An exploratory research of elitist probability schema and its applications in evolutionary algorithms

An important problem in the study of evolutionary algorithms is how to continuously predict promising solutions while simultaneously escaping from local optima. In this paper, we propose an elitist probability schema (EPS) for the first time, to the best of our knowledge. Our schema is an index of b...

Full description

Saved in:
Bibliographic Details
Published inApplied intelligence (Dordrecht, Netherlands) Vol. 40; no. 4; pp. 695 - 709
Main Authors Zhang, Hong-Guang, Liu, Yuan-An, Tang, Bi-Hua, Liu, Kai-Ming
Format Journal Article
LanguageEnglish
Published Boston Springer US 01.06.2014
Kluwer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0924-669X
1573-7497
DOI10.1007/s10489-013-0494-9

Cover

Abstract An important problem in the study of evolutionary algorithms is how to continuously predict promising solutions while simultaneously escaping from local optima. In this paper, we propose an elitist probability schema (EPS) for the first time, to the best of our knowledge. Our schema is an index of binary strings that expresses the similarity of an elitist population at every string position. EPS expresses the accumulative effect of fitness selection with respect to the coding similarity of the population. For each generation, EPS can quantify the coding similarity of the population objectively and quickly. One of our key innovations is that EPS can continuously predict promising solutions while simultaneously escaping from local optima in most cases. To demonstrate the abilities of the EPS, we designed an elitist probability schema genetic algorithm and an elitist probability schema compact genetic algorithm. These algorithms are estimations of distribution algorithms (EDAs). We provided a fair comparison with the persistent elitist compact genetic algorithm (PeCGA), quantum-inspired evolutionary algorithm (QEA), and particle swarm optimization (PSO) for the 0–1 knapsack problem. The proposed algorithms converged quicker than PeCGA, QEA, and PSO, especially for the large knapsack problem. Furthermore, the computation time of the proposed algorithms was less than some EDAs that are based on building explicit probability models, and was approximately the same as QEA and PSO. This is acceptable for evolutionary algorithms, and satisfactory for EDAs. The proposed algorithms are successful with respect to convergence performance and computation time, which implies that EPS is satisfactory.
AbstractList An important problem in the study of evolutionary algorithms is how to continuously predict promising solutions while simultaneously escaping from local optima. In this paper, we propose an elitist probability schema (EPS) for the first time, to the best of our knowledge. Our schema is an index of binary strings that expresses the similarity of an elitist population at every string position. EPS expresses the accumulative effect of fitness selection with respect to the coding similarity of the population. For each generation, EPS can quantify the coding similarity of the population objectively and quickly. One of our key innovations is that EPS can continuously predict promising solutions while simultaneously escaping from local optima in most cases. To demonstrate the abilities of the EPS, we designed an elitist probability schema genetic algorithm and an elitist probability schema compact genetic algorithm. These algorithms are estimations of distribution algorithms (EDAs). We provided a fair comparison with the persistent elitist compact genetic algorithm (PeCGA), quantum-inspired evolutionary algorithm (QEA), and particle swarm optimization (PSO) for the 0–1 knapsack problem. The proposed algorithms converged quicker than PeCGA, QEA, and PSO, especially for the large knapsack problem. Furthermore, the computation time of the proposed algorithms was less than some EDAs that are based on building explicit probability models, and was approximately the same as QEA and PSO. This is acceptable for evolutionary algorithms, and satisfactory for EDAs. The proposed algorithms are successful with respect to convergence performance and computation time, which implies that EPS is satisfactory.
An important problem in the study of evolutionary algorithms is how to continuously predict promising solutions while simultaneously escaping from local optima. In this paper, we propose an elitist probability schema (EPS) for the first time, to the best of our knowledge. Our schema is an index of binary strings that expresses the similarity of an elitist population at every string position. EPS expresses the accumulative effect of fitness selection with respect to the coding similarity of the population. For each generation, EPS can quantify the coding similarity of the population objectively and quickly. One of our key innovations is that EPS can continuously predict promising solutions while simultaneously escaping from local optima in most cases. To demonstrate the abilities of the EPS, we designed an elitist probability schema genetic algorithm and an elitist probability schema compact genetic algorithm. These algorithms are estimations of distribution algorithms (EDAs). We provided a fair comparison with the persistent elitist compact genetic algorithm (PeCGA), quantum-inspired evolutionary algorithm (QEA), and particle swarm optimization (PSO) for the 0-1 knapsack problem. The proposed algorithms converged quicker than PeCGA, QEA, and PSO, especially for the large knapsack problem. Furthermore, the computation time of the proposed algorithms was less than some EDAs that are based on building explicit probability models, and was approximately the same as QEA and PSO. This is acceptable for evolutionary algorithms, and satisfactory for EDAs. The proposed algorithms are successful with respect to convergence performance and computation time, which implies that EPS is satisfactory.[PUBLICATION ABSTRACT]
Author Tang, Bi-Hua
Liu, Yuan-An
Liu, Kai-Ming
Zhang, Hong-Guang
Author_xml – sequence: 1
  givenname: Hong-Guang
  surname: Zhang
  fullname: Zhang, Hong-Guang
  email: hongguang-zhang@bupt.edu.cn
  organization: School of Electronic Engineering, Beijing University of Posts and Telecommunications
– sequence: 2
  givenname: Yuan-An
  surname: Liu
  fullname: Liu, Yuan-An
  organization: School of Electronic Engineering, Beijing University of Posts and Telecommunications
– sequence: 3
  givenname: Bi-Hua
  surname: Tang
  fullname: Tang, Bi-Hua
  organization: School of Electronic Engineering, Beijing University of Posts and Telecommunications
– sequence: 4
  givenname: Kai-Ming
  surname: Liu
  fullname: Liu, Kai-Ming
  organization: School of Electronic Engineering, Beijing University of Posts and Telecommunications
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28428196$$DView record in Pascal Francis
BookMark eNp9kU9rFTEUxYNU8LX6AdwFRHAzmn8zkyxLsVoouOnCXbjNJH0pecmYmyf22zfPV0QKurpc-J1zT3JOyUku2RPylrOPnLH5E3KmtBkYlwNTRg3mBdnwcZbDrMx8QjbMCDVMk_n-ipwi3jPGpGR8Q_x5pv7XmkqFVuoDrR49VLelJVCfYovY6FrLLdzGvj1QdFu_Awp5obEhhXVN0UGLJSON3epnSfvDBt0L0l2psW13-Jq8DJDQv3maZ-Tm8vPNxdfh-tuXq4vz68HJ2bRhDGZmY9AK2BK08EIExWCcAhg28xD0or0R0yJgBiMdV5OQQS0cHA9KgjwjH462PfGPvcdmdxGdTwmyL3u0fFRcyXEcZUffPUPvy77mHq5TgulJaWE69f6JAnSQQoXsItq1xl1_oBVaCc3N1Dl-5FwtiNWHPwhn9tCPPfZjez_20I89eM_PNC623z_ZKsT0X6U4KrFfyXe-_pX9n6JHtC6ndA
CitedBy_id crossref_primary_10_1007_s00500_016_2209_8
Cites_doi 10.1007/BF01594945
10.1007/s11721-007-0002-0
10.1007/s10489-011-0278-z
10.1007/s10489-011-0321-0
10.1016/j.asoc.2009.08.037
10.1016/j.ejor.2004.08.004
10.1109/TEVC.2002.804320
10.1016/j.asoc.2012.11.048
10.1287/opre.47.4.570
10.1023/A:1013500812258
10.1007/s12293-012-0075-1
10.1007/978-1-4471-0819-1_39
10.1109/TEVC.2003.814633
10.1007/BF00871895
10.1109/TEVC.2007.892762
10.1162/evco.1999.7.3.231
10.1109/MCS.2002.1004010
10.1023/A:1011286929823
10.1007/s10489-012-0364-x
10.1109/4235.797971
10.1007/s10489-010-0223-6
10.1109/ICNN.1995.488968
10.1007/BF02078647
10.1023/A:1009689913453
10.1109/TEVC.2009.2033580
10.1016/j.asoc.2011.01.010
10.1162/106365600750078808
10.1287/mnsc.45.3.414
10.1007/s10489-012-0420-6
ContentType Journal Article
Copyright Springer Science+Business Media New York 2014
2015 INIST-CNRS
Copyright_xml – notice: Springer Science+Business Media New York 2014
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
3V.
7SC
7WY
7WZ
7XB
87Z
8AL
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L6V
L7M
L~C
L~D
M0C
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PSYQQ
PTHSS
Q9U
DOI 10.1007/s10489-013-0494-9
DatabaseName CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni Edition)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
ProQuest Technology Collection
ProQuest One
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest One Psychology
Engineering Collection
ProQuest Central Basic
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
ProQuest One Psychology
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
DatabaseTitleList
ProQuest Business Collection (Alumni Edition)
Computer and Information Systems Abstracts
Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
Applied Sciences
Physics
EISSN 1573-7497
EndPage 709
ExternalDocumentID 3294293891
28428196
10_1007_s10489_013_0494_9
Genre Feature
GroupedDBID -4Z
-59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
1N0
1SB
2.D
203
23M
28-
2J2
2JN
2JY
2KG
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
77K
7WY
8FE
8FG
8FL
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AAOBN
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABIVO
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTAH
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
BA0
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DWQXO
EBLON
EBS
EIOEI
EJD
ESBYG
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAK
LLZTM
M0C
M0N
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PSYQQ
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCJ
SCLPG
SCO
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7X
Z7Z
Z81
Z83
Z88
Z8M
Z8N
Z8R
Z8T
Z8U
Z8W
Z92
ZMTXR
ZY4
~A9
~EX
77I
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADKFA
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
IQODW
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
ID FETCH-LOGICAL-c379t-5f9705f84a0df82e22f40a56fa9071ff8d8e926d2a7a93c14623f4d1ac1f43a3
IEDL.DBID BENPR
ISSN 0924-669X
IngestDate Fri Sep 05 10:45:34 EDT 2025
Fri Jul 25 11:04:46 EDT 2025
Wed Apr 02 07:37:51 EDT 2025
Wed Oct 01 04:09:40 EDT 2025
Thu Apr 24 22:56:37 EDT 2025
Fri Feb 21 02:26:48 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords Coding similarity
Genetic algorithm
Evolutionary algorithm
Elitist probability schema
Estimation of distribution algorithm
Local search
Probabilistic approach
Internet protocol
Elitism
Modeling
Particle swarm optimization
Knapsack problem
Quantum computation
Innovation
Character string
Swarm intelligence
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c379t-5f9705f84a0df82e22f40a56fa9071ff8d8e926d2a7a93c14623f4d1ac1f43a3
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 1520864829
PQPubID 326365
PageCount 15
ParticipantIDs proquest_miscellaneous_1541435553
proquest_journals_1520864829
pascalfrancis_primary_28428196
crossref_primary_10_1007_s10489_013_0494_9
crossref_citationtrail_10_1007_s10489_013_0494_9
springer_journals_10_1007_s10489_013_0494_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-06-01
PublicationDateYYYYMMDD 2014-06-01
PublicationDate_xml – month: 06
  year: 2014
  text: 2014-06-01
  day: 01
PublicationDecade 2010
PublicationPlace Boston
PublicationPlace_xml – name: Boston
– name: Boston, MA
PublicationSubtitle The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies
PublicationTitle Applied intelligence (Dordrecht, Netherlands)
PublicationTitleAbbrev Appl Intell
PublicationYear 2014
Publisher Springer US
Kluwer
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Kluwer
– name: Springer Nature B.V
References Han KH (2003) Quantum-inspired evolutionary algorithm. Dissertation, Korea Advanced Institute of Science and Technology
AhnCWRamakrishnaRSElitism-based compact genetic algorithmsIEEE Trans Evol Comput2003736738510.1109/TEVC.2003.814633
Fogel LJ (1964) On the organization of intellect. Dissertation, University of California
BirattariMPellegriniPDorigoMOn the invariance of ant colony optimizationIEEE Trans Evol Comput20071173274210.1109/TEVC.2007.892762
TruongTKLiKLXuYMChemical reaction optimization with greedy strategy for the 0–1 knapsack problemAppl Soft Comput2013131774178010.1016/j.asoc.2012.11.048
GloverFTaillardEWerraDDA user’s guide to tabu searchAnn Oper Res19934112810.1007/BF02078647
GloverFLagunaMMartíRFundamentals of scatter search and path relinkingControl Cybern2000296536840983.90077
KennethPDifferential evolution vs. the functions of the 2nd ICEOProc ICEC’971997153157
Sastry K, Goldberg DE (2000) On extended compact genetic algorithm. IIIiGAL Report No. 2000026, Illinois Genetic Algorithms Lab
HedarARAliAFTabu search with multi-level neighborhood structures for high dimensional problemsAppl Intell20123718920610.1007/s10489-011-0321-0
MühlenbeinHMahnigTRodriguezASchemata, distributions and graphical models in evolutionary optimizationJ Heuristics1999521524710.1023/A:10096899134530938.90035
PassinoKMBiomimicry of bacterial foraging for distributed optimization and controlIEEE Control Syst Mag200222526710.1109/MCS.2002.1004010
PelikanMMühlenbeinHThe bivariate marginal distribution algorithmAdvances in soft computing—engineering design and manufacturing1999521535
PisingerDCore problems in knapsack algorithmsOper Res19994757057510.1287/opre.47.4.5700979.900911710950
KennedyJEberhartRA discrete binary version of the particle swarm algorithmProc IEEE int conf syst man cybern199741044108
MühlenbeinHPaassGFrom recombination of genes to the estimation of distributions I. Binary parametersProc int conf evol comput parallel problem solving from nature—PPSN IV1996178187
AlipouriYPoshtanJA modification to classical evolutionary programming by shifting strategy parametersAppl Intell20133817519210.1007/s10489-012-0364-x
BalujaSDaviesSUsing optimal dependency-trees for combinatorial optimization: learning the structure of the search spaceProc int conf mach learn19973038
MartelloSPisingerDTothPDynamic programming and strong bounds for the 0–1 knapsack problemManag Sci19994541442410.1287/mnsc.45.3.4141231.90338
KangMHChoiHRKimHSParkBJDevelopment of a maritime transportation planning support system for car carriers based on genetic algorithmAppl Intell20123658560410.1007/s10489-011-0278-z
RainerSKennethPDifferential evolution—a simple and efficient heuristic for global optimization over continuous spacesJ Glob Optim19974341359
HanKHParkKHLeeCHKimJHParallel quantum-inspired genetic algorithm for combinatorial optimization problemProc ICEC’01200114221429
DekkersAAartsEGlobal optimization and simulated annealingMath Program19915036739310.1007/BF015949450753.900601114238
LiangKHYaoXNewtonCSAdapting self-adaptive parameters in evolutionary algorithmsAppl Intell20011517118010.1023/A:10112869298230992.68231
KumarRSinghPKAssessing solution quality of biobjective 0–1 knapsack problem using evolutionary and heuristic algorithmsAppl Soft Comput20101071171810.1016/j.asoc.2009.08.037
HarikGRLoboFGGoldbergDEThe compact genetic algorithmIEEE Trans Evol Comput1999328729710.1109/4235.797971
Brunel University website (2013). http://people.brunel.ac.uk/~mastjjb/jeb/info.html
LamAYSLiVOKChemical-reaction-inspired metaheuristic for optimizationIEEE Trans Evol Comput20101438139910.1109/TEVC.2009.2033580
De BonetJSLsbellCLViolaJPMIMIC: finding optima by estimating probability densitiesAdv Neural Inf Process Syst19979424431
Florida State University website (2013). http://people.sc.fsu.edu/~jburkardt/datasets/knapsack_01/knapsack_01.html
HasanzadehMMeybodiMREbadzadehMMAdaptive cooperative particle swarm optimizerAppl Intell20133939742010.1007/s10489-012-0420-6
Zitzler E (1999) Evolutionary algorithms for multiobjective optimization: methods and applications. Dissertation, Swiss Federal Institute of Technology Zurich
BalujaSDaviesSFast probabilistic modeling for combinatorial optimizationProc 15th national conf artif intell1998469476
KreherDLStinsonDRCombinatorial algorithms: generation, enumeration and search1998Boca RatonCRC Press
PoliRKennedyJBlackwellTParticle swarm optimizationSwarm Intell20071335710.1007/s11721-007-0002-0
University of Copenhagen website (2013). http://www.diku.dk/~pisinger/gen2.c
HanKHKimJHQuantum-inspired evolutionary algorithm for a class of combinatorial optimizationIEEE Trans Evol Comput2002658059310.1109/TEVC.2002.804320
LagunaMBarnesJWGloverFIntelligent scheduling with tabu search: an application to jobs with linear delay penalties and sequence-dependent setup costs and timesAppl Intell1993315917210.1007/BF00871895
KennedyJEberhartRParticle swarm optimizationProc IEEE int conf neural netw199519421948
LamAYSLiVOKChemical reaction optimization: a tutorialMemetic Comp2012431710.1007/s12293-012-0075-1
HanKHKimJHOn setting the parameters of quantum-inspired evolutionary algorithm for practical applicationProc ICEC’032003178194
LeeJYKimMSLeeJJCompact genetic algorithms using belief vectorsAppl Soft Comput2011113385340110.1016/j.asoc.2011.01.010
PelikanMGoldbergDELoboFGA survey of optimization by building and using probabilistic modelsComput Optim Appl20022152010.1023/A:10135008122580988.900521883087
HarikGRCantú-PazEGoldbergDEThe gambler’s ruin problem, genetic algorithms, and the sizing of populationsEvol Comput1999723125310.1162/evco.1999.7.3.231
MartelloSTothPKnapsack problem: algorithms and computer implementations1990New YorkWiley0708.68002
ChoJHKimHSChoiHRAn intermodal transport network planning algorithm using dynamic programming—a case study: from Busan to Rotterdam in intermodal freight routingAppl Intell20123652954110.1007/s10489-010-0223-6
MartíRLagunaMGloverFPrinciples of scatter searchEur J Oper Res200616935937210.1016/j.ejor.2004.08.0041079.90178
HollandJHAdaptation in natural and artificial systems1975CambridgeMIT Press
GoldbergDEKorbBDebKMessy genetic algorithm: motivation, analysis, and first resultsComplex Syst198934935300727.680971102541
PelikanMGoldbergDECantú-pazEELinkage problem, distribution estimation, and Bayesian networksEvol Comput2000831134010.1162/106365600750078808
F Glover (494_CR8) 1993; 41
JS Bonet De (494_CR28) 1997; 9
494_CR43
R Poli (494_CR13) 2007; 1
D Pisinger (494_CR48) 1999; 47
494_CR42
AR Hedar (494_CR10) 2012; 37
S Rainer (494_CR4) 1997; 4
KM Passino (494_CR23) 2002; 22
M Pelikan (494_CR39) 2002; 21
S Martello (494_CR45) 1990
R Kumar (494_CR49) 2010; 10
S Baluja (494_CR30) 1998
JH Holland (494_CR1) 1975
494_CR35
494_CR5
F Glover (494_CR21) 2000; 29
494_CR50
P Kenneth (494_CR3) 1997
494_CR46
GR Harik (494_CR34) 1999; 3
KH Han (494_CR19) 2003
H Mühlenbein (494_CR27) 1996
M Hasanzadeh (494_CR14) 2013; 39
KH Han (494_CR17) 2001
DL Kreher (494_CR44) 1998
KH Han (494_CR18) 2002; 6
MH Kang (494_CR40) 2012; 36
GR Harik (494_CR33) 1999; 7
J Kennedy (494_CR11) 1995
494_CR20
JH Cho (494_CR41) 2012; 36
A Dekkers (494_CR16) 1991; 50
S Martello (494_CR47) 1999; 45
AYS Lam (494_CR25) 2012; 4
CW Ahn (494_CR36) 2003; 7
M Laguna (494_CR9) 1993; 3
J Kennedy (494_CR12) 1997
R Martí (494_CR22) 2006; 169
S Baluja (494_CR29) 1997
M Pelikan (494_CR31) 1999
AYS Lam (494_CR24) 2010; 14
M Pelikan (494_CR38) 2000; 8
JY Lee (494_CR37) 2011; 11
TK Truong (494_CR26) 2013; 13
M Birattari (494_CR15) 2007; 11
DE Goldberg (494_CR2) 1989; 3
KH Liang (494_CR7) 2001; 15
Y Alipouri (494_CR6) 2013; 38
H Mühlenbein (494_CR32) 1999; 5
References_xml – reference: KennedyJEberhartRParticle swarm optimizationProc IEEE int conf neural netw199519421948
– reference: PisingerDCore problems in knapsack algorithmsOper Res19994757057510.1287/opre.47.4.5700979.900911710950
– reference: KennedyJEberhartRA discrete binary version of the particle swarm algorithmProc IEEE int conf syst man cybern199741044108
– reference: Sastry K, Goldberg DE (2000) On extended compact genetic algorithm. IIIiGAL Report No. 2000026, Illinois Genetic Algorithms Lab
– reference: BirattariMPellegriniPDorigoMOn the invariance of ant colony optimizationIEEE Trans Evol Comput20071173274210.1109/TEVC.2007.892762
– reference: KumarRSinghPKAssessing solution quality of biobjective 0–1 knapsack problem using evolutionary and heuristic algorithmsAppl Soft Comput20101071171810.1016/j.asoc.2009.08.037
– reference: HasanzadehMMeybodiMREbadzadehMMAdaptive cooperative particle swarm optimizerAppl Intell20133939742010.1007/s10489-012-0420-6
– reference: GloverFLagunaMMartíRFundamentals of scatter search and path relinkingControl Cybern2000296536840983.90077
– reference: PelikanMMühlenbeinHThe bivariate marginal distribution algorithmAdvances in soft computing—engineering design and manufacturing1999521535
– reference: HanKHKimJHOn setting the parameters of quantum-inspired evolutionary algorithm for practical applicationProc ICEC’032003178194
– reference: HedarARAliAFTabu search with multi-level neighborhood structures for high dimensional problemsAppl Intell20123718920610.1007/s10489-011-0321-0
– reference: De BonetJSLsbellCLViolaJPMIMIC: finding optima by estimating probability densitiesAdv Neural Inf Process Syst19979424431
– reference: RainerSKennethPDifferential evolution—a simple and efficient heuristic for global optimization over continuous spacesJ Glob Optim19974341359
– reference: Zitzler E (1999) Evolutionary algorithms for multiobjective optimization: methods and applications. Dissertation, Swiss Federal Institute of Technology Zurich
– reference: ChoJHKimHSChoiHRAn intermodal transport network planning algorithm using dynamic programming—a case study: from Busan to Rotterdam in intermodal freight routingAppl Intell20123652954110.1007/s10489-010-0223-6
– reference: HanKHKimJHQuantum-inspired evolutionary algorithm for a class of combinatorial optimizationIEEE Trans Evol Comput2002658059310.1109/TEVC.2002.804320
– reference: KangMHChoiHRKimHSParkBJDevelopment of a maritime transportation planning support system for car carriers based on genetic algorithmAppl Intell20123658560410.1007/s10489-011-0278-z
– reference: LagunaMBarnesJWGloverFIntelligent scheduling with tabu search: an application to jobs with linear delay penalties and sequence-dependent setup costs and timesAppl Intell1993315917210.1007/BF00871895
– reference: PoliRKennedyJBlackwellTParticle swarm optimizationSwarm Intell20071335710.1007/s11721-007-0002-0
– reference: MartíRLagunaMGloverFPrinciples of scatter searchEur J Oper Res200616935937210.1016/j.ejor.2004.08.0041079.90178
– reference: Han KH (2003) Quantum-inspired evolutionary algorithm. Dissertation, Korea Advanced Institute of Science and Technology
– reference: AhnCWRamakrishnaRSElitism-based compact genetic algorithmsIEEE Trans Evol Comput2003736738510.1109/TEVC.2003.814633
– reference: Florida State University website (2013). http://people.sc.fsu.edu/~jburkardt/datasets/knapsack_01/knapsack_01.html
– reference: PelikanMGoldbergDECantú-pazEELinkage problem, distribution estimation, and Bayesian networksEvol Comput2000831134010.1162/106365600750078808
– reference: Brunel University website (2013). http://people.brunel.ac.uk/~mastjjb/jeb/info.html
– reference: LiangKHYaoXNewtonCSAdapting self-adaptive parameters in evolutionary algorithmsAppl Intell20011517118010.1023/A:10112869298230992.68231
– reference: TruongTKLiKLXuYMChemical reaction optimization with greedy strategy for the 0–1 knapsack problemAppl Soft Comput2013131774178010.1016/j.asoc.2012.11.048
– reference: LamAYSLiVOKChemical reaction optimization: a tutorialMemetic Comp2012431710.1007/s12293-012-0075-1
– reference: HollandJHAdaptation in natural and artificial systems1975CambridgeMIT Press
– reference: MartelloSPisingerDTothPDynamic programming and strong bounds for the 0–1 knapsack problemManag Sci19994541442410.1287/mnsc.45.3.4141231.90338
– reference: Fogel LJ (1964) On the organization of intellect. Dissertation, University of California
– reference: DekkersAAartsEGlobal optimization and simulated annealingMath Program19915036739310.1007/BF015949450753.900601114238
– reference: GloverFTaillardEWerraDDA user’s guide to tabu searchAnn Oper Res19934112810.1007/BF02078647
– reference: MartelloSTothPKnapsack problem: algorithms and computer implementations1990New YorkWiley0708.68002
– reference: PassinoKMBiomimicry of bacterial foraging for distributed optimization and controlIEEE Control Syst Mag200222526710.1109/MCS.2002.1004010
– reference: BalujaSDaviesSUsing optimal dependency-trees for combinatorial optimization: learning the structure of the search spaceProc int conf mach learn19973038
– reference: KennethPDifferential evolution vs. the functions of the 2nd ICEOProc ICEC’971997153157
– reference: LeeJYKimMSLeeJJCompact genetic algorithms using belief vectorsAppl Soft Comput2011113385340110.1016/j.asoc.2011.01.010
– reference: PelikanMGoldbergDELoboFGA survey of optimization by building and using probabilistic modelsComput Optim Appl20022152010.1023/A:10135008122580988.900521883087
– reference: MühlenbeinHMahnigTRodriguezASchemata, distributions and graphical models in evolutionary optimizationJ Heuristics1999521524710.1023/A:10096899134530938.90035
– reference: LamAYSLiVOKChemical-reaction-inspired metaheuristic for optimizationIEEE Trans Evol Comput20101438139910.1109/TEVC.2009.2033580
– reference: HarikGRLoboFGGoldbergDEThe compact genetic algorithmIEEE Trans Evol Comput1999328729710.1109/4235.797971
– reference: AlipouriYPoshtanJA modification to classical evolutionary programming by shifting strategy parametersAppl Intell20133817519210.1007/s10489-012-0364-x
– reference: BalujaSDaviesSFast probabilistic modeling for combinatorial optimizationProc 15th national conf artif intell1998469476
– reference: MühlenbeinHPaassGFrom recombination of genes to the estimation of distributions I. Binary parametersProc int conf evol comput parallel problem solving from nature—PPSN IV1996178187
– reference: KreherDLStinsonDRCombinatorial algorithms: generation, enumeration and search1998Boca RatonCRC Press
– reference: GoldbergDEKorbBDebKMessy genetic algorithm: motivation, analysis, and first resultsComplex Syst198934935300727.680971102541
– reference: HarikGRCantú-PazEGoldbergDEThe gambler’s ruin problem, genetic algorithms, and the sizing of populationsEvol Comput1999723125310.1162/evco.1999.7.3.231
– reference: HanKHParkKHLeeCHKimJHParallel quantum-inspired genetic algorithm for combinatorial optimization problemProc ICEC’01200114221429
– reference: University of Copenhagen website (2013). http://www.diku.dk/~pisinger/gen2.c
– volume: 4
  start-page: 341
  year: 1997
  ident: 494_CR4
  publication-title: J Glob Optim
– volume: 50
  start-page: 367
  year: 1991
  ident: 494_CR16
  publication-title: Math Program
  doi: 10.1007/BF01594945
– volume: 1
  start-page: 33
  year: 2007
  ident: 494_CR13
  publication-title: Swarm Intell
  doi: 10.1007/s11721-007-0002-0
– ident: 494_CR50
– volume: 36
  start-page: 585
  year: 2012
  ident: 494_CR40
  publication-title: Appl Intell
  doi: 10.1007/s10489-011-0278-z
– volume: 37
  start-page: 189
  year: 2012
  ident: 494_CR10
  publication-title: Appl Intell
  doi: 10.1007/s10489-011-0321-0
– volume: 10
  start-page: 711
  year: 2010
  ident: 494_CR49
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2009.08.037
– volume: 29
  start-page: 653
  year: 2000
  ident: 494_CR21
  publication-title: Control Cybern
– volume: 169
  start-page: 359
  year: 2006
  ident: 494_CR22
  publication-title: Eur J Oper Res
  doi: 10.1016/j.ejor.2004.08.004
– volume: 6
  start-page: 580
  year: 2002
  ident: 494_CR18
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2002.804320
– ident: 494_CR20
– volume: 3
  start-page: 493
  year: 1989
  ident: 494_CR2
  publication-title: Complex Syst
– volume: 13
  start-page: 1774
  year: 2013
  ident: 494_CR26
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2012.11.048
– ident: 494_CR35
– volume: 47
  start-page: 570
  year: 1999
  ident: 494_CR48
  publication-title: Oper Res
  doi: 10.1287/opre.47.4.570
– volume: 21
  start-page: 5
  year: 2002
  ident: 494_CR39
  publication-title: Comput Optim Appl
  doi: 10.1023/A:1013500812258
– volume: 4
  start-page: 3
  year: 2012
  ident: 494_CR25
  publication-title: Memetic Comp
  doi: 10.1007/s12293-012-0075-1
– start-page: 30
  volume-title: Proc int conf mach learn
  year: 1997
  ident: 494_CR29
– start-page: 521
  volume-title: Advances in soft computing—engineering design and manufacturing
  year: 1999
  ident: 494_CR31
  doi: 10.1007/978-1-4471-0819-1_39
– volume: 7
  start-page: 367
  year: 2003
  ident: 494_CR36
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2003.814633
– volume: 3
  start-page: 159
  year: 1993
  ident: 494_CR9
  publication-title: Appl Intell
  doi: 10.1007/BF00871895
– volume: 11
  start-page: 732
  year: 2007
  ident: 494_CR15
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2007.892762
– volume: 7
  start-page: 231
  year: 1999
  ident: 494_CR33
  publication-title: Evol Comput
  doi: 10.1162/evco.1999.7.3.231
– volume: 22
  start-page: 52
  year: 2002
  ident: 494_CR23
  publication-title: IEEE Control Syst Mag
  doi: 10.1109/MCS.2002.1004010
– start-page: 153
  volume-title: Proc ICEC’97
  year: 1997
  ident: 494_CR3
– volume: 15
  start-page: 171
  year: 2001
  ident: 494_CR7
  publication-title: Appl Intell
  doi: 10.1023/A:1011286929823
– ident: 494_CR42
– volume: 38
  start-page: 175
  year: 2013
  ident: 494_CR6
  publication-title: Appl Intell
  doi: 10.1007/s10489-012-0364-x
– volume-title: Adaptation in natural and artificial systems
  year: 1975
  ident: 494_CR1
– start-page: 178
  volume-title: Proc int conf evol comput parallel problem solving from nature—PPSN IV
  year: 1996
  ident: 494_CR27
– start-page: 4104
  volume-title: Proc IEEE int conf syst man cybern
  year: 1997
  ident: 494_CR12
– volume: 3
  start-page: 287
  year: 1999
  ident: 494_CR34
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/4235.797971
– volume: 36
  start-page: 529
  year: 2012
  ident: 494_CR41
  publication-title: Appl Intell
  doi: 10.1007/s10489-010-0223-6
– ident: 494_CR5
– start-page: 1942
  volume-title: Proc IEEE int conf neural netw
  year: 1995
  ident: 494_CR11
  doi: 10.1109/ICNN.1995.488968
– volume-title: Combinatorial algorithms: generation, enumeration and search
  year: 1998
  ident: 494_CR44
– start-page: 1422
  volume-title: Proc ICEC’01
  year: 2001
  ident: 494_CR17
– volume: 41
  start-page: 1
  year: 1993
  ident: 494_CR8
  publication-title: Ann Oper Res
  doi: 10.1007/BF02078647
– volume: 5
  start-page: 215
  year: 1999
  ident: 494_CR32
  publication-title: J Heuristics
  doi: 10.1023/A:1009689913453
– ident: 494_CR46
– start-page: 178
  volume-title: Proc ICEC’03
  year: 2003
  ident: 494_CR19
– volume: 14
  start-page: 381
  year: 2010
  ident: 494_CR24
  publication-title: IEEE Trans Evol Comput
  doi: 10.1109/TEVC.2009.2033580
– start-page: 469
  volume-title: Proc 15th national conf artif intell
  year: 1998
  ident: 494_CR30
– volume: 11
  start-page: 3385
  year: 2011
  ident: 494_CR37
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2011.01.010
– volume-title: Knapsack problem: algorithms and computer implementations
  year: 1990
  ident: 494_CR45
– volume: 8
  start-page: 311
  year: 2000
  ident: 494_CR38
  publication-title: Evol Comput
  doi: 10.1162/106365600750078808
– volume: 45
  start-page: 414
  year: 1999
  ident: 494_CR47
  publication-title: Manag Sci
  doi: 10.1287/mnsc.45.3.414
– volume: 39
  start-page: 397
  year: 2013
  ident: 494_CR14
  publication-title: Appl Intell
  doi: 10.1007/s10489-012-0420-6
– volume: 9
  start-page: 424
  year: 1997
  ident: 494_CR28
  publication-title: Adv Neural Inf Process Syst
– ident: 494_CR43
SSID ssj0003301
Score 1.9936752
Snippet An important problem in the study of evolutionary algorithms is how to continuously predict promising solutions while simultaneously escaping from local...
SourceID proquest
pascalfrancis
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 695
SubjectTerms Algorithmics. Computability. Computer arithmetics
Algorithms
Applied sciences
Artificial Intelligence
Classical and quantum physics: mechanics and fields
Computer Science
Computer science; control theory; systems
Elitism
EPS
Equipments and installations
Evolutionary algorithms
Exact sciences and technology
Genetic algorithms
Knapsack problem
Machines
Manufacturing
Mathematical models
Mechanical Engineering
Mobile radiocommunication systems
Optimization algorithms
Physics
Population
Probability distribution
Processes
Quantum computation
Quantum information
Radiocommunications
Similarity
Strings
Swarm intelligence
Telecommunications
Telecommunications and information theory
Theoretical computing
SummonAdditionalLinks – databaseName: SpringerLink Journals (ICM)
  dbid: U2A
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46XwTxLlbniOCTUmiT9JLHIY4h6NMGeytpmrjB1o61E_z3nvTmJir43ORQ-iUn3-l3cg5Cd1IGoesT14aozbEZYeAHY0ptxrVn_luwuCyk_fLqD8fseeJN6nvceZPt3kiSpafeuOzGTHqP6UbAOLP5LtrzTDUvWMRj0m_dLwToZZs8CCxs3-eTRsr8ycTWYXSwFDl8F101tNhinN9E0vLsGRyjw5o04n6F8gnaUekpOmoaMuB6f54h1U-xKpPqSu0c15V8pjjTWJk8t7zApoNMVZv7A0NkqxYCizTBsyLHm2I2noGp93pdCrAl5m_ZalZMF_k5Gg2eRo9Du-6jYEsa8ML2NA8cT4dMOIkOiSJEM0d4vhYQGbtah0moOPETIgLBqQTfSahmiSukqxkV9AJ10ixVlwiLWNMkDhMgNRIiHTDIAwBbSpZwYJbSQk7zPSNZ1xg3rS7m0Vd1ZANBBBBEBoKIW-i-nbKsCmz8Nbi3BVI7Aw5Zowj6Fuo2qEX1ZswjoCgQuLGQwPzb9jFsI6ONiFRlazOGGeboedRCDw3aGyZ-e6Orf42-RvtAuFiVatZFnWK1VjdAaoq4Vy7iT-Zp7q0
  priority: 102
  providerName: Springer Nature
Title An exploratory research of elitist probability schema and its applications in evolutionary algorithms
URI https://link.springer.com/article/10.1007/s10489-013-0494-9
https://www.proquest.com/docview/1520864829
https://www.proquest.com/docview/1541435553
Volume 40
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: AFBBN
  dateStart: 19970101
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1573-7497
  dateEnd: 20171231
  omitProxy: true
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: BENPR
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 20241103
  omitProxy: true
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: 8FG
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1573-7497
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003301
  issn: 0924-669X
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_a5GUw9j3mrgsa7GlDzJbkDz2MkYykZWNhjBayJyPrYy20Tla7g_33O9ly2gzWJz_IOhvd6T50p_sBvNE6L5KMJRSjtpgKJlAPVpxTIV3qzy1E1TXS_rrMjk_F51W62oPlcBfGl1UOOrFT1Gat_Rn5e7Qz6H2LgsmPm1_Uo0b57OoAoaECtIL50LUY24cx852xRjCezZffvm91M0bvHYYeRh00y-RqyHP2l-mELx_yaAdCCip3LNX9jWpw0VyPdrHjjv6TQe0M0-IRPAgeJZn2IvAY9mz9BB4OaA0kbN6nYKc1sV3FXZdYJ6HNzxlZO2J9EVzTEg8v0zfu_kMw7LWXiqjakPO2Ibcz3eQcSf0OQquQlrr4iWvVnl02z-BkMT_5dEwDyALVPJctTZ3M49QVQsXGFcwy5kSs0swpDJsT5wpTWMkyw1SuJNeoWBl3wiRKJ05wxZ_DqF7X9gUQVTluqsKgx6MxDEKCMkdJ0FoYiW6njiAe1rPUoQG5x8G4KG9aJ3sWlMiC0rOglBG83U7Z9N037np5ssOk7Qy0wD5dmEVwOHCtDDu1KW_kKoLX22HcYz5xomq7vvbvCO9WpimP4N3A7Vsk_vdHB3d_8CXcQ_dL9IVnhzBqr67tK3Rx2moC-8XiaALj6WI2W_rn0Y8v80mQZhw9ZdO_Kwb9gg
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gBSxRsRKMVIcAFZJLbz8KFCBVptabtCaJH2Fjl-0EptdktSUH8c_41x4my7SPTWc-xJlM-eh2c8H8BrrfMiyVhCMWqLqWAC9WDFORXSpf7cQlRdI-3DcTb6Lr5M0-kK_BnuwviyykEndorazLQ_I3-Pdga9b1Ew-WF-Rj1rlM-uDhQaKlArmK2uxVi42LFvL35jCNds7X1GvN8wtrsz-TSigWWAap7LlqZO5nHqCqFi4wpmGXMiVmnmFMaNiXOFKaxkmWEqV5Jr1CyMO2ESpRMnuOIo9hasCS4kxn5rH3fGX78tTAHnHf9yjEEOzTI5HdKq_d094auVPLmCkILKJcO4PlcNYuR6co0l7_efhG1nB3fvw93gwJLtfsU9gBVbP4R7AzkECbriEdjtmtiuwK_L45PQVeiIzByxvuauaYlns-n7hF8QjLLtqSKqNuS4bcjVxDo5RlG_wh5RKEud_EBo2qPT5jFMbuJvP4HVelbbp0BU5bipCoMOlsaoCwXKHBee1sJI9HJ1BPHwP0sd-p172o2T8rJTs4egRAhKD0EpI3i7mDLvm31cN3hzCaTFDDT4PjuZRbAxoFYGxdCUl8s4gleLx7ilfZ5G1XZ27scI78WmKY_g3YD2FRH_-6Jn17_wJdweTQ4PyoO98f5zuIOen-hr3jZgtf15bl-gd9VWm2ENEyhveNf8BXi6NRo
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9VAEB5qBRHEuxitdQV9UUKT3c1lH0SK9dhaLT5UOG_LZi-20OacNqnSn-a_cyaX0x7BvvU5m0nINzuXzOx8AK-tLco052mMWVsSSy7RDlZCxFKFjP5byKobpP1tL9_-Ib9Ms-kK_BnPwlBb5WgTO0PtZpb-kW-gn8HoW5ZcbYShLeL71uTD_CQmBimqtI50Gr2K7Prz35i-Ne93thDrN5xPPu1_3I4HhoHYikK1cRZUkWShlCZxoeSe8yATk-XBYM6YhlC60iueO24Ko4RFq8JFkC41Ng1SGIFib8DNgoa40yH1yeeFExCiY15OML2J81xNx4Jqf2pPUp8S0SpIJWO15BLvzE2D6ISeVmMp7v2nVNt5wMl9uDuErmyz17UHsOLrh3BvpIVgg5V4BH6zZr5r7esq-GyYJ3TAZoF56rZrWkY8Nv2E8HOG-bU_NszUjh22DbtcUmeHKOrXsDsMyjJHPxGI9uC4eQz71_Gtn8BqPav9U2CmCsJVpcPQymK-hQJVgSpnrXQK41sbQTJ-T22HSedEuHGkL2Y0EwQaIdAEgVYRvF3cMu_HfFy1eH0JpMUd6OqpLplHsDaipgeT0OgLBY7g1eIybmaq0Jjaz85ojaT4NctEBO9GtC-J-N8bPbv6gS_hFu4V_XVnb_c53MaQT_bNbmuw2p6e-RcYVrXVeqfADPQ1b5i_A0MytA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+exploratory+research+of+elitist+probability+schema+and+its+applications+in+evolutionary+algorithms&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=ZHANG%2C+Hong-Guang&rft.au=LIU%2C+Yuan-An&rft.au=TANG%2C+Bi-Hua&rft.au=LIU%2C+Kai-Ming&rft.date=2014-06-01&rft.pub=Kluwer&rft.issn=0924-669X&rft.volume=40&rft.issue=4&rft.spage=695&rft.epage=709&rft_id=info:doi/10.1007%2Fs10489-013-0494-9&rft.externalDBID=n%2Fa&rft.externalDocID=28428196
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon