An optimal non-linear method for simulating relic neutrinos
ABSTRACT Cosmology places the strongest current limits on the sum of neutrino masses. Future observations will further improve the sensitivity and this will require accurate cosmological simulations to quantify possible systematic uncertainties and to make predictions for non-linear scales, where mu...
Saved in:
| Published in | Monthly notices of the Royal Astronomical Society Vol. 507; no. 2; pp. 2614 - 2631 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
Oxford University Press
01.10.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0035-8711 1365-8711 1365-2966 1365-2966 |
| DOI | 10.1093/mnras/stab2260 |
Cover
| Abstract | ABSTRACT
Cosmology places the strongest current limits on the sum of neutrino masses. Future observations will further improve the sensitivity and this will require accurate cosmological simulations to quantify possible systematic uncertainties and to make predictions for non-linear scales, where much information resides. However, shot noise arising from neutrino thermal motions limits the accuracy of simulations. In this paper, we introduce a new method for simulating large-scale structure formation with neutrinos that accurately resolves the neutrinos down to small scales and significantly reduces the shot noise. The method works by tracking perturbations to the neutrino phase-space distribution with particles and reduces shot noise in the power spectrum by a factor of $\mathcal {O}\left(10^2\right)$ at z = 0 for minimal neutrino masses and significantly more at higher redshifts, without neglecting the back-reaction caused by neutrino clustering. We prove that the method is part of a family of optimal methods that minimize shot noise subject to a maximum deviation from the non-linear solution. Compared to other methods, we find per mille level agreement in the matter power spectrum and per cent level agreement in the large-scale neutrino bias, but large differences in the neutrino component on small scales. A basic version of the method can easily be implemented in existing N-body codes and allows neutrino simulations with significantly reduced particle load. Further gains are possible by constructing background models based on perturbation theory. A major advantage of this technique is that it works well for all masses, enabling a consistent exploration of the full neutrino parameter space. |
|---|---|
| AbstractList | Cosmology places the strongest current limits on the sum of neutrino masses. Future observations will further improve the sensitivity and this will require accurate cosmological simulations to quantify possible systematic uncertainties and to make predictions for non-linear scales, where much information resides. However, shot noise arising from neutrino thermal motions limits the accuracy of simulations. In this paper, we introduce a new method for simulating large-scale structure formation with neutrinos that accurately resolves the neutrinos down to small scales and significantly reduces the shot noise. The method works by tracking perturbations to the neutrino phase-space distribution with particles and reduces shot noise in the power spectrum by a factor of $\mathcal {O}\left(10^2\right)$ at z = 0 for minimal neutrino masses and significantly more at higher redshifts, without neglecting the back-reaction caused by neutrino clustering. We prove that the method is part of a family of optimal methods that minimize shot noise subject to a maximum deviation from the non-linear solution. Compared to other methods, we find per mille level agreement in the matter power spectrum and per cent level agreement in the large-scale neutrino bias, but large differences in the neutrino component on small scales. A basic version of the method can easily be implemented in existing N-body codes and allows neutrino simulations with significantly reduced particle load. Further gains are possible by constructing background models based on perturbation theory. A major advantage of this technique is that it works well for all masses, enabling a consistent exploration of the full neutrino parameter space. ABSTRACT Cosmology places the strongest current limits on the sum of neutrino masses. Future observations will further improve the sensitivity and this will require accurate cosmological simulations to quantify possible systematic uncertainties and to make predictions for non-linear scales, where much information resides. However, shot noise arising from neutrino thermal motions limits the accuracy of simulations. In this paper, we introduce a new method for simulating large-scale structure formation with neutrinos that accurately resolves the neutrinos down to small scales and significantly reduces the shot noise. The method works by tracking perturbations to the neutrino phase-space distribution with particles and reduces shot noise in the power spectrum by a factor of $\mathcal {O}\left(10^2\right)$ at z = 0 for minimal neutrino masses and significantly more at higher redshifts, without neglecting the back-reaction caused by neutrino clustering. We prove that the method is part of a family of optimal methods that minimize shot noise subject to a maximum deviation from the non-linear solution. Compared to other methods, we find per mille level agreement in the matter power spectrum and per cent level agreement in the large-scale neutrino bias, but large differences in the neutrino component on small scales. A basic version of the method can easily be implemented in existing N-body codes and allows neutrino simulations with significantly reduced particle load. Further gains are possible by constructing background models based on perturbation theory. A major advantage of this technique is that it works well for all masses, enabling a consistent exploration of the full neutrino parameter space. |
| Author | Jenkins, Adrian Li, Baojiu Elbers, Willem Frenk, Carlos S Pascoli, Silvia |
| Author_xml | – sequence: 1 givenname: Willem orcidid: 0000-0002-2207-6108 surname: Elbers fullname: Elbers, Willem email: willem.h.elbers@durham.ac.uk – sequence: 2 givenname: Carlos S surname: Frenk fullname: Frenk, Carlos S – sequence: 3 givenname: Adrian orcidid: 0000-0003-4389-2232 surname: Jenkins fullname: Jenkins, Adrian – sequence: 4 givenname: Baojiu orcidid: 0000-0002-1098-9188 surname: Li fullname: Li, Baojiu – sequence: 5 givenname: Silvia surname: Pascoli fullname: Pascoli, Silvia |
| BookMark | eNqFjz1PwzAURS1UJNrCypyVIa1jx19iqiooSJVYukeO7YCRY0e2I9R_T6CwIKFOb7nn3ncWYOaDNwDcVnBVQYHXvY8yrVOWLUIUXoB5hSkpkaB0BuYQYlJyVlVXYJHSO4SwxojOwf3GF2HItpeumPpKZ72RsehNfgu66EIsku1HJ7P1r0U0zqrCmzFH60O6BpeddMnc_NwlODw-HLZP5f5l97zd7EuFmcglR1ixlmvJW6KRYQgpyoSuuTCIYUJapghWVCMBhdRUdR2vGdOt4ZBIrvESrE-1ox_k8UM61wxxejgemwo2X-rNt3rzqz4R9YlQMaQUTdcomyeF4HOU1v2Prf5gZ3fuTkAYh3PZT1eTgfw |
| CitedBy_id | crossref_primary_10_1093_mnras_stae1991 crossref_primary_10_1088_1475_7516_2023_10_010 crossref_primary_10_1093_mnras_staf357 crossref_primary_10_1093_mnras_stae1234 crossref_primary_10_1088_1475_7516_2022_09_068 crossref_primary_10_1093_mnras_stae663 crossref_primary_10_1093_mnras_staf111 crossref_primary_10_1093_mnras_stae1436 crossref_primary_10_1093_mnras_stae783 crossref_primary_10_1088_1475_7516_2023_07_054 crossref_primary_10_1088_1475_7516_2023_05_046 crossref_primary_10_1093_mnras_stad2540 crossref_primary_10_1088_1475_7516_2025_01_077 crossref_primary_10_1093_mnras_stae922 crossref_primary_10_1093_mnras_stae329 crossref_primary_10_1093_mnras_stad2205 crossref_primary_10_1103_PhysRevD_110_103518 crossref_primary_10_1088_1475_7516_2023_03_012 crossref_primary_10_1093_mnras_stad1657 crossref_primary_10_1088_1475_7516_2023_11_038 crossref_primary_10_1088_1475_7516_2022_11_058 crossref_primary_10_1088_1475_7516_2023_06_035 crossref_primary_10_1093_mnras_stae511 crossref_primary_10_1093_mnras_stae698 crossref_primary_10_1093_mnras_stae2019 crossref_primary_10_1093_mnras_stac2128 crossref_primary_10_1093_mnras_stae2218 crossref_primary_10_1093_mnras_stae2798 crossref_primary_10_3847_1538_4357_ad7138 crossref_primary_10_1088_1475_7516_2024_12_032 crossref_primary_10_1088_1475_7516_2025_03_056 crossref_primary_10_1093_mnras_stad3107 crossref_primary_10_1007_s41115_021_00013_z crossref_primary_10_1093_mnras_stac2365 crossref_primary_10_1088_1475_7516_2023_06_003 crossref_primary_10_1093_mnras_stad2419 crossref_primary_10_1103_PhysRevD_107_123513 crossref_primary_10_1093_mnras_staf093 |
| Cites_doi | 10.1088/1674-4527/17/8/85 10.1088/1475-7516/2020/04/038 10.1093/mnras/sty2376 10.1088/1475-7516/2019/03/022 10.1088/1475-7516/2009/05/002 10.1086/176550 10.1088/1475-7516/2014/05/023 10.1017/pasa.2019.12 10.1088/1475-7516/2016/07/053 10.1063/1.860870 10.1088/1475-7516/2016/11/015 10.1088/1475-7516/2018/09/028 10.1088/1475-7516/2014/03/011 10.1088/1475-7516/2011/06/027 10.1088/1475-7516/2017/11/004 10.1086/174298 10.1088/1475-7516/2016/06/018 10.1088/2041-8205/752/2/L31 10.1142/S0218301316300071 10.1093/mnrasl/slw235 10.1088/1475-7516/2021/04/078 10.1088/1475-7516/2015/07/043 10.1088/1475-7516/2017/12/022 10.1103/PhysRevD.92.023502 10.1103/PhysRevLett.89.011301 10.1063/1.870740 10.3847/1538-4365/ab9d82 10.1088/1475-7516/2010/10/014 10.1088/1361-6471/aa5b4f 10.1007/978-94-009-3971-4_26 10.1051/0004-6361/201833910 10.1016/S0370-2693(02)02510-8 10.1088/0004-637X/814/2/146 10.1103/PhysRevLett.80.5255 10.1088/1475-7516/2010/06/015 10.1088/1475-7516/2008/08/020 10.1103/PhysRevLett.81.1562 10.1088/1475-7516/2012/02/045 10.1111/j.1365-2966.2006.11040.x 10.1103/PhysRevD.99.123532 10.1088/1475-7516/2021/03/065 10.1006/jcph.1993.1146 10.1093/mnras/sts286 10.1103/PhysRevLett.45.1980 10.1086/161209 10.1103/PhysRevD.64.053010 10.1088/1475-7516/2017/06/043 10.1086/187559 10.1103/PhysRevD.92.123517 10.1088/0954-3899/43/3/030401 10.1088/1475-7516/2020/07/037 10.1111/j.1365-2966.2011.20222.x 10.1155/2013/293986 10.1088/1475-7516/2018/03/049 10.1088/1475-7516/2019/05/041 10.1093/mnras/stx560 10.1088/0954-3899/43/8/084001 10.3847/1538-4357/abbd46 10.1088/1475-7516/2019/11/034 10.1103/PhysRevLett.90.021802 10.1088/1475-7516/2019/02/047 10.1088/1475-7516/2010/01/021 10.1086/317043 10.1088/1475-7516/2011/09/032 10.1093/mnras/sty377 10.1093/mnras/262.4.1013 10.3847/1538-4365/aba0b3 10.1088/1475-7516/2020/01/013 10.1088/1475-7516/2019/02/052 10.1103/PhysRevD.66.093010 10.1086/322445 10.1093/mnras/204.3.891 |
| ContentType | Journal Article |
| Copyright | The Author(s) 2021. Published by Oxford University Press on behalf of Royal Astronomical Society. 2021 |
| Copyright_xml | – notice: The Author(s) 2021. Published by Oxford University Press on behalf of Royal Astronomical Society. 2021 |
| DBID | TOX AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1093/mnras/stab2260 |
| DatabaseName | Oxford Journals Open Access Collection CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: TOX name: Oxford Journals Open Access Collection url: https://academic.oup.com/journals/ sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Meteorology & Climatology Astronomy & Astrophysics |
| EISSN | 1365-2966 |
| EndPage | 2631 |
| ExternalDocumentID | 10.1093/mnras/stab2260 10_1093_mnras_stab2260 |
| GroupedDBID | -DZ -~X .2P .3N .GA .I3 .Y3 0R~ 10A 123 1OC 1TH 29M 2WC 31~ 4.4 48X 51W 51X 52M 52N 52O 52P 52S 52T 52W 52X 5HH 5LA 5VS 66C 6TJ 702 7PT 8-0 8-1 8-3 8-4 8UM AAHTB AAIJN AAJKP AAJQQ AAKDD AAMMB AAMVS AANHP AAOGV AAPQZ AAPXW AARHZ AAUQX AAVAP ABAZT ABCQN ABCQX ABEJV ABEML ABEUO ABFSI ABGNP ABIXL ABNGD ABNKS ABPEJ ABPTD ABQLI ABSMQ ABVLG ABXVV ABZBJ ACBNA ACBWZ ACFRR ACGFO ACGFS ACGOD ACNCT ACRPL ACSCC ACUFI ACUKT ACUTJ ACUXJ ACXQS ACYRX ACYTK ACYXJ ADEYI ADGZP ADHKW ADHZD ADNMO ADOCK ADQBN ADRDM ADRTK ADVEK ADYVW ADZXQ AECKG AEFGJ AEGPL AEJOX AEKKA AEKSI AEMDU AENEX AENZO AEPUE AETBJ AETEA AEWNT AFBPY AFEBI AFFNX AFFZL AFIYH AFOFC AFZJQ AGINJ AGMDO AGQPQ AGSYK AGXDD AHGBF AHXPO AIDQK AIDYY AJAOE AJEEA AJEUX ALMA_UNASSIGNED_HOLDINGS ALTZX ALUQC ALXQX AMNDL ANAKG APIBT APJGH ASAOO ASPBG ATDFG AVWKF AXUDD AZFZN AZVOD BAYMD BDRZF BEFXN BEYMZ BFFAM BFHJK BGNUA BHONS BKEBE BPEOZ BQUQU BTQHN BY8 CAG CDBKE CO8 COF CXTWN D-E D-F DAKXR DCZOG DFGAJ DILTD DR2 DU5 D~K E.L E3Z EBS EE~ EJD F00 F04 F5P F9B FEDTE FLIZI FLUFQ FOEOM FRJ GAUVT GJXCC GROUPED_DOAJ H13 H5~ HAR HF~ HOLLA HVGLF HW0 HZI HZ~ IHE IX1 J21 JAVBF JXSIZ K48 KBUDW KOP KQ8 KSI KSN L7B LC2 LC3 LH4 LP6 LP7 LW6 M43 MBTAY MK4 NGC NMDNZ NOMLY O0~ O9- OCL ODMLO OHT OIG OJQWA OK1 P2P P2X P4D PAFKI PB- PEELM PQQKQ Q1. Q11 Q5Y QB0 RNS ROL ROZ RUSNO RW1 RX1 RXO TJP TN5 TOX UB1 UQL V8K VOH W8V W99 WH7 WQJ WYUIH X5Q X5S XG1 YAYTL YKOAZ YXANX ZY4 AAYXX CITATION ADTOC UNPAY |
| ID | FETCH-LOGICAL-c379t-823c7b8da8b5d2e722c679d489e27355b7c53c6d2909ad6cff8477dbe805a8d3 |
| IEDL.DBID | UNPAY |
| ISSN | 0035-8711 1365-8711 1365-2966 |
| IngestDate | Sun Oct 26 04:14:47 EDT 2025 Wed Oct 01 02:06:09 EDT 2025 Thu Apr 24 22:51:25 EDT 2025 Mon Sep 15 00:06:08 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | neutrinos large-scale structure of Universe cosmology: theory |
| Language | English |
| License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. http://creativecommons.org/licenses/by/4.0 cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c379t-823c7b8da8b5d2e722c679d489e27355b7c53c6d2909ad6cff8477dbe805a8d3 |
| ORCID | 0000-0003-4389-2232 0000-0002-1098-9188 0000-0002-2207-6108 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://academic.oup.com/mnras/article-pdf/507/2/2614/40180161/stab2260.pdf |
| PageCount | 18 |
| ParticipantIDs | unpaywall_primary_10_1093_mnras_stab2260 crossref_citationtrail_10_1093_mnras_stab2260 crossref_primary_10_1093_mnras_stab2260 oup_primary_10_1093_mnras_stab2260 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-10-01 |
| PublicationDateYYYYMMDD | 2021-10-01 |
| PublicationDate_xml | – month: 10 year: 2021 text: 2021-10-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Monthly notices of the Royal Astronomical Society |
| PublicationYear | 2021 |
| Publisher | Oxford University Press |
| Publisher_xml | – name: Oxford University Press |
| References | Wagner (2021090110221652400_bib91) 2012; 752 Inman (2021090110221652400_bib53) 2015; 92 Schaller (2021090110221652400_bib77) 2016 Palanque-Delabrouille (2021090110221652400_bib71) 2020; 2020 Adrian-Martinez (2021090110221652400_bib5) 2016; 43 Choudhury (2021090110221652400_bib28) 2020; 2020 Brandbyge (2021090110221652400_bib20) 2010; 2010 Hannestad (2021090110221652400_bib50) 2020 Yoshikawa (2021090110221652400_bib93) 2001; 558 Dakin (2021090110221652400_bib32) 2019; 2019 Brandbyge (2021090110221652400_bib22) 2010; 2010 Crocce (2021090110221652400_bib31) 2006; 373 Ahmad (2021090110221652400_bib7) 2002; 89 Taruya (2021090110221652400_bib82) 2000; 542 Colas (2021090110221652400_bib30) 2020 Ma (2021090110221652400_bib65) 1995 Merritt (2021090110221652400_bib67) 1987 Aker (2021090110221652400_bib8) 2021 Levi (2021090110221652400_bib60) 2013 Ali-Haïmoud (2021090110221652400_bib9) 2012; 428 Esteban (2021090110221652400_bib41) 2020; 2020 Laureijs (2021090110221652400_bib56) 2011 Upadhye (2021090110221652400_bib84) 2019; 2019 Eguchi (2021090110221652400_bib36) 2003; 90 Viel (2021090110221652400_bib86) 2010; 2010 Schaller (2021090110221652400_bib78) 2018 Bilenky (2021090110221652400_bib15) 2001; 64 Yoshikawa (2021090110221652400_bib94) 2020 Ross (2021090110221652400_bib76) 2012 Lesgourgues (2021090110221652400_bib59) 2011; 2011 Ma (2021090110221652400_bib64) 1994; 434 Hu (2021090110221652400_bib51) 1998; 80 Drexlin (2021090110221652400_bib35) 2013; 2013 Di Valentino (2021090110221652400_bib34) 2020; 2020 Bird (2021090110221652400_bib16) 2012; 420 Fidler (2021090110221652400_bib42) 2015; 92 Lesgourgues (2021090110221652400_bib58) 2011 Abe (2021090110221652400_bib1) 2011 Bond (2021090110221652400_bib18) 1980; 45 Nunokawa (2021090110221652400_bib69) 2002; 66 Senatore (2021090110221652400_bib79) 2017 Dimits (2021090110221652400_bib33) 1993; 107 Brandbyge (2021090110221652400_bib21) 2008; 2008 Mertens (2021090110221652400_bib68) 2016 Frenk (2021090110221652400_bib46) 1983; 271 Tajima (2021090110221652400_bib81) 1983 Aydemir (2021090110221652400_bib12) 1994; 1 Okoli (2021090110221652400_bib70) 2017; 468 Sprenger (2021090110221652400_bib80) 2019; 2019 Brandbyge (2021090110221652400_bib19) 2009; 2009 Emberson (2021090110221652400_bib39) 2017; 17 Parker (2021090110221652400_bib72) 1993; 5 McCarthy (2021090110221652400_bib66) 2018; 476 Adamek (2021090110221652400_bib4) 2017; 2017 Elahi (2021090110221652400_bib37) 2019; 36 Quinn (2021090110221652400_bib75) 1997 Vergados (2021090110221652400_bib85) 2016; 25 Banerjee (2021090110221652400_bib14) 2018; 2018 Hannestad (2021090110221652400_bib49) 2012; 2012 Archidiacono (2021090110221652400_bib11) 2016; 2016 Brandbyge (2021090110221652400_bib23) 2017; 466 An (2021090110221652400_bib10) 2016; 43 Inman (2021090110221652400_bib52) 2020 Villaescusa-Navarro (2021090110221652400_bib90) 2015; 814 Liu (2021090110221652400_bib62) 2018; 2018 Castorina (2021090110221652400_bib24) 2015; 2015 Esfahani (2021090110221652400_bib40) 2017; 44 Tram (2021090110221652400_bib83) 2019; 2019 Adamek (2021090110221652400_bib3) 2016; 2016 Banerjee (2021090110221652400_bib13) 2016; 2016 Villaescusa-Navarro (2021090110221652400_bib88) 2011; 2011 Chartier (2021090110221652400_bib25) 2021 Pascoli (2021090110221652400_bib74) 2002; 544 Villaescusa-Navarro (2021090110221652400_bib89) 2014; 2014 Partmann (2021090110221652400_bib73) 2020 Planck Collaboration VI (2021090110221652400_bib6) 2020 Acciarri (2021090110221652400_bib2) 2015 Chudaykin (2021090110221652400_bib29) 2019; 2019 Font-Ribera (2021090110221652400_bib45) 2014; 2014 Chen (2021090110221652400_bib27) 2021; 2021 Giuliani (2021090110221652400_bib48) 2019 Ivezic (2021090110221652400_bib54) 2009 Leeuwin (2021090110221652400_bib57) 1993; 262 Yu (2021090110221652400_bib95) 2019; 99 Lewis (2021090110221652400_bib61) 2011 Chen (2021090110221652400_bib26) 2021; 2021 Klypin (2021090110221652400_bib55) 1983; 204 Villaescusa-Navarro (2021090110221652400_bib87) 2020; 250 Fukuda (2021090110221652400_bib47) 1998; 81 Fidler (2021090110221652400_bib44) 2017; 2017 Ma (2021090110221652400_bib63) 1994; 429 Bird (2021090110221652400_bib17) 2018; 481 Weisstein (2021090110221652400_bib92) 2002 Fidler (2021090110221652400_bib43) 2017; 2017 |
| References_xml | – volume: 17 start-page: 085 year: 2017 ident: 2021090110221652400_bib39 publication-title: Res. Astron. Astrophys. doi: 10.1088/1674-4527/17/8/85 – volume: 2020 start-page: 038 year: 2020 ident: 2021090110221652400_bib71 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2020/04/038 – year: 2015 ident: 2021090110221652400_bib2 – volume: 481 start-page: 1486 year: 2018 ident: 2021090110221652400_bib17 publication-title: MNRAS doi: 10.1093/mnras/sty2376 – volume: 2019 start-page: 022 year: 2019 ident: 2021090110221652400_bib83 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2019/03/022 – volume: 2009 start-page: 002 year: 2009 ident: 2021090110221652400_bib19 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2009/05/002 – start-page: 7 volume-title: ApJ year: 1995 ident: 2021090110221652400_bib65 doi: 10.1086/176550 – volume: 2014 start-page: 023 year: 2014 ident: 2021090110221652400_bib45 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2014/05/023 – volume: 36 start-page: e021 year: 2019 ident: 2021090110221652400_bib37 publication-title: Publ. Astron. Soc. Aust. doi: 10.1017/pasa.2019.12 – year: 2019 ident: 2021090110221652400_bib48 – volume: 2016 start-page: 053 year: 2016 ident: 2021090110221652400_bib3 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2016/07/053 – volume: 5 start-page: 77 year: 1993 ident: 2021090110221652400_bib72 publication-title: Phys. Fluids B doi: 10.1063/1.860870 – volume: 2016 start-page: 015 year: 2016 ident: 2021090110221652400_bib13 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2016/11/015 – volume: 2020 start-page: 1 year: 2020 ident: 2021090110221652400_bib41 publication-title: J. High Energy Phys. – start-page: 022013 volume-title: J. Phys.: Conf. Ser. year: 2016 ident: 2021090110221652400_bib68 – volume: 2018 start-page: 028 year: 2018 ident: 2021090110221652400_bib14 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2018/09/028 – volume: 2014 start-page: 011 year: 2014 ident: 2021090110221652400_bib89 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2014/03/011 – volume: 2011 start-page: 027 year: 2011 ident: 2021090110221652400_bib88 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2011/06/027 – volume: 2017 start-page: 004 year: 2017 ident: 2021090110221652400_bib4 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2017/11/004 – year: 2011 ident: 2021090110221652400_bib61 publication-title: Astrophysics Source Code Library, record ascl:1102.026 – volume: 429 start-page: 22 year: 1994 ident: 2021090110221652400_bib63 publication-title: ApJ doi: 10.1086/174298 – volume: 2016 start-page: 018 year: 2016 ident: 2021090110221652400_bib11 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2016/06/018 – start-page: 147 volume-title: Simulation year: 2012 ident: 2021090110221652400_bib76 – volume: 752 start-page: L31 year: 2012 ident: 2021090110221652400_bib91 publication-title: ApJ doi: 10.1088/2041-8205/752/2/L31 – volume: 25 start-page: 1630007 year: 2016 ident: 2021090110221652400_bib85 publication-title: Int. J. Mod. Phys. E doi: 10.1142/S0218301316300071 – year: 2013 ident: 2021090110221652400_bib60 – volume-title: Sherwood Theory Meeting 1983 Meeting Bulletin year: 1983 ident: 2021090110221652400_bib81 – volume: 466 start-page: L68 year: 2017 ident: 2021090110221652400_bib23 publication-title: MNRAS doi: 10.1093/mnrasl/slw235 – volume: 2021 start-page: 078 year: 2021 ident: 2021090110221652400_bib27 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2021/04/078 – year: 2018 ident: 2021090110221652400_bib78 publication-title: Astrophysics Source Code Library – volume: 2015 start-page: 043 year: 2015 ident: 2021090110221652400_bib24 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2015/07/043 – start-page: 001 volume-title: J. Cosmol. Astropart. Phys. year: 2020 ident: 2021090110221652400_bib30 – volume: 2017 start-page: 022 year: 2017 ident: 2021090110221652400_bib44 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2017/12/022 – volume: 92 start-page: 023502 year: 2015 ident: 2021090110221652400_bib53 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.92.023502 – volume: 89 start-page: 011301 year: 2002 ident: 2021090110221652400_bib7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.89.011301 – volume: 1 start-page: 822 year: 1994 ident: 2021090110221652400_bib12 publication-title: Phys. Plasmas doi: 10.1063/1.870740 – volume: 250 start-page: 2 year: 2020 ident: 2021090110221652400_bib87 publication-title: ApJS doi: 10.3847/1538-4365/ab9d82 – volume: 2010 start-page: 014 year: 2010 ident: 2021090110221652400_bib22 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2010/10/014 – volume: 44 start-page: 054004 year: 2017 ident: 2021090110221652400_bib40 publication-title: J. Phys. G: Nucl. Part. Phys. doi: 10.1088/1361-6471/aa5b4f – volume-title: Proceedings of the Platform for Advanced Scientific Computing Conference year: 2016 ident: 2021090110221652400_bib77 – start-page: 1897 volume-title: MNRAS year: 2021 ident: 2021090110221652400_bib25 – start-page: 315 volume-title: Symposium-International Astronomical Union, Structure and Dynamics of Elliptical Galaxies year: 1987 ident: 2021090110221652400_bib67 doi: 10.1007/978-94-009-3971-4_26 – start-page: A6 volume-title: A&A year: 2020 ident: 2021090110221652400_bib6 doi: 10.1051/0004-6361/201833910 – year: 2011 ident: 2021090110221652400_bib58 – volume: 544 start-page: 239 year: 2002 ident: 2021090110221652400_bib74 publication-title: Phys. Lett. B doi: 10.1016/S0370-2693(02)02510-8 – volume: 814 start-page: 146 year: 2015 ident: 2021090110221652400_bib90 publication-title: ApJ doi: 10.1088/0004-637X/814/2/146 – year: 2021 ident: 2021090110221652400_bib8 – volume: 80 start-page: 5255 year: 1998 ident: 2021090110221652400_bib51 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.80.5255 – start-page: 062 volume-title: J. Cosmol. Astropart. Phys. year: 2020 ident: 2021090110221652400_bib50 – year: 2011 ident: 2021090110221652400_bib56 – volume: 2010 start-page: 015 year: 2010 ident: 2021090110221652400_bib86 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2010/06/015 – volume: 2008 start-page: 020 year: 2008 ident: 2021090110221652400_bib21 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2008/08/020 – volume: 81 start-page: 1562 year: 1998 ident: 2021090110221652400_bib47 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.81.1562 – volume: 2012 start-page: 045 year: 2012 ident: 2021090110221652400_bib49 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2012/02/045 – volume: 373 start-page: 369 year: 2006 ident: 2021090110221652400_bib31 publication-title: MNRAS doi: 10.1111/j.1365-2966.2006.11040.x – volume: 99 start-page: 123532 year: 2019 ident: 2021090110221652400_bib95 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.99.123532 – volume: 2021 start-page: 065 year: 2021 ident: 2021090110221652400_bib26 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2021/03/065 – volume: 107 start-page: 309 year: 1993 ident: 2021090110221652400_bib33 publication-title: J. Comput. Phys. doi: 10.1006/jcph.1993.1146 – volume: 428 start-page: 3375 year: 2012 ident: 2021090110221652400_bib9 publication-title: MNRAS doi: 10.1093/mnras/sts286 – volume: 45 start-page: 1980 year: 1980 ident: 2021090110221652400_bib18 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.45.1980 – volume: 271 start-page: 417 year: 1983 ident: 2021090110221652400_bib46 publication-title: ApJ doi: 10.1086/161209 – volume-title: ApJ year: 1997 ident: 2021090110221652400_bib75 – volume: 64 start-page: 053010 year: 2001 ident: 2021090110221652400_bib15 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.64.053010 – volume: 2017 start-page: 043 year: 2017 ident: 2021090110221652400_bib43 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2017/06/043 – volume: 434 start-page: L5 year: 1994 ident: 2021090110221652400_bib64 publication-title: ApJ doi: 10.1086/187559 – volume: 92 start-page: 123517 year: 2015 ident: 2021090110221652400_bib42 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.92.123517 – volume: 43 start-page: 030401 year: 2016 ident: 2021090110221652400_bib10 publication-title: J. Phys. G: Nucl. Part. Phys. doi: 10.1088/0954-3899/43/3/030401 – volume: 2020 start-page: 037 year: 2020 ident: 2021090110221652400_bib28 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2020/07/037 – volume: 420 start-page: 2551 year: 2012 ident: 2021090110221652400_bib16 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.20222.x – volume: 2013 year: 2013 ident: 2021090110221652400_bib35 publication-title: Adv. High Energy Phys. doi: 10.1155/2013/293986 – volume: 2018 start-page: 049 year: 2018 ident: 2021090110221652400_bib62 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2018/03/049 – volume: 2019 start-page: 041 year: 2019 ident: 2021090110221652400_bib84 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2019/05/041 – volume: 468 start-page: 2164 year: 2017 ident: 2021090110221652400_bib70 publication-title: MNRAS doi: 10.1093/mnras/stx560 – start-page: 366 volume-title: BAAS year: 2009 ident: 2021090110221652400_bib54 – volume: 43 start-page: 084001 year: 2016 ident: 2021090110221652400_bib5 publication-title: J. Phys. G: Nucl. Part. Phys. doi: 10.1088/0954-3899/43/8/084001 – start-page: 159 volume-title: ApJ year: 2020 ident: 2021090110221652400_bib94 doi: 10.3847/1538-4357/abbd46 – year: 2017 ident: 2021090110221652400_bib79 – volume: 2019 start-page: 034 year: 2019 ident: 2021090110221652400_bib29 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2019/11/034 – volume: 90 start-page: 021802 year: 2003 ident: 2021090110221652400_bib36 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.90.021802 – start-page: 018 volume-title: J. Cosmol. Astropart. Phys. year: 2020 ident: 2021090110221652400_bib73 – volume: 2019 start-page: 047 year: 2019 ident: 2021090110221652400_bib80 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2019/02/047 – volume: 2010 start-page: 021 year: 2010 ident: 2021090110221652400_bib20 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2010/01/021 – volume: 542 start-page: 559 year: 2000 ident: 2021090110221652400_bib82 publication-title: ApJ doi: 10.1086/317043 – volume: 2011 start-page: 032 year: 2011 ident: 2021090110221652400_bib59 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2011/09/032 – volume: 476 start-page: 2999 year: 2018 ident: 2021090110221652400_bib66 publication-title: MNRAS doi: 10.1093/mnras/sty377 – volume: 262 start-page: 1013 year: 1993 ident: 2021090110221652400_bib57 publication-title: MNRAS doi: 10.1093/mnras/262.4.1013 – start-page: 21 volume-title: ApJS year: 2020 ident: 2021090110221652400_bib52 doi: 10.3847/1538-4365/aba0b3 – volume: 2020 start-page: 013 year: 2020 ident: 2021090110221652400_bib34 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2020/01/013 – year: 2011 ident: 2021090110221652400_bib1 – volume: 2019 start-page: 052 year: 2019 ident: 2021090110221652400_bib32 publication-title: J. Cosmol. Astropart. Phys. doi: 10.1088/1475-7516/2019/02/052 – volume: 66 start-page: 093010 year: 2002 ident: 2021090110221652400_bib69 publication-title: Phys. Rev. D doi: 10.1103/PhysRevD.66.093010 – volume: 558 start-page: 520 year: 2001 ident: 2021090110221652400_bib93 publication-title: ApJ doi: 10.1086/322445 – volume: 204 start-page: 891 year: 1983 ident: 2021090110221652400_bib55 publication-title: MNRAS doi: 10.1093/mnras/204.3.891 – volume-title: From MathWorld–A Wolfram Web Resource year: 2002 ident: 2021090110221652400_bib92 |
| SSID | ssj0004326 |
| Score | 2.6167288 |
| Snippet | ABSTRACT
Cosmology places the strongest current limits on the sum of neutrino masses. Future observations will further improve the sensitivity and this will... Cosmology places the strongest current limits on the sum of neutrino masses. Future observations will further improve the sensitivity and this will require... |
| SourceID | unpaywall crossref oup |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 2614 |
| Title | An optimal non-linear method for simulating relic neutrinos |
| URI | https://academic.oup.com/mnras/article-pdf/507/2/2614/40180161/stab2260.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 507 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1365-2966 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004326 issn: 1365-2966 databaseCode: KQ8 dateStart: 18270209 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVASL databaseName: Oxford Journals Open Access Collection customDbUrl: eissn: 1365-2966 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004326 issn: 1365-2966 databaseCode: TOX dateStart: 18591101 isFulltext: true titleUrlDefault: https://academic.oup.com/journals/ providerName: Oxford University Press – providerCode: PRVWIB databaseName: Wiley Online Library - Core collection (SURFmarket) issn: 1365-2966 databaseCode: DR2 dateStart: 19980101 customDbUrl: isFulltext: true eissn: 1365-2966 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0004326 providerName: Wiley-Blackwell |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ3Lb9MwGMA_se4AlzEGaOUxWQgBFzeZE8eOOFUT04S0waGTyqnyK6giTaqkFRp_PZ-dpDAkNA7cHOezEz8U_2J_D4DX7tRrL-iMpkxZmmquKVJIQqUTuWCxNCKEZLm8yi6u049zPu_DAXlbGNVrhU8Gk4ZV1ag26ruRrm0RIcFELELyT6PUu59CZomQpDSCRDxBgT3YzziC-Qj2r68-T78Mjhnx1-CXFVYeTjFD2ufv3Dkm_QOHCm8tV50J3P1ttVY331VZ_rYSnT-EcmhDp4DybbLd6In58Yd7x__UyEM46ImVTLtij-Ceq47geNr6PfR6dUPekJDutkjaIxhfIofXTdiux5tn5RKhOFw9hvfTitT4kVphhVVdUc-4qiFdGGuC_Eza5SoEFKu-ksaVS0Mq5-MFVHX7BGbnH2ZnF7QP30BNIvINlSwxQkurpOaWOcGYyURuU5k7ZCbOtTA8MZlleZwrm5miwJVSWO1kzJW0yVMY4Zu4YyAxZhsmpS5ckRYcCYU7rgtRKIml4mQMdBikheldm_sIG-WiO2JPFqGDF0MHjuHtTn7dOfX4q-QrHKM7hd7tpsQdos_-XfQ5PGBefyYoDr6A0abZupcIQBt9AnuzT_OTfnr_BC45BMs |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrZ1Ja9wwFIAf7eTQXrqkLZluiFLaXjR2ZcuS6WkIDaGQ0EMC6WnQ5jLEIw_2DCX59XmS7ekCJT30JstPsrVgfZbeAvDWfQzaC7qgOVOW5pprihSSUelEKVgqjYghWU5Oi-Pz_MsFvxjCAQVbGDVohc9Gk4aVb1WXDN1I17ZKkGASliD550ke3E8hsyRIUhpBIp2hwF3YKziC-QT2zk-_zr-Njhnx1-CnFVYZTzFjOuTv3DlmwwPHCn9brnoTuHtbv1ZXP1Rd_7ISHT2EemxDr4ByOdtu9Mxc_-He8T818hE8GIiVzPtij-GO8_twMO_CHnqzuiLvSEz3WyTdPkxPkMObNm7X483DeolQHK-ewKe5Jw1-pFZYoW88DYyrWtKHsSbIz6RbrmJAMf-dtK5eGuJdiBfgm-4pnB19Pjs8pkP4BmoyUW6oZJkRWlolNbfMCcZMIUqby9IhM3GuheGZKSwr01LZwlQVrpTCaidTrqTNnsEE38QdAEkx2zApdeWqvOJIKNxxXYlKSSyVZlOg4yAtzODaPETYqBf9EXu2iB28GDtwCu938uveqcdfJd_gGN0q9GE3JW4Rff7voi_gPgv6M1Fx8CVMNu3WvUIA2ujXw8S-ARatA68 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimal+non-linear+method+for+simulating+relic+neutrinos&rft.jtitle=Monthly+notices+of+the+Royal+Astronomical+Society&rft.au=Elbers%2C+Willem&rft.au=Frenk%2C+Carlos+S&rft.au=Jenkins%2C+Adrian&rft.au=Li%2C+Baojiu&rft.date=2021-10-01&rft.issn=0035-8711&rft.eissn=1365-2966&rft.volume=507&rft.issue=2&rft.spage=2614&rft.epage=2631&rft_id=info:doi/10.1093%2Fmnras%2Fstab2260&rft.externalDBID=n%2Fa&rft.externalDocID=10_1093_mnras_stab2260 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0035-8711&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0035-8711&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0035-8711&client=summon |