-page: 1481
  year: 1971
  ident: apjabb825bib32
  publication-title: PhFl
  doi: 10.1063/1.1693632
– start-page: 307
  year: 1998
  ident: apjabb825bib24
– volume: 182
  start-page: 147
  year: 1978
  ident: apjabb825bib3
  publication-title: MNRAS
  doi: 10.1093/mnras/182.2.147
– volume: 25
  year: 2018
  ident: apjabb825bib27
  publication-title: PhPl
  doi: 10.1063/1.5033896
– volume: 119
  start-page: 6475
  year: 2014
  ident: apjabb825bib56
  publication-title: JGRA
  doi: 10.1002/2014JA019930
– volume: 83
  start-page: 1625
  year: 1978
  ident: apjabb825bib34
  publication-title: JGR
  doi: 10.1029/JA083iA04p01625
– volume: 178
  start-page: 535
  year: 2013
  ident: apjabb825bib30
  publication-title: SSRv
  doi: 10.1007/s11214-013-9972-y
– volume: 31
  start-page: 639
  year: 2013
  ident: apjabb825bib44
  publication-title: AnGeo
  doi: 10.5194/angeo-31-639-2013
– volume: 100
  start-page: 9481
  year: 1995
  ident: apjabb825bib18
  publication-title: JGR
  doi: 10.1029/94JA03369
– volume: 109
  start-page: 2210
  year: 2004
  ident: apjabb825bib59
  publication-title: JGRA
  doi: 10.1029/2003JA010180
– volume: 4
  start-page: 2094
  year: 1971
  ident: apjabb825bib29
  publication-title: PhRvA
  doi: 10.1103/PhysRevA.4.2094
– volume: 32
  start-page: 205
  year: 1982
  ident: apjabb825bib33
  publication-title: SSRv
  doi: 10.1007/BF00225185
– volume: 118
  start-page: 7654
  year: 2013
  ident: apjabb825bib5
  publication-title: JGRA
  doi: 10.1002/2013JA019372
– volume: A11
  start-page: 5217
  year: 1978
  ident: apjabb825bib26
  publication-title: JGR
  doi: 10.1029/JA083iA11p05217
SSID ssj0004299
Score 2.445395
Snippet Based on Magnetospheric Multiscale observations from the Earth's bow shock, we have identified two plasma heating processes that operate at quasi-perpendicular...
Based on Magnetospheric Multiscale observations from the Earth’s bow shock, we have identified two plasma heating processes that operate at quasi-perpendicular...
SourceID proquest
crossref
iop
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 57
SubjectTerms Adiabatic flow
Astrophysics
Distribution functions
Earth magnetosphere
Energy conservation
Gyrofrequency
Heating
Interplanetary physics
Ion heating
Magnetic fields
Magnetic moments
Parameter identification
Particle acceleration
Particle physics
Plasma heating
Shocks
Stochastic processes
Title Quasi-adiabatic and Stochastic Heating and Particle Acceleration at Quasi-perpendicular Shocks
URI https://iopscience.iop.org/article/10.3847/1538-4357/abb825
https://www.proquest.com/docview/2456891523
Volume 903
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB4BVaVegNJWbAvIB1qpBy9JnIejnlYVaMUBtqKoe6hq-VkokI1I9kB_fcdxFkRBqOolsqKJ7YztediebwB2XYxa1kpGy7yIaKplRrmUETXWMOVkzHPboX0e5ePT9HCaTZfg020szKzuRf8QiwEoOLDQr2-GsnSvW6Oo5QufbgsdnGV4xnwmJR-9dzy5C4pMyt72TWnOimk4o3y0hns6aRnbfSCYO21zsAbfF_0Ml0wuhvNWDfXvvyAc__NH1mG1t0LJKJC-hCVbbcDmqPH74rOrG_KBdOWw7dFswPNJKL2CH1_msjmnHtFAebBXIitDTtqZPpMe8ZmMvQ1a_exeT_qukJHWqN3CXCOyJaGO2l77BLzn3U1YcnKGkrl5DacH-18_j2mfo4FqVpQtVWgxOsUcsybnnKkEWY1WVGLQklE8zVgmY60dy5RSOnYJMwZ9NJ4XpkxdJDl7AyvVrLKbQJwqI8M9PI5J0kwmMk11zmNr4kiaKDED2FuMktA9gLnPo3Ep0JHxDBWeocIzVASGDuDj7Rd1AO94gvY9jpPoV3DzBN32PTpZ_xJlxEQskKQ2bgBbi6lzR-RPl3mJphJ7-4_NvIMXiffsu6jHLVhpr-d2G82fVu100xyfx-zbH2sg_eo
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB7RViAuFS2gLn3gA0XiYDaJ83COK2C1PNRuVSr2hOUnbVWyUZMe-PeM7bRVVVRxs6KJk4zHM9_Y8TcAb1yKUdZKRuuySmiuZUG5lAk11jDlZMpLG9g-D8rZSf5lUSyGOqfhLMyyHVz_e2xGouCoQj-_GfrScZijGOUrX24LE5xxa9wKrBUMsTEa9CH7cXswMqsH_JvTklWLuE_5z17uxKUVfPY95xwizvQZrA9QkUzii23AI9tswtak84vXy99_yFsS2nFtotuEx_PYeg4_j65kd0Y97YDyjKxENoYc90t9Kj0tM5l5oNj8Cpfnw4eTidYYgqJBENmT2EdrL32V3LPwuyo5PkX32b2Ak-mn7x9mdCikQDWr6p4qhHVOMcesKTlnKkNdINTJDMINxXPUnEy1dqxQSunUZcwYTKR4WZk6d4nk7CWsNsvGbgFxqk4M9xw2JssLmck81yVPrUkTaZLMjGB8rUahB5ZxX-ziQmC24RUvvOKFV7yIih_Bu5s72siw8YDsPo6MGKZZ94Dc7h052Z6LOmEiFSiC5jKCneuxvRXyW8C8RjzDXv3nY17Dk_nHqfj2-eDrNjzNfCYeTinuwGp_eWV3Ea70ai-Y5F_cLuG3
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quasi-adiabatic+and+Stochastic+Heating+and+Particle+Acceleration+at+Quasi-perpendicular+Shocks&rft.jtitle=The+Astrophysical+journal&rft.au=Stasiewicz%2C+Krzysztof&rft.au=Eliasson%2C+Bengt&rft.date=2020-11-01&rft.pub=IOP+Publishing&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=903&rft.issue=1&rft_id=info:doi/10.3847%2F1538-4357%2Fabb825&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon