Mfn1 Deficiency in the Liver Protects Against Diet-Induced Insulin Resistance and Enhances the Hypoglycemic Effect of Metformin
Mitochondrial function can be influenced by mitochondrial shape and connectivity with other cellular organelles through fusion and fission processes. Disturbances in mitochondrial architecture and mitochondrial fusion-related genes are observed in situations of type 2 diabetes and obesity, leading t...
Saved in:
Published in | Diabetes (New York, N.Y.) Vol. 65; no. 12; pp. 3552 - 3560 |
---|---|
Main Authors | , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
American Diabetes Association
01.12.2016
|
Subjects | |
Online Access | Get full text |
ISSN | 0012-1797 1939-327X 1939-327X |
DOI | 10.2337/db15-1725 |
Cover
Abstract | Mitochondrial function can be influenced by mitochondrial shape and connectivity with other cellular organelles through fusion and fission processes. Disturbances in mitochondrial architecture and mitochondrial fusion-related genes are observed in situations of type 2 diabetes and obesity, leading to a highly fissioned mitochondrial network. To directly test the effect of reduced mitochondrial fusion on hepatic metabolism, we generated mice with a liver-specific deletion of the Mfn1 gene (Mfn1LKO) and monitored their energy homeostasis, mitochondrial function, and susceptibility to diet-induced insulin resistance. Livers from Mfn1LKO mice displayed a highly fragmented mitochondrial network. This was coupled to an enhanced mitochondrial respiration capacity and a preference for the use of lipids as the main energy source. Although Mfn1LKO mice are similar to control mice fed a low-fat diet, they are protected against insulin resistance induced by a high-fat diet. Importantly, Mfn1 deficiency increased complex I abundance and sensitized animals to the hypoglycemic effect of metformin. Our results suggest that targeting Mfn1 could provide novel avenues to ameliorate glucose homeostasis in obese patients and improve the effectiveness of metformin. |
---|---|
AbstractList | Mitochondrial function can be influenced by mitochondrial shape and connectivity with other cellular organelles through fusion and fission processes. Disturbances in mitochondrial architecture and mitochondrial fusion-related genes are observed in situations of type 2 diabetes and obesity, leading to a highly fissioned mitochondrial network. To directly test the effect of reduced mitochondrial fusion on hepatic metabolism, we generated mice with a liver-specific deletion of the Mfn1 gene (Mfn1LKO) and monitored their energy homeostasis, mitochondrial function, and susceptibility to diet-induced insulin resistance. Livers from Mfn1LKO mice displayed a highly fragmented mitochondrial network. This was coupled to an enhanced mitochondrial respiration capacity and a preference for the use of lipids as the main energy source. Although Mfn1LKO mice are similar to control mice fed a low-fat diet, they are protected against insulin resistance induced by a high-fat diet. Importantly, Mfn1 deficiency increased complex I abundance and sensitized animals to the hypoglycemic effect of metformin. Our results suggest that targeting Mfn1 could provide novel avenues to ameliorate glucose homeostasis in obese patients and improve the effectiveness of metformin. Mitochondrial function can be influenced by mitochondrial shape and connectivity with other cellular organelles through fusion and fission processes. Disturbances in mitochondrial architecture and mitochondrial fusion-related genes are observed in situations of type 2 diabetes and obesity, leading to a highly fissioned mitochondrial network. To directly test the effect of reduced mitochondrial fusion on hepatic metabolism, we generated mice with