Real-time optimization of renewable energy sources power using neural network-based anticipative extremum-seeking control
This paper presents a fast and accurate real-time optimization (RTO) technique that can be applied to different types of renewable energy sources (RES). Two RES with very different dynamics in terms of complexity and convergence time towards the static regime have been chosen for this study: Photovo...
Saved in:
| Published in | Renewable energy Vol. 134; pp. 914 - 926 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.04.2019
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0960-1481 1879-0682 |
| DOI | 10.1016/j.renene.2018.11.083 |
Cover
| Abstract | This paper presents a fast and accurate real-time optimization (RTO) technique that can be applied to different types of renewable energy sources (RES). Two RES with very different dynamics in terms of complexity and convergence time towards the static regime have been chosen for this study: Photovoltaic panels (PV) and microbial fuel cell (MFC), a bioreactor that uses exoelectrogenic bacteria to produce electrochemical energy. The maximum power generated by these two RES is prone to vary when the system is subjected to various external disturbances. Extremum-seeking control (ESC) is a RTO method that has the ability to optimize the performance of a RES whatever its complexity. However, when the external disturbances affecting the RES result in fast variations of its optimal operating point, the slow convergence of ESC will induce a lack of precision. This paper proposes the addition of a neural network-based anticipative action to the existing ESC scheme to improve its performance in terms of speed and accuracy if the system is subject to the effect of measurable disturbances. The performance improvement of ESC is demonstrated theoretically for general systems, via simulation for an MFC and experimentally in the case of a PV.
•A new extremum-seeking control (ESC) with anticipative action (ESCaa) is proposed.•The anticipative action is performed using a neural-network model.•A theoretical analysis is done to compare ESC and ESCaa convergence time.•The performance of ESC and ESCaa is compared via simulation and experimentally.•ESCaa has very good tracking efficiency even for high frequency disturbances. |
|---|---|
| AbstractList | This paper presents a fast and accurate real-time optimization (RTO) technique that can be applied to different types of renewable energy sources (RES). Two RES with very different dynamics in terms of complexity and convergence time towards the static regime have been chosen for this study: Photovoltaic panels (PV) and microbial fuel cell (MFC), a bioreactor that uses exoelectrogenic bacteria to produce electrochemical energy. The maximum power generated by these two RES is prone to vary when the system is subjected to various external disturbances. Extremum-seeking control (ESC) is a RTO method that has the ability to optimize the performance of a RES whatever its complexity. However, when the external disturbances affecting the RES result in fast variations of its optimal operating point, the slow convergence of ESC will induce a lack of precision. This paper proposes the addition of a neural network-based anticipative action to the existing ESC scheme to improve its performance in terms of speed and accuracy if the system is subject to the effect of measurable disturbances. The performance improvement of ESC is demonstrated theoretically for general systems, via simulation for an MFC and experimentally in the case of a PV.
