Comparing Loihi with a SpiNNaker 2 prototype on low-latency keyword spotting and adaptive robotic control

Abstract We implemented two neural network based benchmark tasks on a prototype chip of the second-generation SpiNNaker (SpiNNaker 2) neuromorphic system: keyword spotting and adaptive robotic control. Keyword spotting is commonly used in smart speakers to listen for wake words, and adaptive control...

Full description

Saved in:
Bibliographic Details
Published inNeuromorphic computing and engineering Vol. 1; no. 1; p. 14002
Main Authors Yan, Yexin, Stewart, Terrence C, Choo, Xuan, Vogginger, Bernhard, Partzsch, Johannes, Höppner, Sebastian, Kelber, Florian, Eliasmith, Chris, Furber, Steve, Mayr, Christian
Format Journal Article
LanguageEnglish
Published IOP Publishing 01.09.2021
Subjects
Online AccessGet full text
ISSN2634-4386
2634-4386
DOI10.1088/2634-4386/abf150

Cover

Abstract Abstract We implemented two neural network based benchmark tasks on a prototype chip of the second-generation SpiNNaker (SpiNNaker 2) neuromorphic system: keyword spotting and adaptive robotic control. Keyword spotting is commonly used in smart speakers to listen for wake words, and adaptive control is used in robotic applications to adapt to unknown dynamics in an online fashion. We highlight the benefit of a multiply-accumulate (MAC) array in the SpiNNaker 2 prototype which is ordinarily used in rate-based machine learning networks when employed in a neuromorphic, spiking context. In addition, the same benchmark tasks have been implemented on the Loihi neuromorphic chip, giving a side-by-side comparison regarding power consumption and computation time. While Loihi shows better efficiency when less complicated vector-matrix multiplication is involved, with the MAC array, the SpiNNaker 2 prototype shows better efficiency when high dimensional vector-matrix multiplication is involved.
NRC publication: Yes
AbstractList Abstract We implemented two neural network based benchmark tasks on a prototype chip of the second-generation SpiNNaker (SpiNNaker 2) neuromorphic system: keyword spotting and adaptive robotic control. Keyword spotting is commonly used in smart speakers to listen for wake words, and adaptive control is used in robotic applications to adapt to unknown dynamics in an online fashion. We highlight the benefit of a multiply-accumulate (MAC) array in the SpiNNaker 2 prototype which is ordinarily used in rate-based machine learning networks when employed in a neuromorphic, spiking context. In addition, the same benchmark tasks have been implemented on the Loihi neuromorphic chip, giving a side-by-side comparison regarding power consumption and computation time. While Loihi shows better efficiency when less complicated vector-matrix multiplication is involved, with the MAC array, the SpiNNaker 2 prototype shows better efficiency when high dimensional vector-matrix multiplication is involved.
We implemented two neural network based benchmark tasks on a prototype chip of the second-generation SpiNNaker (SpiNNaker 2) neuromorphic system: keyword spotting and adaptive robotic control. Keyword spotting is commonly used in smart speakers to listen for wake words, and adaptive control is used in robotic applications to adapt to unknown dynamics in an online fashion. We highlight the benefit of a multiply-accumulate (MAC) array in the SpiNNaker 2 prototype which is ordinarily used in rate-based machine learning networks when employed in a neuromorphic, spiking context. In addition, the same benchmark tasks have been implemented on the Loihi neuromorphic chip, giving a side-by-side comparison regarding power consumption and computation time. While Loihi shows better efficiency when less complicated vector-matrix multiplication is involved, with the MAC array, the SpiNNaker 2 prototype shows better efficiency when high dimensional vector-matrix multiplication is involved.
Author Höppner, Sebastian
Kelber, Florian
Furber, Steve
Mayr, Christian
Stewart, Terrence C
Partzsch, Johannes
Eliasmith, Chris
Vogginger, Bernhard
Yan, Yexin
Choo, Xuan
Author_xml – sequence: 1
  fullname: Yan, Yexin
– sequence: 2
  fullname: Stewart, Terrence C
– sequence: 3
  fullname: Choo, Xuan
– sequence: 4
  fullname: Vogginger, Bernhard
– sequence: 5
  fullname: Partzsch, Johannes
– sequence: 6
  fullname: Höppner, Sebastian
– sequence: 7
  fullname: Kelber, Florian
– sequence: 8
  fullname: Eliasmith, Chris
– sequence: 9
  fullname: Furber, Steve
– sequence: 10
  fullname: Mayr, Christian
BookMark eNp9kE1LJDEQhoMo6LrePeYPtCadj04fZVBXGPSwu-dQ-dI4bdKkg8P8e7sdGZY9eEmFlzxVlecHOk45eYQuKbmiRKnrVjLecKbkNZhABTlCZ4fo-J_7KbqYpldCSNt1lEpxhuIqv41QYnrG6xxfIt7G-oIB_x7j4yNsfMEtHkuuue5Gj3PCQ942A1Sf7A5v_G6bi8PTmGtdWkByGByMNb57XLLJNVpsc6olDz_RSYBh8hdf9Rz9vbv9s_rVrJ_uH1Y368ayTtUm0JaR0FFnTced7EzPhWwFDwQCCwCqZZ4KIwO0zgllSS96Fji3lHBDpGTnSO772pKnqfigbaxQ47IFxEFTohdnepGiFyl672wGyX_gWOIblN13iNsjqVgLaf76gckQ58FTjTouRc8vtP08YJ-nWbvVRHZBCUc0BxU0tyRo1XOjad93pjXWCNmzD-hOlgU
CitedBy_id crossref_primary_10_3389_fnins_2022_851774
crossref_primary_10_1038_s41467_024_44723_3
crossref_primary_10_3389_fnins_2024_1360122
crossref_primary_10_3389_fnins_2022_1018006
crossref_primary_10_1088_2634_4386_ac4c38
crossref_primary_10_1038_s41586_024_08253_8
crossref_primary_10_3390_electronics12183964
crossref_primary_10_1109_TC_2022_3162708
crossref_primary_10_3389_fnins_2023_1190515
crossref_primary_10_3390_electronics13163203
crossref_primary_10_3390_s23063037
crossref_primary_10_1088_2634_4386_ac0a5b
crossref_primary_10_3389_fnins_2022_867027
crossref_primary_10_3389_fnins_2023_1223262
crossref_primary_10_1109_JPROC_2023_3273520
crossref_primary_10_1038_s41467_022_28487_2
crossref_primary_10_1007_s11227_024_06826_y
crossref_primary_10_1109_TMAG_2024_3403973
crossref_primary_10_3389_fnins_2024_1335422
crossref_primary_10_1038_s41598_023_47245_y
crossref_primary_10_1088_2634_4386_ac889c
crossref_primary_10_1088_2634_4386_ac889b
crossref_primary_10_3389_fncom_2023_1148284
Cites_doi 10.1162/neco.2007.19.11.2881
10.1038/s41586-019-1677-2
10.1109/tcsi.2019.2911898
10.1109/tnnls.2016.2572164
10.1109/tbcas.2017.2759700
10.1109/tbcas.2016.2579164
10.1109/JPROC.2014.2313565
10.1109/jproc.2014.2304638
10.1177/027836498700600303
10.1126/science.1254642
10.1016/j.neuron.2016.10.046
10.3389/fnins.2018.00213
10.1371/journal.pone.0022885
10.3389/fnins.2015.00464
10.3389/fnbot.2020.568359
10.1038/s42256-020-0159-4
10.1109/jproc.2018.2881432
10.1038/s41586-019-1424-8
10.1109/mm.2018.112130359
10.1126/science.275.5297.213
10.1109/jproc.2017.2761740
10.1007/s11265-020-01556-9
10.1098/rspb.2016.2134
10.1109/TCSII.2019.2959544
10.1109/tbcas.2019.2928793
10.1109/tbcas.2014.2379294
10.1145/3320288.3320304
10.3389/fnins.2015.00141
10.1109/tbcas.2019.2906401
10.1126/science.1225266
10.1109/jetcas.2020.3032058
ContentType Journal Article
Copyright Creative Commons, Attribution 4.0 International (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/) Creative Commons, Attribution 4.0 International (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/deed.fr)
Copyright_xml – notice: Creative Commons, Attribution 4.0 International (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/) Creative Commons, Attribution 4.0 International (CC BY 4.0) (https://creativecommons.org/licenses/by/4.0/deed.fr)
DBID -LJ
GXV
AAYXX
CITATION
DOI 10.1088/2634-4386/abf150
DatabaseName National Research Council Canada Archive
CISTI Source
CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Sciences
Computer Science
EISSN 2634-4386
ExternalDocumentID 10_1088_2634_4386_abf150
oai_cisti_icist_nrc_cnrc_ca_cistinparc_067f85d0_4a8f_4c0f_894b_1997b2bcb569
GroupedDBID -LJ
ACHIP
AEINN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
CJUJL
GROUPED_DOAJ
GXV
M~E
N5L
O3W
OK1
AAYXX
ABHWH
CITATION
ID FETCH-LOGICAL-c378t-f1230f71dcb74d67b9456254f0af3faa823e15b6fa2dd58c09593f44c104b0663
ISSN 2634-4386
IngestDate Tue Jul 01 01:09:05 EDT 2025
Thu Apr 24 22:57:05 EDT 2025
Fri Sep 26 16:40:25 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c378t-f1230f71dcb74d67b9456254f0af3faa823e15b6fa2dd58c09593f44c104b0663
ORCID 0000-0002-4267-7015
OpenAccessLink https://iopscience.iop.org/article/10.1088/2634-4386/abf150/pdf
ParticipantIDs crossref_citationtrail_10_1088_2634_4386_abf150
crossref_primary_10_1088_2634_4386_abf150
nrccanada_primary_oai_cisti_icist_nrc_cnrc_ca_cistinparc_067f85d0_4a8f_4c0f_894b_1997b2bcb569
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-09-01
PublicationDateYYYYMMDD 2021-09-01
PublicationDate_xml – month: 09
  year: 2021
  text: 2021-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Neuromorphic computing and engineering
PublicationYear 2021
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Partzsch (nceabf150bib37) 2020; 92
Stromatias (nceabf150bib30) 2013
Furber (nceabf150bib11) 2014; 102
Walter (nceabf150bib20) 2020
Höppner (nceabf150bib10) 2021
DeWolf (nceabf150bib24) 2016; 283
Partzsch (nceabf150bib13) 2017
Park (nceabf150bib34) 2017; 28
Roy (nceabf150bib2) 2019; 575
Blouw (nceabf150bib4) 2019
DeWolf (nceabf150bib5) 2020
Höppner (nceabf150bib16) 2017
Carter (nceabf150bib18) 2016
Höppner (nceabf150bib17) 2019; 66
Stewart (nceabf150bib22) 2015; 9
Qiao (nceabf150bib39) 2015; 9
Davies (nceabf150bib3) 2018; 38
Neumärker (nceabf150bib15) 2016
Yan (nceabf150bib9) 2019; 13
Imam (nceabf150bib7) 2020; 2
Stewart (nceabf150bib8) 2020; 10
Sze (nceabf150bib1) 2017; 105
Höppner (nceabf150bib19) 2019
Mundy (nceabf150bib28) 2015
Varkey Benjamin (nceabf150bib32) 2014; 102
MacNeil (nceabf150bib23) 2011; 6
Eliasmith (nceabf150bib26) 2003
Amunts (nceabf150bib12) 2016; 92
Friedmann (nceabf150bib42) 2017; 11
Neckar (nceabf150bib33) 2019; 107
Slotine (nceabf150bib25) 1987; 6
Knight (nceabf150bib29) 2016
Hartmann (nceabf150bib43) 2010
Merolla (nceabf150bib31) 2014; 345
Moradi (nceabf150bib35) 2018; 12
Mayr (nceabf150bib6) 2019
Mikaitis (nceabf150bib14) 2018
Höppner (nceabf150bib21) 2019; 67
Wang (nceabf150bib38) 2018; 12
Pei (nceabf150bib36) 2019; 572
Mayr (nceabf150bib41) 2016; 10
Markram (nceabf150bib44) 1997; 275
Brader (nceabf150bib45) 2007; 19
Eliasmith (nceabf150bib27) 2012; 338
Frenkel (nceabf150bib40) Feb 2019; 13
References_xml – volume: 19
  start-page: 2881
  year: 2007
  ident: nceabf150bib45
  article-title: Learning real-world stimuli in a neural network with spike-driven synaptic dynamics
  publication-title: Neural Comput.
  doi: 10.1162/neco.2007.19.11.2881
– volume: 575
  start-page: 607
  year: 2019
  ident: nceabf150bib2
  article-title: Towards spike-based machine intelligence with neuromorphic computing
  publication-title: Nature
  doi: 10.1038/s41586-019-1677-2
– volume: 66
  start-page: 2973
  year: 2019
  ident: nceabf150bib17
  article-title: Dynamic power management for neuromorphic many-core systems
  publication-title: IEEE Trans. Circuits Syst. I
  doi: 10.1109/tcsi.2019.2911898
– volume: 28
  start-page: 2408
  year: 2017
  ident: nceabf150bib34
  article-title: Hierarchical address event routing for reconfigurable large-scale neuromorphic systems
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/tnnls.2016.2572164
– volume: 12
  start-page: 106
  year: 2018
  ident: nceabf150bib35
  article-title: A scalable multicore architecture with heterogeneous memory structures for dynamic neuromorphic asynchronous processors (dynaps)
  publication-title: IEEE Trans. Biomed. Circuits Syst.
  doi: 10.1109/tbcas.2017.2759700
– volume: 11
  start-page: 128
  year: 2017
  ident: nceabf150bib42
  article-title: Demonstrating hybrid learning in a flexible neuromorphic hardware system
  publication-title: IEEE Trans. Biomed. Circuits Syst.
  doi: 10.1109/tbcas.2016.2579164
– start-page: 37
  year: 2018
  ident: nceabf150bib14
  article-title: Approximate fixed-point elementary function accelerator for the SpiNNaker-2 neuromorphic chip
– volume: 102
  start-page: 699
  year: 2014
  ident: nceabf150bib32
  article-title: Neurogrid: a mixed-analog-digital multichip system for large-scale neural simulations
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2014.2313565
– volume: 102
  start-page: 652
  year: 2014
  ident: nceabf150bib11
  article-title: The SpiNNaker project
  publication-title: Proc. IEEE
  doi: 10.1109/jproc.2014.2304638
– volume: 6
  start-page: 49
  year: 1987
  ident: nceabf150bib25
  article-title: On the adaptive control of robot manipulators
  publication-title: Int. J. Robot. Res.
  doi: 10.1177/027836498700600303
– start-page: 1
  year: 2017
  ident: nceabf150bib13
  article-title: A fixed point exponential function accelerator for a neuromorphic many-core system
– start-page: 1
  year: 2015
  ident: nceabf150bib28
  article-title: An efficient SpiNNaker implementation of the neural engineering framework
– volume: 345
  start-page: 668
  year: 2014
  ident: nceabf150bib31
  article-title: A million spiking-neuron integrated circuit with a scalable communication network and interface
  publication-title: Science
  doi: 10.1126/science.1254642
– volume: 92
  start-page: 574
  year: 2016
  ident: nceabf150bib12
  article-title: The human brain project: creating a European research infrastructure to decode the human brain
  publication-title: Neuron
  doi: 10.1016/j.neuron.2016.10.046
– start-page: 66
  year: 2019
  ident: nceabf150bib19
  article-title: How to achieve world-leading energy efficiency using 22fdx with adaptive body biasing on an arm cortex-m4 iot soc
– volume: 12
  start-page: 213
  year: 2018
  ident: nceabf150bib38
  article-title: An FPGA-based massively parallel neuromorphic cortex simulator
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2018.00213
– start-page: 221
  year: 2016
  ident: nceabf150bib18
  article-title: 22 nm FDSOI technology for emerging mobile, internet-of-things, and rf applications
– volume: 6
  year: 2011
  ident: nceabf150bib23
  article-title: Fine-tuning and the stability of recurrent neural networks
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0022885
– start-page: 950
  year: 2010
  ident: nceabf150bib43
  article-title: Highly integrated packet-based AER communication infrastructure with 3 gevent/s throughput
– start-page: 1
  year: 2016
  ident: nceabf150bib15
  article-title: True random number generation from bang-bang adpll jitter
– year: 2019
  ident: nceabf150bib6
  article-title: SpiNNaker 2: a 10 million core processor system for brain simulation and machine learning
– volume: 9
  start-page: 464
  year: 2015
  ident: nceabf150bib22
  article-title: Closed-loop neuromorphic benchmarks
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2015.00464
– year: 2020
  ident: nceabf150bib5
  article-title: Nengo and low-power AI hardware for robust, embedded neurorobotics
  doi: 10.3389/fnbot.2020.568359
– volume: 2
  start-page: 181
  year: 2020
  ident: nceabf150bib7
  article-title: Rapid online learning and robust recall in a neuromorphic olfactory circuit
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-020-0159-4
– start-page: 1
  year: 2013
  ident: nceabf150bib30
  article-title: Power analysis of large-scale, real-time neural networks on SpiNNaker
– volume: 107
  start-page: 144
  year: 2019
  ident: nceabf150bib33
  article-title: Braindrop: a mixed-signal neuromorphic architecture with a dynamical systems-based programming model
  publication-title: Proc. IEEE
  doi: 10.1109/jproc.2018.2881432
– start-page: 5210
  year: 2016
  ident: nceabf150bib29
  article-title: Efficient SpiNNaker simulation of a heteroassociative memory using the neural engineering framework
– volume: 572
  start-page: 106
  year: 2019
  ident: nceabf150bib36
  article-title: Towards artificial general intelligence with hybrid tianjic chip architecture
  publication-title: Nature
  doi: 10.1038/s41586-019-1424-8
– volume: 38
  start-page: 82
  year: 2018
  ident: nceabf150bib3
  article-title: Loihi: a neuromorphic manycore processor with on-chip learning
  publication-title: IEEE Micro
  doi: 10.1109/mm.2018.112130359
– volume: 275
  start-page: 213
  year: 1997
  ident: nceabf150bib44
  article-title: Regulation of synaptic efficacy by coincidence of postsynaptic APS and EPSPS
  publication-title: Science
  doi: 10.1126/science.275.5297.213
– year: 2003
  ident: nceabf150bib26
– volume: 105
  start-page: 2295
  year: 2017
  ident: nceabf150bib1
  article-title: Efficient processing of deep neural networks: a tutorial and survey
  publication-title: Proc. IEEE
  doi: 10.1109/jproc.2017.2761740
– start-page: 1
  year: 2020
  ident: nceabf150bib20
  article-title: A 0.55 V 6.3 μW/MHz Arm Cortex-M4 MCU with adaptive reverse body bias and single rail SRAM
– volume: 92
  start-page: 1303
  year: 2020
  ident: nceabf150bib37
  article-title: Mean field approach for configuring population dynamics on a biohybrid neuromorphic system
  publication-title: J. Signal Process. Syst.
  doi: 10.1007/s11265-020-01556-9
– start-page: 1
  year: 2017
  ident: nceabf150bib16
  article-title: Dynamic voltage and frequency scaling for neuromorphic many-core systems
– volume: 283
  start-page: 20162134
  year: 2016
  ident: nceabf150bib24
  article-title: A spiking neural model of adaptive arm control
  publication-title: Proc. R. Soc. B.
  doi: 10.1098/rspb.2016.2134
– volume: 67
  start-page: 2159
  year: 2019
  ident: nceabf150bib21
  article-title: Adaptive body bias aware implementation for ultra-low-voltage designs in 22FDX technology
  publication-title: IEEE Trans. Circuits Syst. II
  doi: 10.1109/TCSII.2019.2959544
– volume: 13
  start-page: 145
  year: Feb 2019
  ident: nceabf150bib40
  article-title: A 0.086 mm2 12.7-pj/sop 64k-synapse 256-neuron online-learning digital spiking neuromorphic processor in 28 nm CMOS
  publication-title: IEEE Trans. Biomed. Circuits Syst.
  doi: 10.1109/tbcas.2019.2928793
– volume: 10
  start-page: 243
  year: 2016
  ident: nceabf150bib41
  article-title: A biological-realtime neuromorphic system in 28 nm CMOS using low-leakage switched capacitor circuits
  publication-title: IEEE Trans. Biomed. Circuits Syst.
  doi: 10.1109/tbcas.2014.2379294
– year: 2019
  ident: nceabf150bib4
  article-title: Benchmarking keyword spotting efficiency on neuromorphic hardware
  doi: 10.1145/3320288.3320304
– volume: 9
  start-page: 141
  year: 2015
  ident: nceabf150bib39
  article-title: A reconfigurable on-line learning spiking neuromorphic processor comprising 256 neurons and 128k synapses
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2015.00141
– volume: 13
  start-page: 579
  year: 2019
  ident: nceabf150bib9
  article-title: Efficient reward-based structural plasticity on a SpiNNaker 2 prototype
  publication-title: IEEE Trans. Biomed. Circuits Syst.
  doi: 10.1109/tbcas.2019.2906401
– year: 2021
  ident: nceabf150bib10
  article-title: The SpiNNaker 2 processing element architecture for hybrid digital neuromorphic computing
– volume: 338
  start-page: 1202
  year: 2012
  ident: nceabf150bib27
  article-title: A large-scale model of the functioning brain
  publication-title: Science
  doi: 10.1126/science.1225266
– volume: 10
  start-page: 512
  year: 2020
  ident: nceabf150bib8
  article-title: Online few-shot gesture learning on a neuromorphic processor
  publication-title: IEEE J. Emerg. Sel. Top. Circuits Syst.
  doi: 10.1109/jetcas.2020.3032058
SSID ssj0002771165
Score 2.3908954
Snippet Abstract We implemented two neural network based benchmark tasks on a prototype chip of the second-generation SpiNNaker (SpiNNaker 2) neuromorphic system:...
We implemented two neural network based benchmark tasks on a prototype chip of the second-generation SpiNNaker (SpiNNaker 2) neuromorphic system: keyword...
SourceID crossref
nrccanada
SourceType Enrichment Source
Index Database
Publisher
StartPage 14002
SubjectTerms adaptive robotic control
keyword spotting
Loihi
MAC array
neuromorphic computing
SpiNNaker
Title Comparing Loihi with a SpiNNaker 2 prototype on low-latency keyword spotting and adaptive robotic control
URI https://nrc-publications.canada.ca/eng/view/object/?id=067f85d0-4a8f-4c0f-894b-1997b2bcb569
Volume 1
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbKcoALb8TyWPnABa1CE8d5HaECrZDoZbuoHJBlOzEbUZIqSrWIA3-Fv8qMnbhddkEsl7RynUmV-TIeT2a-IeQ5YypiIecBr2IT8DIPgzwtTJBzqQrFIhUarB1-P0-PTvi7ZbKcTH7uZC1tevVSf7-0ruR_tApjoFeskr2CZr1QGIDvoF84gobh-E86nrkmglin1Nan9VCodni8rudz-aXqDhnmX_WtjbOCmlftWbCSva22hIf3DEsFYVvrUp8ta2sp1zaXqGtVi1SuQyb7rgtr6Ty-tqAf-zs2hRhPr7bkht6auADrx-pb7WF4jAE7Vyq0qDpHc-uDtbPT1kZvl5stbj-0GBf_7ND1uuqakQtgjFewyCdkDWaNpTEgIx4JsC8ZG-3yBfg5GwtbQlukfdH6g8XEApdRGC5zykSO2PY81fZvS6BPTLSv5PNcoAyBMoSTcI1cZxk4Z5gb-mMbxGNZhvRF2MBwvOjwKhyETP3Y1Ak55_rcaDpt8_rkjj-zuENuDRsR-sqh6i6ZVM09cnts8kEHm3-f1B5k1IKMIsiopB5klFEPMto2dAdkdAAZHUFGASV0BBkdQEYHkD0gJ2_fLGZHwdCfI9BxlveBAa8nNFlUapXxMs1UYbfT3ITSxEbKnMVVlKjUSFaWSa4tCbbhXEchV-jqPiR7TdtUjwhFr7nQqcayac5NnCcwT8FWQurUwOx9Mh1vndADeT32UFmJP2lsn7zwZ6wdcctf5n7y2vCTkXdd4zoravwQMENoe5BuvIGbrwV4eyZPylBwmRvBdWhEXnAlMIFLMaVVkhaPr_BfnpCb26fmKdnru031DPzeXh3YeNGBReAvfQuxVg
linkProvider ISSN International Centre
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Comparing+Loihi+with+a+SpiNNaker+2+prototype+on+low-latency+keyword+spotting+and+adaptive+robotic+control&rft.jtitle=Neuromorphic+computing+and+engineering&rft.au=Yan%2C+Yexin&rft.au=Stewart%2C+Terrence+C&rft.au=Choo%2C+Xuan&rft.au=Vogginger%2C+Bernhard&rft.date=2021-09-01&rft.issn=2634-4386&rft.eissn=2634-4386&rft.volume=1&rft.issue=1&rft.spage=14002&rft_id=info:doi/10.1088%2F2634-4386%2Fabf150&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_2634_4386_abf150
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2634-4386&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2634-4386&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2634-4386&client=summon