Real-time optimization of renewable energy sources power using neural network-based anticipative extremum-seeking control

This paper presents a fast and accurate real-time optimization (RTO) technique that can be applied to different types of renewable energy sources (RES). Two RES with very different dynamics in terms of complexity and convergence time towards the static regime have been chosen for this study: Photovo...

Full description

Saved in:
Bibliographic Details
Published inRenewable energy Vol. 134; pp. 914 - 926
Main Authors Kebir, Anouer, Woodward, Lyne, Akhrif, Ouassima
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.04.2019
Subjects
Online AccessGet full text
ISSN0960-1481
1879-0682
DOI10.1016/j.renene.2018.11.083

Cover

Abstract This paper presents a fast and accurate real-time optimization (RTO) technique that can be applied to different types of renewable energy sources (RES). Two RES with very different dynamics in terms of complexity and convergence time towards the static regime have been chosen for this study: Photovoltaic panels (PV) and microbial fuel cell (MFC), a bioreactor that uses exoelectrogenic bacteria to produce electrochemical energy. The maximum power generated by these two RES is prone to vary when the system is subjected to various external disturbances. Extremum-seeking control (ESC) is a RTO method that has the ability to optimize the performance of a RES whatever its complexity. However, when the external disturbances affecting the RES result in fast variations of its optimal operating point, the slow convergence of ESC will induce a lack of precision. This paper proposes the addition of a neural network-based anticipative action to the existing ESC scheme to improve its performance in terms of speed and accuracy if the system is subject to the effect of measurable disturbances. The performance improvement of ESC is demonstrated theoretically for general systems, via simulation for an MFC and experimentally in the case of a PV. •A new extremum-seeking control (ESC) with anticipative action (ESCaa) is proposed.•The anticipative action is performed using a neural-network model.•A theoretical analysis is done to compare ESC and ESCaa convergence time.•The performance of ESC and ESCaa is compared via simulation and experimentally.•ESCaa has very good tracking efficiency even for high frequency disturbances.
AbstractList This paper presents a fast and accurate real-time optimization (RTO) technique that can be applied to different types of renewable energy sources (RES). Two RES with very different dynamics in terms of complexity and convergence time towards the static regime have been chosen for this study: Photovoltaic panels (PV) and microbial fuel cell (MFC), a bioreactor that uses exoelectrogenic bacteria to produce electrochemical energy. The maximum power generated by these two RES is prone to vary when the system is subjected to various external disturbances. Extremum-seeking control (ESC) is a RTO method that has the ability to optimize the performance of a RES whatever its complexity. However, when the external disturbances affecting the RES result in fast variations of its optimal operating point, the slow convergence of ESC will induce a lack of precision. This paper proposes the addition of a neural network-based anticipative action to the existing ESC scheme to improve its performance in terms of speed and accuracy if the system is subject to the effect of measurable disturbances. The performance improvement of ESC is demonstrated theoretically for general systems, via simulation for an MFC and experimentally in the case of a PV. •A new extremum-seeking control (ESC) with anticipative action (ESCaa) is proposed.•The anticipative action is performed using a neural-network model.•A theoretical analysis is done to compare ESC and ESCaa convergence time.•The performance of ESC and ESCaa is compared via simulation and experimentally.•ESCaa has very good tracking efficiency even for high frequency disturbances.
This paper presents a fast and accurate real-time optimization (RTO) technique that can be applied to different types of renewable energy sources (RES). Two RES with very different dynamics in terms of complexity and convergence time towards the static regime have been chosen for this study: Photovoltaic panels (PV) and microbial fuel cell (MFC), a bioreactor that uses exoelectrogenic bacteria to produce electrochemical energy. The maximum power generated by these two RES is prone to vary when the system is subjected to various external disturbances. Extremum-seeking control (ESC) is a RTO method that has the ability to optimize the performance of a RES whatever its complexity. However, when the external disturbances affecting the RES result in fast variations of its optimal operating point, the slow convergence of ESC will induce a lack of precision. This paper proposes the addition of a neural network-based anticipative action to the existing ESC scheme to improve its performance in terms of speed and accuracy if the system is subject to the effect of measurable disturbances. The performance improvement of ESC is demonstrated theoretically for general systems, via simulation for an MFC and experimentally in the case of a PV.
Author Akhrif, Ouassima
Woodward, Lyne
Kebir, Anouer
Author_xml – sequence: 1
  givenname: Anouer
  orcidid: 0000-0003-2023-4421
  surname: Kebir
  fullname: Kebir, Anouer
  email: anouer.kebir.1@ens.etsmtl.ca
– sequence: 2
  givenname: Lyne
  orcidid: 0000-0001-8910-6773
  surname: Woodward
  fullname: Woodward, Lyne
– sequence: 3
  givenname: Ouassima
  surname: Akhrif
  fullname: Akhrif, Ouassima
BookMark eNqFkE1v1DAURS1UJKYf_6ALL9kk-NkZx2GBhCoKlSohobK2PM5L5WliB9vpdPj1OAwrFqC3uG9xz12cc3Lmg0dCroHVwEC-29cRfbmaM1A1QM2UeEU2oNquYlLxM7JhnWQVNArekPOU9ozBVrXNhhy_oRmr7CakYS7hfprsgqdhoOvmwexGpOWJj0eawhItJjqHA0a6JOcfqcclmrFEPoT4VO1Mwp4an511c1l6LvBLjjgtU5UQn1bEBp9jGC_J68GMCa_-5AX5fvvp4eZLdf_1893Nx_vKilblCnspW7SMKy7E0LZNY3bQ4zAMvWoUtq2RBqXslAHYcsa6XWe3XKyw7LiQ4oK8Pe3OMfxYMGU9uWRxHI3HsCTNQXVbwbiAUm1OVRtDShEHPUc3mXjUwPRqWu_1ybReTWsAXUwX7P1fmHX5t8YcjRv_B384wVgcPDuMOlmH3mLvItqs--D-PfALNTyhsA
CitedBy_id crossref_primary_10_1016_j_jobe_2023_107621
crossref_primary_10_1016_j_compchemeng_2024_108743
crossref_primary_10_1016_j_enconman_2024_118190
crossref_primary_10_1016_j_renene_2020_08_159
crossref_primary_10_1016_j_rser_2023_113802
crossref_primary_10_1016_j_jpowsour_2020_228739
crossref_primary_10_1016_j_ijhydene_2021_11_125
crossref_primary_10_1016_j_jobe_2021_102744
crossref_primary_10_1016_j_renene_2021_08_058
Cites_doi 10.1016/j.energy.2013.02.006
10.1016/j.renene.2018.06.023
10.1016/j.automatica.2007.10.016
10.1016/j.watres.2010.11.033
10.1016/S0960-1481(98)00065-2
10.1016/j.apenergy.2016.03.109
10.1002/rnc.1165
10.2166/wst.2008.095
10.1016/j.apenergy.2015.04.006
10.1016/j.renene.2018.02.081
10.1016/j.biortech.2010.01.122
10.1002/lom3.10093
10.1016/j.jpowsour.2017.11.001
10.1016/j.apenergy.2008.12.005
10.1016/j.rser.2013.05.022
10.1016/j.apenergy.2013.07.022
10.1016/j.rser.2013.02.011
10.1016/j.renene.2017.10.101
10.1016/j.solener.2011.08.036
10.1016/j.renene.2017.11.059
10.1016/S0019-0578(07)60045-7
10.1016/j.energy.2016.09.095
10.1109/TIE.2017.2745448
10.1016/j.rser.2015.09.043
10.20965/jaciii.2010.p0677
10.1016/j.solener.2012.11.017
10.1016/S0005-1098(99)00183-1
10.1002/bit.21533
10.1016/j.rser.2012.11.052
ContentType Journal Article
Copyright 2018 Elsevier Ltd
Copyright_xml – notice: 2018 Elsevier Ltd
DBID AAYXX
CITATION
7S9
L.6
DOI 10.1016/j.renene.2018.11.083
DatabaseName CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList
AGRICOLA
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-0682
EndPage 926
ExternalDocumentID 10_1016_j_renene_2018_11_083
S0960148118314022
GroupedDBID --K
--M
.~1
0R~
123
1B1
1RT
1~.