•A new extremum-seeking control (ESC) with anticipative action (ESCaa) is proposed.•The anticipative action is performed using a neural-network model.•A theoretical analysis is done to compare ESC and ESCaa convergence time.•The performance of ESC and ESCaa is compared via simulation and experimentally.•ESCaa has very good tracking efficiency even for high frequency disturbances. This paper presents a fast and accurate real-time optimization (RTO) technique that can be applied to different types of renewable energy sources (RES). Two RES with very different dynamics in terms of complexity and convergence time towards the static regime have been chosen for this study: Photovoltaic panels (PV) and microbial fuel cell (MFC), a bioreactor that uses exoelectrogenic bacteria to produce electrochemical energy. The maximum power generated by these two RES is prone to vary when the system is subjected to various external disturbances. Extremum-seeking control (ESC) is a RTO method that has the ability to optimize the performance of a RES whatever its complexity. However, when the external disturbances affecting the RES result in fast variations of its optimal operating point, the slow convergence of ESC will induce a lack of precision. This paper proposes the addition of a neural network-based anticipative action to the existing ESC scheme to improve its performance in terms of speed and accuracy if the system is subject to the effect of measurable disturbances. The performance improvement of ESC is demonstrated theoretically for general systems, via simulation for an MFC and experimentally in the case of a PV. |
| Author | Akhrif, Ouassima Woodward, Lyne Kebir, Anouer |
| Author_xml | – sequence: 1 givenname: Anouer orcidid: 0000-0003-2023-4421 surname: Kebir fullname: Kebir, Anouer email: anouer.kebir.1@ens.etsmtl.ca – sequence: 2 givenname: Lyne orcidid: 0000-0001-8910-6773 surname: Woodward fullname: Woodward, Lyne – sequence: 3 givenname: Ouassima surname: Akhrif fullname: Akhrif, Ouassima |
| BookMark | eNqFkE1v1DAURS1UJKYf_6ALL9kk-NkZx2GBhCoKlSohobK2PM5L5WliB9vpdPj1OAwrFqC3uG9xz12cc3Lmg0dCroHVwEC-29cRfbmaM1A1QM2UeEU2oNquYlLxM7JhnWQVNArekPOU9ozBVrXNhhy_oRmr7CakYS7hfprsgqdhoOvmwexGpOWJj0eawhItJjqHA0a6JOcfqcclmrFEPoT4VO1Mwp4an511c1l6LvBLjjgtU5UQn1bEBp9jGC_J68GMCa_-5AX5fvvp4eZLdf_1893Nx_vKilblCnspW7SMKy7E0LZNY3bQ4zAMvWoUtq2RBqXslAHYcsa6XWe3XKyw7LiQ4oK8Pe3OMfxYMGU9uWRxHI3HsCTNQXVbwbiAUm1OVRtDShEHPUc3mXjUwPRqWu_1ybReTWsAXUwX7P1fmHX5t8YcjRv_B384wVgcPDuMOlmH3mLvItqs--D-PfALNTyhsA |
| CitedBy_id | crossref_primary_10_1016_j_jobe_2023_107621 crossref_primary_10_1016_j_compchemeng_2024_108743 crossref_primary_10_1016_j_enconman_2024_118190 crossref_primary_10_1016_j_renene_2020_08_159 crossref_primary_10_1016_j_rser_2023_113802 crossref_primary_10_1016_j_jpowsour_2020_228739 crossref_primary_10_1016_j_ijhydene_2021_11_125 crossref_primary_10_1016_j_jobe_2021_102744 crossref_primary_10_1016_j_renene_2021_08_058 |
| Cites_doi | 10.1016/j.energy.2013.02.006 10.1016/j.renene.2018.06.023 10.1016/j.automatica.2007.10.016 10.1016/j.watres.2010.11.033 10.1016/S0960-1481(98)00065-2 10.1016/j.apenergy.2016.03.109 10.1002/rnc.1165 10.2166/wst.2008.095 10.1016/j.apenergy.2015.04.006 10.1016/j.renene.2018.02.081 10.1016/j.biortech.2010.01.122 10.1002/lom3.10093 10.1016/j.jpowsour.2017.11.001 10.1016/j.apenergy.2008.12.005 10.1016/j.rser.2013.05.022 10.1016/j.apenergy.2013.07.022 10.1016/j.rser.2013.02.011 10.1016/j.renene.2017.10.101 10.1016/j.solener.2011.08.036 10.1016/j.renene.2017.11.059 10.1016/S0019-0578(07)60045-7 10.1016/j.energy.2016.09.095 10.1109/TIE.2017.2745448 10.1016/j.rser.2015.09.043 10.20965/jaciii.2010.p0677 10.1016/j.solener.2012.11.017 10.1016/S0005-1098(99)00183-1 10.1002/bit.21533 10.1016/j.rser.2012.11.052 |
| ContentType | Journal Article |
| Copyright | 2018 Elsevier Ltd |
| Copyright_xml | – notice: 2018 Elsevier Ltd |
| DBID | AAYXX CITATION 7S9 L.6 |
| DOI | 10.1016/j.renene.2018.11.083 |
| DatabaseName | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-0682 |
| EndPage | 926 |
| ExternalDocumentID | 10_1016_j_renene_2018_11_083 S0960148118314022 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1RT 1~. 1~5 29P 4.4 457 4G. 5VS 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABMAC ABXDB ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HMC HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY9 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SEN SES SET SEW SPC SPCBC SSR SST SSZ T5K TN5 WUQ ZCA ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABJNI ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEGFY AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7S9 L.6 |
| ID | FETCH-LOGICAL-c378t-ed667ec028233f7744ab1defffd848e77a6ae6698a1152009b9c523c378692363 |
| IEDL.DBID | .~1 |
| ISSN | 0960-1481 |
| IngestDate | Thu Oct 02 12:59:57 EDT 2025 Thu Apr 24 23:09:47 EDT 2025 Wed Oct 01 04:00:52 EDT 2025 Fri Feb 23 02:34:03 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Real-time optimization Microbial fuel cell Extremum-seeking control Neural networks Photovoltaic system |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c378t-ed667ec028233f7744ab1defffd848e77a6ae6698a1152009b9c523c378692363 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0001-8910-6773 0000-0003-2023-4421 |
| PQID | 2189530231 |
| PQPubID | 24069 |
| PageCount | 13 |
| ParticipantIDs | proquest_miscellaneous_2189530231 crossref_primary_10_1016_j_renene_2018_11_083 crossref_citationtrail_10_1016_j_renene_2018_11_083 elsevier_sciencedirect_doi_10_1016_j_renene_2018_11_083 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2019-04-01 |
| PublicationDateYYYYMMDD | 2019-04-01 |
| PublicationDate_xml | – month: 04 year: 2019 text: 2019-04-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Renewable energy |
| PublicationYear | 2019 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Krstić, Wang (bib14) 2000; 36 Logan (bib3) 2008 Tan, Nešić, Mareels (bib34) 2008; 44 Srinivasan (bib15) 2007; 17 Pinto, Srinivasan, Guiot, Tartakovsky (bib5) 2011; 45 Xia, Zhang, Pedrycz, Zhu, Guo (bib29) 2018; 373 Moradi, Reisi (bib17) 2011; 85 Mohandes, Rehman, Halawani (bib23) 1998; 14 Fadare (bib24) 2009; 86 Bishop (bib22) 1995 Gürgen, Ünver, Altın (bib25) 2018; 117 Mamarelis, Petrone, Spagnuolo (bib9) 2014; 113 Kebir, Woodward, Akhrif (bib21) 2018; 65 Zhang, Guay (bib36) 2005; 44 Ariyur, Krstic (bib13) 2003 Liu, Liu, Huang, Chen (bib19) 2013; 89 Heng, Asako, Suwa, Nagasaka (bib26) 2018 Mohammadifar, Zhang, Yazgan, Sadik, Choi (bib30) 2018; 118 Bizon (bib20) 2013; 52 Kohata, Yamauchi, Kurihara (bib35) 2010; 14 Bhatnagar, Nema (bib12) 2013; 23 Fathabadi (bib11) 2016; 116 Laaroussi, Ajana, Bakkali, Faraj, Cherkaoui (bib2) 2017 Ebrahimi-Moghadam, Mohseni-Gharyehsafa, Farzaneh-Gord (bib28) 2018; 129 Manobel, Sehnke, Lazzús, Salfate, Felder, Montecinos (bib27) 2018; 125 B. W. S. Energy, U. Renewables, and S. Energy, "We got power," Distributed Generation and Alternative Energy, p. 5, 2016. Bahr, Jokiel, Rodgers (bib18) 2016; 14 Fathabadi (bib10) 2016; 173 Kato Marcus, Torres, Rittmann (bib32) 2007; 98 Pandey, Tyagi, Selvaraj, Rahim, Tyagi (bib4) 2016; 53 Eltawil, Zhao (bib7) 2013; 25 Kebir, Woodward, Akhrif (bib16) 2015 Picioreanu, Katuri, Head, van Loosdrecht, Scott (bib33) 2008; 57 Pinto, Srinivasan, Manuel, Tartakovsky (bib31) 2010; 101 Reisi, Moradi, Jamasb (bib6) 2013; 19 Ahmed, Salam (bib8) 2015; 150 Pinto (10.1016/j.renene.2018.11.083_bib5) 2011; 45 Zhang (10.1016/j.renene.2018.11.083_bib36) 2005; 44 Kebir (10.1016/j.renene.2018.11.083_bib16) 2015 Kato Marcus (10.1016/j.renene.2018.11.083_bib32) 2007; 98 Mamarelis (10.1016/j.renene.2018.11.083_bib9) 2014; 113 Picioreanu (10.1016/j.renene.2018.11.083_bib33) 2008; 57 Pandey (10.1016/j.renene.2018.11.083_bib4) 2016; 53 Eltawil (10.1016/j.renene.2018.11.083_bib7) 2013; 25 Ebrahimi-Moghadam (10.1016/j.renene.2018.11.083_bib28) 2018; 129 Mohammadifar (10.1016/j.renene.2018.11.083_bib30) 2018; 118 Laaroussi (10.1016/j.renene.2018.11.083_bib2) 2017 Liu (10.1016/j.renene.2018.11.083_bib19) 2013; 89 Bizon (10.1016/j.renene.2018.11.083_bib20) 2013; 52 Manobel (10.1016/j.renene.2018.11.083_bib27) 2018; 125 Pinto (10.1016/j.renene.2018.11.083_bib31) 2010; 101 Tan (10.1016/j.renene.2018.11.083_bib34) 2008; 44 Reisi (10.1016/j.renene.2018.11.083_bib6) 2013; 19 Fathabadi (10.1016/j.renene.2018.11.083_bib11) 2016; 116 Ahmed (10.1016/j.renene.2018.11.083_bib8) 2015; 150 Kebir (10.1016/j.renene.2018.11.083_bib21) 2018; 65 Bishop (10.1016/j.renene.2018.11.083_bib22) 1995 Fathabadi (10.1016/j.renene.2018.11.083_bib10) 2016; 173 Kohata (10.1016/j.renene.2018.11.083_bib35) 2010; 14 Moradi (10.1016/j.renene.2018.11.083_bib17) 2011; 85 Xia (10.1016/j.renene.2018.11.083_bib29) 2018; 373 Heng (10.1016/j.renene.2018.11.083_bib26) 2018 Krstić (10.1016/j.renene.2018.11.083_bib14) 2000; 36 Ariyur (10.1016/j.renene.2018.11.083_bib13) 2003 Logan (10.1016/j.renene.2018.11.083_bib3) 2008 Mohandes (10.1016/j.renene.2018.11.083_bib23) 1998; 14 Gürgen (10.1016/j.renene.2018.11.083_bib25) 2018; 117 Bahr (10.1016/j.renene.2018.11.083_bib18) 2016; 14 Bhatnagar (10.1016/j.renene.2018.11.083_bib12) 2013; 23 Fadare (10.1016/j.renene.2018.11.083_bib24) 2009; 86 Srinivasan (10.1016/j.renene.2018.11.083_bib15) 2007; 17 10.1016/j.renene.2018.11.083_bib1 |
| References_xml | – volume: 14 start-page: 677 year: 2010 end-page: 682 ident: bib35 article-title: High-speed maximum power point tracker for photovoltaic systems using online learning neural networks publication-title: J. Adv. Comput. Intell. Intell. Inf. – volume: 173 start-page: 448 year: 2016 end-page: 459 ident: bib10 article-title: Novel high accurate sensorless dual-axis solar tracking system controlled by maximum power point tracking unit of photovoltaic systems publication-title: Appl. Energy – volume: 101 start-page: 5256 year: 2010 end-page: 5265 ident: bib31 article-title: A two-population bio-electrochemical model of a microbial fuel cell publication-title: Bioresour. Technol. – volume: 17 start-page: 1183 year: 2007 end-page: 1193 ident: bib15 article-title: Real-time optimization of dynamic systems using multiple units publication-title: Int. J. Robust Nonlinear Control – volume: 25 start-page: 793 year: 2013 end-page: 813 ident: bib7 article-title: MPPT techniques for photovoltaic applications publication-title: Renew. Sustain. Energy Rev. – volume: 116 start-page: 402 year: 2016 end-page: 416 ident: bib11 article-title: Novel highly accurate universal maximum power point tracker for maximum power extraction from hybrid fuel cell/photovoltaic/wind power generation systems publication-title: Energy – year: 2018 ident: bib26 article-title: Transient thermal prediction methodology for parabolic trough solar collector tube using artificial neural network publication-title: Renew. Energy – volume: 98 start-page: 1171 year: 2007 end-page: 1182 ident: bib32 article-title: Conduction-based modeling of the biofilm anode of a microbial fuel cell publication-title: Biotechnol. Bioeng. – volume: 65 start-page: 2507 year: 2018 end-page: 2517 ident: bib21 article-title: Extremum-seeking control with adaptive excitation: application to a photovoltaic system publication-title: IEEE Trans. Ind. Electron. – volume: 125 start-page: 1015 year: 2018 end-page: 1020 ident: bib27 article-title: Wind turbine power curve modeling based on Gaussian Processes and Artificial Neural Networks publication-title: Renew. Energy – start-page: 933 year: 2015 end-page: 939 ident: bib16 article-title: Extremum-seeking control with anticipative action of microbial fuel cell's power publication-title: Control and Automation (MED), 2015 23th Mediterranean Conference on – volume: 52 start-page: 297 year: 2013 end-page: 307 ident: bib20 article-title: Energy harvesting from the PV hybrid power source publication-title: Energy – year: 1995 ident: bib22 article-title: Neural Networks for Pattern Recognition – volume: 373 start-page: 119 year: 2018 end-page: 131 ident: bib29 article-title: Models for microbial fuel cells: a critical review publication-title: J. Power Sources – volume: 117 start-page: 538 year: 2018 end-page: 544 ident: bib25 article-title: Prediction of cyclic variability in a diesel engine fueled with n-butanol and diesel fuel blends using artificial neural network publication-title: Renew. Energy – volume: 113 start-page: 414 year: 2014 end-page: 421 ident: bib9 article-title: A two-steps algorithm improving the P&O steady state MPPT efficiency publication-title: Appl. Energy – volume: 85 start-page: 2965 year: 2011 end-page: 2976 ident: bib17 article-title: A hybrid maximum power point tracking method for photovoltaic systems publication-title: Sol. Energy – year: 2008 ident: bib3 article-title: Microbial Fuel Cells – volume: 44 start-page: 1446 year: 2008 end-page: 1450 ident: bib34 article-title: On the choice of dither in extremum seeking systems: a case study publication-title: Automatica – volume: 129 start-page: 473 year: 2018 end-page: 485 ident: bib28 article-title: Using artificial neural network and quadratic algorithm for minimizing entropy generation of Al 2 O 3-EG/W nanofluid flow inside parabolic trough solar collector publication-title: Renew. Energy – year: 2003 ident: bib13 article-title: Real-time Optimization by Extremum-seeking Control – volume: 86 start-page: 1410 year: 2009 end-page: 1422 ident: bib24 article-title: Modelling of solar energy potential in Nigeria using an artificial neural network model publication-title: Appl. Energy – volume: 53 start-page: 859 year: 2016 end-page: 884 ident: bib4 article-title: Recent advances in solar photovoltaic systems for emerging trends and advanced applications publication-title: Renew. Sustain. Energy Rev. – volume: 118 start-page: 695 year: 2018 end-page: 700 ident: bib30 article-title: Power-on-paper: origami-inspired fabrication of 3-D microbial fuel cells publication-title: Renew. Energy – volume: 19 start-page: 433 year: 2013 end-page: 443 ident: bib6 article-title: Classification and comparison of maximum power point tracking techniques for photovoltaic system: a review publication-title: Renew. Sustain. Energy Rev. – volume: 36 start-page: 595 year: 2000 end-page: 601 ident: bib14 article-title: Stability of extremum seeking feedback for general nonlinear dynamic systems publication-title: Automatica – volume: 57 start-page: 965 year: 2008 end-page: 971 ident: bib33 article-title: Mathematical model for microbial fuel cells with anodic biofilms and anaerobic digestion publication-title: Water Sci. Technol. – reference: B. W. S. Energy, U. Renewables, and S. Energy, "We got power," Distributed Generation and Alternative Energy, p. 5, 2016. – volume: 14 start-page: 338 year: 2016 end-page: 342 ident: bib18 article-title: Influence of solar irradiance on underwater temperature recorded by temperature loggers on coral reefs publication-title: Limnol Oceanogr. Methods – start-page: 13 year: 2017 end-page: 23 ident: bib2 article-title: E-learning foresight for renewable energy technology in higher education in Morocco publication-title: Europe and MENA Cooperation Advances in Information and Communication Technologies – volume: 150 start-page: 97 year: 2015 end-page: 108 ident: bib8 article-title: An improved perturb and observe (P&O) maximum power point tracking (MPPT) algorithm for higher efficiency publication-title: Appl. Energy – volume: 44 start-page: 55 year: 2005 end-page: 68 ident: bib36 article-title: Adaptive control of uncertain continuously stirred tank reactors with unknown actuator nonlinearities publication-title: ISA Trans. – volume: 45 start-page: 1571 year: 2011 end-page: 1578 ident: bib5 article-title: The effect of real-time external resistance optimization on microbial fuel cell performance publication-title: Water Res. – volume: 89 start-page: 42 year: 2013 end-page: 53 ident: bib19 article-title: Neural-network-based maximum power point tracking methods for photovoltaic systems operating under fast changing environments publication-title: Sol. Energy – volume: 23 start-page: 224 year: 2013 end-page: 241 ident: bib12 article-title: Maximum power point tracking control techniques: state-of-the-art in photovoltaic applications publication-title: Renew. Sustain. Energy Rev. – volume: 14 start-page: 179 year: 1998 end-page: 184 ident: bib23 article-title: Estimation of global solar radiation using artificial neural networks publication-title: Renew. Energy – volume: 52 start-page: 297 year: 2013 ident: 10.1016/j.renene.2018.11.083_bib20 article-title: Energy harvesting from the PV hybrid power source publication-title: Energy doi: 10.1016/j.energy.2013.02.006 – volume: 129 start-page: 473 year: 2018 ident: 10.1016/j.renene.2018.11.083_bib28 article-title: Using artificial neural network and quadratic algorithm for minimizing entropy generation of Al 2 O 3-EG/W nanofluid flow inside parabolic trough solar collector publication-title: Renew. Energy doi: 10.1016/j.renene.2018.06.023 – year: 2018 ident: 10.1016/j.renene.2018.11.083_bib26 article-title: Transient thermal prediction methodology for parabolic trough solar collector tube using artificial neural network publication-title: Renew. Energy – volume: 44 start-page: 1446 year: 2008 ident: 10.1016/j.renene.2018.11.083_bib34 article-title: On the choice of dither in extremum seeking systems: a case study publication-title: Automatica doi: 10.1016/j.automatica.2007.10.016 – volume: 45 start-page: 1571 year: 2011 ident: 10.1016/j.renene.2018.11.083_bib5 article-title: The effect of real-time external resistance optimization on microbial fuel cell performance publication-title: Water Res. doi: 10.1016/j.watres.2010.11.033 – volume: 14 start-page: 179 year: 1998 ident: 10.1016/j.renene.2018.11.083_bib23 article-title: Estimation of global solar radiation using artificial neural networks publication-title: Renew. Energy doi: 10.1016/S0960-1481(98)00065-2 – start-page: 933 year: 2015 ident: 10.1016/j.renene.2018.11.083_bib16 article-title: Extremum-seeking control with anticipative action of microbial fuel cell's power – volume: 173 start-page: 448 year: 2016 ident: 10.1016/j.renene.2018.11.083_bib10 article-title: Novel high accurate sensorless dual-axis solar tracking system controlled by maximum power point tracking unit of photovoltaic systems publication-title: Appl. Energy doi: 10.1016/j.apenergy.2016.03.109 – volume: 17 start-page: 1183 year: 2007 ident: 10.1016/j.renene.2018.11.083_bib15 article-title: Real-time optimization of dynamic systems using multiple units publication-title: Int. J. Robust Nonlinear Control doi: 10.1002/rnc.1165 – volume: 57 start-page: 965 year: 2008 ident: 10.1016/j.renene.2018.11.083_bib33 article-title: Mathematical model for microbial fuel cells with anodic biofilms and anaerobic digestion publication-title: Water Sci. Technol. doi: 10.2166/wst.2008.095 – volume: 150 start-page: 97 year: 2015 ident: 10.1016/j.renene.2018.11.083_bib8 article-title: An improved perturb and observe (P&O) maximum power point tracking (MPPT) algorithm for higher efficiency publication-title: Appl. Energy doi: 10.1016/j.apenergy.2015.04.006 – volume: 125 start-page: 1015 year: 2018 ident: 10.1016/j.renene.2018.11.083_bib27 article-title: Wind turbine power curve modeling based on Gaussian Processes and Artificial Neural Networks publication-title: Renew. Energy doi: 10.1016/j.renene.2018.02.081 – volume: 101 start-page: 5256 year: 2010 ident: 10.1016/j.renene.2018.11.083_bib31 article-title: A two-population bio-electrochemical model of a microbial fuel cell publication-title: Bioresour. Technol. doi: 10.1016/j.biortech.2010.01.122 – start-page: 13 year: 2017 ident: 10.1016/j.renene.2018.11.083_bib2 article-title: E-learning foresight for renewable energy technology in higher education in Morocco – volume: 14 start-page: 338 year: 2016 ident: 10.1016/j.renene.2018.11.083_bib18 article-title: Influence of solar irradiance on underwater temperature recorded by temperature loggers on coral reefs publication-title: Limnol Oceanogr. Methods doi: 10.1002/lom3.10093 – volume: 373 start-page: 119 year: 2018 ident: 10.1016/j.renene.2018.11.083_bib29 article-title: Models for microbial fuel cells: a critical review publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.11.001 – year: 2003 ident: 10.1016/j.renene.2018.11.083_bib13 – volume: 86 start-page: 1410 year: 2009 ident: 10.1016/j.renene.2018.11.083_bib24 article-title: Modelling of solar energy potential in Nigeria using an artificial neural network model publication-title: Appl. Energy doi: 10.1016/j.apenergy.2008.12.005 – volume: 25 start-page: 793 year: 2013 ident: 10.1016/j.renene.2018.11.083_bib7 article-title: MPPT techniques for photovoltaic applications publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2013.05.022 – volume: 113 start-page: 414 year: 2014 ident: 10.1016/j.renene.2018.11.083_bib9 article-title: A two-steps algorithm improving the P&O steady state MPPT efficiency publication-title: Appl. Energy doi: 10.1016/j.apenergy.2013.07.022 – volume: 23 start-page: 224 year: 2013 ident: 10.1016/j.renene.2018.11.083_bib12 article-title: Maximum power point tracking control techniques: state-of-the-art in photovoltaic applications publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2013.02.011 – volume: 117 start-page: 538 year: 2018 ident: 10.1016/j.renene.2018.11.083_bib25 article-title: Prediction of cyclic variability in a diesel engine fueled with n-butanol and diesel fuel blends using artificial neural network publication-title: Renew. Energy doi: 10.1016/j.renene.2017.10.101 – volume: 85 start-page: 2965 year: 2011 ident: 10.1016/j.renene.2018.11.083_bib17 article-title: A hybrid maximum power point tracking method for photovoltaic systems publication-title: Sol. Energy doi: 10.1016/j.solener.2011.08.036 – volume: 118 start-page: 695 year: 2018 ident: 10.1016/j.renene.2018.11.083_bib30 article-title: Power-on-paper: origami-inspired fabrication of 3-D microbial fuel cells publication-title: Renew. Energy doi: 10.1016/j.renene.2017.11.059 – volume: 44 start-page: 55 year: 2005 ident: 10.1016/j.renene.2018.11.083_bib36 article-title: Adaptive control of uncertain continuously stirred tank reactors with unknown actuator nonlinearities publication-title: ISA Trans. doi: 10.1016/S0019-0578(07)60045-7 – volume: 116 start-page: 402 year: 2016 ident: 10.1016/j.renene.2018.11.083_bib11 article-title: Novel highly accurate universal maximum power point tracker for maximum power extraction from hybrid fuel cell/photovoltaic/wind power generation systems publication-title: Energy doi: 10.1016/j.energy.2016.09.095 – volume: 65 start-page: 2507 year: 2018 ident: 10.1016/j.renene.2018.11.083_bib21 article-title: Extremum-seeking control with adaptive excitation: application to a photovoltaic system publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2017.2745448 – volume: 53 start-page: 859 year: 2016 ident: 10.1016/j.renene.2018.11.083_bib4 article-title: Recent advances in solar photovoltaic systems for emerging trends and advanced applications publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2015.09.043 – year: 1995 ident: 10.1016/j.renene.2018.11.083_bib22 – ident: 10.1016/j.renene.2018.11.083_bib1 – volume: 14 start-page: 677 year: 2010 ident: 10.1016/j.renene.2018.11.083_bib35 article-title: High-speed maximum power point tracker for photovoltaic systems using online learning neural networks publication-title: J. Adv. Comput. Intell. Intell. Inf. doi: 10.20965/jaciii.2010.p0677 – volume: 89 start-page: 42 year: 2013 ident: 10.1016/j.renene.2018.11.083_bib19 article-title: Neural-network-based maximum power point tracking methods for photovoltaic systems operating under fast changing environments publication-title: Sol. Energy doi: 10.1016/j.solener.2012.11.017 – volume: 36 start-page: 595 year: 2000 ident: 10.1016/j.renene.2018.11.083_bib14 article-title: Stability of extremum seeking feedback for general nonlinear dynamic systems publication-title: Automatica doi: 10.1016/S0005-1098(99)00183-1 – year: 2008 ident: 10.1016/j.renene.2018.11.083_bib3 – volume: 98 start-page: 1171 year: 2007 ident: 10.1016/j.renene.2018.11.083_bib32 article-title: Conduction-based modeling of the biofilm anode of a microbial fuel cell publication-title: Biotechnol. Bioeng. doi: 10.1002/bit.21533 – volume: 19 start-page: 433 year: 2013 ident: 10.1016/j.renene.2018.11.083_bib6 article-title: Classification and comparison of maximum power point tracking techniques for photovoltaic system: a review publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2012.11.052 |
| SSID | ssj0015874 |
| Score | 2.343267 |
| Snippet | This paper presents a fast and accurate real-time optimization (RTO) technique that can be applied to different types of renewable energy sources (RES). Two... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 914 |
| SubjectTerms | bacteria electrochemistry energy Extremum-seeking control Microbial fuel cell microbial fuel cells Neural networks Photovoltaic system Real-time optimization renewable energy sources solar collectors |
| Title | Real-time optimization of renewable energy sources power using neural network-based anticipative extremum-seeking control |
| URI | https://dx.doi.org/10.1016/j.renene.2018.11.083 https://www.proquest.com/docview/2189530231 |
| Volume | 134 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0682 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015874 issn: 0960-1481 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0682 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015874 issn: 0960-1481 databaseCode: ACRLP dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-0682 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015874 issn: 0960-1481 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection Journals customDbUrl: eissn: 1879-0682 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015874 issn: 0960-1481 databaseCode: AIKHN dateStart: 19950201 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0682 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0015874 issn: 0960-1481 databaseCode: AKRWK dateStart: 19910101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lBW8bku6293kWIqlKvSgFnpb8phIxaalDx8Xf7szyaaoIAUvgYTdJOwkM98k33zD2FWslIzTVOMrboxQESasoQ5xE5pWigFX6jgnyA50f6huR-1RhXXLWhiiVTrfX_j03Fu7I023ms3ZeNx8IPCNYB4RssQsoUV-WClDXQwan2uah9f2CyVmHCxodFk-l3O8SDUyI7FMz2_kWp7yr_D0y1Hn0ae3x3YdbOSd4s72WQWyA7bzTUzwkH3cI-YT1CueT9EPTFyBJZ-mnG7gjWqkOOSlfrz4ZL_gM-qRxon7_sRJ2RIvkRW8cEHhLeG47o51_YqT35dzmKwmYgFAX9i547kfsWHv-rHbF66xgoil8ZcCEq0NxJRuSZkiAFRh5CWQpmniKx-MQXOB1oEfIl6k3ydREGPCSpM1AkItj1k1m2ZwwngAOkFMmICGWCVgojYpjfoyiiLKRrwak-V62tipjlPzixdb0suebWEFS1bAhMSiFWpMrGfNCtWNDeNNaSr74-mxGBg2zLwsLWvxxaK_JWEG09XCIvYJ8pZK3um_z37GtnEvKJg-56y6nK_gAkHMMqrnT2mdbXVu7vqDLysj9D4 |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KPagH8Yn1uYLXbUk33U2OUixVaw_aQm9LHhOp2LT04ePib3cm2RQVpOAlh2Q3CTvJzDfJN98wdhm5roySROErrrVwQ0xYAxXgJtD1BAOuVFFGkO2qdt-9HTQGJdYsamGIVml9f-7TM29t99TsatYmw2HtkcA3gnlEyBKzhDr64TW3UdeUgVU_lzwPp-HlUsw4WtDwon4uI3mRbGRKapmOV83EPOVf8emXp87CT2ubbVncyK_yW9thJUh32eY3NcE99vGAoE9Qs3g-RkcwshWWfJxwuoE3KpLikNX68fyb_YxPqEkaJ_L7EydpS7xEmhPDBcW3mOPCW9r1K05-n09htBiJGQB9YueW6L7P-q3rXrMtbGcFEUntzQXESmmIKN-SMkEE6AahE0OSJLHneqA12guU8r0AASP9Pwn9CDNWmqwQESp5wMrpOIVDxn1QMYLCGBREbgw6bJDUqCfDMKR0xKkwWayniazsOHW_eDEFv-zZ5FYwZAXMSAxaocLEctYkl91YMV4XpjI_Hh-DkWHFzIvCsgbfLPpdEqQwXswMgh8_66nkHP377Odsvd2775jOTffumG3gET-n_Zyw8ny6gFNENPPwLHtivwDQjfXT |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+optimization+of+renewable+energy+sources+power+using+neural+network-based+anticipative+extremum-seeking+control&rft.jtitle=Renewable+energy&rft.au=Kebir%2C+Anouer&rft.au=Woodward%2C+Lyne&rft.au=Akhrif%2C+Ouassima&rft.date=2019-04-01&rft.issn=0960-1481&rft.volume=134&rft.spage=914&rft.epage=926&rft_id=info:doi/10.1016%2Fj.renene.2018.11.083&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_renene_2018_11_083 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon |