Active learning and element-embedding approach in neural networks for infinite-layer versus perovskite oxides

Combining density functional theory simulations and active learning of neural networks, we explore formation energies of oxygen vacancy layers, lattice parameters, and their statistical correlations in infinite-layer versus perovskite oxides across the periodic table, and place the superconducting n...

Full description

Saved in:
Bibliographic Details
Published inPhysical review research Vol. 3; no. 4; p. L042022
Main Authors Sahinovic, Armin, Geisler, Benjamin
Format Journal Article
LanguageEnglish
Published American Physical Society 01.11.2021
Online AccessGet full text
ISSN2643-1564
2643-1564
DOI10.1103/PhysRevResearch.3.L042022

Cover

Abstract Combining density functional theory simulations and active learning of neural networks, we explore formation energies of oxygen vacancy layers, lattice parameters, and their statistical correlations in infinite-layer versus perovskite oxides across the periodic table, and place the superconducting nickelate and cuprate families in a comprehensive context. We show that neural networks are capable of predicting these observables with high precision, using only 30-50% of the data for training. Element embedding autonomously identifies concepts of chemical similarity between the individual elements that are in line with human knowledge. We demonstrate that active learning efficiently composes the training set by an optimal strategy without a priori knowledge, based on the fundamental concepts of entropy and information, and provides systematic control over the prediction accuracy. This offers key ingredients to considerably accelerate scans of large parameter spaces and exemplifies how artificial intelligence may assist on the quantum scale in finding novel materials with optimized properties.
AbstractList Combining density functional theory simulations and active learning of neural networks, we explore formation energies of oxygen vacancy layers, lattice parameters, and their statistical correlations in infinite-layer versus perovskite oxides across the periodic table, and place the superconducting nickelate and cuprate families in a comprehensive context. We show that neural networks are capable of predicting these observables with high precision, using only 30-50% of the data for training. Element embedding autonomously identifies concepts of chemical similarity between the individual elements that are in line with human knowledge. We demonstrate that active learning efficiently composes the training set by an optimal strategy without a priori knowledge, based on the fundamental concepts of entropy and information, and provides systematic control over the prediction accuracy. This offers key ingredients to considerably accelerate scans of large parameter spaces and exemplifies how artificial intelligence may assist on the quantum scale in finding novel materials with optimized properties.
ArticleNumber L042022
Author Sahinovic, Armin
Geisler, Benjamin
Author_xml – sequence: 1
  givenname: Armin
  surname: Sahinovic
  fullname: Sahinovic, Armin
– sequence: 2
  givenname: Benjamin
  orcidid: 0000-0003-0864-2908
  surname: Geisler
  fullname: Geisler, Benjamin
BookMark eNqNkV1LHDEUhoNY0Fr_Q_oDZpuvmcxcFZG2Liwo0l6HM8mJG51NliSu3X_v-IGIV169hwfeBw7vV3IYU0RCvnO24JzJH1frfbnG3TUWhGzXC7lYMSWYEAfkWHRKNrzt1OG7-4iclnLLGBMt56pvj8nmzNawQzrNhhjiDYXoKE64wVgb3Izo3DPdbnMCu6Yh0oj3GaY56kPKd4X6lGfsQwwVmwn2mOkOc7kvdIs57crdzGn6HxyWb-SLh6ng6WuekH-_f_09v2hWl3-W52erxkrd18ZroZlTamx7icAsF445LrQfe841g_nDblBDC9h3zDsrsXPgRDt_NFquvDwhyxevS3BrtjlsIO9NgmCeQco3BnINdkIjxchG3w9aaa1gwLHjUvV6GLpWidbp2TW8uGxOpWT0bz7OzNMM5sMMRprXGebuzw9dGyrUkGLNEKZPGB4BwdWZZg
CitedBy_id crossref_primary_10_1103_PhysRevB_106_155139
crossref_primary_10_1103_PhysRevB_108_224502
crossref_primary_10_1016_j_heliyon_2023_e12845
crossref_primary_10_1038_s41535_024_00648_0
crossref_primary_10_1038_s41535_024_00690_y
crossref_primary_10_1038_s41563_023_01510_7
crossref_primary_10_1038_s41524_024_01475_4
crossref_primary_10_1103_PhysRevMaterials_7_114803
Cites_doi 10.1103/PhysRevB.85.121411
10.1103/PhysRevLett.124.207004
10.1103/PhysRevB.95.125301
10.1063/1.4812323
10.1038/s41467-018-06322-x
10.1006/jssc.1997.7442
10.1103/PhysRevB.101.081110
10.1021/ja991573i
10.1103/PhysRevB.59.1758
10.1103/PhysRev.140.A1133
10.1007/s11837-013-0755-4
10.1038/s41586-018-0337-2
10.1103/PhysRevB.52.R5467
10.1038/s41598-018-35934-y
10.1103/PhysRevB.82.014110
10.1103/PhysRevB.101.060504
10.1103/PhysRevB.102.161118
10.1557/mrc.2020.2
10.1021/jp507957n
10.1021/acs.chemmater.0c01907
10.1103/PhysRevB.92.144102
10.1103/PhysRevB.101.165108
10.1103/PhysRevB.96.035143
10.1038/npjcompumats.2016.28
10.1038/s41586-019-1496-5
10.1103/PhysRevLett.114.105503
10.1103/PhysRevB.101.020503
10.1103/PhysRevB.86.155105
10.1103/PhysRevResearch.3.013261
10.1103/PhysRevLett.125.077003
10.1103/PhysRevLett.124.166402
10.1016/j.commatsci.2012.10.028
10.1038/nature25972
10.1103/PhysRevB.104.165137
10.1016/S1293-2558(03)00111-0
10.1038/ncomms3714
10.1038/s41467-019-13297-w
10.1038/s41535-020-00260-y
10.1103/PhysRevLett.125.027001
10.1103/PhysRevX.10.011024
10.1021/acs.inorgchem.9b01785
10.1557/mrc.2019.73
10.1103/PhysRevMaterials.1.065405
10.1103/PhysRevLett.120.143001
10.1103/PhysRevB.50.17953
10.1103/PhysRevLett.120.145301
10.1126/sciadv.aav0693
10.1103/PhysRevLett.77.3865
10.1021/acs.chemmater.7b00156
10.1021/acs.nanolett.0c01392
10.1103/PhysRevB.46.4414
10.1103/PhysRevLett.117.135502
10.1103/PhysRevApplied.11.044047
10.1016/j.commatsci.2012.02.005
10.1103/PhysRevMaterials.3.065004
10.1038/s41524-019-0221-0
10.1103/PhysRevB.101.075107
10.1103/PhysRevB.100.201106
10.1557/mrs.2018.208
10.1073/pnas.1801181115
10.1038/s41586-019-1335-8
10.1038/npjcompumats.2015.10
10.1103/PhysRevB.100.205138
10.1103/PhysRevB.102.020502
10.1038/s41524-019-0153-8
10.1103/PhysRevMaterials.2.055403
ContentType Journal Article
DBID AAYXX
CITATION
DOA
DOI 10.1103/PhysRevResearch.3.L042022
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 2643-1564
ExternalDocumentID oai_doaj_org_article_32b0bf8974774a9eb6134879965425d7
10_1103_PhysRevResearch_3_L042022
GroupedDBID 3MX
AAYXX
AFGMR
AGDNE
ALMA_UNASSIGNED_HOLDINGS
CITATION
GROUPED_DOAJ
M~E
ROL
ID FETCH-LOGICAL-c378t-f7270d44b583ea0c12d0d127fb81170a02269495ae860fdc3e6dad25485bc14f3
IEDL.DBID DOA
ISSN 2643-1564
IngestDate Wed Aug 27 01:27:01 EDT 2025
Tue Jul 01 02:05:49 EDT 2025
Thu Apr 24 23:06:01 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-f7270d44b583ea0c12d0d127fb81170a02269495ae860fdc3e6dad25485bc14f3
ORCID 0000-0003-0864-2908
OpenAccessLink https://doaj.org/article/32b0bf8974774a9eb6134879965425d7
ParticipantIDs doaj_primary_oai_doaj_org_article_32b0bf8974774a9eb6134879965425d7
crossref_primary_10_1103_PhysRevResearch_3_L042022
crossref_citationtrail_10_1103_PhysRevResearch_3_L042022
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-01
PublicationDateYYYYMMDD 2021-11-01
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-01
  day: 01
PublicationDecade 2020
PublicationTitle Physical review research
PublicationYear 2021
Publisher American Physical Society
Publisher_xml – name: American Physical Society
References PhysRevResearch.3.L042022Cc20R1
PhysRevResearch.3.L042022Cc45R1
PhysRevResearch.3.L042022Cc66R1
PhysRevResearch.3.L042022Cc49R1
PhysRevResearch.3.L042022Cc28R1
PhysRevResearch.3.L042022Cc26R1
PhysRevResearch.3.L042022Cc60R1
PhysRevResearch.3.L042022Cc24R1
PhysRevResearch.3.L042022Cc62R1
PhysRevResearch.3.L042022Cc1R1
PhysRevResearch.3.L042022Cc22R1
PhysRevResearch.3.L042022Cc43R1
PhysRevResearch.3.L042022Cc64R1
PhysRevResearch.3.L042022Cc10R1
PhysRevResearch.3.L042022Cc33R1
PhysRevResearch.3.L042022Cc56R1
PhysRevResearch.3.L042022Cc2R1
PhysRevResearch.3.L042022Cc35R1
PhysRevResearch.3.L042022Cc58R1
PhysRevResearch.3.L042022Cc4R1
PhysRevResearch.3.L042022Cc37R1
PhysRevResearch.3.L042022Cc6R1
PhysRevResearch.3.L042022Cc39R1
PhysRevResearch.3.L042022Cc8R1
PhysRevResearch.3.L042022Cc18R1
PhysRevResearch.3.L042022Cc16R1
PhysRevResearch.3.L042022Cc14R1
PhysRevResearch.3.L042022Cc73R1
PhysRevResearch.3.L042022Cc12R1
PhysRevResearch.3.L042022Cc31R1
PhysRevResearch.3.L042022Cc54R1
PhysRevResearch.3.L042022Cc75R1
PhysRevResearch.3.L042022Cc21R1
PhysRevResearch.3.L042022Cc44R1
PhysRevResearch.3.L042022Cc67R1
PhysRevResearch.3.L042022Cc46R1
PhysRevResearch.3.L042022Cc69R1
PhysRevResearch.3.L042022Cc48R1
L. van der Maaten (PhysRevResearch.3.L042022Cc70R1) 2008; 9
PhysRevResearch.3.L042022Cc29R1
PhysRevResearch.3.L042022Cc27R1
PhysRevResearch.3.L042022Cc61R1
PhysRevResearch.3.L042022Cc25R1
PhysRevResearch.3.L042022Cc40R1
PhysRevResearch.3.L042022Cc63R1
PhysRevResearch.3.L042022Cc23R1
PhysRevResearch.3.L042022Cc42R1
PhysRevResearch.3.L042022Cc65R1
PhysRevResearch.3.L042022Cc3R1
PhysRevResearch.3.L042022Cc34R1
PhysRevResearch.3.L042022Cc55R1
PhysRevResearch.3.L042022Cc5R1
F. Pedregosa (PhysRevResearch.3.L042022Cc71R1) 2011; 12
PhysRevResearch.3.L042022Cc36R1
PhysRevResearch.3.L042022Cc57R1
PhysRevResearch.3.L042022Cc7R1
PhysRevResearch.3.L042022Cc38R1
PhysRevResearch.3.L042022Cc59R1
PhysRevResearch.3.L042022Cc9R1
PhysRevResearch.3.L042022Cc19R1
PhysRevResearch.3.L042022Cc17R1
PhysRevResearch.3.L042022Cc72R1
PhysRevResearch.3.L042022Cc15R1
PhysRevResearch.3.L042022Cc74R1
PhysRevResearch.3.L042022Cc13R1
PhysRevResearch.3.L042022Cc30R1
PhysRevResearch.3.L042022Cc11R1
PhysRevResearch.3.L042022Cc32R1
References_xml – ident: PhysRevResearch.3.L042022Cc57R1
  doi: 10.1103/PhysRevB.85.121411
– ident: PhysRevResearch.3.L042022Cc27R1
  doi: 10.1103/PhysRevLett.124.207004
– ident: PhysRevResearch.3.L042022Cc72R1
  doi: 10.1103/PhysRevB.95.125301
– ident: PhysRevResearch.3.L042022Cc19R1
  doi: 10.1063/1.4812323
– ident: PhysRevResearch.3.L042022Cc12R1
  doi: 10.1038/s41467-018-06322-x
– ident: PhysRevResearch.3.L042022Cc56R1
  doi: 10.1006/jssc.1997.7442
– ident: PhysRevResearch.3.L042022Cc30R1
  doi: 10.1103/PhysRevB.101.081110
– ident: PhysRevResearch.3.L042022Cc55R1
  doi: 10.1021/ja991573i
– ident: PhysRevResearch.3.L042022Cc44R1
  doi: 10.1103/PhysRevB.59.1758
– ident: PhysRevResearch.3.L042022Cc43R1
  doi: 10.1103/PhysRev.140.A1133
– ident: PhysRevResearch.3.L042022Cc20R1
  doi: 10.1007/s11837-013-0755-4
– ident: PhysRevResearch.3.L042022Cc1R1
  doi: 10.1038/s41586-018-0337-2
– ident: PhysRevResearch.3.L042022Cc49R1
  doi: 10.1103/PhysRevB.52.R5467
– ident: PhysRevResearch.3.L042022Cc18R1
  doi: 10.1038/s41598-018-35934-y
– ident: PhysRevResearch.3.L042022Cc61R1
  doi: 10.1103/PhysRevB.82.014110
– ident: PhysRevResearch.3.L042022Cc31R1
  doi: 10.1103/PhysRevB.101.060504
– ident: PhysRevResearch.3.L042022Cc38R1
  doi: 10.1103/PhysRevB.102.161118
– ident: PhysRevResearch.3.L042022Cc10R1
  doi: 10.1557/mrc.2020.2
– ident: PhysRevResearch.3.L042022Cc62R1
  doi: 10.1021/jp507957n
– ident: PhysRevResearch.3.L042022Cc3R1
  doi: 10.1021/acs.chemmater.0c01907
– ident: PhysRevResearch.3.L042022Cc65R1
  doi: 10.1103/PhysRevB.92.144102
– ident: PhysRevResearch.3.L042022Cc66R1
  doi: 10.1103/PhysRevB.101.165108
– ident: PhysRevResearch.3.L042022Cc58R1
  doi: 10.1103/PhysRevB.96.035143
– ident: PhysRevResearch.3.L042022Cc4R1
  doi: 10.1038/npjcompumats.2016.28
– ident: PhysRevResearch.3.L042022Cc23R1
  doi: 10.1038/s41586-019-1496-5
– ident: PhysRevResearch.3.L042022Cc6R1
  doi: 10.1103/PhysRevLett.114.105503
– ident: PhysRevResearch.3.L042022Cc36R1
  doi: 10.1103/PhysRevB.101.020503
– ident: PhysRevResearch.3.L042022Cc63R1
  doi: 10.1103/PhysRevB.86.155105
– ident: PhysRevResearch.3.L042022Cc39R1
  doi: 10.1103/PhysRevResearch.3.013261
– ident: PhysRevResearch.3.L042022Cc26R1
  doi: 10.1103/PhysRevLett.125.077003
– ident: PhysRevResearch.3.L042022Cc37R1
  doi: 10.1103/PhysRevLett.124.166402
– ident: PhysRevResearch.3.L042022Cc48R1
  doi: 10.1016/j.commatsci.2012.10.028
– ident: PhysRevResearch.3.L042022Cc67R1
  doi: 10.1038/nature25972
– ident: PhysRevResearch.3.L042022Cc40R1
  doi: 10.1103/PhysRevB.104.165137
– ident: PhysRevResearch.3.L042022Cc54R1
  doi: 10.1016/S1293-2558(03)00111-0
– ident: PhysRevResearch.3.L042022Cc75R1
  doi: 10.1038/ncomms3714
– ident: PhysRevResearch.3.L042022Cc13R1
  doi: 10.1038/s41467-019-13297-w
– ident: PhysRevResearch.3.L042022Cc33R1
  doi: 10.1038/s41535-020-00260-y
– ident: PhysRevResearch.3.L042022Cc35R1
  doi: 10.1103/PhysRevLett.125.027001
– ident: PhysRevResearch.3.L042022Cc28R1
  doi: 10.1103/PhysRevX.10.011024
– ident: PhysRevResearch.3.L042022Cc9R1
  doi: 10.1021/acs.inorgchem.9b01785
– ident: PhysRevResearch.3.L042022Cc14R1
  doi: 10.1557/mrc.2019.73
– ident: PhysRevResearch.3.L042022Cc74R1
  doi: 10.1103/PhysRevMaterials.1.065405
– ident: PhysRevResearch.3.L042022Cc15R1
  doi: 10.1103/PhysRevLett.120.143001
– ident: PhysRevResearch.3.L042022Cc45R1
  doi: 10.1103/PhysRevB.50.17953
– ident: PhysRevResearch.3.L042022Cc11R1
  doi: 10.1103/PhysRevLett.120.145301
– ident: PhysRevResearch.3.L042022Cc7R1
  doi: 10.1126/sciadv.aav0693
– ident: PhysRevResearch.3.L042022Cc46R1
  doi: 10.1103/PhysRevLett.77.3865
– volume: 9
  start-page: 2579
  year: 2008
  ident: PhysRevResearch.3.L042022Cc70R1
  publication-title: J. Mach. Learn. Res.
– ident: PhysRevResearch.3.L042022Cc8R1
  doi: 10.1021/acs.chemmater.7b00156
– ident: PhysRevResearch.3.L042022Cc29R1
  doi: 10.1021/acs.nanolett.0c01392
– ident: PhysRevResearch.3.L042022Cc60R1
  doi: 10.1103/PhysRevB.46.4414
– ident: PhysRevResearch.3.L042022Cc5R1
  doi: 10.1103/PhysRevLett.117.135502
– ident: PhysRevResearch.3.L042022Cc64R1
  doi: 10.1103/PhysRevApplied.11.044047
– ident: PhysRevResearch.3.L042022Cc21R1
  doi: 10.1016/j.commatsci.2012.02.005
– ident: PhysRevResearch.3.L042022Cc59R1
  doi: 10.1103/PhysRevMaterials.3.065004
– ident: PhysRevResearch.3.L042022Cc2R1
  doi: 10.1038/s41524-019-0221-0
– ident: PhysRevResearch.3.L042022Cc32R1
  doi: 10.1103/PhysRevB.101.075107
– volume: 12
  start-page: 2825
  year: 2011
  ident: PhysRevResearch.3.L042022Cc71R1
  publication-title: J. Mach. Learn. Res.
– ident: PhysRevResearch.3.L042022Cc25R1
  doi: 10.1103/PhysRevB.100.201106
– ident: PhysRevResearch.3.L042022Cc22R1
  doi: 10.1557/mrs.2018.208
– ident: PhysRevResearch.3.L042022Cc17R1
  doi: 10.1073/pnas.1801181115
– ident: PhysRevResearch.3.L042022Cc16R1
  doi: 10.1038/s41586-019-1335-8
– ident: PhysRevResearch.3.L042022Cc69R1
  doi: 10.1038/npjcompumats.2015.10
– ident: PhysRevResearch.3.L042022Cc24R1
  doi: 10.1103/PhysRevB.100.205138
– ident: PhysRevResearch.3.L042022Cc34R1
  doi: 10.1103/PhysRevB.102.020502
– ident: PhysRevResearch.3.L042022Cc42R1
  doi: 10.1038/s41524-019-0153-8
– ident: PhysRevResearch.3.L042022Cc73R1
  doi: 10.1103/PhysRevMaterials.2.055403
SSID ssj0002511485
Score 2.2398152
Snippet Combining density functional theory simulations and active learning of neural networks, we explore formation energies of oxygen vacancy layers, lattice...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage L042022
Title Active learning and element-embedding approach in neural networks for infinite-layer versus perovskite oxides
URI https://doaj.org/article/32b0bf8974774a9eb6134879965425d7
Volume 3
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3NS8MwFA8yULyInzi_iOC1W5akHzmqbIioB3GwW0maFxlsndhNPPm3-5LWMb3owUsPoUnb19fk99Lf-z1CLhwkRoHE71tYE8lC2ciYxEUJns8hVQrC74L7h-RmKG9H8Wil1JfnhNXywLXhuoIbZlzmYW8qtQKD6w-CbITpMbqbDXnkTLGVYMrPwR44yyzeIOc10110PaHyEd6--Gwd0blDf2Wcf1uQVnT7wwIz2CZbDTKkl_Ud7ZA1KHfJemBoFtUemV6GmYk2ZR6eqS4thZr8HcHUgLWhtdEIp-OSeq1KHLGsmd4VRXyKzW7sYWY00Qi2qSdlLCrq1cLfKr-RS2fvYwvVPhkO-k_XN1FTKyEqRJrNI4c4hFkpTZwJ0Kzocctsj6fO-ExSpvFBE4XBkIYsYc4WAhKrLUaHWWyKnnTigLTKWQmHhKYQx9rZRGexkkXaU86m4IBLa7TBS7RJ9mWwvGiExH09i0keAgom8h-2zkXe2LpN-LLrS62m8ZdOV_6tLDt4QezQgG6SN26S_-YmR_8xyDHZ5J7SElIRT0hr_rqAU8Qkc3MW3A-P9x_9T4pj48U
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Active+learning+and+element-embedding+approach+in+neural+networks+for+infinite-layer+versus+perovskite+oxides&rft.jtitle=Physical+review+research&rft.au=Sahinovic%2C+Armin&rft.au=Geisler%2C+Benjamin&rft.date=2021-11-01&rft.issn=2643-1564&rft.eissn=2643-1564&rft.volume=3&rft.issue=4&rft_id=info:doi/10.1103%2FPhysRevResearch.3.L042022&rft.externalDBID=n%2Fa&rft.externalDocID=10_1103_PhysRevResearch_3_L042022
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2643-1564&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2643-1564&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2643-1564&client=summon