Experimental investigation and multiscale modeling of ultra-high-performance concrete panels subject to blast loading
Tailored cementitious materials, such as Ultra-High-Performance Concrete (UHPC), may significantly improve the blast resistance of structural panels. To understand and quantify the performance of UHPC panels subject to blast loading, four 1626- by 864- by 51-mm UHPC panels without steel rebar reinfo...
Saved in:
Published in | International journal of impact engineering Vol. 69; pp. 95 - 103 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2014
|
Subjects | |
Online Access | Get full text |
ISSN | 0734-743X 1879-3509 |
DOI | 10.1016/j.ijimpeng.2013.12.011 |
Cover
Abstract | Tailored cementitious materials, such as Ultra-High-Performance Concrete (UHPC), may significantly improve the blast resistance of structural panels. To understand and quantify the performance of UHPC panels subject to blast loading, four 1626- by 864- by 51-mm UHPC panels without steel rebar reinforcement were subjected to reflected impulse loads between 0.77 and 2.05 MPa-ms. The UHPC material was composed of a commercially available UHPC premix, high-range water reducing agent, 2% volume fraction of straight, smooth 14-mm-long by 0.185-mm-diameter fibers, and water. Experimental results determined that the UHPC panel fractured at a reflected impulse between 0.97 and 1.47 MPa-ms. These results were used to validate a multiscale model which accounts for structure and phenomena at two length scales: a multiple fiber length scale and a structural length scale. Within the multiscale model, a hand-shaking scheme conveys the energy barrier threshold and dissipated energy density from the model at the multiple fiber length scale to the model at the structural length scale. Together, the models at the two length scales account for energy dissipation through granular flow of the matrix, frictional pullout of the fibers, and friction between the interfaces. The simulated displacement and fracture patterns generated by the multiscale model are compared to experimental observations. This work is significant for three reasons: (1) new experimental data provide an upper and lower bound to the blast resistance of UHPC panels, (2) the multiscale model simulates the experimental results using readily available material properties and information regarding mesostructure attributes at two different length scales, and (3) by incorporating information from multiple length scales, the multiscale model can facilitate the design of UHPC materials to resist blast loading in ways not accessible using single length scale models.
•We present new experimental results for blast loaded 1626 × 864 × 51 UHPC panels.•We present a two-scale model to simulate the dynamic response of UHPC panels.•We present a strain-rate sensitive traction-separation constitutive relation.•The multiscale model facilitates the study of dissipation and tensile strength. |
---|---|
AbstractList | Tailored cementitious materials, such as Ultra-High-Performance Concrete (UHPC), may significantly improve the blast resistance of structural panels. To understand and quantify the performance of UHPC panels subject to blast loading, four 1626- by 864- by 51-mm UHPC panels without steel rebar reinforcement were subjected to reflected impulse loads between 0.77 and 2.05 MPa-ms. The UHPC material was composed of a commercially available UHPC premix, high-range water reducing agent, 2% volume fraction of straight, smooth 14-mm-long by 0.185-mm-diameter fibers, and water. Experimental results determined that the UHPC panel fractured at a reflected impulse between 0.97 and 1.47 MPa-ms. These results were used to validate a multiscale model which accounts for structure and phenomena at two length scales: a multiple fiber length scale and a structural length scale. Within the multiscale model, a hand-shaking scheme conveys the energy barrier threshold and dissipated energy density from the model at the multiple fiber length scale to the model at the structural length scale. Together, the models at the two length scales account for energy dissipation through granular flow of the matrix, frictional pullout of the fibers, and friction between the interfaces. The simulated displacement and fracture patterns generated by the multiscale model are compared to experimental observations. This work is significant for three reasons: (1) new experimental data provide an upper and lower bound to the blast resistance of UHPC panels, (2) the multiscale model simulates the experimental results using readily available material properties and information regarding mesostructure attributes at two different length scales, and (3) by incorporating information from multiple length scales, the multiscale model can facilitate the design of UHPC materials to resist blast loading in ways not accessible using single length scale models.
•We present new experimental results for blast loaded 1626 × 864 × 51 UHPC panels.•We present a two-scale model to simulate the dynamic response of UHPC panels.•We present a strain-rate sensitive traction-separation constitutive relation.•The multiscale model facilitates the study of dissipation and tensile strength. Tailored cementitious materials, such as Ultra-High-Performance Concrete (UHPC), may significantly improve the blast resistance of structural panels. To understand and quantify the performance of UHPC panels subject to blast loading, four 1626- by 864- by 51-mm UHPC panels without steel rebar reinforcement were subjected to reflected impulse loads between 0.77 and 2.05 MPa-ms. This work is significant for three reasons: (1) new experimental data provide an upper and lower bound to the blast resistance of UHPC panels, (2) the multiscale model simulates the experimental results using readily available material properties and information regarding mesostructure attributes at two different length scales, and (3) by incorporating information from multiple length scales, the multiscale model can facilitate the design of UHPC materials to resist blast loading in ways not accessible using single length scale models. |
Author | Zhou, M. DiPaolo, B.P. McDowell, D.L. Ellis, B.D. |
Author_xml | – sequence: 1 givenname: B.D. surname: Ellis fullname: Ellis, B.D. email: bellis7@gatech.edu organization: Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405, USA – sequence: 2 givenname: B.P. surname: DiPaolo fullname: DiPaolo, B.P. organization: U.S. Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS 39180, USA – sequence: 3 givenname: D.L. surname: McDowell fullname: McDowell, D.L. organization: Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405, USA – sequence: 4 givenname: M. surname: Zhou fullname: Zhou, M. organization: Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0405, USA |
BookMark | eNqFkU9rFTEUxYNU8LX6FSRLNzMm8yfJgAultFoouFFwF-4kd14zZJIxmSn67U19duPmrS5czu9w7zmX5CLEgIS85azmjIv3c-1mt6wYjnXDeFvzpmacvyAHruRQtT0bLsiBybarZNf-eEUuc54Z45L17ED2m18rJrdg2MBTFx4xb-4Im4uBQrB02f3msgGPdIkWvQtHGidatgmqB3d8qAo-xbRAMEhNDCbhhnSFgD7TvI8zmo1ukY4e8kZ9BFssXpOXE_iMb_7NK_L99ubb9Zfq_uvnu-tP95VppdoqtAKw6-ygODIxgumVMFJBP3TdyAyMlnXQAXTGCtk27QSyUZOxphWguOjbK_Lu5Lum-HMvr-mlPIPel_PinjUXUg6SK9Wcl_ZCMskGJYv0w0lqUsw54aSN2_5GVkJxXnOmn4rRs34uRj8Vo3mjSzEFF__haykA0u_z4McTWKLFR4dJZ-Ow5G5dKilrG905iz-fCbIN |
CitedBy_id | crossref_primary_10_1016_j_cemconcomp_2018_05_001 crossref_primary_10_1002_suco_202400551 crossref_primary_10_1016_j_engstruct_2016_06_029 crossref_primary_10_3390_ma16247595 crossref_primary_10_14359_51689157 crossref_primary_10_1016_j_cemconcomp_2023_105408 crossref_primary_10_1016_j_ijimpeng_2021_104085 crossref_primary_10_1515_nleng_2022_0370 crossref_primary_10_1016_j_cemconcomp_2024_105449 crossref_primary_10_1016_j_ijimpeng_2017_05_005 crossref_primary_10_1007_s10704_017_0214_2 crossref_primary_10_1016_j_ijimpeng_2015_05_006 crossref_primary_10_1177_2041419617743986 crossref_primary_10_1016_j_ijimpeng_2015_02_006 crossref_primary_10_1016_j_ijimpeng_2018_06_006 crossref_primary_10_1016_j_conbuildmat_2016_02_127 crossref_primary_10_3390_app13085097 crossref_primary_10_1016_j_conbuildmat_2016_09_093 crossref_primary_10_1038_s41598_024_74774_x crossref_primary_10_1108_EC_09_2020_0492 crossref_primary_10_1177_20414196221120512 crossref_primary_10_1016_j_engstruct_2018_08_016 crossref_primary_10_1016_j_ijimpeng_2022_104468 crossref_primary_10_1016_j_conbuildmat_2017_09_169 crossref_primary_10_1007_s41062_022_00937_2 crossref_primary_10_1016_j_istruc_2022_10_012 crossref_primary_10_1016_j_conbuildmat_2019_05_152 crossref_primary_10_1016_j_tws_2017_03_032 crossref_primary_10_1007_s40870_021_00315_6 crossref_primary_10_1016_j_jobe_2021_103498 crossref_primary_10_3151_jact_18_157 crossref_primary_10_1016_j_jobe_2023_107734 crossref_primary_10_1080_21650373_2024_2347594 crossref_primary_10_1016_j_ijimpeng_2019_01_005 crossref_primary_10_1016_j_commatsci_2014_08_037 crossref_primary_10_1016_j_ijimpeng_2024_105028 crossref_primary_10_1016_j_ijimpeng_2020_103761 crossref_primary_10_1115_1_4043705 crossref_primary_10_1155_2018_3780482 crossref_primary_10_1177_2041419620912751 crossref_primary_10_1016_j_cemconcomp_2021_104401 crossref_primary_10_1016_j_dt_2023_10_003 crossref_primary_10_1016_j_ijimpeng_2021_103907 crossref_primary_10_1016_j_tws_2016_11_019 crossref_primary_10_1016_j_tws_2023_111067 crossref_primary_10_1007_s40192_017_0086_3 crossref_primary_10_1016_j_ijimpeng_2016_02_012 crossref_primary_10_1177_2041419616637976 crossref_primary_10_1016_j_dt_2022_11_017 crossref_primary_10_1177_20414196231212511 crossref_primary_10_1016_j_ijimpeng_2021_104039 crossref_primary_10_1016_j_cscm_2024_e03866 |
Cites_doi | 10.1061/(ASCE)0899-1561(1990)2:1(46) 10.1016/j.cemconres.2003.12.023 10.1061/(ASCE)0733-9399(1987)113:5(635) 10.1016/S0734-743X(01)00021-5 10.1617/s11527-008-9390-x 10.1016/j.engstruct.2009.03.020 10.1016/S1065-7355(97)90014-6 10.1016/j.ijimpeng.2008.01.004 10.1016/0010-4361(90)90005-H 10.1090/qam/48291 10.1016/S0008-8846(97)00061-6 |
ContentType | Journal Article |
Copyright | 2014 Elsevier Ltd |
Copyright_xml | – notice: 2014 Elsevier Ltd |
DBID | AAYXX CITATION 7QQ 7SR 7TB 8BQ 8FD FR3 JG9 KR7 |
DOI | 10.1016/j.ijimpeng.2013.12.011 |
DatabaseName | CrossRef Ceramic Abstracts Engineered Materials Abstracts Mechanical & Transportation Engineering Abstracts METADEX Technology Research Database Engineering Research Database Materials Research Database Civil Engineering Abstracts |
DatabaseTitle | CrossRef Materials Research Database Civil Engineering Abstracts Engineered Materials Abstracts Technology Research Database Mechanical & Transportation Engineering Abstracts Ceramic Abstracts Engineering Research Database METADEX |
DatabaseTitleList | Materials Research Database Materials Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1879-3509 |
EndPage | 103 |
ExternalDocumentID | 10_1016_j_ijimpeng_2013_12_011 S0734743X14000025 |
GroupedDBID | --K --M .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SST SSZ T5K TN5 UHS WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH 7QQ 7SR 7TB 8BQ 8FD ACLOT EFKBS FR3 JG9 KR7 ~HD |
ID | FETCH-LOGICAL-c378t-ed6ae44d981e06bac586c78a5944b0cabd04a4aa4cd67323fa728fcdc36a81653 |
IEDL.DBID | .~1 |
ISSN | 0734-743X |
IngestDate | Sat Sep 27 19:37:39 EDT 2025 Sun Sep 28 00:47:57 EDT 2025 Thu Apr 24 23:04:23 EDT 2025 Tue Jul 01 03:11:38 EDT 2025 Fri Feb 23 02:28:26 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | UHPC Multiscale modeling Blast loading |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-ed6ae44d981e06bac586c78a5944b0cabd04a4aa4cd67323fa728fcdc36a81653 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 ObjectType-Article-1 ObjectType-Feature-2 |
PQID | 1567070987 |
PQPubID | 23500 |
PageCount | 9 |
ParticipantIDs | proquest_miscellaneous_1677971882 proquest_miscellaneous_1567070987 crossref_citationtrail_10_1016_j_ijimpeng_2013_12_011 crossref_primary_10_1016_j_ijimpeng_2013_12_011 elsevier_sciencedirect_doi_10_1016_j_ijimpeng_2013_12_011 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2014 2014-07-00 20140701 |
PublicationDateYYYYMMDD | 2014-07-01 |
PublicationDate_xml | – month: 07 year: 2014 text: July 2014 |
PublicationDecade | 2010 |
PublicationTitle | International journal of impact engineering |
PublicationYear | 2014 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Wu, Oehlers, Rebentrost, Leach, Whittaker (bib5) 2009; 31 (bib23) 2010 Naaman, Wille (bib1) 2012 Orange, Acker, Vernet (bib22) 1999 DiPaolo, Johnson, Green, Hart, Magee, Robbins (bib11) 2012 Bache (bib3) 1981 Schleyer, Barnett, Millard, Wight (bib6) 2010 Gopalaratnam, Shah (bib16) 1987; 113 Zhou, Kuznetsov, Hao, Waschl (bib8) 2008; 35 CEB-FIP (bib17) 1998 Park, Xia, Zhou (bib25) 2001; 25 Chan, Chu (bib20) 2004; 34 Bolander, Saito (bib12) 1997; 6 Richard P, Cheyrezy M, Roux N. Metal fiber concrete compositions for molding concrete elements, elements obtained and curing process, U.S. Patent 5,503,670. April 2, 1996. Shannag, Brincker, Hansen (bib19) 1997; 27 Park, Kim, Ryu, Koh (bib21) 2012 Wang, Mattus, Ren (bib10) 2010 Anon-Lafarge (bib18) 2010 Drucker, Prager (bib24) 1952; 10 Bolander, Choi, Duddukuri (bib13) 2009; 154 Kim, El-Tawil, Naaman (bib14) 2009; 42 Biggs (bib7) 1964 Baltay, Gjelsvik (bib27) 1990; 2 Rebentrost, Wight (bib4) 2009 Li, Wang, Backer (bib15) 1990; 21 Anon-Hardwire (bib9) 2012 Johnson, Cook (bib26) 1983 10.1016/j.ijimpeng.2013.12.011_bib2 Bolander (10.1016/j.ijimpeng.2013.12.011_bib13) 2009; 154 DiPaolo (10.1016/j.ijimpeng.2013.12.011_bib11) 2012 Baltay (10.1016/j.ijimpeng.2013.12.011_bib27) 1990; 2 Anon-Lafarge (10.1016/j.ijimpeng.2013.12.011_bib18) 2010 CEB-FIP (10.1016/j.ijimpeng.2013.12.011_bib17) 1998 Biggs (10.1016/j.ijimpeng.2013.12.011_bib7) 1964 Bolander (10.1016/j.ijimpeng.2013.12.011_bib12) 1997; 6 Drucker (10.1016/j.ijimpeng.2013.12.011_bib24) 1952; 10 Wang (10.1016/j.ijimpeng.2013.12.011_bib10) 2010 Bache (10.1016/j.ijimpeng.2013.12.011_bib3) 1981 Gopalaratnam (10.1016/j.ijimpeng.2013.12.011_bib16) 1987; 113 Wu (10.1016/j.ijimpeng.2013.12.011_bib5) 2009; 31 Park (10.1016/j.ijimpeng.2013.12.011_bib25) 2001; 25 Naaman (10.1016/j.ijimpeng.2013.12.011_bib1) 2012 Shannag (10.1016/j.ijimpeng.2013.12.011_bib19) 1997; 27 Orange (10.1016/j.ijimpeng.2013.12.011_bib22) 1999 Rebentrost (10.1016/j.ijimpeng.2013.12.011_bib4) 2009 Chan (10.1016/j.ijimpeng.2013.12.011_bib20) 2004; 34 (10.1016/j.ijimpeng.2013.12.011_bib23) 2010 Li (10.1016/j.ijimpeng.2013.12.011_bib15) 1990; 21 Zhou (10.1016/j.ijimpeng.2013.12.011_bib8) 2008; 35 Kim (10.1016/j.ijimpeng.2013.12.011_bib14) 2009; 42 Park (10.1016/j.ijimpeng.2013.12.011_bib21) 2012 Schleyer (10.1016/j.ijimpeng.2013.12.011_bib6) 2010 Anon-Hardwire (10.1016/j.ijimpeng.2013.12.011_bib9) 2012 Johnson (10.1016/j.ijimpeng.2013.12.011_bib26) 1983 |
References_xml | – volume: 35 start-page: 1186 year: 2008 end-page: 1200 ident: bib8 article-title: Numerical prediction of concrete slab response to blast loading publication-title: Int J Impact Eng – start-page: 3 year: 2012 end-page: 16 ident: bib1 article-title: The path to ultra-high performance fiber reinforced concrete (UHP-FRC): five decades of progress publication-title: Proceedings of HiPerMat 2012 3rd international symposium on UHPC and nanotechnology for high performance construction materials – year: 1981 ident: bib3 article-title: Densified cement ultrafine particle-based materials – volume: 25 start-page: 887 year: 2001 end-page: 910 ident: bib25 article-title: Dynamic behavior of concrete at high strain rates and pressures: II. numerical simulation publication-title: Int J Impact Eng – reference: Richard P, Cheyrezy M, Roux N. Metal fiber concrete compositions for molding concrete elements, elements obtained and curing process, U.S. Patent 5,503,670. April 2, 1996. – year: 2010 ident: bib18 article-title: Ductal BS1000 product data sheet – volume: 34 start-page: 1167 year: 2004 end-page: 1172 ident: bib20 article-title: Effect of silica fume on steel fiber bond characteristics in reactive powder concrete publication-title: Cem Concr Res – start-page: 541 year: 1983 end-page: 547 ident: bib26 article-title: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures publication-title: Proceedings of the 7th international symposium on ballistics – volume: 113 start-page: 635 year: 1987 end-page: 652 ident: bib16 article-title: Tensile failure of steel fiber-reinforced mortar publication-title: J Eng Mech – volume: 10 start-page: 157 year: 1952 end-page: 165 ident: bib24 article-title: Soil mechanics and plastic analysis or limit design publication-title: Quart Appl Math – year: 2012 ident: bib11 article-title: Stuctured-materials ( – volume: 21 start-page: 132 year: 1990 end-page: 140 ident: bib15 article-title: Effect of inclining angle, bundling and surface treatment on synthetic fibre pull-out from a cement matrix publication-title: Composites – year: 1998 ident: bib17 article-title: CEB-FIP model code 1990 – volume: 27 start-page: 925 year: 1997 end-page: 936 ident: bib19 article-title: Pullout behavior of steel fibers from cement-based composites publication-title: Cem Conc Res – volume: 31 start-page: 2060 year: 2009 end-page: 2069 ident: bib5 article-title: Blast testing of ultra-high performance fibre and FRP-retrofitted concrete slabs publication-title: Eng Struct – start-page: 173 year: 2010 end-page: 184 ident: bib6 article-title: Modelling the response of UHPFRC panels