Tourist Flow Prediction Based on GA-ACO-BP Neural Network Model
Tourist flow prediction plays a crucial role in enhancing the efficiency of scenic area management, optimizing resource allocation, and promoting the sustainable development of the tourism industry. To improve the accuracy and real-time performance of tourist flow prediction, we propose a BP model b...
Saved in:
| Published in | Informatics (Basel) Vol. 12; no. 3; p. 89 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Basel
MDPI AG
01.09.2025
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2227-9709 2227-9709 |
| DOI | 10.3390/informatics12030089 |
Cover
| Abstract | Tourist flow prediction plays a crucial role in enhancing the efficiency of scenic area management, optimizing resource allocation, and promoting the sustainable development of the tourism industry. To improve the accuracy and real-time performance of tourist flow prediction, we propose a BP model based on a hybrid genetic algorithm (GA) and ant colony optimization algorithm (ACO), called the GA-ACO-BP model. First, we comprehensively considered multiple key factors related to tourist flow, including historical tourist flow data (such as tourist flow from yesterday, the previous day, and the same period last year), holiday types, climate comfort, and search popularity index on online map platforms. Second, to address the tendency of the BP model to get easily stuck in local optima, we introduce the GA, which has excellent global search capabilities. Finally, to further improve local convergence speed, we further introduce the ACO algorithm. The experimental results based on tourist flow data from the Elephant Trunk Hill Scenic Area in Guilin indicate that the GA-AC*O-BP model achieves optimal values for key tourist flow prediction metrics such as MAPE, RMSE, MAE, and R2, compared to commonly used prediction models. These values are 4.09%, 426.34, 258.80, and 0.98795, respectively. Compared to the initial BP neural network, the improved GA-ACO-BP model reduced error metrics such as MAPE, RMSE, and MAE by 1.12%, 244.04, and 122.91, respectively, and increased the R2 metric by 1.85%. |
|---|---|
| AbstractList | Tourist flow prediction plays a crucial role in enhancing the efficiency of scenic area management, optimizing resource allocation, and promoting the sustainable development of the tourism industry. To improve the accuracy and real-time performance of tourist flow prediction, we propose a BP model based on a hybrid genetic algorithm (GA) and ant colony optimization algorithm (ACO), called the GA-ACO-BP model. First, we comprehensively considered multiple key factors related to tourist flow, including historical tourist flow data (such as tourist flow from yesterday, the previous day, and the same period last year), holiday types, climate comfort, and search popularity index on online map platforms. Second, to address the tendency of the BP model to get easily stuck in local optima, we introduce the GA, which has excellent global search capabilities. Finally, to further improve local convergence speed, we further introduce the ACO algorithm. The experimental results based on tourist flow data from the Elephant Trunk Hill Scenic Area in Guilin indicate that the GA-AC*O-BP model achieves optimal values for key tourist flow prediction metrics such as MAPE, RMSE, MAE, and R2, compared to commonly used prediction models. These values are 4.09%, 426.34, 258.80, and 0.98795, respectively. Compared to the initial BP neural network, the improved GA-ACO-BP model reduced error metrics such as MAPE, RMSE, and MAE by 1.12%, 244.04, and 122.91, respectively, and increased the R2 metric by 1.85%. Tourist flow prediction plays a crucial role in enhancing the efficiency of scenic area management, optimizing resource allocation, and promoting the sustainable development of the tourism industry. To improve the accuracy and real-time performance of tourist flow prediction, we propose a BP model based on a hybrid genetic algorithm (GA) and ant colony optimization algorithm (ACO), called the GA-ACO-BP model. First, we comprehensively considered multiple key factors related to tourist flow, including historical tourist flow data (such as tourist flow from yesterday, the previous day, and the same period last year), holiday types, climate comfort, and search popularity index on online map platforms. Second, to address the tendency of the BP model to get easily stuck in local optima, we introduce the GA, which has excellent global search capabilities. Finally, to further improve local convergence speed, we further introduce the ACO algorithm. The experimental results based on tourist flow data from the Elephant Trunk Hill Scenic Area in Guilin indicate that the GA-AC*O-BP model achieves optimal values for key tourist flow prediction metrics such as MAPE, RMSE, MAE, and R[sup.2] , compared to commonly used prediction models. These values are 4.09%, 426.34, 258.80, and 0.98795, respectively. Compared to the initial BP neural network, the improved GA-ACO-BP model reduced error metrics such as MAPE, RMSE, and MAE by 1.12%, 244.04, and 122.91, respectively, and increased the R[sup.2] metric by 1.85%. |
| Audience | Academic |
| Author | Yang, Xiang Dong, Minggang Cheng, Yongliang Xie, Xiaolan |
| Author_xml | – sequence: 1 givenname: Xiang surname: Yang fullname: Yang, Xiang – sequence: 2 givenname: Yongliang orcidid: 0009-0004-3670-3952 surname: Cheng fullname: Cheng, Yongliang – sequence: 3 givenname: Minggang surname: Dong fullname: Dong, Minggang – sequence: 4 givenname: Xiaolan surname: Xie fullname: Xie, Xiaolan |
| BookMark | eNqNkUFP3DAQha0KpFLgF3CJ1HOok7Hj-FQtq0KRaOEAZ2t2bCNvs_HWzmrFv8fbVBWHHrAPMxq992n8_IkdjXF0jF00_BJA8y9h9DFtcAqUm5YD573-wE7atlW1Vlwfvek_svOc17wc3UAP6oR9fYy7FPJUXQ9xXz0kZwNNIY7VFWZnq9LcLOrF8r6-eqh-ul3CoZRpH9Ov6ke0bjhjxx6H7M7_1lP2dP3tcfm9vru_uV0u7moCpacaNKheWOpWHRGQ9ugtUuOlF3Jlre0BhOs0kOgRnfZKFY0gkroji8LCKbuduTbi2mxT2GB6MRGD-TOI6dlgKhEMzjRATjWOty23AqRbSVC-tyR81xV2V1hiZu3GLb7scRj-ARtuDpma_2RabJ9n2zbF3zuXJ7Mu2Y3l1QZaKSRo2R5Ul7PqGcsuB86UkMq1bhOo_JwPZb7opRKNliCLAWYDpZhzcv5dy7wC9Oabtw |
| Cites_doi | 10.3390/e22030261 10.1016/j.jlp.2021.104583 10.1016/j.asoc.2009.08.040 10.1109/IFITA.2010.324 10.1016/j.neucom.2005.12.126 10.1007/s12665-025-12170-y 10.1109/MCI.2006.329691 10.1109/JPROC.2017.2761740 10.1038/323533a0 10.1162/neco_a_01199 10.3390/math7060531 10.1109/TITS.2023.3311397 10.1038/scientificamerican0792-66 10.1016/j.trc.2017.08.001 10.3390/ijgi9110676 10.1016/j.tourman.2025.105139 10.1016/j.plrev.2005.10.001 10.1007/s11063-019-10172-z 10.1016/j.knosys.2014.02.021 10.1186/s40537-021-00444-8 10.1016/j.patcog.2008.10.023 10.1016/S0261-5177(99)00067-9 10.1023/A:1018628609742 10.1016/j.rinp.2021.104509 10.1109/ACCESS.2023.3276628 10.1016/j.aiopen.2022.10.001 10.1088/1742-6596/2258/1/012014 10.1016/j.compag.2019.104905 10.1109/ICIEA.2016.7604009 10.1080/19388160.2022.2049943 10.1016/j.procs.2018.03.076 10.3846/16484142.2011.555472 10.1016/j.chemolab.2015.08.020 10.1109/BigData47090.2019.9005997 10.1016/j.physa.2021.126293 |
| ContentType | Journal Article |
| Copyright | COPYRIGHT 2025 MDPI AG 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| Copyright_xml | – notice: COPYRIGHT 2025 MDPI AG – notice: 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
| DBID | AAYXX CITATION 3V. 7SC 7XB 8AL 8FD 8FE 8FG 8FK ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU COVID DWQXO GNUQQ HCIFZ JQ2 K7- L7M L~C L~D M0N P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS Q9U ADTOC UNPAY DOA |
| DOI | 10.3390/informatics12030089 |
| DatabaseName | CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Computer Science Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College Coronavirus Research Database ProQuest Central ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database ProQuest advanced technologies & aerospace journals ProQuest Advanced Technologies & Aerospace Collection Proquest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China ProQuest Central Basic Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
| DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Advanced Technologies & Aerospace Collection ProQuest Computing ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition Coronavirus Research Database ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
| DatabaseTitleList | Publicly Available Content Database CrossRef |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Library & Information Science |
| EISSN | 2227-9709 |
| ExternalDocumentID | oai_doaj_org_article_13ce71e0220d435eb537f8dc4f66ae96 10.3390/informatics12030089 A857419535 10_3390_informatics12030089 |
| GeographicLocations | China |
| GeographicLocations_xml | – name: China |
| GroupedDBID | 5VS 8FE 8FG AADQD AAFWJ AAYXX ABUWG ADBBV AFKRA AFPKN AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS ARCSS AZQEC BCNDV BENPR BGLVJ BPHCQ CCPQU CITATION DWQXO GNUQQ GROUPED_DOAJ HCIFZ IAO IGS ITC K6V K7- KQ8 MODMG M~E OK1 P62 PHGZM PHGZT PIMPY PQGLB PQQKQ PROAC 3V. 7SC 7XB 8AL 8FD 8FK COVID JQ2 L7M L~C L~D M0N PKEHL PQEST PQUKI PRINS Q9U ADTOC IPNFZ PUEGO RIG UNPAY |
| ID | FETCH-LOGICAL-c379t-393784dc6b6cc3c9fafdac1f5f45bddd8334e693c48aae9f77c9f4cc596cda4d3 |
| IEDL.DBID | DOA |
| ISSN | 2227-9709 |
| IngestDate | Fri Oct 03 12:43:24 EDT 2025 Sun Sep 07 11:03:46 EDT 2025 Sun Oct 12 13:40:35 EDT 2025 Tue Oct 14 03:50:54 EDT 2025 Thu Oct 16 04:27:26 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 3 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c379t-393784dc6b6cc3c9fafdac1f5f45bddd8334e693c48aae9f77c9f4cc596cda4d3 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
| ORCID | 0009-0004-3670-3952 |
| OpenAccessLink | https://doaj.org/article/13ce71e0220d435eb537f8dc4f66ae96 |
| PQID | 3254539529 |
| PQPubID | 2032385 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_13ce71e0220d435eb537f8dc4f66ae96 unpaywall_primary_10_3390_informatics12030089 proquest_journals_3254539529 gale_infotracacademiconefile_A857419535 crossref_primary_10_3390_informatics12030089 |
| PublicationCentury | 2000 |
| PublicationDate | 2025-09-01 |
| PublicationDateYYYYMMDD | 2025-09-01 |
| PublicationDate_xml | – month: 09 year: 2025 text: 2025-09-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | Basel |
| PublicationPlace_xml | – name: Basel |
| PublicationTitle | Informatics (Basel) |
| PublicationYear | 2025 |
| Publisher | MDPI AG |
| Publisher_xml | – name: MDPI AG |
| References | Sze (ref_12) 2017; 105 Marini (ref_18) 2015; 149 ref_35 Chen (ref_9) 2011; 26 Hu (ref_13) 2023; 25 ref_19 Dorigo (ref_30) 2007; 1 ref_17 ref_15 Law (ref_5) 2000; 21 Pan (ref_16) 2014; 62 Li (ref_7) 2018; 129 ref_25 ref_22 ref_21 ref_20 Lin (ref_14) 2022; 3 Rumelhart (ref_6) 1986; 323 Huang (ref_34) 2006; 70 Panda (ref_33) 2020; 51 Adankon (ref_24) 2009; 42 Li (ref_1) 2022; 18 ref_3 ref_2 Suykens (ref_10) 1999; 9 ref_29 ref_28 Yu (ref_8) 2019; 31 ref_26 Liu (ref_11) 2017; 84 Blum (ref_31) 2005; 2 Wen (ref_23) 2023; 11 Holland (ref_27) 1992; 267 Yang (ref_32) 2010; 10 ref_4 |
| References_xml | – ident: ref_21 doi: 10.3390/e22030261 – ident: ref_3 doi: 10.1016/j.jlp.2021.104583 – volume: 10 start-page: 653 year: 2010 ident: ref_32 article-title: An improved ant colony optimization algorithm for solving a complex combinatorial optimization problem publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2009.08.040 – ident: ref_26 doi: 10.1109/IFITA.2010.324 – volume: 70 start-page: 489 year: 2006 ident: ref_34 article-title: Extreme learning machine: Theory and applications publication-title: Neurocomputing doi: 10.1016/j.neucom.2005.12.126 – ident: ref_25 doi: 10.1007/s12665-025-12170-y – volume: 1 start-page: 28 year: 2007 ident: ref_30 article-title: Ant colony optimization publication-title: IEEE Comput. Intell. Mag. doi: 10.1109/MCI.2006.329691 – volume: 105 start-page: 2295 year: 2017 ident: ref_12 article-title: Efficient processing of deep neural networks: A tutorial and survey publication-title: Proc. IEEE doi: 10.1109/JPROC.2017.2761740 – volume: 323 start-page: 533 year: 1986 ident: ref_6 article-title: Learning representations by back-propagating errors publication-title: Nature doi: 10.1038/323533a0 – volume: 31 start-page: 1235 year: 2019 ident: ref_8 article-title: A review of recurrent neural networks: LSTM cells and network architectures publication-title: Neural Comput. doi: 10.1162/neco_a_01199 – ident: ref_15 doi: 10.3390/math7060531 – volume: 25 start-page: 443 year: 2023 ident: ref_13 article-title: A Multi-Layer Model Based on Transformer and Deep Learning for Traffic Flow Prediction publication-title: IEEE Trans. Intell. Transp. Syst. doi: 10.1109/TITS.2023.3311397 – volume: 267 start-page: 66 year: 1992 ident: ref_27 article-title: Genetic algorithms publication-title: Sci. Am. doi: 10.1038/scientificamerican0792-66 – volume: 84 start-page: 74 year: 2017 ident: ref_11 article-title: A novel passenger flow prediction model using deep learning methods publication-title: Transp. Res. Part C Emerg. Technol. doi: 10.1016/j.trc.2017.08.001 – ident: ref_17 doi: 10.3390/ijgi9110676 – ident: ref_2 doi: 10.1016/j.tourman.2025.105139 – volume: 2 start-page: 353 year: 2005 ident: ref_31 article-title: Ant colony optimization: Introduction and recent trends publication-title: Phys. Life Rev. doi: 10.1016/j.plrev.2005.10.001 – volume: 51 start-page: 1869 year: 2020 ident: ref_33 article-title: Performance evaluation of a new BP algorithm for a modified artificial neural network publication-title: Neural Process. Lett. doi: 10.1007/s11063-019-10172-z – volume: 62 start-page: 69 year: 2014 ident: ref_16 article-title: An improved fruit fly optimization algorithm for continuous function optimization problems publication-title: Knowl.-Based Syst. doi: 10.1016/j.knosys.2014.02.021 – ident: ref_20 doi: 10.1186/s40537-021-00444-8 – volume: 42 start-page: 3264 year: 2009 ident: ref_24 article-title: Model selection for the LS-SVM. Application to handwriting recognition publication-title: Pattern Recognit. doi: 10.1016/j.patcog.2008.10.023 – volume: 21 start-page: 331 year: 2000 ident: ref_5 article-title: Back-propagation learning in improving the accuracy of neural network-based tourism demand forecasting publication-title: Tour. Manag. doi: 10.1016/S0261-5177(99)00067-9 – volume: 9 start-page: 293 year: 1999 ident: ref_10 article-title: Least squares support vector machine classifiers publication-title: Neural Process. Lett. doi: 10.1023/A:1018628609742 – ident: ref_4 doi: 10.1016/j.rinp.2021.104509 – volume: 11 start-page: 48322 year: 2023 ident: ref_23 article-title: Time series prediction based on LSTM-attention-LSTM model publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3276628 – volume: 3 start-page: 111 year: 2022 ident: ref_14 article-title: A Survey of Transformers publication-title: AI Open doi: 10.1016/j.aiopen.2022.10.001 – ident: ref_28 doi: 10.1088/1742-6596/2258/1/012014 – ident: ref_35 doi: 10.1016/j.compag.2019.104905 – ident: ref_29 doi: 10.1109/ICIEA.2016.7604009 – volume: 18 start-page: 453 year: 2022 ident: ref_1 article-title: Big data in China tourism research: A systematic review of publications from English journals publication-title: J. China Tour. Res. doi: 10.1080/19388160.2022.2049943 – volume: 129 start-page: 277 year: 2018 ident: ref_7 article-title: Prediction for tourism flow based on LSTM neural network publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2018.03.076 – volume: 26 start-page: 5 year: 2011 ident: ref_9 article-title: The use of LS-SVM for short-term passenger flow prediction publication-title: Transport doi: 10.3846/16484142.2011.555472 – volume: 149 start-page: 153 year: 2015 ident: ref_18 article-title: Particle swarm optimization (PSO) publication-title: A tutorial. Chemom. Intell. Lab. Syst. doi: 10.1016/j.chemolab.2015.08.020 – ident: ref_22 doi: 10.1109/BigData47090.2019.9005997 – ident: ref_19 doi: 10.1016/j.physa.2021.126293 |
| SSID | ssj0000913837 |
| Score | 2.3042355 |
| Snippet | Tourist flow prediction plays a crucial role in enhancing the efficiency of scenic area management, optimizing resource allocation, and promoting the... |
| SourceID | doaj unpaywall proquest gale crossref |
| SourceType | Open Website Open Access Repository Aggregation Database Index Database |
| StartPage | 89 |
| SubjectTerms | Accuracy Algorithms Ant colony optimization ant colony optimization algorithm Artificial intelligence Back propagation networks BP neural network Datasets Digital map services Efficiency genetic algorithm Genetic algorithms Mathematical optimization Methods Neural networks Optimization algorithms Performance evaluation Pheromones Prediction models Real time Resource allocation Root-mean-square errors Scenic areas sustainability in tourism Sustainable development Time series Tourism Tourism industry Tourist attractions tourist flow prediction Traffic flow Travel industry |
| SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1La9wwEB7SzaHtoaQv6jyKDqW9VGRtSbZ1KGE3ZJsWul1KA7kZWY9cFu926xDy7zNjy5tAS-nNGCGJGY1mRtJ8H8A7E2RhizrlviQKs5AZXqKb4KmVrtDOe9MdZX-b5-cX8uulutyB-VALQ88qhz2x26jdytIZ-bHATEYJrTJ9sv7FiTWKblcHCg0TqRXcpw5i7BHsZoSMNYLd6dl88WN76kIomJiS9fBDAvP944hPSpjIaYYrfkyE7w9cVIfk_-d-_RQeXzdrc3tjlssHDmm2B89iJMkmveqfw45vXsBRrENg79mXZluYyKIFv4STHjWwZbPl6oYtNnRN07WYojdzDD8-T_jk9DufLhjhduAA8_6hOCPWtOUruJid_Tw955FDgVtR6JYT3l0pnc3r3FphdTDBGZsGFaSqnXOlENLnWlhZGuN1KApsI61VOrfOSCdew6hZNf4NsHGN-Zq2BepPoOWH0pD7w_TQjWs065DAx0Fs1bqHyqgwxSApV3-RcgJTEu22KeFcdz9Wm6sqmk2VCuuL1FM5sMPAztdKFKF0VoY8x-nmCXwgxXT9txtjTSwqwBkTrlU1KRWGTFoJlcDhoLsqmunv6n5RJcC3-vyf2e__u7sDeJIRUXD3GO0QRu3m2h9h9NLWb-OSvAPdNPAT priority: 102 providerName: ProQuest – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BeoAeeKMGWrQHBBe2jr3vU-VUhIJEyIFI5WSt94EQkRMlDhX8embtTVQBB-BmWWN7rZmdhz3zfQg9N4FJK-uceBUpzEJhiIIwQXLLnNTOe9N9yn4_FRdz9u6SX6benE1qq4RS_EvnpOOcJtFypLO8yGimdLZy4exb-pAEgU9EDtNC3UQHgkMqPkAH8-ms_BQJ5XaX9khDFEr7LEGRRvjjvADjHkVu92vRqAPt_901H6Jb22Zlvl-ZxeJa7Jnc7QlWNx1kYWw5-Xq6betT--MXQMf_fq176E7KSnHZm9F9dMM3D9BJmmnAL_DbZj_kiJM3eIjOegTCFk8Wyys8W8dfPp3EGCKjw3DwpiTl-QcynuGIAQIPmPZN5zgysC0eofnk9cfzC5L4GIilUrckYucp5qyohbXU6mCCMzYPPDBeO-cUpcwLTS1TxngdpAQZZi2oxjrDHH2MBs2y8UcIj2qo_bSVYAsUvEhQJoZSKDXdqAYXEYbo1U4v1aqH3aigXIlqrP6gxiEaR93tRSNmdndiuf5cpS1Y5dR6mfs4WuwgSfQ1pzIoZ1kQApYrhuhl1Hx3_3ZtrEkDCrDiiJFVlYpD-qU55UN0vDOOKm35TUWh1OZU8wJWQ_YG8zerf_KP8k_R7SKyEHedbsdo0K63_gRSo7Z-ljbAT_YgCk0 priority: 102 providerName: Unpaywall |
| Title | Tourist Flow Prediction Based on GA-ACO-BP Neural Network Model |
| URI | https://www.proquest.com/docview/3254539529 https://www.mdpi.com/2227-9709/12/3/89/pdf?version=1756950828 https://doaj.org/article/13ce71e0220d435eb537f8dc4f66ae96 |
| UnpaywallVersion | publishedVersion |
| Volume | 12 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 2227-9709 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913837 issn: 2227-9709 databaseCode: KQ8 dateStart: 20140101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2227-9709 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913837 issn: 2227-9709 databaseCode: DOA dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2227-9709 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913837 issn: 2227-9709 databaseCode: M~E dateStart: 20140101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 2227-9709 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913837 issn: 2227-9709 databaseCode: BENPR dateStart: 20140101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 2227-9709 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000913837 issn: 2227-9709 databaseCode: 8FG dateStart: 20140101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwEB1BOQCHik-xtF35gOCC1c3aju1Tla26LUgsK8RK5RQ5_jit0mpJVfHvmXHS1UpFggO3JLKS0TxPxi_xvAF455LUXjcFj4ZamKWp4wbTBC-8DNqGGF3-lP1lUV6s5OdLdbnT6ov2hPXywL3jjgvhoy4iFYQGTO2xUUInE7xMZemizWLbE2N3yFR-B9uCqFcvMySQ1x8POqSkfVxMcWZPqLH7TirKiv3338tP4fFNe-1-3br1eifxzJ_B_rBiZFVv6XN4ENsXcDTUG7D37FO7LUBkQ6S-hJNeHbBj8_XVLVtu6HdMHjHDrBUYHpxXvDr9ymdLRvoc-IBFvyGcUXe09StYzc--n17woVcC90LbjpOunZHBl03pvfA2uRScL5JKUjUhBCOEjKUVXhqHbkta4xjpvbKlD04G8Rr22qs2vgE2aZCXWa8RJ4ERnoyjNIc0MEwaDN80go93bquve0mMGqkEebn-g5dHMCPXboeSnnW-gCjXA8r131AewQcCJt-_2zjvhuIBtJj0q-rKKFwaWSXUCA7vsKuHcPxZC6TBSlg1RWv4Fs9_sf7t_7D-AJ5MqW1w3pp2CHvd5iYe4Vqma8bw0MzPx_BodrZYfhvnSYxnq8Wy-vEbGn32Ug |
| linkProvider | Directory of Open Access Journals |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9lA4IJ4i0IIPPC5Y3cR2Eh-qard02aXtskKt1Fvq-MFllV22qVb9c_w2xomzVAIhLr1FkeVYM-N5OJ7vA3irHM90VsbU5p7CzCWK5hgmaKy5yaSxVjVH2aeTdHTOv1yIiw342fXC-GuVnU9sHLWZa39GvsewkhFMikQeLH5Qzxrl_652FBoqUCuY_QZiLDR2HNubFZZwV_vjT6jvd0kyPDo7HNHAMkA1y2RNPSJczo1Oy1RrpqVTzigdO-G4KI0xOWPcppJpnitlpcsyHMO1FjLVRnHDcN57sMUZl1j8bQ2OJtNv61Mej7qJJWALd8SY7O0FPFSPwRwnuMN6nmD-VkhsmAP-jA8PYPu6WqiblZrNbgXA4SN4GDJX0m9N7TFs2OoJ7Ia-B_KejKt1IyQJHuMpHLQohTUZzuYrMl3630LNiAFGT0Pw4XOf9g-_0sGUeJwQ_MCkvZhOPEvb7Bmc34k0n8NmNa_sCyC9EutDqTO0F4aexuXKh1ssR02vRDfiIvjYia1YtNAcBZY0XsrFX6QcwcCLdj3U42o3L-bL70XYpkXMtM1i69uPDSaSthQsc7nR3KUpLjeN4INXTDN_vVRahSYGXLHH0Sr6ucAUTQomItjpdFcEt3BV_DbiCOhan_-z-pf_nu4NbI_OTk-Kk_Hk-BXcTzxJcXMRbgc26-W13cXMqS5fB_MkcHnXO-IXR8UwMA |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB6VIvE4IJ7C0MIeeFywEnt3be8BVUmL21AIOVCpN7PeRy-Rk6auov41fh0zfoRKIMSlN8tarVfznvXMNwBvtBepScsodBmNMPOxDjN0E2FkhE2VdU43V9lfp8nRifh8Kk-34GffC0Nllb1NbAy1XRi6Ix9wzGQkVzJWA9-VRcwO8r3leUgTpOhPaz9OoxWRY3e1xvTt4uPkAHn9No7zT9_3j8JuwkBoeKrqkNDgMmFNUibGcKO89labyEsvZGmtzTgXLlHciExrp3ya4hphjFSJsVpYjvvegtspobhTl3p-uLnfIbxNTP5aoCPO1XDQIaES-nIUo24NabT8NWfYzAz40zPch7uX1VJfrfV8fs315Q_hQRezslErZI9gy1WPYbfreGDv2KTatECyzlY8gb0Wn7Bm-XyxZrMV_RBqVozRb1qGD4ejcLT_LRzPGCGE4AembUk6o_ls86dwciO0fAbb1aJyz4ENS8wMlUlRUjjaGJ9pcrSYiNphiQbEB_ChJ1uxbEE5CkxmiMrFX6gcwJhIu1lKiNrNi8XqrOgUtIi4cWnkqPHYYgjpSslTn1kjfJLgcZMA3hNjmv3rlTa6a1_AExOCVjHKJAZnSnIZwE7Pu6IzCBfFb_ENINzw839O_-Lf272GO6gHxZfJ9Pgl3ItpOnFTAbcD2_Xq0u1iyFSXrxrZZPDjppXhFwrALco |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9NAEF5BeoAeeKMGWrQHBBe2jr3vU-VUhIJEyIFI5WSt94EQkRMlDhX8embtTVQBB-BmWWN7rZmdhz3zfQg9N4FJK-uceBUpzEJhiIIwQXLLnNTOe9N9yn4_FRdz9u6SX6benE1qq4RS_EvnpOOcJtFypLO8yGimdLZy4exb-pAEgU9EDtNC3UQHgkMqPkAH8-ms_BQJ5XaX9khDFEr7LEGRRvjjvADjHkVu92vRqAPt_901H6Jb22Zlvl-ZxeJa7Jnc7QlWNx1kYWw5-Xq6betT--MXQMf_fq176E7KSnHZm9F9dMM3D9BJmmnAL_DbZj_kiJM3eIjOegTCFk8Wyys8W8dfPp3EGCKjw3DwpiTl-QcynuGIAQIPmPZN5zgysC0eofnk9cfzC5L4GIilUrckYucp5qyohbXU6mCCMzYPPDBeO-cUpcwLTS1TxngdpAQZZi2oxjrDHH2MBs2y8UcIj2qo_bSVYAsUvEhQJoZSKDXdqAYXEYbo1U4v1aqH3aigXIlqrP6gxiEaR93tRSNmdndiuf5cpS1Y5dR6mfs4WuwgSfQ1pzIoZ1kQApYrhuhl1Hx3_3ZtrEkDCrDiiJFVlYpD-qU55UN0vDOOKm35TUWh1OZU8wJWQ_YG8zerf_KP8k_R7SKyEHedbsdo0K63_gRSo7Z-ljbAT_YgCk0 |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Tourist+Flow+Prediction+Based+on+GA-ACO-BP+Neural+Network+Model&rft.jtitle=Informatics+%28Basel%29&rft.au=Xiang+Yang&rft.au=Yongliang+Cheng&rft.au=Minggang+Dong&rft.au=Xiaolan+Xie&rft.date=2025-09-01&rft.pub=MDPI+AG&rft.eissn=2227-9709&rft.volume=12&rft.issue=3&rft.spage=89&rft_id=info:doi/10.3390%2Finformatics12030089&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_13ce71e0220d435eb537f8dc4f66ae96 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2227-9709&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2227-9709&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2227-9709&client=summon |