An exploratory research of elitist probability schema and its applications in evolutionary algorithms
An important problem in the study of evolutionary algorithms is how to continuously predict promising solutions while simultaneously escaping from local optima. In this paper, we propose an elitist probability schema (EPS) for the first time, to the best of our knowledge. Our schema is an index of b...
Saved in:
| Published in | Applied intelligence (Dordrecht, Netherlands) Vol. 40; no. 4; pp. 695 - 709 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Boston
Springer US
01.06.2014
Kluwer Springer Nature B.V |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0924-669X 1573-7497 |
| DOI | 10.1007/s10489-013-0494-9 |
Cover
| Abstract | An important problem in the study of evolutionary algorithms is how to continuously predict promising solutions while simultaneously escaping from local optima. In this paper, we propose an elitist probability schema (EPS) for the first time, to the best of our knowledge. Our schema is an index of binary strings that expresses the similarity of an elitist population at every string position. EPS expresses the accumulative effect of fitness selection with respect to the coding similarity of the population. For each generation, EPS can quantify the coding similarity of the population objectively and quickly. One of our key innovations is that EPS can continuously predict promising solutions while simultaneously escaping from local optima in most cases. To demonstrate the abilities of the EPS, we designed an elitist probability schema genetic algorithm and an elitist probability schema compact genetic algorithm. These algorithms are estimations of distribution algorithms (EDAs). We provided a fair comparison with the persistent elitist compact genetic algorithm (PeCGA), quantum-inspired evolutionary algorithm (QEA), and particle swarm optimization (PSO) for the 0–1 knapsack problem. The proposed algorithms converged quicker than PeCGA, QEA, and PSO, especially for the large knapsack problem. Furthermore, the computation time of the proposed algorithms was less than some EDAs that are based on building explicit probability models, and was approximately the same as QEA and PSO. This is acceptable for evolutionary algorithms, and satisfactory for EDAs. The proposed algorithms are successful with respect to convergence performance and computation time, which implies that EPS is satisfactory. |
|---|---|
| AbstractList | An important problem in the study of evolutionary algorithms is how to continuously predict promising solutions while simultaneously escaping from local optima. In this paper, we propose an elitist probability schema (EPS) for the first time, to the best of our knowledge. Our schema is an index of binary strings that expresses the similarity of an elitist population at every string position. EPS expresses the accumulative effect of fitness selection with respect to the coding similarity of the population. For each generation, EPS can quantify the coding similarity of the population objectively and quickly. One of our key innovations is that EPS can continuously predict promising solutions while simultaneously escaping from local optima in most cases. To demonstrate the abilities of the EPS, we designed an elitist probability schema genetic algorithm and an elitist probability schema compact genetic algorithm. These algorithms are estimations of distribution algorithms (EDAs). We provided a fair comparison with the persistent elitist compact genetic algorithm (PeCGA), quantum-inspired evolutionary algorithm (QEA), and particle swarm optimization (PSO) for the 0–1 knapsack problem. The proposed algorithms converged quicker than PeCGA, QEA, and PSO, especially for the large knapsack problem. Furthermore, the computation time of the proposed algorithms was less than some EDAs that are based on building explicit probability models, and was approximately the same as QEA and PSO. This is acceptable for evolutionary algorithms, and satisfactory for EDAs. The proposed algorithms are successful with respect to convergence performance and computation time, which implies that EPS is satisfactory. An important problem in the study of evolutionary algorithms is how to continuously predict promising solutions while simultaneously escaping from local optima. In this paper, we propose an elitist probability schema (EPS) for the first time, to the best of our knowledge. Our schema is an index of binary strings that expresses the similarity of an elitist population at every string position. EPS expresses the accumulative effect of fitness selection with respect to the coding similarity of the population. For each generation, EPS can quantify the coding similarity of the population objectively and quickly. One of our key innovations is that EPS can continuously predict promising solutions while simultaneously escaping from local optima in most cases. To demonstrate the abilities of the EPS, we designed an elitist probability schema genetic algorithm and an elitist probability schema compact genetic algorithm. These algorithms are estimations of distribution algorithms (EDAs). We provided a fair comparison with the persistent elitist compact genetic algorithm (PeCGA), quantum-inspired evolutionary algorithm (QEA), and particle swarm optimization (PSO) for the 0-1 knapsack problem. The proposed algorithms converged quicker than PeCGA, QEA, and PSO, especially for the large knapsack problem. Furthermore, the computation time of the proposed algorithms was less than some EDAs that are based on building explicit probability models, and was approximately the same as QEA and PSO. This is acceptable for evolutionary algorithms, and satisfactory for EDAs. The proposed algorithms are successful with respect to convergence performance and computation time, which implies that EPS is satisfactory.[PUBLICATION ABSTRACT] |
| Author | Tang, Bi-Hua Liu, Yuan-An Liu, Kai-Ming Zhang, Hong-Guang |
| Author_xml | – sequence: 1 givenname: Hong-Guang surname: Zhang fullname: Zhang, Hong-Guang email: hongguang-zhang@bupt.edu.cn organization: School of Electronic Engineering, Beijing University of Posts and Telecommunications – sequence: 2 givenname: Yuan-An surname: Liu fullname: Liu, Yuan-An organization: School of Electronic Engineering, Beijing University of Posts and Telecommunications – sequence: 3 givenname: Bi-Hua surname: Tang fullname: Tang, Bi-Hua organization: School of Electronic Engineering, Beijing University of Posts and Telecommunications – sequence: 4 givenname: Kai-Ming surname: Liu fullname: Liu, Kai-Ming organization: School of Electronic Engineering, Beijing University of Posts and Telecommunications |
| BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=28428196$$DView record in Pascal Francis |
| BookMark | eNp9kU9rFTEUxYNU8LX6AdwFRHAzmn8zkyxLsVoouOnCXbjNJH0pecmYmyf22zfPV0QKurpc-J1zT3JOyUku2RPylrOPnLH5E3KmtBkYlwNTRg3mBdnwcZbDrMx8QjbMCDVMk_n-ipwi3jPGpGR8Q_x5pv7XmkqFVuoDrR49VLelJVCfYovY6FrLLdzGvj1QdFu_Awp5obEhhXVN0UGLJSON3epnSfvDBt0L0l2psW13-Jq8DJDQv3maZ-Tm8vPNxdfh-tuXq4vz68HJ2bRhDGZmY9AK2BK08EIExWCcAhg28xD0or0R0yJgBiMdV5OQQS0cHA9KgjwjH462PfGPvcdmdxGdTwmyL3u0fFRcyXEcZUffPUPvy77mHq5TgulJaWE69f6JAnSQQoXsItq1xl1_oBVaCc3N1Dl-5FwtiNWHPwhn9tCPPfZjez_20I89eM_PNC623z_ZKsT0X6U4KrFfyXe-_pX9n6JHtC6ndA |
| CitedBy_id | crossref_primary_10_1007_s00500_016_2209_8 |
| Cites_doi | 10.1007/BF01594945 10.1007/s11721-007-0002-0 10.1007/s10489-011-0278-z 10.1007/s10489-011-0321-0 10.1016/j.asoc.2009.08.037 10.1016/j.ejor.2004.08.004 10.1109/TEVC.2002.804320 10.1016/j.asoc.2012.11.048 10.1287/opre.47.4.570 10.1023/A:1013500812258 10.1007/s12293-012-0075-1 10.1007/978-1-4471-0819-1_39 10.1109/TEVC.2003.814633 10.1007/BF00871895 10.1109/TEVC.2007.892762 10.1162/evco.1999.7.3.231 10.1109/MCS.2002.1004010 10.1023/A:1011286929823 10.1007/s10489-012-0364-x 10.1109/4235.797971 10.1007/s10489-010-0223-6 10.1109/ICNN.1995.488968 10.1007/BF02078647 10.1023/A:1009689913453 10.1109/TEVC.2009.2033580 10.1016/j.asoc.2011.01.010 10.1162/106365600750078808 10.1287/mnsc.45.3.414 10.1007/s10489-012-0420-6 |
| ContentType | Journal Article |
| Copyright | Springer Science+Business Media New York 2014 2015 INIST-CNRS |
| Copyright_xml | – notice: Springer Science+Business Media New York 2014 – notice: 2015 INIST-CNRS |
| DBID | AAYXX CITATION IQODW 3V. 7SC 7WY 7WZ 7XB 87Z 8AL 8FD 8FE 8FG 8FK 8FL ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BEZIV BGLVJ CCPQU DWQXO FRNLG F~G GNUQQ HCIFZ JQ2 K60 K6~ K7- L.- L6V L7M L~C L~D M0C M0N M7S P5Z P62 PHGZM PHGZT PKEHL PQBIZ PQBZA PQEST PQGLB PQQKQ PQUKI PRINS PSYQQ PTHSS Q9U |
| DOI | 10.1007/s10489-013-0494-9 |
| DatabaseName | CrossRef Pascal-Francis ProQuest Central (Corporate) Computer and Information Systems Abstracts ABI/INFORM Collection ABI/INFORM Global (PDF only) ProQuest Central (purchase pre-March 2016) ABI/INFORM Collection Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ABI/INFORM Collection (Alumni Edition) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Business Premium Collection ProQuest Technology Collection ProQuest One ProQuest Central Korea Business Premium Collection (Alumni) ABI/INFORM Global (Corporate) ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection ProQuest Business Collection (Alumni Edition) ProQuest Business Collection Computer Science Database ABI/INFORM Professional Advanced ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional ABI/INFORM Global Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Business ProQuest One Business (Alumni) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest One Psychology Engineering Collection ProQuest Central Basic |
| DatabaseTitle | CrossRef ProQuest Business Collection (Alumni Edition) ProQuest One Psychology Computer Science Database ProQuest Central Student ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China ABI/INFORM Complete ProQuest One Applied & Life Sciences ProQuest Central (New) Engineering Collection Advanced Technologies & Aerospace Collection Business Premium Collection ABI/INFORM Global Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest Business Collection ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ABI/INFORM Global (Corporate) ProQuest One Business Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest Central ABI/INFORM Professional Advanced ProQuest Engineering Collection ProQuest Central Korea Advanced Technologies Database with Aerospace ABI/INFORM Complete (Alumni Edition) ProQuest Computing ABI/INFORM Global (Alumni Edition) ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection ProQuest One Business (Alumni) ProQuest Central (Alumni) Business Premium Collection (Alumni) |
| DatabaseTitleList | ProQuest Business Collection (Alumni Edition) Computer and Information Systems Abstracts |
| Database_xml | – sequence: 1 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Computer Science Applied Sciences Physics |
| EISSN | 1573-7497 |
| EndPage | 709 |
| ExternalDocumentID | 3294293891 28428196 10_1007_s10489_013_0494_9 |
| Genre | Feature |
| GroupedDBID | -4Z -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 1N0 1SB 2.D 203 23M 28- 2J2 2JN 2JY 2KG 2LR 2P1 2VQ 2~H 30V 3V. 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 77K 7WY 8FE 8FG 8FL 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AAOBN AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTV ABHLI ABHQN ABIVO ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTAH ABTEG ABTHY ABTKH ABTMW ABULA ABUWG ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN AZQEC B-. BA0 BBWZM BDATZ BENPR BEZIV BGLVJ BGNMA BPHCQ BSONS CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DWQXO EBLON EBS EIOEI EJD ESBYG FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRNLG FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNUQQ GNWQR GQ6 GQ7 GQ8 GROUPED_ABI_INFORM_COMPLETE GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ K60 K6V K6~ K7- KDC KOV KOW L6V LAK LLZTM M0C M0N M4Y M7S MA- N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PQBIZ PQBZA PQQKQ PROAC PSYQQ PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCJ SCLPG SCO SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7X Z7Z Z81 Z83 Z88 Z8M Z8N Z8R Z8T Z8U Z8W Z92 ZMTXR ZY4 ~A9 ~EX 77I AAPKM AAYXX ABBRH ABDBE ABFSG ABRTQ ACSTC ADHKG ADKFA AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT PQGLB PUEGO IQODW 7SC 7XB 8AL 8FD 8FK JQ2 L.- L7M L~C L~D PKEHL PQEST PQUKI PRINS Q9U |
| ID | FETCH-LOGICAL-c379t-5f9705f84a0df82e22f40a56fa9071ff8d8e926d2a7a93c14623f4d1ac1f43a3 |
| IEDL.DBID | BENPR |
| ISSN | 0924-669X |
| IngestDate | Fri Sep 05 10:45:34 EDT 2025 Fri Jul 25 11:04:46 EDT 2025 Wed Apr 02 07:37:51 EDT 2025 Wed Oct 01 04:09:40 EDT 2025 Thu Apr 24 22:56:37 EDT 2025 Fri Feb 21 02:26:48 EST 2025 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | Coding similarity Genetic algorithm Evolutionary algorithm Elitist probability schema Estimation of distribution algorithm Local search Probabilistic approach Internet protocol Elitism Modeling Particle swarm optimization Knapsack problem Quantum computation Innovation Character string Swarm intelligence |
| Language | English |
| License | http://www.springer.com/tdm CC BY 4.0 |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c379t-5f9705f84a0df82e22f40a56fa9071ff8d8e926d2a7a93c14623f4d1ac1f43a3 |
| Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1520864829 |
| PQPubID | 326365 |
| PageCount | 15 |
| ParticipantIDs | proquest_miscellaneous_1541435553 proquest_journals_1520864829 pascalfrancis_primary_28428196 crossref_primary_10_1007_s10489_013_0494_9 crossref_citationtrail_10_1007_s10489_013_0494_9 springer_journals_10_1007_s10489_013_0494_9 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2014-06-01 |
| PublicationDateYYYYMMDD | 2014-06-01 |
| PublicationDate_xml | – month: 06 year: 2014 text: 2014-06-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationPlace | Boston |
| PublicationPlace_xml | – name: Boston – name: Boston, MA |
| PublicationSubtitle | The International Journal of Artificial Intelligence, Neural Networks, and Complex Problem-Solving Technologies |
| PublicationTitle | Applied intelligence (Dordrecht, Netherlands) |
| PublicationTitleAbbrev | Appl Intell |
| PublicationYear | 2014 |
| Publisher | Springer US Kluwer Springer Nature B.V |
| Publisher_xml | – name: Springer US – name: Kluwer – name: Springer Nature B.V |
| References | Han KH (2003) Quantum-inspired evolutionary algorithm. Dissertation, Korea Advanced Institute of Science and Technology AhnCWRamakrishnaRSElitism-based compact genetic algorithmsIEEE Trans Evol Comput2003736738510.1109/TEVC.2003.814633 Fogel LJ (1964) On the organization of intellect. Dissertation, University of California BirattariMPellegriniPDorigoMOn the invariance of ant colony optimizationIEEE Trans Evol Comput20071173274210.1109/TEVC.2007.892762 TruongTKLiKLXuYMChemical reaction optimization with greedy strategy for the 0–1 knapsack problemAppl Soft Comput2013131774178010.1016/j.asoc.2012.11.048 GloverFTaillardEWerraDDA user’s guide to tabu searchAnn Oper Res19934112810.1007/BF02078647 GloverFLagunaMMartíRFundamentals of scatter search and path relinkingControl Cybern2000296536840983.90077 KennethPDifferential evolution vs. the functions of the 2nd ICEOProc ICEC’971997153157 Sastry K, Goldberg DE (2000) On extended compact genetic algorithm. IIIiGAL Report No. 2000026, Illinois Genetic Algorithms Lab HedarARAliAFTabu search with multi-level neighborhood structures for high dimensional problemsAppl Intell20123718920610.1007/s10489-011-0321-0 MühlenbeinHMahnigTRodriguezASchemata, distributions and graphical models in evolutionary optimizationJ Heuristics1999521524710.1023/A:10096899134530938.90035 PassinoKMBiomimicry of bacterial foraging for distributed optimization and controlIEEE Control Syst Mag200222526710.1109/MCS.2002.1004010 PelikanMMühlenbeinHThe bivariate marginal distribution algorithmAdvances in soft computing—engineering design and manufacturing1999521535 PisingerDCore problems in knapsack algorithmsOper Res19994757057510.1287/opre.47.4.5700979.900911710950 KennedyJEberhartRA discrete binary version of the particle swarm algorithmProc IEEE int conf syst man cybern199741044108 MühlenbeinHPaassGFrom recombination of genes to the estimation of distributions I. Binary parametersProc int conf evol comput parallel problem solving from nature—PPSN IV1996178187 AlipouriYPoshtanJA modification to classical evolutionary programming by shifting strategy parametersAppl Intell20133817519210.1007/s10489-012-0364-x BalujaSDaviesSUsing optimal dependency-trees for combinatorial optimization: learning the structure of the search spaceProc int conf mach learn19973038 MartelloSPisingerDTothPDynamic programming and strong bounds for the 0–1 knapsack problemManag Sci19994541442410.1287/mnsc.45.3.4141231.90338 KangMHChoiHRKimHSParkBJDevelopment of a maritime transportation planning support system for car carriers based on genetic algorithmAppl Intell20123658560410.1007/s10489-011-0278-z RainerSKennethPDifferential evolution—a simple and efficient heuristic for global optimization over continuous spacesJ Glob Optim19974341359 HanKHParkKHLeeCHKimJHParallel quantum-inspired genetic algorithm for combinatorial optimization problemProc ICEC’01200114221429 DekkersAAartsEGlobal optimization and simulated annealingMath Program19915036739310.1007/BF015949450753.900601114238 LiangKHYaoXNewtonCSAdapting self-adaptive parameters in evolutionary algorithmsAppl Intell20011517118010.1023/A:10112869298230992.68231 KumarRSinghPKAssessing solution quality of biobjective 0–1 knapsack problem using evolutionary and heuristic algorithmsAppl Soft Comput20101071171810.1016/j.asoc.2009.08.037 HarikGRLoboFGGoldbergDEThe compact genetic algorithmIEEE Trans Evol Comput1999328729710.1109/4235.797971 Brunel University website (2013). http://people.brunel.ac.uk/~mastjjb/jeb/info.html LamAYSLiVOKChemical-reaction-inspired metaheuristic for optimizationIEEE Trans Evol Comput20101438139910.1109/TEVC.2009.2033580 De BonetJSLsbellCLViolaJPMIMIC: finding optima by estimating probability densitiesAdv Neural Inf Process Syst19979424431 Florida State University website (2013). http://people.sc.fsu.edu/~jburkardt/datasets/knapsack_01/knapsack_01.html HasanzadehMMeybodiMREbadzadehMMAdaptive cooperative particle swarm optimizerAppl Intell20133939742010.1007/s10489-012-0420-6 Zitzler E (1999) Evolutionary algorithms for multiobjective optimization: methods and applications. Dissertation, Swiss Federal Institute of Technology Zurich BalujaSDaviesSFast probabilistic modeling for combinatorial optimizationProc 15th national conf artif intell1998469476 KreherDLStinsonDRCombinatorial algorithms: generation, enumeration and search1998Boca RatonCRC Press PoliRKennedyJBlackwellTParticle swarm optimizationSwarm Intell20071335710.1007/s11721-007-0002-0 University of Copenhagen website (2013). http://www.diku.dk/~pisinger/gen2.c HanKHKimJHQuantum-inspired evolutionary algorithm for a class of combinatorial optimizationIEEE Trans Evol Comput2002658059310.1109/TEVC.2002.804320 LagunaMBarnesJWGloverFIntelligent scheduling with tabu search: an application to jobs with linear delay penalties and sequence-dependent setup costs and timesAppl Intell1993315917210.1007/BF00871895 KennedyJEberhartRParticle swarm optimizationProc IEEE int conf neural netw199519421948 LamAYSLiVOKChemical reaction optimization: a tutorialMemetic Comp2012431710.1007/s12293-012-0075-1 HanKHKimJHOn setting the parameters of quantum-inspired evolutionary algorithm for practical applicationProc ICEC’032003178194 LeeJYKimMSLeeJJCompact genetic algorithms using belief vectorsAppl Soft Comput2011113385340110.1016/j.asoc.2011.01.010 PelikanMGoldbergDELoboFGA survey of optimization by building and using probabilistic modelsComput Optim Appl20022152010.1023/A:10135008122580988.900521883087 HarikGRCantú-PazEGoldbergDEThe gambler’s ruin problem, genetic algorithms, and the sizing of populationsEvol Comput1999723125310.1162/evco.1999.7.3.231 MartelloSTothPKnapsack problem: algorithms and computer implementations1990New YorkWiley0708.68002 ChoJHKimHSChoiHRAn intermodal transport network planning algorithm using dynamic programming—a case study: from Busan to Rotterdam in intermodal freight routingAppl Intell20123652954110.1007/s10489-010-0223-6 MartíRLagunaMGloverFPrinciples of scatter searchEur J Oper Res200616935937210.1016/j.ejor.2004.08.0041079.90178 HollandJHAdaptation in natural and artificial systems1975CambridgeMIT Press GoldbergDEKorbBDebKMessy genetic algorithm: motivation, analysis, and first resultsComplex Syst198934935300727.680971102541 PelikanMGoldbergDECantú-pazEELinkage problem, distribution estimation, and Bayesian networksEvol Comput2000831134010.1162/106365600750078808 F Glover (494_CR8) 1993; 41 JS Bonet De (494_CR28) 1997; 9 494_CR43 R Poli (494_CR13) 2007; 1 D Pisinger (494_CR48) 1999; 47 494_CR42 AR Hedar (494_CR10) 2012; 37 S Rainer (494_CR4) 1997; 4 KM Passino (494_CR23) 2002; 22 M Pelikan (494_CR39) 2002; 21 S Martello (494_CR45) 1990 R Kumar (494_CR49) 2010; 10 S Baluja (494_CR30) 1998 JH Holland (494_CR1) 1975 494_CR35 494_CR5 F Glover (494_CR21) 2000; 29 494_CR50 P Kenneth (494_CR3) 1997 494_CR46 GR Harik (494_CR34) 1999; 3 KH Han (494_CR19) 2003 H Mühlenbein (494_CR27) 1996 M Hasanzadeh (494_CR14) 2013; 39 KH Han (494_CR17) 2001 DL Kreher (494_CR44) 1998 KH Han (494_CR18) 2002; 6 MH Kang (494_CR40) 2012; 36 GR Harik (494_CR33) 1999; 7 J Kennedy (494_CR11) 1995 494_CR20 JH Cho (494_CR41) 2012; 36 A Dekkers (494_CR16) 1991; 50 S Martello (494_CR47) 1999; 45 AYS Lam (494_CR25) 2012; 4 CW Ahn (494_CR36) 2003; 7 M Laguna (494_CR9) 1993; 3 J Kennedy (494_CR12) 1997 R Martí (494_CR22) 2006; 169 S Baluja (494_CR29) 1997 M Pelikan (494_CR31) 1999 AYS Lam (494_CR24) 2010; 14 M Pelikan (494_CR38) 2000; 8 JY Lee (494_CR37) 2011; 11 TK Truong (494_CR26) 2013; 13 M Birattari (494_CR15) 2007; 11 DE Goldberg (494_CR2) 1989; 3 KH Liang (494_CR7) 2001; 15 Y Alipouri (494_CR6) 2013; 38 H Mühlenbein (494_CR32) 1999; 5 |
| References_xml | – reference: KennedyJEberhartRParticle swarm optimizationProc IEEE int conf neural netw199519421948 – reference: PisingerDCore problems in knapsack algorithmsOper Res19994757057510.1287/opre.47.4.5700979.900911710950 – reference: KennedyJEberhartRA discrete binary version of the particle swarm algorithmProc IEEE int conf syst man cybern199741044108 – reference: Sastry K, Goldberg DE (2000) On extended compact genetic algorithm. IIIiGAL Report No. 2000026, Illinois Genetic Algorithms Lab – reference: BirattariMPellegriniPDorigoMOn the invariance of ant colony optimizationIEEE Trans Evol Comput20071173274210.1109/TEVC.2007.892762 – reference: KumarRSinghPKAssessing solution quality of biobjective 0–1 knapsack problem using evolutionary and heuristic algorithmsAppl Soft Comput20101071171810.1016/j.asoc.2009.08.037 – reference: HasanzadehMMeybodiMREbadzadehMMAdaptive cooperative particle swarm optimizerAppl Intell20133939742010.1007/s10489-012-0420-6 – reference: GloverFLagunaMMartíRFundamentals of scatter search and path relinkingControl Cybern2000296536840983.90077 – reference: PelikanMMühlenbeinHThe bivariate marginal distribution algorithmAdvances in soft computing—engineering design and manufacturing1999521535 – reference: HanKHKimJHOn setting the parameters of quantum-inspired evolutionary algorithm for practical applicationProc ICEC’032003178194 – reference: HedarARAliAFTabu search with multi-level neighborhood structures for high dimensional problemsAppl Intell20123718920610.1007/s10489-011-0321-0 – reference: De BonetJSLsbellCLViolaJPMIMIC: finding optima by estimating probability densitiesAdv Neural Inf Process Syst19979424431 – reference: RainerSKennethPDifferential evolution—a simple and efficient heuristic for global optimization over continuous spacesJ Glob Optim19974341359 – reference: Zitzler E (1999) Evolutionary algorithms for multiobjective optimization: methods and applications. Dissertation, Swiss Federal Institute of Technology Zurich – reference: ChoJHKimHSChoiHRAn intermodal transport network planning algorithm using dynamic programming—a case study: from Busan to Rotterdam in intermodal freight routingAppl Intell20123652954110.1007/s10489-010-0223-6 – reference: HanKHKimJHQuantum-inspired evolutionary algorithm for a class of combinatorial optimizationIEEE Trans Evol Comput2002658059310.1109/TEVC.2002.804320 – reference: KangMHChoiHRKimHSParkBJDevelopment of a maritime transportation planning support system for car carriers based on genetic algorithmAppl Intell20123658560410.1007/s10489-011-0278-z – reference: LagunaMBarnesJWGloverFIntelligent scheduling with tabu search: an application to jobs with linear delay penalties and sequence-dependent setup costs and timesAppl Intell1993315917210.1007/BF00871895 – reference: PoliRKennedyJBlackwellTParticle swarm optimizationSwarm Intell20071335710.1007/s11721-007-0002-0 – reference: MartíRLagunaMGloverFPrinciples of scatter searchEur J Oper Res200616935937210.1016/j.ejor.2004.08.0041079.90178 – reference: Han KH (2003) Quantum-inspired evolutionary algorithm. Dissertation, Korea Advanced Institute of Science and Technology – reference: AhnCWRamakrishnaRSElitism-based compact genetic algorithmsIEEE Trans Evol Comput2003736738510.1109/TEVC.2003.814633 – reference: Florida State University website (2013). http://people.sc.fsu.edu/~jburkardt/datasets/knapsack_01/knapsack_01.html – reference: PelikanMGoldbergDECantú-pazEELinkage problem, distribution estimation, and Bayesian networksEvol Comput2000831134010.1162/106365600750078808 – reference: Brunel University website (2013). http://people.brunel.ac.uk/~mastjjb/jeb/info.html – reference: LiangKHYaoXNewtonCSAdapting self-adaptive parameters in evolutionary algorithmsAppl Intell20011517118010.1023/A:10112869298230992.68231 – reference: TruongTKLiKLXuYMChemical reaction optimization with greedy strategy for the 0–1 knapsack problemAppl Soft Comput2013131774178010.1016/j.asoc.2012.11.048 – reference: LamAYSLiVOKChemical reaction optimization: a tutorialMemetic Comp2012431710.1007/s12293-012-0075-1 – reference: HollandJHAdaptation in natural and artificial systems1975CambridgeMIT Press – reference: MartelloSPisingerDTothPDynamic programming and strong bounds for the 0–1 knapsack problemManag Sci19994541442410.1287/mnsc.45.3.4141231.90338 – reference: Fogel LJ (1964) On the organization of intellect. Dissertation, University of California – reference: DekkersAAartsEGlobal optimization and simulated annealingMath Program19915036739310.1007/BF015949450753.900601114238 – reference: GloverFTaillardEWerraDDA user’s guide to tabu searchAnn Oper Res19934112810.1007/BF02078647 – reference: MartelloSTothPKnapsack problem: algorithms and computer implementations1990New YorkWiley0708.68002 – reference: PassinoKMBiomimicry of bacterial foraging for distributed optimization and controlIEEE Control Syst Mag200222526710.1109/MCS.2002.1004010 – reference: BalujaSDaviesSUsing optimal dependency-trees for combinatorial optimization: learning the structure of the search spaceProc int conf mach learn19973038 – reference: KennethPDifferential evolution vs. the functions of the 2nd ICEOProc ICEC’971997153157 – reference: LeeJYKimMSLeeJJCompact genetic algorithms using belief vectorsAppl Soft Comput2011113385340110.1016/j.asoc.2011.01.010 – reference: PelikanMGoldbergDELoboFGA survey of optimization by building and using probabilistic modelsComput Optim Appl20022152010.1023/A:10135008122580988.900521883087 – reference: MühlenbeinHMahnigTRodriguezASchemata, distributions and graphical models in evolutionary optimizationJ Heuristics1999521524710.1023/A:10096899134530938.90035 – reference: LamAYSLiVOKChemical-reaction-inspired metaheuristic for optimizationIEEE Trans Evol Comput20101438139910.1109/TEVC.2009.2033580 – reference: HarikGRLoboFGGoldbergDEThe compact genetic algorithmIEEE Trans Evol Comput1999328729710.1109/4235.797971 – reference: AlipouriYPoshtanJA modification to classical evolutionary programming by shifting strategy parametersAppl Intell20133817519210.1007/s10489-012-0364-x – reference: BalujaSDaviesSFast probabilistic modeling for combinatorial optimizationProc 15th national conf artif intell1998469476 – reference: MühlenbeinHPaassGFrom recombination of genes to the estimation of distributions I. Binary parametersProc int conf evol comput parallel problem solving from nature—PPSN IV1996178187 – reference: KreherDLStinsonDRCombinatorial algorithms: generation, enumeration and search1998Boca RatonCRC Press – reference: GoldbergDEKorbBDebKMessy genetic algorithm: motivation, analysis, and first resultsComplex Syst198934935300727.680971102541 – reference: HarikGRCantú-PazEGoldbergDEThe gambler’s ruin problem, genetic algorithms, and the sizing of populationsEvol Comput1999723125310.1162/evco.1999.7.3.231 – reference: HanKHParkKHLeeCHKimJHParallel quantum-inspired genetic algorithm for combinatorial optimization problemProc ICEC’01200114221429 – reference: University of Copenhagen website (2013). http://www.diku.dk/~pisinger/gen2.c – volume: 4 start-page: 341 year: 1997 ident: 494_CR4 publication-title: J Glob Optim – volume: 50 start-page: 367 year: 1991 ident: 494_CR16 publication-title: Math Program doi: 10.1007/BF01594945 – volume: 1 start-page: 33 year: 2007 ident: 494_CR13 publication-title: Swarm Intell doi: 10.1007/s11721-007-0002-0 – ident: 494_CR50 – volume: 36 start-page: 585 year: 2012 ident: 494_CR40 publication-title: Appl Intell doi: 10.1007/s10489-011-0278-z – volume: 37 start-page: 189 year: 2012 ident: 494_CR10 publication-title: Appl Intell doi: 10.1007/s10489-011-0321-0 – volume: 10 start-page: 711 year: 2010 ident: 494_CR49 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2009.08.037 – volume: 29 start-page: 653 year: 2000 ident: 494_CR21 publication-title: Control Cybern – volume: 169 start-page: 359 year: 2006 ident: 494_CR22 publication-title: Eur J Oper Res doi: 10.1016/j.ejor.2004.08.004 – volume: 6 start-page: 580 year: 2002 ident: 494_CR18 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2002.804320 – ident: 494_CR20 – volume: 3 start-page: 493 year: 1989 ident: 494_CR2 publication-title: Complex Syst – volume: 13 start-page: 1774 year: 2013 ident: 494_CR26 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2012.11.048 – ident: 494_CR35 – volume: 47 start-page: 570 year: 1999 ident: 494_CR48 publication-title: Oper Res doi: 10.1287/opre.47.4.570 – volume: 21 start-page: 5 year: 2002 ident: 494_CR39 publication-title: Comput Optim Appl doi: 10.1023/A:1013500812258 – volume: 4 start-page: 3 year: 2012 ident: 494_CR25 publication-title: Memetic Comp doi: 10.1007/s12293-012-0075-1 – start-page: 30 volume-title: Proc int conf mach learn year: 1997 ident: 494_CR29 – start-page: 521 volume-title: Advances in soft computing—engineering design and manufacturing year: 1999 ident: 494_CR31 doi: 10.1007/978-1-4471-0819-1_39 – volume: 7 start-page: 367 year: 2003 ident: 494_CR36 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2003.814633 – volume: 3 start-page: 159 year: 1993 ident: 494_CR9 publication-title: Appl Intell doi: 10.1007/BF00871895 – volume: 11 start-page: 732 year: 2007 ident: 494_CR15 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2007.892762 – volume: 7 start-page: 231 year: 1999 ident: 494_CR33 publication-title: Evol Comput doi: 10.1162/evco.1999.7.3.231 – volume: 22 start-page: 52 year: 2002 ident: 494_CR23 publication-title: IEEE Control Syst Mag doi: 10.1109/MCS.2002.1004010 – start-page: 153 volume-title: Proc ICEC’97 year: 1997 ident: 494_CR3 – volume: 15 start-page: 171 year: 2001 ident: 494_CR7 publication-title: Appl Intell doi: 10.1023/A:1011286929823 – ident: 494_CR42 – volume: 38 start-page: 175 year: 2013 ident: 494_CR6 publication-title: Appl Intell doi: 10.1007/s10489-012-0364-x – volume-title: Adaptation in natural and artificial systems year: 1975 ident: 494_CR1 – start-page: 178 volume-title: Proc int conf evol comput parallel problem solving from nature—PPSN IV year: 1996 ident: 494_CR27 – start-page: 4104 volume-title: Proc IEEE int conf syst man cybern year: 1997 ident: 494_CR12 – volume: 3 start-page: 287 year: 1999 ident: 494_CR34 publication-title: IEEE Trans Evol Comput doi: 10.1109/4235.797971 – volume: 36 start-page: 529 year: 2012 ident: 494_CR41 publication-title: Appl Intell doi: 10.1007/s10489-010-0223-6 – ident: 494_CR5 – start-page: 1942 volume-title: Proc IEEE int conf neural netw year: 1995 ident: 494_CR11 doi: 10.1109/ICNN.1995.488968 – volume-title: Combinatorial algorithms: generation, enumeration and search year: 1998 ident: 494_CR44 – start-page: 1422 volume-title: Proc ICEC’01 year: 2001 ident: 494_CR17 – volume: 41 start-page: 1 year: 1993 ident: 494_CR8 publication-title: Ann Oper Res doi: 10.1007/BF02078647 – volume: 5 start-page: 215 year: 1999 ident: 494_CR32 publication-title: J Heuristics doi: 10.1023/A:1009689913453 – ident: 494_CR46 – start-page: 178 volume-title: Proc ICEC’03 year: 2003 ident: 494_CR19 – volume: 14 start-page: 381 year: 2010 ident: 494_CR24 publication-title: IEEE Trans Evol Comput doi: 10.1109/TEVC.2009.2033580 – start-page: 469 volume-title: Proc 15th national conf artif intell year: 1998 ident: 494_CR30 – volume: 11 start-page: 3385 year: 2011 ident: 494_CR37 publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2011.01.010 – volume-title: Knapsack problem: algorithms and computer implementations year: 1990 ident: 494_CR45 – volume: 8 start-page: 311 year: 2000 ident: 494_CR38 publication-title: Evol Comput doi: 10.1162/106365600750078808 – volume: 45 start-page: 414 year: 1999 ident: 494_CR47 publication-title: Manag Sci doi: 10.1287/mnsc.45.3.414 – volume: 39 start-page: 397 year: 2013 ident: 494_CR14 publication-title: Appl Intell doi: 10.1007/s10489-012-0420-6 – volume: 9 start-page: 424 year: 1997 ident: 494_CR28 publication-title: Adv Neural Inf Process Syst – ident: 494_CR43 |
| SSID | ssj0003301 |
| Score | 1.9936752 |
| Snippet | An important problem in the study of evolutionary algorithms is how to continuously predict promising solutions while simultaneously escaping from local... |
| SourceID | proquest pascalfrancis crossref springer |
| SourceType | Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 695 |
| SubjectTerms | Algorithmics. Computability. Computer arithmetics Algorithms Applied sciences Artificial Intelligence Classical and quantum physics: mechanics and fields Computer Science Computer science; control theory; systems Elitism EPS Equipments and installations Evolutionary algorithms Exact sciences and technology Genetic algorithms Knapsack problem Machines Manufacturing Mathematical models Mechanical Engineering Mobile radiocommunication systems Optimization algorithms Physics Population Probability distribution Processes Quantum computation Quantum information Radiocommunications Similarity Strings Swarm intelligence Telecommunications Telecommunications and information theory Theoretical computing |
| SummonAdditionalLinks | – databaseName: SpringerLink Journals (ICM) dbid: U2A link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1bS8MwFA46XwTxLlbniOCTUmiT9JLHIY4h6NMGeytpmrjB1o61E_z3nvTmJir43ORQ-iUn3-l3cg5Cd1IGoesT14aozbEZYeAHY0ptxrVn_luwuCyk_fLqD8fseeJN6nvceZPt3kiSpafeuOzGTHqP6UbAOLP5LtrzTDUvWMRj0m_dLwToZZs8CCxs3-eTRsr8ycTWYXSwFDl8F101tNhinN9E0vLsGRyjw5o04n6F8gnaUekpOmoaMuB6f54h1U-xKpPqSu0c15V8pjjTWJk8t7zApoNMVZv7A0NkqxYCizTBsyLHm2I2noGp93pdCrAl5m_ZalZMF_k5Gg2eRo9Du-6jYEsa8ML2NA8cT4dMOIkOiSJEM0d4vhYQGbtah0moOPETIgLBqQTfSahmiSukqxkV9AJ10ixVlwiLWNMkDhMgNRIiHTDIAwBbSpZwYJbSQk7zPSNZ1xg3rS7m0Vd1ZANBBBBEBoKIW-i-nbKsCmz8Nbi3BVI7Aw5Zowj6Fuo2qEX1ZswjoCgQuLGQwPzb9jFsI6ONiFRlazOGGeboedRCDw3aGyZ-e6Orf42-RvtAuFiVatZFnWK1VjdAaoq4Vy7iT-Zp7q0 priority: 102 providerName: Springer Nature |
| Title | An exploratory research of elitist probability schema and its applications in evolutionary algorithms |
| URI | https://link.springer.com/article/10.1007/s10489-013-0494-9 https://www.proquest.com/docview/1520864829 https://www.proquest.com/docview/1541435553 |
| Volume | 40 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVLSH databaseName: SpringerLink Journals customDbUrl: mediaType: online eissn: 1573-7497 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: AFBBN dateStart: 19970101 isFulltext: true providerName: Library Specific Holdings – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1573-7497 dateEnd: 20171231 omitProxy: true ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: BENPR dateStart: 19970101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1573-7497 dateEnd: 20241103 omitProxy: true ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: 8FG dateStart: 19970101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest – providerCode: PRVAVX databaseName: SpringerLINK - Czech Republic Consortium customDbUrl: eissn: 1573-7497 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: AGYKE dateStart: 19970101 isFulltext: true titleUrlDefault: http://link.springer.com providerName: Springer Nature – providerCode: PRVAVX databaseName: SpringerLink Journals (ICM) customDbUrl: eissn: 1573-7497 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003301 issn: 0924-669X databaseCode: U2A dateStart: 19970101 isFulltext: true titleUrlDefault: http://www.springerlink.com/journals/ providerName: Springer Nature |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3da9swED_a5GUw9j3mrgsa7GlDzJbkDz2MkYykZWNhjBayJyPrYy20Tla7g_33O9ly2gzWJz_IOhvd6T50p_sBvNE6L5KMJRSjtpgKJlAPVpxTIV3qzy1E1TXS_rrMjk_F51W62oPlcBfGl1UOOrFT1Gat_Rn5e7Qz6H2LgsmPm1_Uo0b57OoAoaECtIL50LUY24cx852xRjCezZffvm91M0bvHYYeRh00y-RqyHP2l-mELx_yaAdCCip3LNX9jWpw0VyPdrHjjv6TQe0M0-IRPAgeJZn2IvAY9mz9BB4OaA0kbN6nYKc1sV3FXZdYJ6HNzxlZO2J9EVzTEg8v0zfu_kMw7LWXiqjakPO2Ibcz3eQcSf0OQquQlrr4iWvVnl02z-BkMT_5dEwDyALVPJctTZ3M49QVQsXGFcwy5kSs0swpDJsT5wpTWMkyw1SuJNeoWBl3wiRKJ05wxZ_DqF7X9gUQVTluqsKgx6MxDEKCMkdJ0FoYiW6njiAe1rPUoQG5x8G4KG9aJ3sWlMiC0rOglBG83U7Z9N037np5ssOk7Qy0wD5dmEVwOHCtDDu1KW_kKoLX22HcYz5xomq7vvbvCO9WpimP4N3A7Vsk_vdHB3d_8CXcQ_dL9IVnhzBqr67tK3Rx2moC-8XiaALj6WI2W_rn0Y8v80mQZhw9ZdO_Kwb9gg |
| linkProvider | ProQuest |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gBSxRsRKMVIcAFZJLbz8KFCBVptabtCaJH2Fjl-0EptdktSUH8c_41x4my7SPTWc-xJlM-eh2c8H8BrrfMiyVhCMWqLqWAC9WDFORXSpf7cQlRdI-3DcTb6Lr5M0-kK_BnuwviyykEndorazLQ_I3-Pdga9b1Ew-WF-Rj1rlM-uDhQaKlArmK2uxVi42LFvL35jCNds7X1GvN8wtrsz-TSigWWAap7LlqZO5nHqCqFi4wpmGXMiVmnmFMaNiXOFKaxkmWEqV5Jr1CyMO2ESpRMnuOIo9hasCS4kxn5rH3fGX78tTAHnHf9yjEEOzTI5HdKq_d094auVPLmCkILKJcO4PlcNYuR6co0l7_efhG1nB3fvw93gwJLtfsU9gBVbP4R7AzkECbriEdjtmtiuwK_L45PQVeiIzByxvuauaYlns-n7hF8QjLLtqSKqNuS4bcjVxDo5RlG_wh5RKEud_EBo2qPT5jFMbuJvP4HVelbbp0BU5bipCoMOlsaoCwXKHBee1sJI9HJ1BPHwP0sd-p172o2T8rJTs4egRAhKD0EpI3i7mDLvm31cN3hzCaTFDDT4PjuZRbAxoFYGxdCUl8s4gleLx7ilfZ5G1XZ27scI78WmKY_g3YD2FRH_-6Jn17_wJdweTQ4PyoO98f5zuIOen-hr3jZgtf15bl-gd9VWm2ENEyhveNf8BXi6NRo |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1ba9VAEB5qBRHEuxitdQV9UUKT3c1lH0SK9dhaLT5UOG_LZi-20OacNqnSn-a_cyaX0x7BvvU5m0nINzuXzOx8AK-tLco052mMWVsSSy7RDlZCxFKFjP5byKobpP1tL9_-Ib9Ms-kK_BnPwlBb5WgTO0PtZpb-kW-gn8HoW5ZcbYShLeL71uTD_CQmBimqtI50Gr2K7Prz35i-Ne93thDrN5xPPu1_3I4HhoHYikK1cRZUkWShlCZxoeSe8yATk-XBYM6YhlC60iueO24Ko4RFq8JFkC41Ng1SGIFib8DNgoa40yH1yeeFExCiY15OML2J81xNx4Jqf2pPUp8S0SpIJWO15BLvzE2D6ISeVmMp7v2nVNt5wMl9uDuErmyz17UHsOLrh3BvpIVgg5V4BH6zZr5r7esq-GyYJ3TAZoF56rZrWkY8Nv2E8HOG-bU_NszUjh22DbtcUmeHKOrXsDsMyjJHPxGI9uC4eQz71_Gtn8BqPav9U2CmCsJVpcPQymK-hQJVgSpnrXQK41sbQTJ-T22HSedEuHGkL2Y0EwQaIdAEgVYRvF3cMu_HfFy1eH0JpMUd6OqpLplHsDaipgeT0OgLBY7g1eIybmaq0Jjaz85ojaT4NctEBO9GtC-J-N8bPbv6gS_hFu4V_XVnb_c53MaQT_bNbmuw2p6e-RcYVrXVeqfADPQ1b5i_A0MytA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+exploratory+research+of+elitist+probability+schema+and+its+applications+in+evolutionary+algorithms&rft.jtitle=Applied+intelligence+%28Dordrecht%2C+Netherlands%29&rft.au=ZHANG%2C+Hong-Guang&rft.au=LIU%2C+Yuan-An&rft.au=TANG%2C+Bi-Hua&rft.au=LIU%2C+Kai-Ming&rft.date=2014-06-01&rft.pub=Kluwer&rft.issn=0924-669X&rft.volume=40&rft.issue=4&rft.spage=695&rft.epage=709&rft_id=info:doi/10.1007%2Fs10489-013-0494-9&rft.externalDBID=n%2Fa&rft.externalDocID=28428196 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0924-669X&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0924-669X&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0924-669X&client=summon |