Tourist Flow Prediction Based on GA-ACO-BP Neural Network Model

Tourist flow prediction plays a crucial role in enhancing the efficiency of scenic area management, optimizing resource allocation, and promoting the sustainable development of the tourism industry. To improve the accuracy and real-time performance of tourist flow prediction, we propose a BP model b...

Full description

Saved in:
Bibliographic Details
Published inInformatics (Basel) Vol. 12; no. 3; p. 89
Main Authors Yang, Xiang, Cheng, Yongliang, Dong, Minggang, Xie, Xiaolan
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.09.2025
Subjects
Online AccessGet full text
ISSN2227-9709
2227-9709
DOI10.3390/informatics12030089

Cover

Abstract Tourist flow prediction plays a crucial role in enhancing the efficiency of scenic area management, optimizing resource allocation, and promoting the sustainable development of the tourism industry. To improve the accuracy and real-time performance of tourist flow prediction, we propose a BP model based on a hybrid genetic algorithm (GA) and ant colony optimization algorithm (ACO), called the GA-ACO-BP model. First, we comprehensively considered multiple key factors related to tourist flow, including historical tourist flow data (such as tourist flow from yesterday, the previous day, and the same period last year), holiday types, climate comfort, and search popularity index on online map platforms. Second, to address the tendency of the BP model to get easily stuck in local optima, we introduce the GA, which has excellent global search capabilities. Finally, to further improve local convergence speed, we further introduce the ACO algorithm. The experimental results based on tourist flow data from the Elephant Trunk Hill Scenic Area in Guilin indicate that the GA-AC*O-BP model achieves optimal values for key tourist flow prediction metrics such as MAPE, RMSE, MAE, and R2, compared to commonly used prediction models. These values are 4.09%, 426.34, 258.80, and 0.98795, respectively. Compared to the initial BP neural network, the improved GA-ACO-BP model reduced error metrics such as MAPE, RMSE, and MAE by 1.12%, 244.04, and 122.91, respectively, and increased the R2 metric by 1.85%.
AbstractList Tourist flow prediction plays a crucial role in enhancing the efficiency of scenic area management, optimizing resource allocation, and promoting the sustainable development of the tourism industry. To improve the accuracy and real-time performance of tourist flow prediction, we propose a BP model based on a hybrid genetic algorithm (GA) and ant colony optimization algorithm (ACO), called the GA-ACO-BP model. First, we comprehensively considered multiple key factors related to tourist flow, including historical tourist flow data (such as tourist flow from yesterday, the previous day, and the same period last year), holiday types, climate comfort, and search popularity index on online map platforms. Second, to address the tendency of the BP model to get easily stuck in local optima, we introduce the GA, which has excellent global search capabilities. Finally, to further improve local convergence speed, we further introduce the ACO algorithm. The experimental results based on tourist flow data from the Elephant Trunk Hill Scenic Area in Guilin indicate that the GA-AC*O-BP model achieves optimal values for key tourist flow prediction metrics such as MAPE, RMSE, MAE, and R2, compared to commonly used prediction models. These values are 4.09%, 426.34, 258.80, and 0.98795, respectively. Compared to the initial BP neural network, the improved GA-ACO-BP model reduced error metrics such as MAPE, RMSE, and MAE by 1.12%, 244.04, and 122.91, respectively, and increased the R2 metric by 1.85%.
Tourist flow prediction plays a crucial role in enhancing the efficiency of scenic area management, optimizing resource allocation, and promoting the sustainable development of the tourism industry. To improve the accuracy and real-time performance of tourist flow prediction, we propose a BP model based on a hybrid genetic algorithm (GA) and ant colony optimization algorithm (ACO), called the GA-ACO-BP model. First, we comprehensively considered multiple key factors related to tourist flow, including historical tourist flow data (such as tourist flow from yesterday, the previous day, and the same period last year), holiday types, climate comfort, and search popularity index on online map platforms. Second, to address the tendency of the BP model to get easily stuck in local optima, we introduce the GA, which has excellent global search capabilities. Finally, to further improve local convergence speed, we further introduce the ACO algorithm. The experimental results based on tourist flow data from the Elephant Trunk Hill Scenic Area in Guilin indicate that the GA-AC*O-BP model achieves optimal values for key tourist flow prediction metrics such as MAPE, RMSE, MAE, and R[sup.2] , compared to commonly used prediction models. These values are 4.09%, 426.34, 258.80, and 0.98795, respectively. Compared to the initial BP neural network, the improved GA-ACO-BP model reduced error metrics such as MAPE, RMSE, and MAE by 1.12%, 244.04, and 122.91, respectively, and increased the R[sup.2] metric by 1.85%.
Audience Academic
Author Yang, Xiang
Dong, Minggang
Cheng, Yongliang
Xie, Xiaolan
Author_xml – sequence: 1
  givenname: Xiang
  surname: Yang
  fullname: Yang, Xiang
– sequence: 2
  givenname: Yongliang
  orcidid: 0009-0004-3670-3952
  surname: Cheng
  fullname: Cheng, Yongliang
– sequence: 3
  givenname: Minggang
  surname: Dong
  fullname: Dong, Minggang
– sequence: 4
  givenname: Xiaolan
  surname: Xie
  fullname: Xie, Xiaolan
BookMark eNqNkUFP3DAQha0KpFLgF3CJ1HOok7Hj-FQtq0KRaOEAZ2t2bCNvs_HWzmrFv8fbVBWHHrAPMxq992n8_IkdjXF0jF00_BJA8y9h9DFtcAqUm5YD573-wE7atlW1Vlwfvek_svOc17wc3UAP6oR9fYy7FPJUXQ9xXz0kZwNNIY7VFWZnq9LcLOrF8r6-eqh-ul3CoZRpH9Ov6ke0bjhjxx6H7M7_1lP2dP3tcfm9vru_uV0u7moCpacaNKheWOpWHRGQ9ugtUuOlF3Jlre0BhOs0kOgRnfZKFY0gkroji8LCKbuduTbi2mxT2GB6MRGD-TOI6dlgKhEMzjRATjWOty23AqRbSVC-tyR81xV2V1hiZu3GLb7scRj-ARtuDpma_2RabJ9n2zbF3zuXJ7Mu2Y3l1QZaKSRo2R5Ul7PqGcsuB86UkMq1bhOo_JwPZb7opRKNliCLAWYDpZhzcv5dy7wC9Oabtw
Cites_doi 10.3390/e22030261
10.1016/j.jlp.2021.104583
10.1016/j.asoc.2009.08.040
10.1109/IFITA.2010.324
10.1016/j.neucom.2005.12.126
10.1007/s12665-025-12170-y
10.1109/MCI.2006.329691
10.1109/JPROC.2017.2761740
10.1038/323533a0
10.1162/neco_a_01199
10.3390/math7060531
10.1109/TITS.2023.3311397
10.1038/scientificamerican0792-66
10.1016/j.trc.2017.08.001
10.3390/ijgi9110676
10.1016/j.tourman.2025.105139
10.1016/j.plrev.2005.10.001
10.1007/s11063-019-10172-z
10.1016/j.knosys.2014.02.021
10.1186/s40537-021-00444-8
10.1016/j.patcog.2008.10.023
10.1016/S0261-5177(99)00067-9
10.1023/A:1018628609742
10.1016/j.rinp.2021.104509
10.1109/ACCESS.2023.3276628
10.1016/j.aiopen.2022.10.001
10.1088/1742-6596/2258/1/012014
10.1016/j.compag.2019.104905
10.1109/ICIEA.2016.7604009
10.1080/19388160.2022.2049943
10.1016/j.procs.2018.03.076
10.3846/16484142.2011.555472
10.1016/j.chemolab.2015.08.020
10.1109/BigData47090.2019.9005997
10.1016/j.physa.2021.126293
ContentType Journal Article
Copyright COPYRIGHT 2025 MDPI AG
2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2025 MDPI AG
– notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
3V.
7SC
7XB
8AL
8FD
8FE
8FG
8FK
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
COVID
DWQXO
GNUQQ
HCIFZ
JQ2
K7-
L7M
L~C
L~D
M0N
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
Q9U
ADTOC
UNPAY
DOA
DOI 10.3390/informatics12030089
DatabaseName CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
Coronavirus Research Database
ProQuest Central
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
ProQuest advanced technologies & aerospace journals
ProQuest Advanced Technologies & Aerospace Collection
Proquest Central Premium
ProQuest One Academic (New)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
ProQuest Central Basic
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Advanced Technologies & Aerospace Collection
ProQuest Computing
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList Publicly Available Content Database


CrossRef
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Library & Information Science
EISSN 2227-9709
ExternalDocumentID oai_doaj_org_article_13ce71e0220d435eb537f8dc4f66ae96
10.3390/informatics12030089
A857419535
10_3390_informatics12030089
GeographicLocations China
GeographicLocations_xml – name: China
GroupedDBID 5VS
8FE
8FG
AADQD
AAFWJ
AAYXX
ABUWG
ADBBV
AFKRA
AFPKN
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
ARCSS
AZQEC
BCNDV
BENPR
BGLVJ
BPHCQ
CCPQU
CITATION
DWQXO
GNUQQ
GROUPED_DOAJ
HCIFZ
IAO
IGS
ITC
K6V
K7-
KQ8
MODMG
M~E
OK1
P62
PHGZM
PHGZT
PIMPY
PQGLB
PQQKQ
PROAC
3V.
7SC
7XB
8AL
8FD
8FK
COVID
JQ2
L7M
L~C
L~D
M0N
PKEHL
PQEST
PQUKI
PRINS
Q9U
ADTOC
IPNFZ
PUEGO
RIG
UNPAY
ID FETCH-LOGICAL-c379t-393784dc6b6cc3c9fafdac1f5f45bddd8334e693c48aae9f77c9f4cc596cda4d3
IEDL.DBID DOA
ISSN 2227-9709
IngestDate Fri Oct 03 12:43:24 EDT 2025
Sun Sep 07 11:03:46 EDT 2025
Sun Oct 12 13:40:35 EDT 2025
Tue Oct 14 03:50:54 EDT 2025
Thu Oct 16 04:27:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c379t-393784dc6b6cc3c9fafdac1f5f45bddd8334e693c48aae9f77c9f4cc596cda4d3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0009-0004-3670-3952
OpenAccessLink https://doaj.org/article/13ce71e0220d435eb537f8dc4f66ae96
PQID 3254539529
PQPubID 2032385
ParticipantIDs doaj_primary_oai_doaj_org_article_13ce71e0220d435eb537f8dc4f66ae96
unpaywall_primary_10_3390_informatics12030089
proquest_journals_3254539529
gale_infotracacademiconefile_A857419535
crossref_primary_10_3390_informatics12030089
PublicationCentury 2000
PublicationDate 2025-09-01
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 09
  year: 2025
  text: 2025-09-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Informatics (Basel)
PublicationYear 2025
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Sze (ref_12) 2017; 105
Marini (ref_18) 2015; 149
ref_35
Chen (ref_9) 2011; 26
Hu (ref_13) 2023; 25
ref_19
Dorigo (ref_30) 2007; 1
ref_17
ref_15
Law (ref_5) 2000; 21
Pan (ref_16) 2014; 62
Li (ref_7) 2018; 129
ref_25
ref_22
ref_21
ref_20
Lin (ref_14) 2022; 3
Rumelhart (ref_6) 1986; 323
Huang (ref_34) 2006; 70
Panda (ref_33) 2020; 51
Adankon (ref_24) 2009; 42
Li (ref_1) 2022; 18
ref_3
ref_2
Suykens (ref_10) 1999; 9
ref_29
ref_28
Yu (ref_8) 2019; 31
ref_26
Liu (ref_11) 2017; 84
Blum (ref_31) 2005; 2
Wen (ref_23) 2023; 11
Holland (ref_27) 1992; 267
Yang (ref_32) 2010; 10
ref_4
References_xml – ident: ref_21
  doi: 10.3390/e22030261
– ident: ref_3
  doi: 10.1016/j.jlp.2021.104583
– volume: 10
  start-page: 653
  year: 2010
  ident: ref_32
  article-title: An improved ant colony optimization algorithm for solving a complex combinatorial optimization problem
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2009.08.040
– ident: ref_26
  doi: 10.1109/IFITA.2010.324
– volume: 70
  start-page: 489
  year: 2006
  ident: ref_34
  article-title: Extreme learning machine: Theory and applications
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2005.12.126
– ident: ref_25
  doi: 10.1007/s12665-025-12170-y
– volume: 1
  start-page: 28
  year: 2007
  ident: ref_30
  article-title: Ant colony optimization
  publication-title: IEEE Comput. Intell. Mag.
  doi: 10.1109/MCI.2006.329691
– volume: 105
  start-page: 2295
  year: 2017
  ident: ref_12
  article-title: Efficient processing of deep neural networks: A tutorial and survey
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2017.2761740
– volume: 323
  start-page: 533
  year: 1986
  ident: ref_6
  article-title: Learning representations by back-propagating errors
  publication-title: Nature
  doi: 10.1038/323533a0
– volume: 31
  start-page: 1235
  year: 2019
  ident: ref_8
  article-title: A review of recurrent neural networks: LSTM cells and network architectures
  publication-title: Neural Comput.
  doi: 10.1162/neco_a_01199
– ident: ref_15
  doi: 10.3390/math7060531
– volume: 25
  start-page: 443
  year: 2023
  ident: ref_13
  article-title: A Multi-Layer Model Based on Transformer and Deep Learning for Traffic Flow Prediction
  publication-title: IEEE Trans. Intell. Transp. Syst.
  doi: 10.1109/TITS.2023.3311397
– volume: 267
  start-page: 66
  year: 1992
  ident: ref_27
  article-title: Genetic algorithms
  publication-title: Sci. Am.
  doi: 10.1038/scientificamerican0792-66
– volume: 84
  start-page: 74
  year: 2017
  ident: ref_11
  article-title: A novel passenger flow prediction model using deep learning methods
  publication-title: Transp. Res. Part C Emerg. Technol.
  doi: 10.1016/j.trc.2017.08.001
– ident: ref_17
  doi: 10.3390/ijgi9110676
– ident: ref_2
  doi: 10.1016/j.tourman.2025.105139
– volume: 2
  start-page: 353
  year: 2005
  ident: ref_31
  article-title: Ant colony optimization: Introduction and recent trends
  publication-title: Phys. Life Rev.
  doi: 10.1016/j.plrev.2005.10.001
– volume: 51
  start-page: 1869
  year: 2020
  ident: ref_33
  article-title: Performance evaluation of a new BP algorithm for a modified artificial neural network
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-019-10172-z
– volume: 62
  start-page: 69
  year: 2014
  ident: ref_16
  article-title: An improved fruit fly optimization algorithm for continuous function optimization problems
  publication-title: Knowl.-Based Syst.
  doi: 10.1016/j.knosys.2014.02.021
– ident: ref_20
  doi: 10.1186/s40537-021-00444-8
– volume: 42
  start-page: 3264
  year: 2009
  ident: ref_24
  article-title: Model selection for the LS-SVM. Application to handwriting recognition
  publication-title: Pattern Recognit.
  doi: 10.1016/j.patcog.2008.10.023
– volume: 21
  start-page: 331
  year: 2000
  ident: ref_5
  article-title: Back-propagation learning in improving the accuracy of neural network-based tourism demand forecasting
  publication-title: Tour. Manag.
  doi: 10.1016/S0261-5177(99)00067-9
– volume: 9
  start-page: 293
  year: 1999
  ident: ref_10
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Process. Lett.
  doi: 10.1023/A:1018628609742
– ident: ref_4
  doi: 10.1016/j.rinp.2021.104509
– volume: 11
  start-page: 48322
  year: 2023
  ident: ref_23
  article-title: Time series prediction based on LSTM-attention-LSTM model
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3276628
– volume: 3
  start-page: 111
  year: 2022
  ident: ref_14
  article-title: A Survey of Transformers
  publication-title: AI Open
  doi: 10.1016/j.aiopen.2022.10.001
– ident: ref_28
  doi: 10.1088/1742-6596/2258/1/012014
– ident: ref_35
  doi: 10.1016/j.compag.2019.104905
– ident: ref_29
  doi: 10.1109/ICIEA.2016.7604009
– volume: 18
  start-page: 453
  year: 2022
  ident: ref_1
  article-title: Big data in China tourism research: A systematic review of publications from English journals
  publication-title: J. China Tour. Res.
  doi: 10.1080/19388160.2022.2049943
– volume: 129
  start-page: 277
  year: 2018
  ident: ref_7
  article-title: Prediction for tourism flow based on LSTM neural network
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2018.03.076
– volume: 26
  start-page: 5
  year: 2011
  ident: ref_9
  article-title: The use of LS-SVM for short-term passenger flow prediction
  publication-title: Transport
  doi: 10.3846/16484142.2011.555472
– volume: 149
  start-page: 153
  year: 2015
  ident: ref_18
  article-title: Particle swarm optimization (PSO)
  publication-title: A tutorial. Chemom. Intell. Lab. Syst.
  doi: 10.1016/j.chemolab.2015.08.020
– ident: ref_22
  doi: 10.1109/BigData47090.2019.9005997
– ident: ref_19
  doi: 10.1016/j.physa.2021.126293
SSID ssj0000913837
Score 2.3042355
Snippet Tourist flow prediction plays a crucial role in enhancing the efficiency of scenic area management, optimizing resource allocation, and promoting the...
SourceID doaj
unpaywall
proquest
gale
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 89
SubjectTerms Accuracy
Algorithms
Ant colony optimization
ant colony optimization algorithm
Artificial intelligence
Back propagation networks
BP neural network
Datasets
Digital map services
Efficiency
genetic algorithm
Genetic algorithms
Mathematical optimization
Methods
Neural networks
Optimization algorithms
Performance evaluation
Pheromones
Prediction models
Real time
Resource allocation
Root-mean-square errors
Scenic areas
sustainability in tourism
Sustainable development
Time series
Tourism
Tourism industry
Tourist attractions
tourist flow prediction
Traffic flow
Travel industry
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB7SzaHtoaQv6jyKDqW9VGRtSbZ1KGE3ZJsWul1KA7kZWY9cFu926xDy7zNjy5tAS-nNGCGJGY1mRtJ8H8A7E2RhizrlviQKs5AZXqKb4KmVrtDOe9MdZX-b5-cX8uulutyB-VALQ88qhz2x26jdytIZ-bHATEYJrTJ9sv7FiTWKblcHCg0TqRXcpw5i7BHsZoSMNYLd6dl88WN76kIomJiS9fBDAvP944hPSpjIaYYrfkyE7w9cVIfk_-d-_RQeXzdrc3tjlssHDmm2B89iJMkmveqfw45vXsBRrENg79mXZluYyKIFv4STHjWwZbPl6oYtNnRN07WYojdzDD8-T_jk9DufLhjhduAA8_6hOCPWtOUruJid_Tw955FDgVtR6JYT3l0pnc3r3FphdTDBGZsGFaSqnXOlENLnWlhZGuN1KApsI61VOrfOSCdew6hZNf4NsHGN-Zq2BepPoOWH0pD7w_TQjWs065DAx0Fs1bqHyqgwxSApV3-RcgJTEu22KeFcdz9Wm6sqmk2VCuuL1FM5sMPAztdKFKF0VoY8x-nmCXwgxXT9txtjTSwqwBkTrlU1KRWGTFoJlcDhoLsqmunv6n5RJcC3-vyf2e__u7sDeJIRUXD3GO0QRu3m2h9h9NLWb-OSvAPdNPAT
  priority: 102
  providerName: ProQuest
– databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BeoAeeKMGWrQHBBe2jr3vU-VUhIJEyIFI5WSt94EQkRMlDhX8embtTVQBB-BmWWN7rZmdhz3zfQg9N4FJK-uceBUpzEJhiIIwQXLLnNTOe9N9yn4_FRdz9u6SX6benE1qq4RS_EvnpOOcJtFypLO8yGimdLZy4exb-pAEgU9EDtNC3UQHgkMqPkAH8-ms_BQJ5XaX9khDFEr7LEGRRvjjvADjHkVu92vRqAPt_901H6Jb22Zlvl-ZxeJa7Jnc7QlWNx1kYWw5-Xq6betT--MXQMf_fq176E7KSnHZm9F9dMM3D9BJmmnAL_DbZj_kiJM3eIjOegTCFk8Wyys8W8dfPp3EGCKjw3DwpiTl-QcynuGIAQIPmPZN5zgysC0eofnk9cfzC5L4GIilUrckYucp5qyohbXU6mCCMzYPPDBeO-cUpcwLTS1TxngdpAQZZi2oxjrDHH2MBs2y8UcIj2qo_bSVYAsUvEhQJoZSKDXdqAYXEYbo1U4v1aqH3aigXIlqrP6gxiEaR93tRSNmdndiuf5cpS1Y5dR6mfs4WuwgSfQ1pzIoZ1kQApYrhuhl1Hx3_3ZtrEkDCrDiiJFVlYpD-qU55UN0vDOOKm35TUWh1OZU8wJWQ_YG8zerf_KP8k_R7SKyEHedbsdo0K63_gRSo7Z-ljbAT_YgCk0
  priority: 102
  providerName: Unpaywall
Title Tourist Flow Prediction Based on GA-ACO-BP Neural Network Model
URI https://www.proquest.com/docview/3254539529
https://www.mdpi.com/2227-9709/12/3/89/pdf?version=1756950828
https://doaj.org/article/13ce71e0220d435eb537f8dc4f66ae96
UnpaywallVersion publishedVersion
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 2227-9709
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913837
  issn: 2227-9709
  databaseCode: KQ8
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2227-9709
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913837
  issn: 2227-9709
  databaseCode: DOA
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2227-9709
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913837
  issn: 2227-9709
  databaseCode: M~E
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 2227-9709
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913837
  issn: 2227-9709
  databaseCode: BENPR
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 2227-9709
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000913837
  issn: 2227-9709
  databaseCode: 8FG
  dateStart: 20140101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BOQCHik-xtF35gOCC1c3aju1Tla26LUgsK8RK5RQ5_jit0mpJVfHvmXHS1UpFggO3JLKS0TxPxi_xvAF455LUXjcFj4ZamKWp4wbTBC-8DNqGGF3-lP1lUV6s5OdLdbnT6ov2hPXywL3jjgvhoy4iFYQGTO2xUUInE7xMZemizWLbE2N3yFR-B9uCqFcvMySQ1x8POqSkfVxMcWZPqLH7TirKiv3338tP4fFNe-1-3br1eifxzJ_B_rBiZFVv6XN4ENsXcDTUG7D37FO7LUBkQ6S-hJNeHbBj8_XVLVtu6HdMHjHDrBUYHpxXvDr9ymdLRvoc-IBFvyGcUXe09StYzc--n17woVcC90LbjpOunZHBl03pvfA2uRScL5JKUjUhBCOEjKUVXhqHbkta4xjpvbKlD04G8Rr22qs2vgE2aZCXWa8RJ4ERnoyjNIc0MEwaDN80go93bquve0mMGqkEebn-g5dHMCPXboeSnnW-gCjXA8r131AewQcCJt-_2zjvhuIBtJj0q-rKKFwaWSXUCA7vsKuHcPxZC6TBSlg1RWv4Fs9_sf7t_7D-AJ5MqW1w3pp2CHvd5iYe4Vqma8bw0MzPx_BodrZYfhvnSYxnq8Wy-vEbGn32Ug
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9lA4IJ4i0IIPPC5Y3cR2Eh-qard02aXtskKt1Fvq-MFllV22qVb9c_w2xomzVAIhLr1FkeVYM-N5OJ7vA3irHM90VsbU5p7CzCWK5hgmaKy5yaSxVjVH2aeTdHTOv1yIiw342fXC-GuVnU9sHLWZa39GvsewkhFMikQeLH5Qzxrl_652FBoqUCuY_QZiLDR2HNubFZZwV_vjT6jvd0kyPDo7HNHAMkA1y2RNPSJczo1Oy1RrpqVTzigdO-G4KI0xOWPcppJpnitlpcsyHMO1FjLVRnHDcN57sMUZl1j8bQ2OJtNv61Mej7qJJWALd8SY7O0FPFSPwRwnuMN6nmD-VkhsmAP-jA8PYPu6WqiblZrNbgXA4SN4GDJX0m9N7TFs2OoJ7Ia-B_KejKt1IyQJHuMpHLQohTUZzuYrMl3630LNiAFGT0Pw4XOf9g-_0sGUeJwQ_MCkvZhOPEvb7Bmc34k0n8NmNa_sCyC9EutDqTO0F4aexuXKh1ssR02vRDfiIvjYia1YtNAcBZY0XsrFX6QcwcCLdj3U42o3L-bL70XYpkXMtM1i69uPDSaSthQsc7nR3KUpLjeN4INXTDN_vVRahSYGXLHH0Sr6ucAUTQomItjpdFcEt3BV_DbiCOhan_-z-pf_nu4NbI_OTk-Kk_Hk-BXcTzxJcXMRbgc26-W13cXMqS5fB_MkcHnXO-IXR8UwMA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIvE4IJ7C0MIeeFywEnt3be8BVUmL21AIOVCpN7PeRy-Rk6auov41fh0zfoRKIMSlN8tarVfznvXMNwBvtBepScsodBmNMPOxDjN0E2FkhE2VdU43V9lfp8nRifh8Kk-34GffC0Nllb1NbAy1XRi6Ix9wzGQkVzJWA9-VRcwO8r3leUgTpOhPaz9OoxWRY3e1xvTt4uPkAHn9No7zT9_3j8JuwkBoeKrqkNDgMmFNUibGcKO89labyEsvZGmtzTgXLlHciExrp3ya4hphjFSJsVpYjvvegtspobhTl3p-uLnfIbxNTP5aoCPO1XDQIaES-nIUo24NabT8NWfYzAz40zPch7uX1VJfrfV8fs315Q_hQRezslErZI9gy1WPYbfreGDv2KTatECyzlY8gb0Wn7Bm-XyxZrMV_RBqVozRb1qGD4ejcLT_LRzPGCGE4AembUk6o_ls86dwciO0fAbb1aJyz4ENS8wMlUlRUjjaGJ9pcrSYiNphiQbEB_ChJ1uxbEE5CkxmiMrFX6gcwJhIu1lKiNrNi8XqrOgUtIi4cWnkqPHYYgjpSslTn1kjfJLgcZMA3hNjmv3rlTa6a1_AExOCVjHKJAZnSnIZwE7Pu6IzCBfFb_ENINzw839O_-Lf272GO6gHxZfJ9Pgl3ItpOnFTAbcD2_Xq0u1iyFSXrxrZZPDjppXhFwrALco
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BeoAeeKMGWrQHBBe2jr3vU-VUhIJEyIFI5WSt94EQkRMlDhX8embtTVQBB-BmWWN7rZmdhz3zfQg9N4FJK-uceBUpzEJhiIIwQXLLnNTOe9N9yn4_FRdz9u6SX6benE1qq4RS_EvnpOOcJtFypLO8yGimdLZy4exb-pAEgU9EDtNC3UQHgkMqPkAH8-ms_BQJ5XaX9khDFEr7LEGRRvjjvADjHkVu92vRqAPt_901H6Jb22Zlvl-ZxeJa7Jnc7QlWNx1kYWw5-Xq6betT--MXQMf_fq176E7KSnHZm9F9dMM3D9BJmmnAL_DbZj_kiJM3eIjOegTCFk8Wyys8W8dfPp3EGCKjw3DwpiTl-QcynuGIAQIPmPZN5zgysC0eofnk9cfzC5L4GIilUrckYucp5qyohbXU6mCCMzYPPDBeO-cUpcwLTS1TxngdpAQZZi2oxjrDHH2MBs2y8UcIj2qo_bSVYAsUvEhQJoZSKDXdqAYXEYbo1U4v1aqH3aigXIlqrP6gxiEaR93tRSNmdndiuf5cpS1Y5dR6mfs4WuwgSfQ1pzIoZ1kQApYrhuhl1Hx3_3ZtrEkDCrDiiJFVlYpD-qU55UN0vDOOKm35TUWh1OZU8wJWQ_YG8zerf_KP8k_R7SKyEHedbsdo0K63_gRSo7Z-ljbAT_YgCk0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tourist+Flow+Prediction+Based+on+GA-ACO-BP+Neural+Network+Model&rft.jtitle=Informatics+%28Basel%29&rft.au=Xiang+Yang&rft.au=Yongliang+Cheng&rft.au=Minggang+Dong&rft.au=Xiaolan+Xie&rft.date=2025-09-01&rft.pub=MDPI+AG&rft.eissn=2227-9709&rft.volume=12&rft.issue=3&rft.spage=89&rft_id=info:doi/10.3390%2Finformatics12030089&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_13ce71e0220d435eb537f8dc4f66ae96
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9709&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9709&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9709&client=summon