a liver-specific deletion of the Mfn1 gene (Mfn1LKO) and monitored their energy homeostasis, mitochondrial function, and susceptibility to diet-induced insulin resistance. Livers from Mfn1LKO mice displayed a highly fragmented mitochondrial network. This was coupled to an enhanced mitochondrial respiration capacity and a preference for the use of lipids as the main energy source. Although Mfn1LKO mice are similar to control mice fed a low-fat diet, they are protected against insulin resistance induced by a high-fat diet. Importantly, Mfn1 deficiency increased complex I abundance and sensitized animals to the hypoglycemic effect of metformin. Our results suggest that targeting Mfn1 could provide novel avenues to ameliorate glucose homeostasis in obese patients and improve the effectiveness of metformin.Mitochondrial function can be influenced by mitochondrial shape and connectivity with other cellular organelles through fusion and fission processes. Disturbances in mitochondrial architecture and mitochondrial fusion-related genes are observed in situations of type 2 diabetes and obesity, leading to a highly fissioned mitochondrial network. To directly test the effect of reduced mitochondrial fusion on hepatic metabolism, we generated mice with a liver-specific deletion of the Mfn1 gene (Mfn1LKO) and monitored their energy homeostasis, mitochondrial function, and susceptibility to diet-induced insulin resistance. Livers from Mfn1LKO mice displayed a highly fragmented mitochondrial network. This was coupled to an enhanced mitochondrial respiration capacity and a preference for the use of lipids as the main energy source. Although Mfn1LKO mice are similar to control mice fed a low-fat diet, they are protected against insulin resistance induced by a high-fat diet. Importantly, Mfn1 deficiency increased complex I abundance and sensitized animals to the hypoglycemic effect of metformin. Our results suggest that targeting Mfn1 could provide novel avenues to ameliorate glucose homeostasis in obese patients and improve the effectiveness of metformin. |
Author | Boutant, Marie Descombes, Patrick Maclachlan, Catherine Zorzano, Antonio Ratajczak, Joanna Hernandez-Alvarez, Maria Isabel Kulkarni, Sameer S. Gao, Arwen W. Joffraud, Magali Raymond, Frédéric Houtkooper, Riekelt H. Metairon, Sylviane Cantó, Carles |
Author_xml | – sequence: 1 givenname: Sameer S. surname: Kulkarni fullname: Kulkarni, Sameer S. organization: Nestlé Institute of Health Sciences, Lausanne, Switzerland – sequence: 2 givenname: Magali surname: Joffraud fullname: Joffraud, Magali organization: Nestlé Institute of Health Sciences, Lausanne, Switzerland – sequence: 3 givenname: Marie surname: Boutant fullname: Boutant, Marie organization: Nestlé Institute of Health Sciences, Lausanne, Switzerland – sequence: 4 givenname: Joanna surname: Ratajczak fullname: Ratajczak, Joanna organization: Nestlé Institute of Health Sciences, Lausanne, Switzerland, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland – sequence: 5 givenname: Arwen W. surname: Gao fullname: Gao, Arwen W. organization: Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, the Netherlands – sequence: 6 givenname: Catherine surname: Maclachlan fullname: Maclachlan, Catherine organization: École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland – sequence: 7 givenname: Maria Isabel surname: Hernandez-Alvarez fullname: Hernandez-Alvarez, Maria Isabel organization: Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain, Instituto de Salud Carlos III, CIBERDEM, Madrid, Spain – sequence: 8 givenname: Frédéric surname: Raymond fullname: Raymond, Frédéric organization: Nestlé Institute of Health Sciences, Lausanne, Switzerland – sequence: 9 givenname: Sylviane surname: Metairon fullname: Metairon, Sylviane organization: Nestlé Institute of Health Sciences, Lausanne, Switzerland – sequence: 10 givenname: Patrick surname: Descombes fullname: Descombes, Patrick organization: Nestlé Institute of Health Sciences, Lausanne, Switzerland – sequence: 11 givenname: Riekelt H. surname: Houtkooper fullname: Houtkooper, Riekelt H. organization: Laboratory Genetic Metabolic Diseases, Academic Medical Center, Amsterdam, the Netherlands – sequence: 12 givenname: Antonio surname: Zorzano fullname: Zorzano, Antonio organization: Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain, Departament de Bioquímica i Biologia Molecular, Facultat de Biologia, Universitat de Barcelona, Barcelona, Spain, Instituto de Salud Carlos III, CIBERDEM, Madrid, Spain – sequence: 13 givenname: Carles orcidid: 0000-0002-5167-7922 surname: Cantó fullname: Cantó, Carles organization: Nestlé Institute of Health Sciences, Lausanne, Switzerland, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/27613809$$D View this record in MEDLINE/PubMed |
BookMark | eNpt0U1rHCEYB3ApCc1m20O_QBF6SQ_T-LKj4zEk22ZhQ0JpobfBcR4Tw4xu1SnsqV-9Tl56CMHDI_Lzj_g_Rgc-eEDoAyVfGOfytO9oXVHJ6jdoQRVXFWfy1wFaEEJZOVfyCB2ndE8IEWW9RUdMCsobohbo75X1FF-AdcaBN3vsPM53gLfuD0R8E0MGkxM-u9XOp4wvHORq4_vJQI83Pk1D8d8huZS1N4C17_Ha38379JBzud-F22FvYHQGr60taThYfAXZhjg6_w4dWj0keP80l-jn1_WP88tqe_1tc362rQyXKld1J5Ux0FhGrBFSNBq4Ef2KNJQJ06-MhobKjvW16IhihQrGuCSgjaVcCr5EJ4-5uxh-T5ByO7pkYBi0hzClljYrrihRZSzRpxf0PkzRl9fNSjBJRd0U9fFJTd0IfbuLbtRx3z5_bQGfH4GJIaUI9j-hpJ1ra-fa2rm2Yk9fWOOyzi74HLUbXrnxD4NLmUU |
CODEN | DIAEAZ |
CitedBy_id | crossref_primary_10_1002_pmic_201800404 crossref_primary_10_1016_j_tem_2024_05_005 crossref_primary_10_3390_antiox9070617 crossref_primary_10_1002_jcp_31317 crossref_primary_10_15252_embj_2023114129 crossref_primary_10_1038_s41467_022_31187_6 crossref_primary_10_3390_ijms24010755 crossref_primary_10_3389_fendo_2019_00570 crossref_primary_10_3390_genes8120398 crossref_primary_10_1016_j_kint_2022_01_030 crossref_primary_10_3390_biology11060943 crossref_primary_10_1038_s41598_018_32192_w crossref_primary_10_1016_j_bbalip_2018_01_009 crossref_primary_10_1016_j_isci_2022_103996 crossref_primary_10_1016_j_mad_2020_111212 crossref_primary_10_1210_en_2018_00426 crossref_primary_10_14814_phy2_13600 crossref_primary_10_1016_j_freeradbiomed_2024_04_234 crossref_primary_10_3390_cancers13112571 crossref_primary_10_1016_j_molmet_2020_101134 crossref_primary_10_1016_j_cmet_2020_03_005 crossref_primary_10_1016_j_isci_2021_102181 crossref_primary_10_1016_j_metabol_2023_155762 crossref_primary_10_1172_jci_insight_150041 crossref_primary_10_1016_j_celrep_2021_109565 crossref_primary_10_2337_db16_0924 crossref_primary_10_3389_fphar_2025_1472804 crossref_primary_10_3724_abbs_2022146 crossref_primary_10_1016_j_ecoenv_2021_112425 crossref_primary_10_1016_j_trsl_2018_07_011 crossref_primary_10_1016_j_mito_2019_06_002 crossref_primary_10_2147_DMSO_S299570 crossref_primary_10_3389_fgene_2018_00452 crossref_primary_10_5534_wjmh_200163 crossref_primary_10_1126_sciadv_adl0389 crossref_primary_10_1016_j_cophys_2018_02_006 crossref_primary_10_3389_fendo_2023_1267170 crossref_primary_10_1097_HEP_0000000000000910 crossref_primary_10_5534_wjmh_210146 crossref_primary_10_15252_embj_201694914 crossref_primary_10_1093_cvr_cvad169 crossref_primary_10_15252_embj_2022111901 crossref_primary_10_3389_fnut_2022_915082 crossref_primary_10_1016_j_cmet_2017_05_010 crossref_primary_10_1038_s41467_022_35732_1 crossref_primary_10_1016_j_freeradbiomed_2023_11_008 crossref_primary_10_1016_j_molmed_2017_01_003 crossref_primary_10_1042_CS20190648 crossref_primary_10_1093_molehr_gaaa071 crossref_primary_10_3390_biom13081225 crossref_primary_10_1111_boc_202300010 crossref_primary_10_15252_embr_201947928 crossref_primary_10_1016_j_celrep_2020_108079 crossref_primary_10_1016_j_metabol_2021_154708 crossref_primary_10_1152_ajpendo_00104_2023 crossref_primary_10_1016_j_mito_2021_05_001 crossref_primary_10_1016_j_jsps_2024_102012 crossref_primary_10_1146_annurev_pharmtox_010716_104908 crossref_primary_10_3390_nu14122549 crossref_primary_10_1111_febs_16343 crossref_primary_10_2337_dbi23_0003 crossref_primary_10_3390_antiox10050741 |
Cites_doi | 10.1038/nature07534 10.1016/j.freeradbiomed.2004.05.034 10.1074/jbc.274.1.305 10.1016/j.molcel.2011.07.019 10.1007/s00125-015-3704-7 10.1038/nature13270 10.1016/j.cell.2013.08.032 10.1016/S0168-8278(97)82328-8 10.1083/jcb.200211046 10.1126/science.1230381 10.1152/physrev.00030.2008 10.1128/MCB.05603-11 10.1016/j.cell.2007.06.026 10.1016/j.cmet.2013.03.002 10.1126/science.1241359 10.2337/db07-1781 10.1002/emmm.201303782 10.1074/jbc.M212754200 10.1073/pnas.1108220109 10.1016/j.cmet.2012.04.010 10.1016/j.cmet.2014.09.018 10.1186/2049-3002-2-12 10.1038/nrd4023 10.1038/nm995 10.1016/j.mce.2013.05.021 10.1016/j.freeradbiomed.2011.05.010 10.1152/ajpheart.00833.2011 10.1042/CS20110386 10.1073/pnas.1504880112 10.1002/9780470942390.mo140061 10.1038/nature12188 10.1016/j.cmet.2007.10.013 10.2337/db05-0509 10.1016/j.molcel.2015.02.021 10.1038/nprot.2006.478 10.2337/db12-0466 |
ContentType | Journal Article |
Copyright | 2016 by the American Diabetes Association. Copyright American Diabetes Association Dec 1, 2016 |
Copyright_xml | – notice: 2016 by the American Diabetes Association. – notice: Copyright American Diabetes Association Dec 1, 2016 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM K9. NAPCQ 7X8 |
DOI | 10.2337/db15-1725 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) ProQuest Health & Medical Complete (Alumni) Nursing & Allied Health Premium MEDLINE - Academic |
DatabaseTitleList | ProQuest Health & Medical Complete (Alumni) MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine |
EISSN | 1939-327X |
EndPage | 3560 |
ExternalDocumentID | 4271262011 27613809 10_2337_db15_1725 |
Genre | Journal Article Feature |
GroupedDBID | --- .55 .XZ 08P 0R~ 18M 29F 2WC 354 4.4 53G 5GY 5RE 5RS 5VS 6PF 8R4 8R5 AAFWJ AAQQT AAWTL AAYEP AAYXX ABOCM ACGFO ACGOD ACPRK ADBBV AEGXH AENEX AERZD AHMBA AIAGR AIZAD ALMA_UNASSIGNED_HOLDINGS BAWUL BES BTFSW CITATION CS3 DIK DU5 E3Z EBS EDB EJD EMOBN EX3 F5P FRP GX1 H13 HZ~ IAO IEA IHR INH INR IOF IPO K2M KQ8 L7B M5~ O5R O5S O9- OHH OK1 OVD P2P PCD Q2X RHI RPM SJN SV3 TDI TEORI TR2 VVN W8F WH7 WOQ WOW X7M YFH YHG YOC ZY1 ~KM .GJ 1CY 7RV 7X7 88E 88I 8AF 8AO 8C1 8F7 8FE 8FH 8FI 8FJ 8G5 8GL AAKAS AAYJJ ABUWG ADGHP ADZCM AFFNX AFKRA AI. ALIPV AZQEC BBNVY BCR BCU BEC BENPR BHPHI BKEYQ BKNYI BLC BPHCQ BVXVI C1A CCPQU CGR CUY CVF DWQXO ECM EIF FYUFA GICCO GNUQQ GUQSH HCIFZ HMCUK H~9 IAG ITC J5H K-O K9- LK8 M0R M1P M2O M2P M2Q M7P MVM N4W NAPCQ NPM OB3 PEA PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO S0X SJFOW UKHRP VH1 XOL YQJ ZGI ZXP K9. 7X8 |
ID | FETCH-LOGICAL-c379t-5b79cce8f20fc6768ae3c6d408126cd4cae817b2d56b092cce622370eacf13763 |
ISSN | 0012-1797 1939-327X |
IngestDate | Fri Sep 05 09:31:28 EDT 2025 Fri Jul 25 19:31:47 EDT 2025 Mon Jul 21 06:00:08 EDT 2025 Thu Apr 24 22:59:00 EDT 2025 Wed Oct 01 03:49:59 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 12 |
Language | English |
License | 2016 by the American Diabetes Association. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c379t-5b79cce8f20fc6768ae3c6d408126cd4cae817b2d56b092cce622370eacf13763 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 14 ObjectType-Article-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-5167-7922 |
PMID | 27613809 |
PQID | 1846271658 |
PQPubID | 34443 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1843910984 proquest_journals_1846271658 pubmed_primary_27613809 crossref_primary_10_2337_db15_1725 crossref_citationtrail_10_2337_db15_1725 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-12-01 |
PublicationDateYYYYMMDD | 2016-12-01 |
PublicationDate_xml | – month: 12 year: 2016 text: 2016-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: New York |
PublicationTitle | Diabetes (New York, N.Y.) |
PublicationTitleAlternate | Diabetes |
PublicationYear | 2016 |
Publisher | American Diabetes Association |
Publisher_xml | – name: American Diabetes Association |
References | Wikstrom (2022031300472127700_B5) 2014; 33 Andrzejewski (2022031300472127700_B36) 2014; 2 Pyakurel (2022031300472127700_B28) 2015; 58 Koves (2022031300472127700_B17) 2008; 7 Cogliati (2022031300472127700_B38) 2013; 155 2022031300472127700_B37 Cantó (2022031300472127700_B13) 2015; 5 Frezza (2022031300472127700_B12) 2007; 2 Liesa (2022031300472127700_B3) 2009; 89 Houtkooper (2022031300472127700_B34) 2013; 497 Andreux (2022031300472127700_B2) 2013; 12 Molina (2022031300472127700_B6) 2009; 58 Chen (2022031300472127700_B8) 2003; 160 Postic (2022031300472127700_B15) 1999; 274 Foretz (2022031300472127700_B35) 2014; 20 Wang (2022031300472127700_B22) 2015; 58 Brand (2022031300472127700_B32) 2004; 37 Bach (2022031300472127700_B10) 2003; 278 Gao (2022031300472127700_B7) 2014; 6 An (2022031300472127700_B19) 2004; 10 Viollet (2022031300472127700_B20) 2012; 122 Filadi (2022031300472127700_B25) 2015; 112 Soriano (2022031300472127700_B26) 2006; 55 Ristow (2022031300472127700_B33) 2011; 51 Sebastián (2022031300472127700_B11) 2012; 109 Muoio (2022031300472127700_B16) 2012; 15 Liesa (2022031300472127700_B1) 2013; 17 Madiraju (2022031300472127700_B21) 2014; 510 de Brito (2022031300472127700_B9) 2008; 456 Hirschey (2022031300472127700_B29) 2011; 44 Schooneman (2022031300472127700_B18) 2013; 62 Fromenty (2022031300472127700_B23) 1997; 26 Chen (2022031300472127700_B14) 2007; 130 Papanicolaou (2022031300472127700_B31) 2012; 302 Jheng (2022031300472127700_B24) 2012; 32 Jiao (2022031300472127700_B30) 2013; 375 Kasahara (2022031300472127700_B4) 2013; 342 Lee (2022031300472127700_B27) 2014; 127 Lapuente-Brun (2022031300472127700_B39) 2013; 340 |
References_xml | – volume: 456 start-page: 605 year: 2008 ident: 2022031300472127700_B9 article-title: Mitofusin 2 tethers endoplasmic reticulum to mitochondria publication-title: Nature doi: 10.1038/nature07534 – volume: 37 start-page: 755 year: 2004 ident: 2022031300472127700_B32 article-title: Mitochondrial superoxide: production, biological effects, and activation of uncoupling proteins publication-title: Free Radic Biol Med doi: 10.1016/j.freeradbiomed.2004.05.034 – volume: 274 start-page: 305 year: 1999 ident: 2022031300472127700_B15 article-title: Dual roles for glucokinase in glucose homeostasis as determined by liver and pancreatic beta cell-specific gene knock-outs using Cre recombinase publication-title: J Biol Chem doi: 10.1074/jbc.274.1.305 – volume: 44 start-page: 177 year: 2011 ident: 2022031300472127700_B29 article-title: SIRT3 deficiency and mitochondrial protein hyperacetylation accelerate the development of the metabolic syndrome publication-title: Mol Cell doi: 10.1016/j.molcel.2011.07.019 – volume: 58 start-page: 2371 year: 2015 ident: 2022031300472127700_B22 article-title: Disruption of mitochondrial fission in the liver protects mice from diet-induced obesity and metabolic deterioration publication-title: Diabetologia doi: 10.1007/s00125-015-3704-7 – volume: 510 start-page: 542 year: 2014 ident: 2022031300472127700_B21 article-title: Metformin suppresses gluconeogenesis by inhibiting mitochondrial glycerophosphate dehydrogenase publication-title: Nature doi: 10.1038/nature13270 – volume: 127 start-page: 4954 year: 2014 ident: 2022031300472127700_B27 article-title: MFN1 deacetylation activates adaptive mitochondrial fusion and protects metabolically challenged mitochondria publication-title: J Cell Sci – ident: 2022031300472127700_B37 – volume: 155 start-page: 160 year: 2013 ident: 2022031300472127700_B38 article-title: Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency publication-title: Cell doi: 10.1016/j.cell.2013.08.032 – volume: 26 start-page: 13 year: 1997 ident: 2022031300472127700_B23 article-title: Microvesicular steatosis and steatohepatitis: role of mitochondrial dysfunction and lipid peroxidation publication-title: J Hepatol doi: 10.1016/S0168-8278(97)82328-8 – volume: 160 start-page: 189 year: 2003 ident: 2022031300472127700_B8 article-title: Mitofusins Mfn1 and Mfn2 coordinately regulate mitochondrial fusion and are essential for embryonic development publication-title: J Cell Biol doi: 10.1083/jcb.200211046 – volume: 340 start-page: 1567 year: 2013 ident: 2022031300472127700_B39 article-title: Supercomplex assembly determines electron flux in the mitochondrial electron transport chain publication-title: Science doi: 10.1126/science.1230381 – volume: 89 start-page: 799 year: 2009 ident: 2022031300472127700_B3 article-title: Mitochondrial dynamics in mammalian health and disease publication-title: Physiol Rev doi: 10.1152/physrev.00030.2008 – volume: 32 start-page: 309 year: 2012 ident: 2022031300472127700_B24 article-title: Mitochondrial fission contributes to mitochondrial dysfunction and insulin resistance in skeletal muscle publication-title: Mol Cell Biol doi: 10.1128/MCB.05603-11 – volume: 130 start-page: 548 year: 2007 ident: 2022031300472127700_B14 article-title: Mitochondrial fusion protects against neurodegeneration in the cerebellum publication-title: Cell doi: 10.1016/j.cell.2007.06.026 – volume: 17 start-page: 491 year: 2013 ident: 2022031300472127700_B1 article-title: Mitochondrial dynamics in the regulation of nutrient utilization and energy expenditure publication-title: Cell Metab doi: 10.1016/j.cmet.2013.03.002 – volume: 342 start-page: 734 year: 2013 ident: 2022031300472127700_B4 article-title: Mitochondrial fusion directs cardiomyocyte differentiation via calcineurin and Notch signaling publication-title: Science doi: 10.1126/science.1241359 – volume: 58 start-page: 2303 year: 2009 ident: 2022031300472127700_B6 article-title: Mitochondrial networking protects beta-cells from nutrient-induced apoptosis publication-title: Diabetes doi: 10.2337/db07-1781 – volume: 6 start-page: 580 year: 2014 ident: 2022031300472127700_B7 article-title: Mitochondrial response to nutrient availability and its role in metabolic disease publication-title: EMBO Mol Med doi: 10.1002/emmm.201303782 – volume: 278 start-page: 17190 year: 2003 ident: 2022031300472127700_B10 article-title: Mitofusin-2 determines mitochondrial network architecture and mitochondrial metabolism. A novel regulatory mechanism altered in obesity publication-title: J Biol Chem doi: 10.1074/jbc.M212754200 – volume: 109 start-page: 5523 year: 2012 ident: 2022031300472127700_B11 article-title: Mitofusin 2 (Mfn2) links mitochondrial and endoplasmic reticulum function with insulin signaling and is essential for normal glucose homeostasis publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1108220109 – volume: 15 start-page: 595 year: 2012 ident: 2022031300472127700_B16 article-title: Lipid-induced mitochondrial stress and insulin action in muscle publication-title: Cell Metab doi: 10.1016/j.cmet.2012.04.010 – volume: 20 start-page: 953 year: 2014 ident: 2022031300472127700_B35 article-title: Metformin: from mechanisms of action to therapies publication-title: Cell Metab doi: 10.1016/j.cmet.2014.09.018 – volume: 2 start-page: 12 year: 2014 ident: 2022031300472127700_B36 article-title: Metformin directly acts on mitochondria to alter cellular bioenergetics publication-title: Cancer Metab doi: 10.1186/2049-3002-2-12 – volume: 12 start-page: 465 year: 2013 ident: 2022031300472127700_B2 article-title: Pharmacological approaches to restore mitochondrial function publication-title: Nat Rev Drug Discov doi: 10.1038/nrd4023 – volume: 10 start-page: 268 year: 2004 ident: 2022031300472127700_B19 article-title: Hepatic expression of malonyl-CoA decarboxylase reverses muscle, liver and whole-animal insulin resistance publication-title: Nat Med doi: 10.1038/nm995 – volume: 375 start-page: 157 year: 2013 ident: 2022031300472127700_B30 article-title: Hepatic ERK activity plays a role in energy metabolism publication-title: Mol Cell Endocrinol doi: 10.1016/j.mce.2013.05.021 – volume: 51 start-page: 327 year: 2011 ident: 2022031300472127700_B33 article-title: Extending life span by increasing oxidative stress publication-title: Free Radic Biol Med doi: 10.1016/j.freeradbiomed.2011.05.010 – volume: 302 start-page: H167 year: 2012 ident: 2022031300472127700_B31 article-title: Cardiomyocyte deletion of mitofusin-1 leads to mitochondrial fragmentation and improves tolerance to ROS-induced mitochondrial dysfunction and cell death publication-title: Am J Physiol Heart Circ Physiol doi: 10.1152/ajpheart.00833.2011 – volume: 122 start-page: 253 year: 2012 ident: 2022031300472127700_B20 article-title: Cellular and molecular mechanisms of metformin: an overview publication-title: Clin Sci (Lond) doi: 10.1042/CS20110386 – volume: 112 start-page: E2174 year: 2015 ident: 2022031300472127700_B25 article-title: Mitofusin 2 ablation increases endoplasmic reticulum-mitochondria coupling publication-title: Proc Natl Acad Sci U S A doi: 10.1073/pnas.1504880112 – volume: 5 start-page: 135 year: 2015 ident: 2022031300472127700_B13 article-title: High-resolution respirometry for mitochondrial characterization of ex vivo mouse tissues publication-title: Curr Protoc Mouse Biol doi: 10.1002/9780470942390.mo140061 – volume: 497 start-page: 451 year: 2013 ident: 2022031300472127700_B34 article-title: Mitonuclear protein imbalance as a conserved longevity mechanism publication-title: Nature doi: 10.1038/nature12188 – volume: 7 start-page: 45 year: 2008 ident: 2022031300472127700_B17 article-title: Mitochondrial overload and incomplete fatty acid oxidation contribute to skeletal muscle insulin resistance publication-title: Cell Metab doi: 10.1016/j.cmet.2007.10.013 – volume: 33 start-page: 418 year: 2014 ident: 2022031300472127700_B5 article-title: Hormone-induced mitochondrial fission is utilized by brown adipocytes as an amplification pathway for energy expenditure publication-title: EMBO J – volume: 55 start-page: 1783 year: 2006 ident: 2022031300472127700_B26 article-title: Evidence for a mitochondrial regulatory pathway defined by peroxisome proliferator-activated receptor-gamma coactivator-1 alpha, estrogen-related receptor-alpha, and mitofusin 2 publication-title: Diabetes doi: 10.2337/db05-0509 – volume: 58 start-page: 244 year: 2015 ident: 2022031300472127700_B28 article-title: Extracellular regulated kinase phosphorylates mitofusin 1 to control mitochondrial morphology and apoptosis publication-title: Mol Cell doi: 10.1016/j.molcel.2015.02.021 – volume: 2 start-page: 287 year: 2007 ident: 2022031300472127700_B12 article-title: Organelle isolation: functional mitochondria from mouse liver, muscle and cultured fibroblasts publication-title: Nat Protoc doi: 10.1038/nprot.2006.478 – volume: 62 start-page: 1 year: 2013 ident: 2022031300472127700_B18 article-title: Acylcarnitines: reflecting or inflicting insulin resistance publication-title: Diabetes doi: 10.2337/db12-0466 |
SSID | ssj0006060 |
Score | 2.496136 |
Snippet | Mitochondrial function can be influenced by mitochondrial shape and connectivity with other cellular organelles through fusion and fission processes.... |
SourceID | proquest pubmed crossref |
SourceType | Aggregation Database Index Database Enrichment Source |
StartPage | 3552 |
SubjectTerms | Animals Diabetes Diet, High-Fat - adverse effects Genes GTP Phosphohydrolases - deficiency GTP Phosphohydrolases - genetics Homeostasis Homeostasis - drug effects Hypoglycemic Agents - pharmacology Insulin Resistance - physiology Lipids Metabolism Metformin - pharmacology Mice Mice, Knockout Mitochondria - drug effects Mitochondria - metabolism Obesity Rodents |
Title | Mfn1 Deficiency in the Liver Protects Against Diet-Induced Insulin Resistance and Enhances the Hypoglycemic Effect of Metformin |
URI | https://www.ncbi.nlm.nih.gov/pubmed/27613809 https://www.proquest.com/docview/1846271658 https://www.proquest.com/docview/1843910984 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1939-327X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006060 issn: 0012-1797 databaseCode: KQ8 dateStart: 20000101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1939-327X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006060 issn: 0012-1797 databaseCode: KQ8 dateStart: 19980101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVBFR databaseName: Free Medical Journals customDbUrl: eissn: 1939-327X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006060 issn: 0012-1797 databaseCode: DIK dateStart: 19520101 isFulltext: true titleUrlDefault: http://www.freemedicaljournals.com providerName: Flying Publisher – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1939-327X dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0006060 issn: 0012-1797 databaseCode: GX1 dateStart: 0 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1939-327X dateEnd: 20241003 omitProxy: true ssIdentifier: ssj0006060 issn: 0012-1797 databaseCode: RPM dateStart: 20080701 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLfKkBAXxDeFgQziwCXQOImTHCu6qV3XCY1N6i1yXHuUlaSsyWG78Kfyr_Be7KRpVRBwiaLGdVy_X59_z34fhLwNolhwoYQTpj5z_Ej6Tiq0dOJQur5ULIgiDE6enPDhuX80Daadzs-W11JZpO_lzc64kv-RKnwGcsUo2X-QbNMpfAD3IF-4goTh-lcynujMBY2BSSCqCErrs3iMvhYYAlBUrhr9C7D-VwVoN1U4WKoDj_xH1gf9VK2QQdZxAwfZF7xfVf0Mr5f5xeJaVv7zNs0xesyoApmuTdltie2gtYe7Xd2ntdswLheXuBdjNqO_KRhnw0aPcq2vRGmqHAtYuebNXkFeYrFjG1s0b7B4KgrxVd6IS3MOIDJTCrzexXD5tkdIfTzVjHYbnVZ_w9dAhZglWhmVHXux47Fw2tbppv5EjV3W0tDAr9iupYN5VfKBWeoG8AYTjL2ZnnvY_5x8Ghwmx6OT8ebTig74LHQxuz-sHcvvDpY1w-N_W-PlFrnNQs6xxMZgNG6oAliPJkbK_iyT-gqH8qEZyCZh-o0VVLGhs_vknjVjaN9g8gHpqOwhuTOxjhqPyA-EJl1Dk84zCpCiFTRpDU1qoUnb0KQWmnQNTQrQpDU0q37a0KQGmjTXtIHmY3J-eHD2cejYWh-O9MK4cII0jKVUkWY9LTnYwEJ5ks98YKyMy5kvhYrcMGWzgKe9mEFTDsQ27AFv0C4ukk_IXpZn6hmhWsQh00EwC3vCFzxI-Uy5Wgcq0CwOo7RL3tUTmkibCB_rsSwSMIhx7hOc-wTnvkveNE2XJvvLrkb7tVQSqxxWiQu8HgAB_L5LXjePQXXjeZzIVF5WbTxg63Hkd8lTI83mLYAW14t68fM_d_6C3F3_m_bJXnFVqpfAkov0VYW0X61EwV0 |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mfn1+Deficiency+in+the+Liver+Protects+Against+Diet-Induced+Insulin+Resistance+and+Enhances+the+Hypoglycemic+Effect+of+Metformin&rft.jtitle=Diabetes+%28New+York%2C+N.Y.%29&rft.au=Kulkarni%2C+Sameer+S&rft.au=Joffraud%2C+Magali&rft.au=Boutant%2C+Marie&rft.au=Ratajczak%2C+Joanna&rft.date=2016-12-01&rft.pub=American+Diabetes+Association&rft.issn=0012-1797&rft.eissn=1939-327X&rft.volume=65&rft.issue=12&rft.spage=3552&rft_id=info:doi/10.2337%2Fdb15-1725&rft.externalDBID=HAS_PDF_LINK&rft.externalDocID=4271262011 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0012-1797&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0012-1797&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0012-1797&client=summon |