An optimal non-linear method for simulating relic neutrinos

ABSTRACT Cosmology places the strongest current limits on the sum of neutrino masses. Future observations will further improve the sensitivity and this will require accurate cosmological simulations to quantify possible systematic uncertainties and to make predictions for non-linear scales, where mu...

Full description

Saved in:
Bibliographic Details
Published inMonthly notices of the Royal Astronomical Society Vol. 507; no. 2; pp. 2614 - 2631
Main Authors Elbers, Willem, Frenk, Carlos S, Jenkins, Adrian, Li, Baojiu, Pascoli, Silvia
Format Journal Article
LanguageEnglish
Published Oxford University Press 01.10.2021
Subjects
Online AccessGet full text
ISSN0035-8711
1365-8711
1365-2966
1365-2966
DOI10.1093/mnras/stab2260

Cover

Abstract ABSTRACT Cosmology places the strongest current limits on the sum of neutrino masses. Future observations will further improve the sensitivity and this will require accurate cosmological simulations to quantify possible systematic uncertainties and to make predictions for non-linear scales, where much information resides. However, shot noise arising from neutrino thermal motions limits the accuracy of simulations. In this paper, we introduce a new method for simulating large-scale structure formation with neutrinos that accurately resolves the neutrinos down to small scales and significantly reduces the shot noise. The method works by tracking perturbations to the neutrino phase-space distribution with particles and reduces shot noise in the power spectrum by a factor of $\mathcal {O}\left(10^2\right)$ at z = 0 for minimal neutrino masses and significantly more at higher redshifts, without neglecting the back-reaction caused by neutrino clustering. We prove that the method is part of a family of optimal methods that minimize shot noise subject to a maximum deviation from the non-linear solution. Compared to other methods, we find per mille level agreement in the matter power spectrum and per cent level agreement in the large-scale neutrino bias, but large differences in the neutrino component on small scales. A basic version of the method can easily be implemented in existing N-body codes and allows neutrino simulations with significantly reduced particle load. Further gains are possible by constructing background models based on perturbation theory. A major advantage of this technique is that it works well for all masses, enabling a consistent exploration of the full neutrino parameter space.
AbstractList Cosmology places the strongest current limits on the sum of neutrino masses. Future observations will further improve the sensitivity and this will require accurate cosmological simulations to quantify possible systematic uncertainties and to make predictions for non-linear scales, where much information resides. However, shot noise arising from neutrino thermal motions limits the accuracy of simulations. In this paper, we introduce a new method for simulating large-scale structure formation with neutrinos that accurately resolves the neutrinos down to small scales and significantly reduces the shot noise. The method works by tracking perturbations to the neutrino phase-space distribution with particles and reduces shot noise in the power spectrum by a factor of $\mathcal {O}\left(10^2\right)$ at z = 0 for minimal neutrino masses and significantly more at higher redshifts, without neglecting the back-reaction caused by neutrino clustering. We prove that the method is part of a family of optimal methods that minimize shot noise subject to a maximum deviation from the non-linear solution. Compared to other methods, we find per mille level agreement in the matter power spectrum and per cent level agreement in the large-scale neutrino bias, but large differences in the neutrino component on small scales. A basic version of the method can easily be implemented in existing N-body codes and allows neutrino simulations with significantly reduced particle load. Further gains are possible by constructing background models based on perturbation theory. A major advantage of this technique is that it works well for all masses, enabling a consistent exploration of the full neutrino parameter space.
ABSTRACT Cosmology places the strongest current limits on the sum of neutrino masses. Future observations will further improve the sensitivity and this will require accurate cosmological simulations to quantify possible systematic uncertainties and to make predictions for non-linear scales, where much information resides. However, shot noise arising from neutrino thermal motions limits the accuracy of simulations. In this paper, we introduce a new method for simulating large-scale structure formation with neutrinos that accurately resolves the neutrinos down to small scales and significantly reduces the shot noise. The method works by tracking perturbations to the neutrino phase-space distribution with particles and reduces shot noise in the power spectrum by a factor of $\mathcal {O}\left(10^2\right)$ at z = 0 for minimal neutrino masses and significantly more at higher redshifts, without neglecting the back-reaction caused by neutrino clustering. We prove that the method is part of a family of optimal methods that minimize shot noise subject to a maximum deviation from the non-linear solution. Compared to other methods, we find per mille level agreement in the matter power spectrum and per cent level agreement in the large-scale neutrino bias, but large differences in the neutrino component on small scales. A basic version of the method can easily be implemented in existing N-body codes and allows neutrino simulations with significantly reduced particle load. Further gains are possible by constructing background models based on perturbation theory. A major advantage of this technique is that it works well for all masses, enabling a consistent exploration of the full neutrino parameter space.
Author Jenkins, Adrian
Li, Baojiu
Elbers, Willem
Frenk, Carlos S
Pascoli, Silvia
Author_xml – sequence: 1
  givenname: Willem
  orcidid: 0000-0002-2207-6108
  surname: Elbers
  fullname: Elbers, Willem
  email: willem.h.elbers@durham.ac.uk
– sequence: 2
  givenname: Carlos S
  surname: Frenk
  fullname: Frenk, Carlos S
– sequence: 3
  givenname: Adrian
  orcidid: 0000-0003-4389-2232
  surname: Jenkins
  fullname: Jenkins, Adrian
– sequence: 4
  givenname: Baojiu
  orcidid: 0000-0002-1098-9188
  surname: Li
  fullname: Li, Baojiu
– sequence: 5
  givenname: Silvia
  surname: Pascoli
  fullname: Pascoli, Silvia
BookMark eNqFjz1PwzAURS1UJNrCypyVIa1jx19iqiooSJVYukeO7YCRY0e2I9R_T6CwIKFOb7nn3ncWYOaDNwDcVnBVQYHXvY8yrVOWLUIUXoB5hSkpkaB0BuYQYlJyVlVXYJHSO4SwxojOwf3GF2HItpeumPpKZ72RsehNfgu66EIsku1HJ7P1r0U0zqrCmzFH60O6BpeddMnc_NwlODw-HLZP5f5l97zd7EuFmcglR1ixlmvJW6KRYQgpyoSuuTCIYUJapghWVCMBhdRUdR2vGdOt4ZBIrvESrE-1ox_k8UM61wxxejgemwo2X-rNt3rzqz4R9YlQMaQUTdcomyeF4HOU1v2Prf5gZ3fuTkAYh3PZT1eTgfw
CitedBy_id crossref_primary_10_1093_mnras_stae1991
crossref_primary_10_1088_1475_7516_2023_10_010
crossref_primary_10_1093_mnras_staf357
crossref_primary_10_1093_mnras_stae1234
crossref_primary_10_1088_1475_7516_2022_09_068
crossref_primary_10_1093_mnras_stae663
crossref_primary_10_1093_mnras_staf111
crossref_primary_10_1093_mnras_stae1436
crossref_primary_10_1093_mnras_stae783
crossref_primary_10_1088_1475_7516_2023_07_054
crossref_primary_10_1088_1475_7516_2023_05_046
crossref_primary_10_1093_mnras_stad2540
crossref_primary_10_1088_1475_7516_2025_01_077
crossref_primary_10_1093_mnras_stae922
crossref_primary_10_1093_mnras_stae329
crossref_primary_10_1093_mnras_stad2205
crossref_primary_10_1103_PhysRevD_110_103518
crossref_primary_10_1088_1475_7516_2023_03_012
crossref_primary_10_1093_mnras_stad1657
crossref_primary_10_1088_1475_7516_2023_11_038
crossref_primary_10_1088_1475_7516_2022_11_058
crossref_primary_10_1088_1475_7516_2023_06_035
crossref_primary_10_1093_mnras_stae511
crossref_primary_10_1093_mnras_stae698
crossref_primary_10_1093_mnras_stae2019
crossref_primary_10_1093_mnras_stac2128
crossref_primary_10_1093_mnras_stae2218
crossref_primary_10_1093_mnras_stae2798
crossref_primary_10_3847_1538_4357_ad7138
crossref_primary_10_1088_1475_7516_2024_12_032
crossref_primary_10_1088_1475_7516_2025_03_056
crossref_primary_10_1093_mnras_stad3107
crossref_primary_10_1007_s41115_021_00013_z
crossref_primary_10_1093_mnras_stac2365
crossref_primary_10_1088_1475_7516_2023_06_003
crossref_primary_10_1093_mnras_stad2419
crossref_primary_10_1103_PhysRevD_107_123513
crossref_primary_10_1093_mnras_staf093
Cites_doi 10.1088/1674-4527/17/8/85
10.1088/1475-7516/2020/04/038
10.1093/mnras/sty2376
10.1088/1475-7516/2019/03/022
10.1088/1475-7516/2009/05/002
10.1086/176550
10.1088/1475-7516/2014/05/023
10.1017/pasa.2019.12
10.1088/1475-7516/2016/07/053
10.1063/1.860870
10.1088/1475-7516/2016/11/015
10.1088/1475-7516/2018/09/028
10.1088/1475-7516/2014/03/011
10.1088/1475-7516/2011/06/027
10.1088/1475-7516/2017/11/004
10.1086/174298
10.1088/1475-7516/2016/06/018
10.1088/2041-8205/752/2/L31
10.1142/S0218301316300071
10.1093/mnrasl/slw235
10.1088/1475-7516/2021/04/078
10.1088/1475-7516/2015/07/043
10.1088/1475-7516/2017/12/022
10.1103/PhysRevD.92.023502
10.1103/PhysRevLett.89.011301
10.1063/1.870740
10.3847/1538-4365/ab9d82
10.1088/1475-7516/2010/10/014
10.1088/1361-6471/aa5b4f
10.1007/978-94-009-3971-4_26
10.1051/0004-6361/201833910
10.1016/S0370-2693(02)02510-8
10.1088/0004-637X/814/2/146
10.1103/PhysRevLett.80.5255
10.1088/1475-7516/2010/06/015
10.1088/1475-7516/2008/08/020
10.1103/PhysRevLett.81.1562
10.1088/1475-7516/2012/02/045
10.1111/j.1365-2966.2006.11040.x
10.1103/PhysRevD.99.123532
10.1088/1475-7516/2021/03/065
10.1006/jcph.1993.1146
10.1093/mnras/sts286
10.1103/PhysRevLett.45.1980
10.1086/161209
10.1103/PhysRevD.64.053010
10.1088/1475-7516/2017/06/043
10.1086/187559
10.1103/PhysRevD.92.123517
10.1088/0954-3899/43/3/030401
10.1088/1475-7516/2020/07/037
10.1111/j.1365-2966.2011.20222.x
10.1155/2013/293986
10.1088/1475-7516/2018/03/049
10.1088/1475-7516/2019/05/041
10.1093/mnras/stx560
10.1088/0954-3899/43/8/084001
10.3847/1538-4357/abbd46
10.1088/1475-7516/2019/11/034
10.1103/PhysRevLett.90.021802
10.1088/1475-7516/2019/02/047
10.1088/1475-7516/2010/01/021
10.1086/317043
10.1088/1475-7516/2011/09/032
10.1093/mnras/sty377
10.1093/mnras/262.4.1013
10.3847/1538-4365/aba0b3
10.1088/1475-7516/2020/01/013
10.1088/1475-7516/2019/02/052
10.1103/PhysRevD.66.093010
10.1086/322445
10.1093/mnras/204.3.891
ContentType Journal Article
Copyright The Author(s) 2021. Published by Oxford University Press on behalf of Royal Astronomical Society. 2021
Copyright_xml – notice: The Author(s) 2021. Published by Oxford University Press on behalf of Royal Astronomical Society. 2021
DBID TOX
AAYXX
CITATION
ADTOC
UNPAY
DOI 10.1093/mnras/stab2260
DatabaseName Oxford Journals Open Access Collection
CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
DatabaseTitleList CrossRef

Database_xml – sequence: 1
  dbid: TOX
  name: Oxford Journals Open Access Collection
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Astronomy & Astrophysics
EISSN 1365-2966
EndPage 2631
ExternalDocumentID 10.1093/mnras/stab2260
10_1093_mnras_stab2260
GroupedDBID -DZ
-~X
.2P
.3N
.GA
.I3
.Y3
0R~
10A
123
1OC
1TH
29M
2WC
31~
4.4
48X
51W
51X
52M
52N
52O
52P
52S
52T
52W
52X
5HH
5LA
5VS
66C
6TJ
702
7PT
8-0
8-1
8-3
8-4
8UM
AAHTB
AAIJN
AAJKP
AAJQQ
AAKDD
AAMMB
AAMVS
AANHP
AAOGV
AAPQZ
AAPXW
AARHZ
AAUQX
AAVAP
ABAZT
ABCQN
ABCQX
ABEJV
ABEML
ABEUO
ABFSI
ABGNP
ABIXL
ABNGD
ABNKS
ABPEJ
ABPTD
ABQLI
ABSMQ
ABVLG
ABXVV
ABZBJ
ACBNA
ACBWZ
ACFRR
ACGFO
ACGFS
ACGOD
ACNCT
ACRPL
ACSCC
ACUFI
ACUKT
ACUTJ
ACUXJ
ACXQS
ACYRX
ACYTK
ACYXJ
ADEYI
ADGZP
ADHKW
ADHZD
ADNMO
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEFGJ
AEGPL
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AETEA
AEWNT
AFBPY
AFEBI
AFFNX
AFFZL
AFIYH
AFOFC
AFZJQ
AGINJ
AGMDO
AGQPQ
AGSYK
AGXDD
AHGBF
AHXPO
AIDQK
AIDYY
AJAOE
AJEEA
AJEUX
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
AMNDL
ANAKG
APIBT
APJGH
ASAOO
ASPBG
ATDFG
AVWKF
AXUDD
AZFZN
AZVOD
BAYMD
BDRZF
BEFXN
BEYMZ
BFFAM
BFHJK
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
BY8
CAG
CDBKE
CO8
COF
CXTWN
D-E
D-F
DAKXR
DCZOG
DFGAJ
DILTD
DR2
DU5
D~K
E.L
E3Z
EBS
EE~
EJD
F00
F04
F5P
F9B
FEDTE
FLIZI
FLUFQ
FOEOM
FRJ
GAUVT
GJXCC
GROUPED_DOAJ
H13
H5~
HAR
HF~
HOLLA
HVGLF
HW0
HZI
HZ~
IHE
IX1
J21
JAVBF
JXSIZ
K48
KBUDW
KOP
KQ8
KSI
KSN
L7B
LC2
LC3
LH4
LP6
LP7
LW6
M43
MBTAY
MK4
NGC
NMDNZ
NOMLY
O0~
O9-
OCL
ODMLO
OHT
OIG
OJQWA
OK1
P2P
P2X
P4D
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q11
Q5Y
QB0
RNS
ROL
ROZ
RUSNO
RW1
RX1
RXO
TJP
TN5
TOX
UB1
UQL
V8K
VOH
W8V
W99
WH7
WQJ
WYUIH
X5Q
X5S
XG1
YAYTL
YKOAZ
YXANX
ZY4
AAYXX
CITATION
ADTOC
UNPAY
ID FETCH-LOGICAL-c379t-823c7b8da8b5d2e722c679d489e27355b7c53c6d2909ad6cff8477dbe805a8d3
IEDL.DBID UNPAY
ISSN 0035-8711
1365-8711
1365-2966
IngestDate Sun Oct 26 04:14:47 EDT 2025
Wed Oct 01 02:06:09 EDT 2025
Thu Apr 24 22:51:25 EDT 2025
Mon Sep 15 00:06:08 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords neutrinos
large-scale structure of Universe
cosmology: theory
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
http://creativecommons.org/licenses/by/4.0
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c379t-823c7b8da8b5d2e722c679d489e27355b7c53c6d2909ad6cff8477dbe805a8d3
ORCID 0000-0003-4389-2232
0000-0002-1098-9188
0000-0002-2207-6108
OpenAccessLink https://proxy.k.utb.cz/login?url=https://academic.oup.com/mnras/article-pdf/507/2/2614/40180161/stab2260.pdf
PageCount 18
ParticipantIDs unpaywall_primary_10_1093_mnras_stab2260
crossref_citationtrail_10_1093_mnras_stab2260
crossref_primary_10_1093_mnras_stab2260
oup_primary_10_1093_mnras_stab2260
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-10-01
PublicationDateYYYYMMDD 2021-10-01
PublicationDate_xml – month: 10
  year: 2021
  text: 2021-10-01
  day: 01
PublicationDecade 2020
PublicationTitle Monthly notices of the Royal Astronomical Society
PublicationYear 2021
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Wagner (2021090110221652400_bib91) 2012; 752
Inman (2021090110221652400_bib53) 2015; 92
Schaller (2021090110221652400_bib77) 2016
Palanque-Delabrouille (2021090110221652400_bib71) 2020; 2020
Adrian-Martinez (2021090110221652400_bib5) 2016; 43
Choudhury (2021090110221652400_bib28) 2020; 2020
Brandbyge (2021090110221652400_bib20) 2010; 2010
Hannestad (2021090110221652400_bib50) 2020
Yoshikawa (2021090110221652400_bib93) 2001; 558
Dakin (2021090110221652400_bib32) 2019; 2019
Brandbyge (2021090110221652400_bib22) 2010; 2010
Crocce (2021090110221652400_bib31) 2006; 373
Ahmad (2021090110221652400_bib7) 2002; 89
Taruya (2021090110221652400_bib82) 2000; 542
Colas (2021090110221652400_bib30) 2020
Ma (2021090110221652400_bib65) 1995
Merritt (2021090110221652400_bib67) 1987
Aker (2021090110221652400_bib8) 2021
Levi (2021090110221652400_bib60) 2013
Ali-Haïmoud (2021090110221652400_bib9) 2012; 428
Esteban (2021090110221652400_bib41) 2020; 2020
Laureijs (2021090110221652400_bib56) 2011
Upadhye (2021090110221652400_bib84) 2019; 2019
Eguchi (2021090110221652400_bib36) 2003; 90
Viel (2021090110221652400_bib86) 2010; 2010
Schaller (2021090110221652400_bib78) 2018
Bilenky (2021090110221652400_bib15) 2001; 64
Yoshikawa (2021090110221652400_bib94) 2020
Ross (2021090110221652400_bib76) 2012
Lesgourgues (2021090110221652400_bib59) 2011; 2011
Ma (2021090110221652400_bib64) 1994; 434
Hu (2021090110221652400_bib51) 1998; 80
Drexlin (2021090110221652400_bib35) 2013; 2013
Di Valentino (2021090110221652400_bib34) 2020; 2020
Bird (2021090110221652400_bib16) 2012; 420
Fidler (2021090110221652400_bib42) 2015; 92
Lesgourgues (2021090110221652400_bib58) 2011
Abe (2021090110221652400_bib1) 2011
Bond (2021090110221652400_bib18) 1980; 45
Nunokawa (2021090110221652400_bib69) 2002; 66
Senatore (2021090110221652400_bib79) 2017
Dimits (2021090110221652400_bib33) 1993; 107
Brandbyge (2021090110221652400_bib21) 2008; 2008
Mertens (2021090110221652400_bib68) 2016
Frenk (2021090110221652400_bib46) 1983; 271
Tajima (2021090110221652400_bib81) 1983
Aydemir (2021090110221652400_bib12) 1994; 1
Okoli (2021090110221652400_bib70) 2017; 468
Sprenger (2021090110221652400_bib80) 2019; 2019
Brandbyge (2021090110221652400_bib19) 2009; 2009
Emberson (2021090110221652400_bib39) 2017; 17
Parker (2021090110221652400_bib72) 1993; 5
McCarthy (2021090110221652400_bib66) 2018; 476
Adamek (2021090110221652400_bib4) 2017; 2017
Elahi (2021090110221652400_bib37) 2019; 36
Quinn (2021090110221652400_bib75) 1997
Vergados (2021090110221652400_bib85) 2016; 25
Banerjee (2021090110221652400_bib14) 2018; 2018
Hannestad (2021090110221652400_bib49) 2012; 2012
Archidiacono (2021090110221652400_bib11) 2016; 2016
Brandbyge (2021090110221652400_bib23) 2017; 466
An (2021090110221652400_bib10) 2016; 43
Inman (2021090110221652400_bib52) 2020
Villaescusa-Navarro (2021090110221652400_bib90) 2015; 814
Liu (2021090110221652400_bib62) 2018; 2018
Castorina (2021090110221652400_bib24) 2015; 2015
Esfahani (2021090110221652400_bib40) 2017; 44
Tram (2021090110221652400_bib83) 2019; 2019
Adamek (2021090110221652400_bib3) 2016; 2016
Banerjee (2021090110221652400_bib13) 2016; 2016
Villaescusa-Navarro (2021090110221652400_bib88) 2011; 2011
Chartier (2021090110221652400_bib25) 2021
Pascoli (2021090110221652400_bib74) 2002; 544
Villaescusa-Navarro (2021090110221652400_bib89) 2014; 2014
Partmann (2021090110221652400_bib73) 2020
Planck Collaboration VI (2021090110221652400_bib6) 2020
Acciarri (2021090110221652400_bib2) 2015
Chudaykin (2021090110221652400_bib29) 2019; 2019
Font-Ribera (2021090110221652400_bib45) 2014; 2014
Chen (2021090110221652400_bib27) 2021; 2021
Giuliani (2021090110221652400_bib48) 2019
Ivezic (2021090110221652400_bib54) 2009
Leeuwin (2021090110221652400_bib57) 1993; 262
Yu (2021090110221652400_bib95) 2019; 99
Lewis (2021090110221652400_bib61) 2011
Chen (2021090110221652400_bib26) 2021; 2021
Klypin (2021090110221652400_bib55) 1983; 204
Villaescusa-Navarro (2021090110221652400_bib87) 2020; 250
Fukuda (2021090110221652400_bib47) 1998; 81
Fidler (2021090110221652400_bib44) 2017; 2017
Ma (2021090110221652400_bib63) 1994; 429
Bird (2021090110221652400_bib17) 2018; 481
Weisstein (2021090110221652400_bib92) 2002
Fidler (2021090110221652400_bib43) 2017; 2017
References_xml – volume: 17
  start-page: 085
  year: 2017
  ident: 2021090110221652400_bib39
  publication-title: Res. Astron. Astrophys.
  doi: 10.1088/1674-4527/17/8/85
– volume: 2020
  start-page: 038
  year: 2020
  ident: 2021090110221652400_bib71
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2020/04/038
– year: 2015
  ident: 2021090110221652400_bib2
– volume: 481
  start-page: 1486
  year: 2018
  ident: 2021090110221652400_bib17
  publication-title: MNRAS
  doi: 10.1093/mnras/sty2376
– volume: 2019
  start-page: 022
  year: 2019
  ident: 2021090110221652400_bib83
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2019/03/022
– volume: 2009
  start-page: 002
  year: 2009
  ident: 2021090110221652400_bib19
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2009/05/002
– start-page: 7
  volume-title: ApJ
  year: 1995
  ident: 2021090110221652400_bib65
  doi: 10.1086/176550
– volume: 2014
  start-page: 023
  year: 2014
  ident: 2021090110221652400_bib45
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2014/05/023
– volume: 36
  start-page: e021
  year: 2019
  ident: 2021090110221652400_bib37
  publication-title: Publ. Astron. Soc. Aust.
  doi: 10.1017/pasa.2019.12
– year: 2019
  ident: 2021090110221652400_bib48
– volume: 2016
  start-page: 053
  year: 2016
  ident: 2021090110221652400_bib3
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2016/07/053
– volume: 5
  start-page: 77
  year: 1993
  ident: 2021090110221652400_bib72
  publication-title: Phys. Fluids B
  doi: 10.1063/1.860870
– volume: 2016
  start-page: 015
  year: 2016
  ident: 2021090110221652400_bib13
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2016/11/015
– volume: 2020
  start-page: 1
  year: 2020
  ident: 2021090110221652400_bib41
  publication-title: J. High Energy Phys.
– start-page: 022013
  volume-title: J. Phys.: Conf. Ser.
  year: 2016
  ident: 2021090110221652400_bib68
– volume: 2018
  start-page: 028
  year: 2018
  ident: 2021090110221652400_bib14
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2018/09/028
– volume: 2014
  start-page: 011
  year: 2014
  ident: 2021090110221652400_bib89
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2014/03/011
– volume: 2011
  start-page: 027
  year: 2011
  ident: 2021090110221652400_bib88
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2011/06/027
– volume: 2017
  start-page: 004
  year: 2017
  ident: 2021090110221652400_bib4
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2017/11/004
– year: 2011
  ident: 2021090110221652400_bib61
  publication-title: Astrophysics Source Code Library, record ascl:1102.026
– volume: 429
  start-page: 22
  year: 1994
  ident: 2021090110221652400_bib63
  publication-title: ApJ
  doi: 10.1086/174298
– volume: 2016
  start-page: 018
  year: 2016
  ident: 2021090110221652400_bib11
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2016/06/018
– start-page: 147
  volume-title: Simulation
  year: 2012
  ident: 2021090110221652400_bib76
– volume: 752
  start-page: L31
  year: 2012
  ident: 2021090110221652400_bib91
  publication-title: ApJ
  doi: 10.1088/2041-8205/752/2/L31
– volume: 25
  start-page: 1630007
  year: 2016
  ident: 2021090110221652400_bib85
  publication-title: Int. J. Mod. Phys. E
  doi: 10.1142/S0218301316300071
– year: 2013
  ident: 2021090110221652400_bib60
– volume-title: Sherwood Theory Meeting 1983 Meeting Bulletin
  year: 1983
  ident: 2021090110221652400_bib81
– volume: 466
  start-page: L68
  year: 2017
  ident: 2021090110221652400_bib23
  publication-title: MNRAS
  doi: 10.1093/mnrasl/slw235
– volume: 2021
  start-page: 078
  year: 2021
  ident: 2021090110221652400_bib27
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2021/04/078
– year: 2018
  ident: 2021090110221652400_bib78
  publication-title: Astrophysics Source Code Library
– volume: 2015
  start-page: 043
  year: 2015
  ident: 2021090110221652400_bib24
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2015/07/043
– start-page: 001
  volume-title: J. Cosmol. Astropart. Phys.
  year: 2020
  ident: 2021090110221652400_bib30
– volume: 2017
  start-page: 022
  year: 2017
  ident: 2021090110221652400_bib44
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2017/12/022
– volume: 92
  start-page: 023502
  year: 2015
  ident: 2021090110221652400_bib53
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.92.023502
– volume: 89
  start-page: 011301
  year: 2002
  ident: 2021090110221652400_bib7
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.89.011301
– volume: 1
  start-page: 822
  year: 1994
  ident: 2021090110221652400_bib12
  publication-title: Phys. Plasmas
  doi: 10.1063/1.870740
– volume: 250
  start-page: 2
  year: 2020
  ident: 2021090110221652400_bib87
  publication-title: ApJS
  doi: 10.3847/1538-4365/ab9d82
– volume: 2010
  start-page: 014
  year: 2010
  ident: 2021090110221652400_bib22
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2010/10/014
– volume: 44
  start-page: 054004
  year: 2017
  ident: 2021090110221652400_bib40
  publication-title: J. Phys. G: Nucl. Part. Phys.
  doi: 10.1088/1361-6471/aa5b4f
– volume-title: Proceedings of the Platform for Advanced Scientific Computing Conference
  year: 2016
  ident: 2021090110221652400_bib77
– start-page: 1897
  volume-title: MNRAS
  year: 2021
  ident: 2021090110221652400_bib25
– start-page: 315
  volume-title: Symposium-International Astronomical Union, Structure and Dynamics of Elliptical Galaxies
  year: 1987
  ident: 2021090110221652400_bib67
  doi: 10.1007/978-94-009-3971-4_26
– start-page: A6
  volume-title: A&A
  year: 2020
  ident: 2021090110221652400_bib6
  doi: 10.1051/0004-6361/201833910
– year: 2011
  ident: 2021090110221652400_bib58
– volume: 544
  start-page: 239
  year: 2002
  ident: 2021090110221652400_bib74
  publication-title: Phys. Lett. B
  doi: 10.1016/S0370-2693(02)02510-8
– volume: 814
  start-page: 146
  year: 2015
  ident: 2021090110221652400_bib90
  publication-title: ApJ
  doi: 10.1088/0004-637X/814/2/146
– year: 2021
  ident: 2021090110221652400_bib8
– volume: 80
  start-page: 5255
  year: 1998
  ident: 2021090110221652400_bib51
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.80.5255
– start-page: 062
  volume-title: J. Cosmol. Astropart. Phys.
  year: 2020
  ident: 2021090110221652400_bib50
– year: 2011
  ident: 2021090110221652400_bib56
– volume: 2010
  start-page: 015
  year: 2010
  ident: 2021090110221652400_bib86
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2010/06/015
– volume: 2008
  start-page: 020
  year: 2008
  ident: 2021090110221652400_bib21
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2008/08/020
– volume: 81
  start-page: 1562
  year: 1998
  ident: 2021090110221652400_bib47
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.81.1562
– volume: 2012
  start-page: 045
  year: 2012
  ident: 2021090110221652400_bib49
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2012/02/045
– volume: 373
  start-page: 369
  year: 2006
  ident: 2021090110221652400_bib31
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2006.11040.x
– volume: 99
  start-page: 123532
  year: 2019
  ident: 2021090110221652400_bib95
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.99.123532
– volume: 2021
  start-page: 065
  year: 2021
  ident: 2021090110221652400_bib26
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2021/03/065
– volume: 107
  start-page: 309
  year: 1993
  ident: 2021090110221652400_bib33
  publication-title: J. Comput. Phys.
  doi: 10.1006/jcph.1993.1146
– volume: 428
  start-page: 3375
  year: 2012
  ident: 2021090110221652400_bib9
  publication-title: MNRAS
  doi: 10.1093/mnras/sts286
– volume: 45
  start-page: 1980
  year: 1980
  ident: 2021090110221652400_bib18
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.45.1980
– volume: 271
  start-page: 417
  year: 1983
  ident: 2021090110221652400_bib46
  publication-title: ApJ
  doi: 10.1086/161209
– volume-title: ApJ
  year: 1997
  ident: 2021090110221652400_bib75
– volume: 64
  start-page: 053010
  year: 2001
  ident: 2021090110221652400_bib15
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.64.053010
– volume: 2017
  start-page: 043
  year: 2017
  ident: 2021090110221652400_bib43
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2017/06/043
– volume: 434
  start-page: L5
  year: 1994
  ident: 2021090110221652400_bib64
  publication-title: ApJ
  doi: 10.1086/187559
– volume: 92
  start-page: 123517
  year: 2015
  ident: 2021090110221652400_bib42
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.92.123517
– volume: 43
  start-page: 030401
  year: 2016
  ident: 2021090110221652400_bib10
  publication-title: J. Phys. G: Nucl. Part. Phys.
  doi: 10.1088/0954-3899/43/3/030401
– volume: 2020
  start-page: 037
  year: 2020
  ident: 2021090110221652400_bib28
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2020/07/037
– volume: 420
  start-page: 2551
  year: 2012
  ident: 2021090110221652400_bib16
  publication-title: MNRAS
  doi: 10.1111/j.1365-2966.2011.20222.x
– volume: 2013
  year: 2013
  ident: 2021090110221652400_bib35
  publication-title: Adv. High Energy Phys.
  doi: 10.1155/2013/293986
– volume: 2018
  start-page: 049
  year: 2018
  ident: 2021090110221652400_bib62
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2018/03/049
– volume: 2019
  start-page: 041
  year: 2019
  ident: 2021090110221652400_bib84
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2019/05/041
– volume: 468
  start-page: 2164
  year: 2017
  ident: 2021090110221652400_bib70
  publication-title: MNRAS
  doi: 10.1093/mnras/stx560
– start-page: 366
  volume-title: BAAS
  year: 2009
  ident: 2021090110221652400_bib54
– volume: 43
  start-page: 084001
  year: 2016
  ident: 2021090110221652400_bib5
  publication-title: J. Phys. G: Nucl. Part. Phys.
  doi: 10.1088/0954-3899/43/8/084001
– start-page: 159
  volume-title: ApJ
  year: 2020
  ident: 2021090110221652400_bib94
  doi: 10.3847/1538-4357/abbd46
– year: 2017
  ident: 2021090110221652400_bib79
– volume: 2019
  start-page: 034
  year: 2019
  ident: 2021090110221652400_bib29
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2019/11/034
– volume: 90
  start-page: 021802
  year: 2003
  ident: 2021090110221652400_bib36
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.90.021802
– start-page:  018
  volume-title: J. Cosmol. Astropart. Phys.
  year: 2020
  ident: 2021090110221652400_bib73
– volume: 2019
  start-page: 047
  year: 2019
  ident: 2021090110221652400_bib80
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2019/02/047
– volume: 2010
  start-page: 021
  year: 2010
  ident: 2021090110221652400_bib20
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2010/01/021
– volume: 542
  start-page: 559
  year: 2000
  ident: 2021090110221652400_bib82
  publication-title: ApJ
  doi: 10.1086/317043
– volume: 2011
  start-page: 032
  year: 2011
  ident: 2021090110221652400_bib59
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2011/09/032
– volume: 476
  start-page: 2999
  year: 2018
  ident: 2021090110221652400_bib66
  publication-title: MNRAS
  doi: 10.1093/mnras/sty377
– volume: 262
  start-page: 1013
  year: 1993
  ident: 2021090110221652400_bib57
  publication-title: MNRAS
  doi: 10.1093/mnras/262.4.1013
– start-page: 21
  volume-title: ApJS
  year: 2020
  ident: 2021090110221652400_bib52
  doi: 10.3847/1538-4365/aba0b3
– volume: 2020
  start-page: 013
  year: 2020
  ident: 2021090110221652400_bib34
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2020/01/013
– year: 2011
  ident: 2021090110221652400_bib1
– volume: 2019
  start-page: 052
  year: 2019
  ident: 2021090110221652400_bib32
  publication-title: J. Cosmol. Astropart. Phys.
  doi: 10.1088/1475-7516/2019/02/052
– volume: 66
  start-page: 093010
  year: 2002
  ident: 2021090110221652400_bib69
  publication-title: Phys. Rev. D
  doi: 10.1103/PhysRevD.66.093010
– volume: 558
  start-page: 520
  year: 2001
  ident: 2021090110221652400_bib93
  publication-title: ApJ
  doi: 10.1086/322445
– volume: 204
  start-page: 891
  year: 1983
  ident: 2021090110221652400_bib55
  publication-title: MNRAS
  doi: 10.1093/mnras/204.3.891
– volume-title: From MathWorld–A Wolfram Web Resource
  year: 2002
  ident: 2021090110221652400_bib92
SSID ssj0004326
Score 2.6167288
Snippet ABSTRACT Cosmology places the strongest current limits on the sum of neutrino masses. Future observations will further improve the sensitivity and this will...
Cosmology places the strongest current limits on the sum of neutrino masses. Future observations will further improve the sensitivity and this will require...
SourceID unpaywall
crossref
oup
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 2614
Title An optimal non-linear method for simulating relic neutrinos
URI https://academic.oup.com/mnras/article-pdf/507/2/2614/40180161/stab2260.pdf
UnpaywallVersion publishedVersion
Volume 507
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1365-2966
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004326
  issn: 1365-2966
  databaseCode: KQ8
  dateStart: 18270209
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVASL
  databaseName: Oxford Journals Open Access Collection
  customDbUrl:
  eissn: 1365-2966
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0004326
  issn: 1365-2966
  databaseCode: TOX
  dateStart: 18591101
  isFulltext: true
  titleUrlDefault: https://academic.oup.com/journals/
  providerName: Oxford University Press
– providerCode: PRVWIB
  databaseName: Wiley Online Library - Core collection (SURFmarket)
  issn: 1365-2966
  databaseCode: DR2
  dateStart: 19980101
  customDbUrl:
  isFulltext: true
  eissn: 1365-2966
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0004326
  providerName: Wiley-Blackwell
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3Lb9MwGMA_se4AlzEGaOUxWQgBFzeZE8eOOFUT04S0waGTyqnyK6giTaqkFRp_PZ-dpDAkNA7cHOezEz8U_2J_D4DX7tRrL-iMpkxZmmquKVJIQqUTuWCxNCKEZLm8yi6u049zPu_DAXlbGNVrhU8Gk4ZV1ag26ruRrm0RIcFELELyT6PUu59CZomQpDSCRDxBgT3YzziC-Qj2r68-T78Mjhnx1-CXFVYeTjFD2ufv3Dkm_QOHCm8tV50J3P1ttVY331VZ_rYSnT-EcmhDp4DybbLd6In58Yd7x__UyEM46ImVTLtij-Ceq47geNr6PfR6dUPekJDutkjaIxhfIofXTdiux5tn5RKhOFw9hvfTitT4kVphhVVdUc-4qiFdGGuC_Eza5SoEFKu-ksaVS0Mq5-MFVHX7BGbnH2ZnF7QP30BNIvINlSwxQkurpOaWOcGYyURuU5k7ZCbOtTA8MZlleZwrm5miwJVSWO1kzJW0yVMY4Zu4YyAxZhsmpS5ckRYcCYU7rgtRKIml4mQMdBikheldm_sIG-WiO2JPFqGDF0MHjuHtTn7dOfX4q-QrHKM7hd7tpsQdos_-XfQ5PGBefyYoDr6A0abZupcIQBt9AnuzT_OTfnr_BC45BMs
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1Ja9wwFIAf7eTQXrqkLZluiFLaXjR2ZcuS6WkIDaGQ0EMC6WnQ5jLEIw_2DCX59XmS7ekCJT30JstPsrVgfZbeAvDWfQzaC7qgOVOW5pprihSSUelEKVgqjYghWU5Oi-Pz_MsFvxjCAQVbGDVohc9Gk4aVb1WXDN1I17ZKkGASliD550ke3E8hsyRIUhpBIp2hwF3YKziC-QT2zk-_zr-Njhnx1-CnFVYZTzFjOuTv3DlmwwPHCn9brnoTuHtbv1ZXP1Rd_7ISHT2EemxDr4ByOdtu9Mxc_-He8T818hE8GIiVzPtij-GO8_twMO_CHnqzuiLvSEz3WyTdPkxPkMObNm7X483DeolQHK-ewKe5Jw1-pFZYoW88DYyrWtKHsSbIz6RbrmJAMf-dtK5eGuJdiBfgm-4pnB19Pjs8pkP4BmoyUW6oZJkRWlolNbfMCcZMIUqby9IhM3GuheGZKSwr01LZwlQVrpTCaidTrqTNnsEE38QdAEkx2zApdeWqvOJIKNxxXYlKSSyVZlOg4yAtzODaPETYqBf9EXu2iB28GDtwCu938uveqcdfJd_gGN0q9GE3JW4Rff7voi_gPgv6M1Fx8CVMNu3WvUIA2ujXw8S-ARatA68
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimal+non-linear+method+for+simulating+relic+neutrinos&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Elbers%2C+Willem&rft.au=Frenk%2C+Carlos+S&rft.au=Jenkins%2C+Adrian&rft.au=Li%2C+Baojiu&rft.date=2021-10-01&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=507&rft.issue=2&rft.spage=2614&rft.epage=2631&rft_id=info:doi/10.1093%2Fmnras%2Fstab2260&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_mnras_stab2260
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon