Active learning and element-embedding approach in neural networks for infinite-layer versus perovskite oxides
Combining density functional theory simulations and active learning of neural networks, we explore formation energies of oxygen vacancy layers, lattice parameters, and their statistical correlations in infinite-layer versus perovskite oxides across the periodic table, and place the superconducting n...
Saved in:
Published in | Physical review research Vol. 3; no. 4; p. L042022 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
American Physical Society
01.11.2021
|
Online Access | Get full text |
ISSN | 2643-1564 2643-1564 |
DOI | 10.1103/PhysRevResearch.3.L042022 |
Cover
Abstract | Combining density functional theory simulations and active learning of neural networks, we explore formation energies of oxygen vacancy layers, lattice parameters, and their statistical correlations in infinite-layer versus perovskite oxides across the periodic table, and place the superconducting nickelate and cuprate families in a comprehensive context. We show that neural networks are capable of predicting these observables with high precision, using only 30-50% of the data for training. Element embedding autonomously identifies concepts of chemical similarity between the individual elements that are in line with human knowledge. We demonstrate that active learning efficiently composes the training set by an optimal strategy without a priori knowledge, based on the fundamental concepts of entropy and information, and provides systematic control over the prediction accuracy. This offers key ingredients to considerably accelerate scans of large parameter spaces and exemplifies how artificial intelligence may assist on the quantum scale in finding novel materials with optimized properties. |
---|---|
AbstractList | Combining density functional theory simulations and active learning of neural networks, we explore formation energies of oxygen vacancy layers, lattice parameters, and their statistical correlations in infinite-layer versus perovskite oxides across the periodic table, and place the superconducting nickelate and cuprate families in a comprehensive context. We show that neural networks are capable of predicting these observables with high precision, using only 30-50% of the data for training. Element embedding autonomously identifies concepts of chemical similarity between the individual elements that are in line with human knowledge. We demonstrate that active learning efficiently composes the training set by an optimal strategy without a priori knowledge, based on the fundamental concepts of entropy and information, and provides systematic control over the prediction accuracy. This offers key ingredients to considerably accelerate scans of large parameter spaces and exemplifies how artificial intelligence may assist on the quantum scale in finding novel materials with optimized properties. |
ArticleNumber | L042022 |
Author | Sahinovic, Armin Geisler, Benjamin |
Author_xml | – sequence: 1 givenname: Armin surname: Sahinovic fullname: Sahinovic, Armin – sequence: 2 givenname: Benjamin orcidid: 0000-0003-0864-2908 surname: Geisler fullname: Geisler, Benjamin |
BookMark | eNqNkV1LHDEUhoNY0Fr_Q_oDZpuvmcxcFZG2Liwo0l6HM8mJG51NliSu3X_v-IGIV169hwfeBw7vV3IYU0RCvnO24JzJH1frfbnG3TUWhGzXC7lYMSWYEAfkWHRKNrzt1OG7-4iclnLLGBMt56pvj8nmzNawQzrNhhjiDYXoKE64wVgb3Izo3DPdbnMCu6Yh0oj3GaY56kPKd4X6lGfsQwwVmwn2mOkOc7kvdIs57crdzGn6HxyWb-SLh6ng6WuekH-_f_09v2hWl3-W52erxkrd18ZroZlTamx7icAsF445LrQfe841g_nDblBDC9h3zDsrsXPgRDt_NFquvDwhyxevS3BrtjlsIO9NgmCeQco3BnINdkIjxchG3w9aaa1gwLHjUvV6GLpWidbp2TW8uGxOpWT0bz7OzNMM5sMMRprXGebuzw9dGyrUkGLNEKZPGB4BwdWZZg |
CitedBy_id | crossref_primary_10_1103_PhysRevB_106_155139 crossref_primary_10_1103_PhysRevB_108_224502 crossref_primary_10_1016_j_heliyon_2023_e12845 crossref_primary_10_1038_s41535_024_00648_0 crossref_primary_10_1038_s41535_024_00690_y crossref_primary_10_1038_s41563_023_01510_7 crossref_primary_10_1038_s41524_024_01475_4 crossref_primary_10_1103_PhysRevMaterials_7_114803 |
Cites_doi | 10.1103/PhysRevB.85.121411 10.1103/PhysRevLett.124.207004 10.1103/PhysRevB.95.125301 10.1063/1.4812323 10.1038/s41467-018-06322-x 10.1006/jssc.1997.7442 10.1103/PhysRevB.101.081110 10.1021/ja991573i 10.1103/PhysRevB.59.1758 10.1103/PhysRev.140.A1133 10.1007/s11837-013-0755-4 10.1038/s41586-018-0337-2 10.1103/PhysRevB.52.R5467 10.1038/s41598-018-35934-y 10.1103/PhysRevB.82.014110 10.1103/PhysRevB.101.060504 10.1103/PhysRevB.102.161118 10.1557/mrc.2020.2 10.1021/jp507957n 10.1021/acs.chemmater.0c01907 10.1103/PhysRevB.92.144102 10.1103/PhysRevB.101.165108 10.1103/PhysRevB.96.035143 10.1038/npjcompumats.2016.28 10.1038/s41586-019-1496-5 10.1103/PhysRevLett.114.105503 10.1103/PhysRevB.101.020503 10.1103/PhysRevB.86.155105 10.1103/PhysRevResearch.3.013261 10.1103/PhysRevLett.125.077003 10.1103/PhysRevLett.124.166402 10.1016/j.commatsci.2012.10.028 10.1038/nature25972 10.1103/PhysRevB.104.165137 10.1016/S1293-2558(03)00111-0 10.1038/ncomms3714 10.1038/s41467-019-13297-w 10.1038/s41535-020-00260-y 10.1103/PhysRevLett.125.027001 10.1103/PhysRevX.10.011024 10.1021/acs.inorgchem.9b01785 10.1557/mrc.2019.73 10.1103/PhysRevMaterials.1.065405 10.1103/PhysRevLett.120.143001 10.1103/PhysRevB.50.17953 10.1103/PhysRevLett.120.145301 10.1126/sciadv.aav0693 10.1103/PhysRevLett.77.3865 10.1021/acs.chemmater.7b00156 10.1021/acs.nanolett.0c01392 10.1103/PhysRevB.46.4414 10.1103/PhysRevLett.117.135502 10.1103/PhysRevApplied.11.044047 10.1016/j.commatsci.2012.02.005 10.1103/PhysRevMaterials.3.065004 10.1038/s41524-019-0221-0 10.1103/PhysRevB.101.075107 10.1103/PhysRevB.100.201106 10.1557/mrs.2018.208 10.1073/pnas.1801181115 10.1038/s41586-019-1335-8 10.1038/npjcompumats.2015.10 10.1103/PhysRevB.100.205138 10.1103/PhysRevB.102.020502 10.1038/s41524-019-0153-8 10.1103/PhysRevMaterials.2.055403 |
ContentType | Journal Article |
DBID | AAYXX CITATION DOA |
DOI | 10.1103/PhysRevResearch.3.L042022 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 2643-1564 |
ExternalDocumentID | oai_doaj_org_article_32b0bf8974774a9eb6134879965425d7 10_1103_PhysRevResearch_3_L042022 |
GroupedDBID | 3MX AAYXX AFGMR AGDNE ALMA_UNASSIGNED_HOLDINGS CITATION GROUPED_DOAJ M~E ROL |
ID | FETCH-LOGICAL-c378t-f7270d44b583ea0c12d0d127fb81170a02269495ae860fdc3e6dad25485bc14f3 |
IEDL.DBID | DOA |
ISSN | 2643-1564 |
IngestDate | Wed Aug 27 01:27:01 EDT 2025 Tue Jul 01 02:05:49 EDT 2025 Thu Apr 24 23:06:01 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-f7270d44b583ea0c12d0d127fb81170a02269495ae860fdc3e6dad25485bc14f3 |
ORCID | 0000-0003-0864-2908 |
OpenAccessLink | https://doaj.org/article/32b0bf8974774a9eb6134879965425d7 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_32b0bf8974774a9eb6134879965425d7 crossref_primary_10_1103_PhysRevResearch_3_L042022 crossref_citationtrail_10_1103_PhysRevResearch_3_L042022 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-11-01 |
PublicationDateYYYYMMDD | 2021-11-01 |
PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Physical review research |
PublicationYear | 2021 |
Publisher | American Physical Society |
Publisher_xml | – name: American Physical Society |
References | PhysRevResearch.3.L042022Cc20R1 PhysRevResearch.3.L042022Cc45R1 PhysRevResearch.3.L042022Cc66R1 PhysRevResearch.3.L042022Cc49R1 PhysRevResearch.3.L042022Cc28R1 PhysRevResearch.3.L042022Cc26R1 PhysRevResearch.3.L042022Cc60R1 PhysRevResearch.3.L042022Cc24R1 PhysRevResearch.3.L042022Cc62R1 PhysRevResearch.3.L042022Cc1R1 PhysRevResearch.3.L042022Cc22R1 PhysRevResearch.3.L042022Cc43R1 PhysRevResearch.3.L042022Cc64R1 PhysRevResearch.3.L042022Cc10R1 PhysRevResearch.3.L042022Cc33R1 PhysRevResearch.3.L042022Cc56R1 PhysRevResearch.3.L042022Cc2R1 PhysRevResearch.3.L042022Cc35R1 PhysRevResearch.3.L042022Cc58R1 PhysRevResearch.3.L042022Cc4R1 PhysRevResearch.3.L042022Cc37R1 PhysRevResearch.3.L042022Cc6R1 PhysRevResearch.3.L042022Cc39R1 PhysRevResearch.3.L042022Cc8R1 PhysRevResearch.3.L042022Cc18R1 PhysRevResearch.3.L042022Cc16R1 PhysRevResearch.3.L042022Cc14R1 PhysRevResearch.3.L042022Cc73R1 PhysRevResearch.3.L042022Cc12R1 PhysRevResearch.3.L042022Cc31R1 PhysRevResearch.3.L042022Cc54R1 PhysRevResearch.3.L042022Cc75R1 PhysRevResearch.3.L042022Cc21R1 PhysRevResearch.3.L042022Cc44R1 PhysRevResearch.3.L042022Cc67R1 PhysRevResearch.3.L042022Cc46R1 PhysRevResearch.3.L042022Cc69R1 PhysRevResearch.3.L042022Cc48R1 L. van der Maaten (PhysRevResearch.3.L042022Cc70R1) 2008; 9 PhysRevResearch.3.L042022Cc29R1 PhysRevResearch.3.L042022Cc27R1 PhysRevResearch.3.L042022Cc61R1 PhysRevResearch.3.L042022Cc25R1 PhysRevResearch.3.L042022Cc40R1 PhysRevResearch.3.L042022Cc63R1 PhysRevResearch.3.L042022Cc23R1 PhysRevResearch.3.L042022Cc42R1 PhysRevResearch.3.L042022Cc65R1 PhysRevResearch.3.L042022Cc3R1 PhysRevResearch.3.L042022Cc34R1 PhysRevResearch.3.L042022Cc55R1 PhysRevResearch.3.L042022Cc5R1 F. Pedregosa (PhysRevResearch.3.L042022Cc71R1) 2011; 12 PhysRevResearch.3.L042022Cc36R1 PhysRevResearch.3.L042022Cc57R1 PhysRevResearch.3.L042022Cc7R1 PhysRevResearch.3.L042022Cc38R1 PhysRevResearch.3.L042022Cc59R1 PhysRevResearch.3.L042022Cc9R1 PhysRevResearch.3.L042022Cc19R1 PhysRevResearch.3.L042022Cc17R1 PhysRevResearch.3.L042022Cc72R1 PhysRevResearch.3.L042022Cc15R1 PhysRevResearch.3.L042022Cc74R1 PhysRevResearch.3.L042022Cc13R1 PhysRevResearch.3.L042022Cc30R1 PhysRevResearch.3.L042022Cc11R1 PhysRevResearch.3.L042022Cc32R1 |
References_xml | – ident: PhysRevResearch.3.L042022Cc57R1 doi: 10.1103/PhysRevB.85.121411 – ident: PhysRevResearch.3.L042022Cc27R1 doi: 10.1103/PhysRevLett.124.207004 – ident: PhysRevResearch.3.L042022Cc72R1 doi: 10.1103/PhysRevB.95.125301 – ident: PhysRevResearch.3.L042022Cc19R1 doi: 10.1063/1.4812323 – ident: PhysRevResearch.3.L042022Cc12R1 doi: 10.1038/s41467-018-06322-x – ident: PhysRevResearch.3.L042022Cc56R1 doi: 10.1006/jssc.1997.7442 – ident: PhysRevResearch.3.L042022Cc30R1 doi: 10.1103/PhysRevB.101.081110 – ident: PhysRevResearch.3.L042022Cc55R1 doi: 10.1021/ja991573i – ident: PhysRevResearch.3.L042022Cc44R1 doi: 10.1103/PhysRevB.59.1758 – ident: PhysRevResearch.3.L042022Cc43R1 doi: 10.1103/PhysRev.140.A1133 – ident: PhysRevResearch.3.L042022Cc20R1 doi: 10.1007/s11837-013-0755-4 – ident: PhysRevResearch.3.L042022Cc1R1 doi: 10.1038/s41586-018-0337-2 – ident: PhysRevResearch.3.L042022Cc49R1 doi: 10.1103/PhysRevB.52.R5467 – ident: PhysRevResearch.3.L042022Cc18R1 doi: 10.1038/s41598-018-35934-y – ident: PhysRevResearch.3.L042022Cc61R1 doi: 10.1103/PhysRevB.82.014110 – ident: PhysRevResearch.3.L042022Cc31R1 doi: 10.1103/PhysRevB.101.060504 – ident: PhysRevResearch.3.L042022Cc38R1 doi: 10.1103/PhysRevB.102.161118 – ident: PhysRevResearch.3.L042022Cc10R1 doi: 10.1557/mrc.2020.2 – ident: PhysRevResearch.3.L042022Cc62R1 doi: 10.1021/jp507957n – ident: PhysRevResearch.3.L042022Cc3R1 doi: 10.1021/acs.chemmater.0c01907 – ident: PhysRevResearch.3.L042022Cc65R1 doi: 10.1103/PhysRevB.92.144102 – ident: PhysRevResearch.3.L042022Cc66R1 doi: 10.1103/PhysRevB.101.165108 – ident: PhysRevResearch.3.L042022Cc58R1 doi: 10.1103/PhysRevB.96.035143 – ident: PhysRevResearch.3.L042022Cc4R1 doi: 10.1038/npjcompumats.2016.28 – ident: PhysRevResearch.3.L042022Cc23R1 doi: 10.1038/s41586-019-1496-5 – ident: PhysRevResearch.3.L042022Cc6R1 doi: 10.1103/PhysRevLett.114.105503 – ident: PhysRevResearch.3.L042022Cc36R1 doi: 10.1103/PhysRevB.101.020503 – ident: PhysRevResearch.3.L042022Cc63R1 doi: 10.1103/PhysRevB.86.155105 – ident: PhysRevResearch.3.L042022Cc39R1 doi: 10.1103/PhysRevResearch.3.013261 – ident: PhysRevResearch.3.L042022Cc26R1 doi: 10.1103/PhysRevLett.125.077003 – ident: PhysRevResearch.3.L042022Cc37R1 doi: 10.1103/PhysRevLett.124.166402 – ident: PhysRevResearch.3.L042022Cc48R1 doi: 10.1016/j.commatsci.2012.10.028 – ident: PhysRevResearch.3.L042022Cc67R1 doi: 10.1038/nature25972 – ident: PhysRevResearch.3.L042022Cc40R1 doi: 10.1103/PhysRevB.104.165137 – ident: PhysRevResearch.3.L042022Cc54R1 doi: 10.1016/S1293-2558(03)00111-0 – ident: PhysRevResearch.3.L042022Cc75R1 doi: 10.1038/ncomms3714 – ident: PhysRevResearch.3.L042022Cc13R1 doi: 10.1038/s41467-019-13297-w – ident: PhysRevResearch.3.L042022Cc33R1 doi: 10.1038/s41535-020-00260-y – ident: PhysRevResearch.3.L042022Cc35R1 doi: 10.1103/PhysRevLett.125.027001 – ident: PhysRevResearch.3.L042022Cc28R1 doi: 10.1103/PhysRevX.10.011024 – ident: PhysRevResearch.3.L042022Cc9R1 doi: 10.1021/acs.inorgchem.9b01785 – ident: PhysRevResearch.3.L042022Cc14R1 doi: 10.1557/mrc.2019.73 – ident: PhysRevResearch.3.L042022Cc74R1 doi: 10.1103/PhysRevMaterials.1.065405 – ident: PhysRevResearch.3.L042022Cc15R1 doi: 10.1103/PhysRevLett.120.143001 – ident: PhysRevResearch.3.L042022Cc45R1 doi: 10.1103/PhysRevB.50.17953 – ident: PhysRevResearch.3.L042022Cc11R1 doi: 10.1103/PhysRevLett.120.145301 – ident: PhysRevResearch.3.L042022Cc7R1 doi: 10.1126/sciadv.aav0693 – ident: PhysRevResearch.3.L042022Cc46R1 doi: 10.1103/PhysRevLett.77.3865 – volume: 9 start-page: 2579 year: 2008 ident: PhysRevResearch.3.L042022Cc70R1 publication-title: J. Mach. Learn. Res. – ident: PhysRevResearch.3.L042022Cc8R1 doi: 10.1021/acs.chemmater.7b00156 – ident: PhysRevResearch.3.L042022Cc29R1 doi: 10.1021/acs.nanolett.0c01392 – ident: PhysRevResearch.3.L042022Cc60R1 doi: 10.1103/PhysRevB.46.4414 – ident: PhysRevResearch.3.L042022Cc5R1 doi: 10.1103/PhysRevLett.117.135502 – ident: PhysRevResearch.3.L042022Cc64R1 doi: 10.1103/PhysRevApplied.11.044047 – ident: PhysRevResearch.3.L042022Cc21R1 doi: 10.1016/j.commatsci.2012.02.005 – ident: PhysRevResearch.3.L042022Cc59R1 doi: 10.1103/PhysRevMaterials.3.065004 – ident: PhysRevResearch.3.L042022Cc2R1 doi: 10.1038/s41524-019-0221-0 – ident: PhysRevResearch.3.L042022Cc32R1 doi: 10.1103/PhysRevB.101.075107 – volume: 12 start-page: 2825 year: 2011 ident: PhysRevResearch.3.L042022Cc71R1 publication-title: J. Mach. Learn. Res. – ident: PhysRevResearch.3.L042022Cc25R1 doi: 10.1103/PhysRevB.100.201106 – ident: PhysRevResearch.3.L042022Cc22R1 doi: 10.1557/mrs.2018.208 – ident: PhysRevResearch.3.L042022Cc17R1 doi: 10.1073/pnas.1801181115 – ident: PhysRevResearch.3.L042022Cc16R1 doi: 10.1038/s41586-019-1335-8 – ident: PhysRevResearch.3.L042022Cc69R1 doi: 10.1038/npjcompumats.2015.10 – ident: PhysRevResearch.3.L042022Cc24R1 doi: 10.1103/PhysRevB.100.205138 – ident: PhysRevResearch.3.L042022Cc34R1 doi: 10.1103/PhysRevB.102.020502 – ident: PhysRevResearch.3.L042022Cc42R1 doi: 10.1038/s41524-019-0153-8 – ident: PhysRevResearch.3.L042022Cc73R1 doi: 10.1103/PhysRevMaterials.2.055403 |
SSID | ssj0002511485 |
Score | 2.2398152 |
Snippet | Combining density functional theory simulations and active learning of neural networks, we explore formation energies of oxygen vacancy layers, lattice... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | L042022 |
Title | Active learning and element-embedding approach in neural networks for infinite-layer versus perovskite oxides |
URI | https://doaj.org/article/32b0bf8974774a9eb6134879965425d7 |
Volume | 3 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yULyInzi_iOC1W5akHzmqbIioB3GwW0maFxlsndhNPPm3-5LWMb3owUsPoUnb19fk99Lf-z1CLhwkRoHE71tYE8lC2ciYxEUJns8hVQrC74L7h-RmKG9H8Wil1JfnhNXywLXhuoIbZlzmYW8qtQKD6w-CbITpMbqbDXnkTLGVYMrPwR44yyzeIOc10110PaHyEd6--Gwd0blDf2Wcf1uQVnT7wwIz2CZbDTKkl_Ud7ZA1KHfJemBoFtUemV6GmYk2ZR6eqS4thZr8HcHUgLWhtdEIp-OSeq1KHLGsmd4VRXyKzW7sYWY00Qi2qSdlLCrq1cLfKr-RS2fvYwvVPhkO-k_XN1FTKyEqRJrNI4c4hFkpTZwJ0Kzocctsj6fO-ExSpvFBE4XBkIYsYc4WAhKrLUaHWWyKnnTigLTKWQmHhKYQx9rZRGexkkXaU86m4IBLa7TBS7RJ9mWwvGiExH09i0keAgom8h-2zkXe2LpN-LLrS62m8ZdOV_6tLDt4QezQgG6SN26S_-YmR_8xyDHZ5J7SElIRT0hr_rqAU8Qkc3MW3A-P9x_9T4pj48U |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Active+learning+and+element-embedding+approach+in+neural+networks+for+infinite-layer+versus+perovskite+oxides&rft.jtitle=Physical+review+research&rft.au=Sahinovic%2C+Armin&rft.au=Geisler%2C+Benjamin&rft.date=2021-11-01&rft.issn=2643-1564&rft.eissn=2643-1564&rft.volume=3&rft.issue=4&rft_id=info:doi/10.1103%2FPhysRevResearch.3.L042022&rft.externalDBID=n%2Fa&rft.externalDocID=10_1103_PhysRevResearch_3_L042022 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2643-1564&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2643-1564&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2643-1564&client=summon |