to explosive loading publication-title: Structures under shock and impact XI – year: 1964 ident: bib7 article-title: Introduction to structural dynamics – start-page: 363 year: 2009 end-page: 376 ident: bib4 article-title: Investigation of UHPFRC slabs under blast loads publication-title: Proceedings of designing and building with UHPFRC: state-of-the-art, designing and building with UHPFRC – start-page: 101 year: 1999 end-page: 110 ident: bib22 article-title: A new generation of UHP concrete: Ductal(R) damage resistance and micromechanical analysis publication-title: Proceedings PRO6: international RILEM conference on high performance fiber reinforced cement composites (HPFRCC 3) – volume: 154 start-page: 73 year: 2009 end-page: 86 ident: bib13 article-title: Fracture of fiber-reinforced cement composites: effects of fiber dispersion publication-title: Int J Fract – year: 2012 ident: bib9 article-title: Hardwire 3x2_cord_US – start-page: 541 year: 2012 end-page: 548 ident: bib21 article-title: Effect of adding micro fibers on the pullout behavior of high strength steel fibers in UHPC matrix publication-title: Proceedings of HiPerMat 2012 3rd international symposium on UHPC and nanotechnology for high performance construction materials – volume: 42 start-page: 399 year: 2009 end-page: 414 ident: bib14 article-title: Rate-dependent tensile behavior of high performance fiber reinforced cementitious composites publication-title: Mater Struct – volume: 6 start-page: 76 year: 1997 end-page: 86 ident: bib12 article-title: Discrete modeling of short-fiber reinforcement in cementitious composites publication-title: Adv Cem Based Mater – volume: 2 start-page: 46 year: 1990 end-page: 49 ident: bib27 article-title: Coefficient of friction for steel on concrete at high normal stress publication-title: J Mat Civ Eng – start-page: 1 year: 2010 end-page: 90 ident: bib10 article-title: Basic research on the materials characterization of ultra-high performance concretes: impact and penetration resistance aspects - part I. FY09 Final Report – year: 2010 ident: bib23 publication-title: Anonymous. Abaqus v6.10 Theory manual – start-page: 363 year: 2009 ident: 10.1016/j.ijimpeng.2013.12.011_bib4 article-title: Investigation of UHPFRC slabs under blast loads – volume: 2 start-page: 46 issue: 1 year: 1990 ident: 10.1016/j.ijimpeng.2013.12.011_bib27 article-title: Coefficient of friction for steel on concrete at high normal stress publication-title: J Mat Civ Eng doi: 10.1061/(ASCE)0899-1561(1990)2:1(46) – volume: 154 start-page: 73 issue: 1–2 year: 2009 ident: 10.1016/j.ijimpeng.2013.12.011_bib13 article-title: Fracture of fiber-reinforced cement composites: effects of fiber dispersion publication-title: Int J Fract – year: 2010 ident: 10.1016/j.ijimpeng.2013.12.011_bib18 – start-page: 541 year: 2012 ident: 10.1016/j.ijimpeng.2013.12.011_bib21 article-title: Effect of adding micro fibers on the pullout behavior of high strength steel fibers in UHPC matrix – volume: 34 start-page: 1167 issue: 7 year: 2004 ident: 10.1016/j.ijimpeng.2013.12.011_bib20 article-title: Effect of silica fume on steel fiber bond characteristics in reactive powder concrete publication-title: Cem Concr Res doi: 10.1016/j.cemconres.2003.12.023 – year: 1964 ident: 10.1016/j.ijimpeng.2013.12.011_bib7 – volume: 113 start-page: 635 issue: 5 year: 1987 ident: 10.1016/j.ijimpeng.2013.12.011_bib16 article-title: Tensile failure of steel fiber-reinforced mortar publication-title: J Eng Mech doi: 10.1061/(ASCE)0733-9399(1987)113:5(635) – ident: 10.1016/j.ijimpeng.2013.12.011_bib2 – volume: 25 start-page: 887 issue: 9 year: 2001 ident: 10.1016/j.ijimpeng.2013.12.011_bib25 article-title: Dynamic behavior of concrete at high strain rates and pressures: II. numerical simulation publication-title: Int J Impact Eng doi: 10.1016/S0734-743X(01)00021-5 – start-page: 101 year: 1999 ident: 10.1016/j.ijimpeng.2013.12.011_bib22 article-title: A new generation of UHP concrete: Ductal(R) damage resistance and micromechanical analysis – volume: 42 start-page: 399 issue: 3 year: 2009 ident: 10.1016/j.ijimpeng.2013.12.011_bib14 article-title: Rate-dependent tensile behavior of high performance fiber reinforced cementitious composites publication-title: Mater Struct doi: 10.1617/s11527-008-9390-x – volume: 31 start-page: 2060 issue: 9 year: 2009 ident: 10.1016/j.ijimpeng.2013.12.011_bib5 article-title: Blast testing of ultra-high performance fibre and FRP-retrofitted concrete slabs publication-title: Eng Struct doi: 10.1016/j.engstruct.2009.03.020 – volume: 6 start-page: 76 year: 1997 ident: 10.1016/j.ijimpeng.2013.12.011_bib12 article-title: Discrete modeling of short-fiber reinforcement in cementitious composites publication-title: Adv Cem Based Mater doi: 10.1016/S1065-7355(97)90014-6 – year: 1981 ident: 10.1016/j.ijimpeng.2013.12.011_bib3 – year: 2012 ident: 10.1016/j.ijimpeng.2013.12.011_bib11 – start-page: 173 year: 2010 ident: 10.1016/j.ijimpeng.2013.12.011_bib6 article-title: Modelling the response of UHPFRC panels to explosive loading – start-page: 3 year: 2012 ident: 10.1016/j.ijimpeng.2013.12.011_bib1 article-title: The path to ultra-high performance fiber reinforced concrete (UHP-FRC): five decades of progress – year: 1998 ident: 10.1016/j.ijimpeng.2013.12.011_bib17 – start-page: 1 year: 2010 ident: 10.1016/j.ijimpeng.2013.12.011_bib10 – year: 2012 ident: 10.1016/j.ijimpeng.2013.12.011_bib9 – volume: 35 start-page: 1186 issue: 10 year: 2008 ident: 10.1016/j.ijimpeng.2013.12.011_bib8 article-title: Numerical prediction of concrete slab response to blast loading publication-title: Int J Impact Eng doi: 10.1016/j.ijimpeng.2008.01.004 – year: 2010 ident: 10.1016/j.ijimpeng.2013.12.011_bib23 – volume: 21 start-page: 132 issue: 2 year: 1990 ident: 10.1016/j.ijimpeng.2013.12.011_bib15 article-title: Effect of inclining angle, bundling and surface treatment on synthetic fibre pull-out from a cement matrix publication-title: Composites doi: 10.1016/0010-4361(90)90005-H – volume: 10 start-page: 157 year: 1952 ident: 10.1016/j.ijimpeng.2013.12.011_bib24 article-title: Soil mechanics and plastic analysis or limit design publication-title: Quart Appl Math doi: 10.1090/qam/48291 – start-page: 541 year: 1983 ident: 10.1016/j.ijimpeng.2013.12.011_bib26 article-title: A constitutive model and data for metals subjected to large strains, high strain rates and high temperatures – volume: 27 start-page: 925 issue: 6 year: 1997 ident: 10.1016/j.ijimpeng.2013.12.011_bib19 article-title: Pullout behavior of steel fibers from cement-based composites publication-title: Cem Conc Res doi: 10.1016/S0008-8846(97)00061-6 |
SSID | ssj0017050 |
Score | 2.3584895 |
Snippet | Tailored cementitious materials, such as Ultra-High-Performance Concrete (UHPC), may significantly improve the blast resistance of structural panels. To... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 95 |
SubjectTerms | Accessibility Blast loading Blast resistance Cements Concretes Multiscale modeling Panels Rebar Reinforcement Structural steels UHPC |
Title | Experimental investigation and multiscale modeling of ultra-high-performance concrete panels subject to blast loading |
URI | https://dx.doi.org/10.1016/j.ijimpeng.2013.12.011 https://www.proquest.com/docview/1567070987 https://www.proquest.com/docview/1677971882 |
Volume | 69 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELYQXOgB8WhVoEVG6jVsEk_8OCK0aAuCC0Xam2U7TpUVSla72Wt_e8feZNlWajlwjOWRLM_b-WaGkG9MVJhyCZNIg0oOOeasFjwkioNBF8tSE2dGPjzyyTPcTYvpDrkZamECrLK3_WubHq11vzLqb3M0r-vREwonoP-bYooQ9DoUmgOIIOtXvzYwj9AtJr6z4OYk7N6qEp5d1bMag9PmZ4B4sfgsmGX_clB_merof24PyUEfONLr9dmOyI5vjsmHrXaCJ2Q13mrXT-vXDhptQ01T0ggeXCJTPI0DcJCIthXF1YVJQt_iZP5aRkAxUcaIsvMU7QWejy5XNrzZ0K6lFkPujr60EX__kTzfjn_cTJJ-rELimJBd4ktuPECpZOZTbo0rJHdCmkIB2NQZW6ZgwBhwJRcsZ5URuaxc6Rg3MuMF-0R2m7bxnwlVymJ46CsFeQleWesKq5CgTFmFtsCdkmK4S-36nuNh9MWLHsBlMz3wQAce6CzXyINTMtrQzdddN96kUAOr9B_yo9E1vEl7OfBWo3KFPyZ4se1qqTG5FWgTlRT_2cOFUOjhZX72jjOck338gjUQ-AvZ7RYr_xXDnc5eRHm-IHvX3-8nj78Bo4ADeA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwELbo9tByQPQlaEvrSr2GTeKJH0e0Am1b4FKQ9mbZjlNltUpWbPbKb2fsTWBbqXDg6ngkyzP-Zsb5PEPIdyYqTLmESaTBQw455qwWPCSKg0EXy1ITe0ZeXPLpNfycFbMdMhnewgRaZY_9G0yPaN2PjPvdHC_revwbjRPQ_80wRQjnunhBXkJoc4BGfXx7z_MI5WLiRQvOTsL0rWfC8-N6XmN02vwJHC8W7wWz7H8e6h-sjg7obJ_s9ZEjPdks7g3Z8c1bsrtVT_AdWZ9u1eun9UMJjbahpilpZA-uUCuexg44KETbiuLojUlC4eJk-fCOgGKmjCFl5ykCBq6PrtY2XNrQrqUWY-6OLtpIwH9Prs9OrybTpO-rkDgmZJf4khsPUCqZ-ZRb4wrJnZCmUAA2dcaWKRgwBlzJBctZZUQuK1c6xo3MeME-kFHTNv6AUKUsxoe-UpCX4JW1rrAKBcqUVQgG7pAUw15q1xcdD70vFnpgl831oAMddKCzXKMODsn4Xm65KbvxpIQaVKX_MiCNvuFJ2W-DbjWervDLBDe2Xa80ZrcCQVFJ8cgcLoRCFy_zj89Yw1fyanp1ca7Pf1z--kRe4xfYsII_k1F3s_ZHGPt09ku07Ttr0QUB |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Experimental+investigation+and+multiscale+modeling+of+ultra-high-performance+concrete+panels+subject+to+blast+loading&rft.jtitle=International+journal+of+impact+engineering&rft.au=Ellis%2C+B.D.&rft.au=DiPaolo%2C+B.P.&rft.au=McDowell%2C+D.L.&rft.au=Zhou%2C+M.&rft.date=2014-07-01&rft.issn=0734-743X&rft.volume=69&rft.spage=95&rft.epage=103&rft_id=info:doi/10.1016%2Fj.ijimpeng.2013.12.011&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ijimpeng_2013_12_011 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0734-743X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0734-743X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0734-743X&client=summon |