1~5
29P
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HMC
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY9
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SEN
SES
SET
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
ZCA
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABJNI
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEGFY
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7S9
L.6
ID FETCH-LOGICAL-c378t-ed667ec028233f7744ab1defffd848e77a6ae6698a1152009b9c523c378692363
IEDL.DBID .~1
ISSN 0960-1481
IngestDate Thu Oct 02 12:59:57 EDT 2025
Thu Apr 24 23:09:47 EDT 2025
Wed Oct 01 04:00:52 EDT 2025
Fri Feb 23 02:34:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Real-time optimization
Microbial fuel cell
Extremum-seeking control
Neural networks
Photovoltaic system
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-ed667ec028233f7744ab1defffd848e77a6ae6698a1152009b9c523c378692363
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-8910-6773
0000-0003-2023-4421
PQID 2189530231
PQPubID 24069
PageCount 13
ParticipantIDs proquest_miscellaneous_2189530231
crossref_primary_10_1016_j_renene_2018_11_083
crossref_citationtrail_10_1016_j_renene_2018_11_083
elsevier_sciencedirect_doi_10_1016_j_renene_2018_11_083
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-04-01
PublicationDateYYYYMMDD 2019-04-01
PublicationDate_xml – month: 04
  year: 2019
  text: 2019-04-01
  day: 01
PublicationDecade 2010
PublicationTitle Renewable energy
PublicationYear 2019
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Krstić, Wang (bib14) 2000; 36
Logan (bib3) 2008
Tan, Nešić, Mareels (bib34) 2008; 44
Srinivasan (bib15) 2007; 17
Pinto, Srinivasan, Guiot, Tartakovsky (bib5) 2011; 45
Xia, Zhang, Pedrycz, Zhu, Guo (bib29) 2018; 373
Moradi, Reisi (bib17) 2011; 85
Mohandes, Rehman, Halawani (bib23) 1998; 14
Fadare (bib24) 2009; 86
Bishop (bib22) 1995
Gürgen, Ünver, Altın (bib25) 2018; 117
Mamarelis, Petrone, Spagnuolo (bib9) 2014; 113
Kebir, Woodward, Akhrif (bib21) 2018; 65
Zhang, Guay (bib36) 2005; 44
Ariyur, Krstic (bib13) 2003
Liu, Liu, Huang, Chen (bib19) 2013; 89
Heng, Asako, Suwa, Nagasaka (bib26) 2018
Mohammadifar, Zhang, Yazgan, Sadik, Choi (bib30) 2018; 118
Bizon (bib20) 2013; 52
Kohata, Yamauchi, Kurihara (bib35) 2010; 14
Bhatnagar, Nema (bib12) 2013; 23
Fathabadi (bib11) 2016; 116
Laaroussi, Ajana, Bakkali, Faraj, Cherkaoui (bib2) 2017
Ebrahimi-Moghadam, Mohseni-Gharyehsafa, Farzaneh-Gord (bib28) 2018; 129
Manobel, Sehnke, Lazzús, Salfate, Felder, Montecinos (bib27) 2018; 125
B. W. S. Energy, U. Renewables, and S. Energy, "We got power," Distributed Generation and Alternative Energy, p. 5, 2016.
Bahr, Jokiel, Rodgers (bib18) 2016; 14
Fathabadi (bib10) 2016; 173
Kato Marcus, Torres, Rittmann (bib32) 2007; 98
Pandey, Tyagi, Selvaraj, Rahim, Tyagi (bib4) 2016; 53
Eltawil, Zhao (bib7) 2013; 25
Kebir, Woodward, Akhrif (bib16) 2015
Picioreanu, Katuri, Head, van Loosdrecht, Scott (bib33) 2008; 57
Pinto, Srinivasan, Manuel, Tartakovsky (bib31) 2010; 101
Reisi, Moradi, Jamasb (bib6) 2013; 19
Ahmed, Salam (bib8) 2015; 150
Pinto (10.1016/j.renene.2018.11.083_bib5) 2011; 45
Zhang (10.1016/j.renene.2018.11.083_bib36) 2005; 44
Kebir (10.1016/j.renene.2018.11.083_bib16) 2015
Kato Marcus (10.1016/j.renene.2018.11.083_bib32) 2007; 98
Mamarelis (10.1016/j.renene.2018.11.083_bib9) 2014; 113
Picioreanu (10.1016/j.renene.2018.11.083_bib33) 2008; 57
Pandey (10.1016/j.renene.2018.11.083_bib4) 2016; 53
Eltawil (10.1016/j.renene.2018.11.083_bib7) 2013; 25
Ebrahimi-Moghadam (10.1016/j.renene.2018.11.083_bib28) 2018; 129
Mohammadifar (10.1016/j.renene.2018.11.083_bib30) 2018; 118
Laaroussi (10.1016/j.renene.2018.11.083_bib2) 2017
Liu (10.1016/j.renene.2018.11.083_bib19) 2013; 89
Bizon (10.1016/j.renene.2018.11.083_bib20) 2013; 52
Manobel (10.1016/j.renene.2018.11.083_bib27) 2018; 125
Pinto (10.1016/j.renene.2018.11.083_bib31) 2010; 101
Tan (10.1016/j.renene.2018.11.083_bib34) 2008; 44
Reisi (10.1016/j.renene.2018.11.083_bib6) 2013; 19
Fathabadi (10.1016/j.renene.2018.11.083_bib11) 2016; 116
Ahmed (10.1016/j.renene.2018.11.083_bib8) 2015; 150
Kebir (10.1016/j.renene.2018.11.083_bib21) 2018; 65
Bishop (10.1016/j.renene.2018.11.083_bib22) 1995
Fathabadi (10.1016/j.renene.2018.11.083_bib10) 2016; 173
Kohata (10.1016/j.renene.2018.11.083_bib35) 2010; 14
Moradi (10.1016/j.renene.2018.11.083_bib17) 2011; 85
Xia (10.1016/j.renene.2018.11.083_bib29) 2018; 373
Heng (10.1016/j.renene.2018.11.083_bib26) 2018
Krstić (10.1016/j.renene.2018.11.083_bib14) 2000; 36
Ariyur (10.1016/j.renene.2018.11.083_bib13) 2003
Logan (10.1016/j.renene.2018.11.083_bib3) 2008
Mohandes (10.1016/j.renene.2018.11.083_bib23) 1998; 14
Gürgen (10.1016/j.renene.2018.11.083_bib25) 2018; 117
Bahr (10.1016/j.renene.2018.11.083_bib18) 2016; 14
Bhatnagar (10.1016/j.renene.2018.11.083_bib12) 2013; 23
Fadare (10.1016/j.renene.2018.11.083_bib24) 2009; 86
Srinivasan (10.1016/j.renene.2018.11.083_bib15) 2007; 17
10.1016/j.renene.2018.11.083_bib1
References_xml – volume: 14
  start-page: 677
  year: 2010
  end-page: 682
  ident: bib35
  article-title: High-speed maximum power point tracker for photovoltaic systems using online learning neural networks
  publication-title: J. Adv. Comput. Intell. Intell. Inf.
– volume: 173
  start-page: 448
  year: 2016
  end-page: 459
  ident: bib10
  article-title: Novel high accurate sensorless dual-axis solar tracking system controlled by maximum power point tracking unit of photovoltaic systems
  publication-title: Appl. Energy
– volume: 101
  start-page: 5256
  year: 2010
  end-page: 5265
  ident: bib31
  article-title: A two-population bio-electrochemical model of a microbial fuel cell
  publication-title: Bioresour. Technol.
– volume: 17
  start-page: 1183
  year: 2007
  end-page: 1193
  ident: bib15
  article-title: Real-time optimization of dynamic systems using multiple units
  publication-title: Int. J. Robust Nonlinear Control
– volume: 25
  start-page: 793
  year: 2013
  end-page: 813
  ident: bib7
  article-title: MPPT techniques for photovoltaic applications
  publication-title: Renew. Sustain. Energy Rev.
– volume: 116
  start-page: 402
  year: 2016
  end-page: 416
  ident: bib11
  article-title: Novel highly accurate universal maximum power point tracker for maximum power extraction from hybrid fuel cell/photovoltaic/wind power generation systems
  publication-title: Energy
– year: 2018
  ident: bib26
  article-title: Transient thermal prediction methodology for parabolic trough solar collector tube using artificial neural network
  publication-title: Renew. Energy
– volume: 98
  start-page: 1171
  year: 2007
  end-page: 1182
  ident: bib32
  article-title: Conduction-based modeling of the biofilm anode of a microbial fuel cell
  publication-title: Biotechnol. Bioeng.
– volume: 65
  start-page: 2507
  year: 2018
  end-page: 2517
  ident: bib21
  article-title: Extremum-seeking control with adaptive excitation: application to a photovoltaic system
  publication-title: IEEE Trans. Ind. Electron.
– volume: 125
  start-page: 1015
  year: 2018
  end-page: 1020
  ident: bib27
  article-title: Wind turbine power curve modeling based on Gaussian Processes and Artificial Neural Networks
  publication-title: Renew. Energy
– start-page: 933
  year: 2015
  end-page: 939
  ident: bib16
  article-title: Extremum-seeking control with anticipative action of microbial fuel cell's power
  publication-title: Control and Automation (MED), 2015 23th Mediterranean Conference on
– volume: 52
  start-page: 297
  year: 2013
  end-page: 307
  ident: bib20
  article-title: Energy harvesting from the PV hybrid power source
  publication-title: Energy
– year: 1995
  ident: bib22
  article-title: Neural Networks for Pattern Recognition
– volume: 373
  start-page: 119
  year: 2018
  end-page: 131
  ident: bib29
  article-title: Models for microbial fuel cells: a critical review
  publication-title: J. Power Sources
– volume: 117
  start-page: 538
  year: 2018
  end-page: 544
  ident: bib25
  article-title: Prediction of cyclic variability in a diesel engine fueled with n-butanol and diesel fuel blends using artificial neural network
  publication-title: Renew. Energy
– volume: 113
  start-page: 414
  year: 2014
  end-page: 421
  ident: bib9
  article-title: A two-steps algorithm improving the P&O steady state MPPT efficiency
  publication-title: Appl. Energy
– volume: 85
  start-page: 2965
  year: 2011
  end-page: 2976
  ident: bib17
  article-title: A hybrid maximum power point tracking method for photovoltaic systems
  publication-title: Sol. Energy
– year: 2008
  ident: bib3
  article-title: Microbial Fuel Cells
– volume: 44
  start-page: 1446
  year: 2008
  end-page: 1450
  ident: bib34
  article-title: On the choice of dither in extremum seeking systems: a case study
  publication-title: Automatica
– volume: 129
  start-page: 473
  year: 2018
  end-page: 485
  ident: bib28
  article-title: Using artificial neural network and quadratic algorithm for minimizing entropy generation of Al 2 O 3-EG/W nanofluid flow inside parabolic trough solar collector
  publication-title: Renew. Energy
– year: 2003
  ident: bib13
  article-title: Real-time Optimization by Extremum-seeking Control
– volume: 86
  start-page: 1410
  year: 2009
  end-page: 1422
  ident: bib24
  article-title: Modelling of solar energy potential in Nigeria using an artificial neural network model
  publication-title: Appl. Energy
– volume: 53
  start-page: 859
  year: 2016
  end-page: 884
  ident: bib4
  article-title: Recent advances in solar photovoltaic systems for emerging trends and advanced applications
  publication-title: Renew. Sustain. Energy Rev.
– volume: 118
  start-page: 695
  year: 2018
  end-page: 700
  ident: bib30
  article-title: Power-on-paper: origami-inspired fabrication of 3-D microbial fuel cells
  publication-title: Renew. Energy
– volume: 19
  start-page: 433
  year: 2013
  end-page: 443
  ident: bib6
  article-title: Classification and comparison of maximum power point tracking techniques for photovoltaic system: a review
  publication-title: Renew. Sustain. Energy Rev.
– volume: 36
  start-page: 595
  year: 2000
  end-page: 601
  ident: bib14
  article-title: Stability of extremum seeking feedback for general nonlinear dynamic systems
  publication-title: Automatica
– volume: 57
  start-page: 965
  year: 2008
  end-page: 971
  ident: bib33
  article-title: Mathematical model for microbial fuel cells with anodic biofilms and anaerobic digestion
  publication-title: Water Sci. Technol.
– reference: B. W. S. Energy, U. Renewables, and S. Energy, "We got power," Distributed Generation and Alternative Energy, p. 5, 2016.
– volume: 14
  start-page: 338
  year: 2016
  end-page: 342
  ident: bib18
  article-title: Influence of solar irradiance on underwater temperature recorded by temperature loggers on coral reefs
  publication-title: Limnol Oceanogr. Methods
– start-page: 13
  year: 2017
  end-page: 23
  ident: bib2
  article-title: E-learning foresight for renewable energy technology in higher education in Morocco
  publication-title: Europe and MENA Cooperation Advances in Information and Communication Technologies
– volume: 150
  start-page: 97
  year: 2015
  end-page: 108
  ident: bib8
  article-title: An improved perturb and observe (P&O) maximum power point tracking (MPPT) algorithm for higher efficiency
  publication-title: Appl. Energy
– volume: 44
  start-page: 55
  year: 2005
  end-page: 68
  ident: bib36
  article-title: Adaptive control of uncertain continuously stirred tank reactors with unknown actuator nonlinearities
  publication-title: ISA Trans.
– volume: 45
  start-page: 1571
  year: 2011
  end-page: 1578
  ident: bib5
  article-title: The effect of real-time external resistance optimization on microbial fuel cell performance
  publication-title: Water Res.
– volume: 89
  start-page: 42
  year: 2013
  end-page: 53
  ident: bib19
  article-title: Neural-network-based maximum power point tracking methods for photovoltaic systems operating under fast changing environments
  publication-title: Sol. Energy
– volume: 23
  start-page: 224
  year: 2013
  end-page: 241
  ident: bib12
  article-title: Maximum power point tracking control techniques: state-of-the-art in photovoltaic applications
  publication-title: Renew. Sustain. Energy Rev.
– volume: 14
  start-page: 179
  year: 1998
  end-page: 184
  ident: bib23
  article-title: Estimation of global solar radiation using artificial neural networks
  publication-title: Renew. Energy
– volume: 52
  start-page: 297
  year: 2013
  ident: 10.1016/j.renene.2018.11.083_bib20
  article-title: Energy harvesting from the PV hybrid power source
  publication-title: Energy
  doi: 10.1016/j.energy.2013.02.006
– volume: 129
  start-page: 473
  year: 2018
  ident: 10.1016/j.renene.2018.11.083_bib28
  article-title: Using artificial neural network and quadratic algorithm for minimizing entropy generation of Al 2 O 3-EG/W nanofluid flow inside parabolic trough solar collector
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.06.023
– year: 2018
  ident: 10.1016/j.renene.2018.11.083_bib26
  article-title: Transient thermal prediction methodology for parabolic trough solar collector tube using artificial neural network
  publication-title: Renew. Energy
– volume: 44
  start-page: 1446
  year: 2008
  ident: 10.1016/j.renene.2018.11.083_bib34
  article-title: On the choice of dither in extremum seeking systems: a case study
  publication-title: Automatica
  doi: 10.1016/j.automatica.2007.10.016
– volume: 45
  start-page: 1571
  year: 2011
  ident: 10.1016/j.renene.2018.11.083_bib5
  article-title: The effect of real-time external resistance optimization on microbial fuel cell performance
  publication-title: Water Res.
  doi: 10.1016/j.watres.2010.11.033
– volume: 14
  start-page: 179
  year: 1998
  ident: 10.1016/j.renene.2018.11.083_bib23
  article-title: Estimation of global solar radiation using artificial neural networks
  publication-title: Renew. Energy
  doi: 10.1016/S0960-1481(98)00065-2
– start-page: 933
  year: 2015
  ident: 10.1016/j.renene.2018.11.083_bib16
  article-title: Extremum-seeking control with anticipative action of microbial fuel cell's power
– volume: 173
  start-page: 448
  year: 2016
  ident: 10.1016/j.renene.2018.11.083_bib10
  article-title: Novel high accurate sensorless dual-axis solar tracking system controlled by maximum power point tracking unit of photovoltaic systems
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2016.03.109
– volume: 17
  start-page: 1183
  year: 2007
  ident: 10.1016/j.renene.2018.11.083_bib15
  article-title: Real-time optimization of dynamic systems using multiple units
  publication-title: Int. J. Robust Nonlinear Control
  doi: 10.1002/rnc.1165
– volume: 57
  start-page: 965
  year: 2008
  ident: 10.1016/j.renene.2018.11.083_bib33
  article-title: Mathematical model for microbial fuel cells with anodic biofilms and anaerobic digestion
  publication-title: Water Sci. Technol.
  doi: 10.2166/wst.2008.095
– volume: 150
  start-page: 97
  year: 2015
  ident: 10.1016/j.renene.2018.11.083_bib8
  article-title: An improved perturb and observe (P&O) maximum power point tracking (MPPT) algorithm for higher efficiency
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2015.04.006
– volume: 125
  start-page: 1015
  year: 2018
  ident: 10.1016/j.renene.2018.11.083_bib27
  article-title: Wind turbine power curve modeling based on Gaussian Processes and Artificial Neural Networks
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2018.02.081
– volume: 101
  start-page: 5256
  year: 2010
  ident: 10.1016/j.renene.2018.11.083_bib31
  article-title: A two-population bio-electrochemical model of a microbial fuel cell
  publication-title: Bioresour. Technol.
  doi: 10.1016/j.biortech.2010.01.122
– start-page: 13
  year: 2017
  ident: 10.1016/j.renene.2018.11.083_bib2
  article-title: E-learning foresight for renewable energy technology in higher education in Morocco
– volume: 14
  start-page: 338
  year: 2016
  ident: 10.1016/j.renene.2018.11.083_bib18
  article-title: Influence of solar irradiance on underwater temperature recorded by temperature loggers on coral reefs
  publication-title: Limnol Oceanogr. Methods
  doi: 10.1002/lom3.10093
– volume: 373
  start-page: 119
  year: 2018
  ident: 10.1016/j.renene.2018.11.083_bib29
  article-title: Models for microbial fuel cells: a critical review
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.11.001
– year: 2003
  ident: 10.1016/j.renene.2018.11.083_bib13
– volume: 86
  start-page: 1410
  year: 2009
  ident: 10.1016/j.renene.2018.11.083_bib24
  article-title: Modelling of solar energy potential in Nigeria using an artificial neural network model
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2008.12.005
– volume: 25
  start-page: 793
  year: 2013
  ident: 10.1016/j.renene.2018.11.083_bib7
  article-title: MPPT techniques for photovoltaic applications
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2013.05.022
– volume: 113
  start-page: 414
  year: 2014
  ident: 10.1016/j.renene.2018.11.083_bib9
  article-title: A two-steps algorithm improving the P&O steady state MPPT efficiency
  publication-title: Appl. Energy
  doi: 10.1016/j.apenergy.2013.07.022
– volume: 23
  start-page: 224
  year: 2013
  ident: 10.1016/j.renene.2018.11.083_bib12
  article-title: Maximum power point tracking control techniques: state-of-the-art in photovoltaic applications
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2013.02.011
– volume: 117
  start-page: 538
  year: 2018
  ident: 10.1016/j.renene.2018.11.083_bib25
  article-title: Prediction of cyclic variability in a diesel engine fueled with n-butanol and diesel fuel blends using artificial neural network
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.10.101
– volume: 85
  start-page: 2965
  year: 2011
  ident: 10.1016/j.renene.2018.11.083_bib17
  article-title: A hybrid maximum power point tracking method for photovoltaic systems
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2011.08.036
– volume: 118
  start-page: 695
  year: 2018
  ident: 10.1016/j.renene.2018.11.083_bib30
  article-title: Power-on-paper: origami-inspired fabrication of 3-D microbial fuel cells
  publication-title: Renew. Energy
  doi: 10.1016/j.renene.2017.11.059
– volume: 44
  start-page: 55
  year: 2005
  ident: 10.1016/j.renene.2018.11.083_bib36
  article-title: Adaptive control of uncertain continuously stirred tank reactors with unknown actuator nonlinearities
  publication-title: ISA Trans.
  doi: 10.1016/S0019-0578(07)60045-7
– volume: 116
  start-page: 402
  year: 2016
  ident: 10.1016/j.renene.2018.11.083_bib11
  article-title: Novel highly accurate universal maximum power point tracker for maximum power extraction from hybrid fuel cell/photovoltaic/wind power generation systems
  publication-title: Energy
  doi: 10.1016/j.energy.2016.09.095
– volume: 65
  start-page: 2507
  year: 2018
  ident: 10.1016/j.renene.2018.11.083_bib21
  article-title: Extremum-seeking control with adaptive excitation: application to a photovoltaic system
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2017.2745448
– volume: 53
  start-page: 859
  year: 2016
  ident: 10.1016/j.renene.2018.11.083_bib4
  article-title: Recent advances in solar photovoltaic systems for emerging trends and advanced applications
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2015.09.043
– year: 1995
  ident: 10.1016/j.renene.2018.11.083_bib22
– ident: 10.1016/j.renene.2018.11.083_bib1
– volume: 14
  start-page: 677
  year: 2010
  ident: 10.1016/j.renene.2018.11.083_bib35
  article-title: High-speed maximum power point tracker for photovoltaic systems using online learning neural networks
  publication-title: J. Adv. Comput. Intell. Intell. Inf.
  doi: 10.20965/jaciii.2010.p0677
– volume: 89
  start-page: 42
  year: 2013
  ident: 10.1016/j.renene.2018.11.083_bib19
  article-title: Neural-network-based maximum power point tracking methods for photovoltaic systems operating under fast changing environments
  publication-title: Sol. Energy
  doi: 10.1016/j.solener.2012.11.017
– volume: 36
  start-page: 595
  year: 2000
  ident: 10.1016/j.renene.2018.11.083_bib14
  article-title: Stability of extremum seeking feedback for general nonlinear dynamic systems
  publication-title: Automatica
  doi: 10.1016/S0005-1098(99)00183-1
– year: 2008
  ident: 10.1016/j.renene.2018.11.083_bib3
– volume: 98
  start-page: 1171
  year: 2007
  ident: 10.1016/j.renene.2018.11.083_bib32
  article-title: Conduction-based modeling of the biofilm anode of a microbial fuel cell
  publication-title: Biotechnol. Bioeng.
  doi: 10.1002/bit.21533
– volume: 19
  start-page: 433
  year: 2013
  ident: 10.1016/j.renene.2018.11.083_bib6
  article-title: Classification and comparison of maximum power point tracking techniques for photovoltaic system: a review
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2012.11.052
SSID ssj0015874
Score 2.343267
Snippet This paper presents a fast and accurate real-time optimization (RTO) technique that can be applied to different types of renewable energy sources (RES). Two...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 914
SubjectTerms bacteria
electrochemistry
energy
Extremum-seeking control
Microbial fuel cell
microbial fuel cells
Neural networks
Photovoltaic system
Real-time optimization
renewable energy sources
solar collectors
Title Real-time optimization of renewable energy sources power using neural network-based anticipative extremum-seeking control
URI https://dx.doi.org/10.1016/j.renene.2018.11.083
https://www.proquest.com/docview/2189530231
Volume 134
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-0682
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015874
  issn: 0960-1481
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-0682
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015874
  issn: 0960-1481
  databaseCode: ACRLP
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1879-0682
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015874
  issn: 0960-1481
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect Freedom Collection Journals
  customDbUrl:
  eissn: 1879-0682
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015874
  issn: 0960-1481
  databaseCode: AIKHN
  dateStart: 19950201
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-0682
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0015874
  issn: 0960-1481
  databaseCode: AKRWK
  dateStart: 19910101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KvehBfGJ9lBW8bku6293kWIqlKvSgFnpb8phIxaalDx8Xf7szyaaoIAUvgYTdJOwkM98k33zD2FWslIzTVOMrboxQESasoQ5xE5pWigFX6jgnyA50f6huR-1RhXXLWhiiVTrfX_j03Fu7I023ms3ZeNx8IPCNYB4RssQsoUV-WClDXQwan2uah9f2CyVmHCxodFk-l3O8SDUyI7FMz2_kWp7yr_D0y1Hn0ae3x3YdbOSd4s72WQWyA7bzTUzwkH3cI-YT1CueT9EPTFyBJZ-mnG7gjWqkOOSlfrz4ZL_gM-qRxon7_sRJ2RIvkRW8cEHhLeG47o51_YqT35dzmKwmYgFAX9i547kfsWHv-rHbF66xgoil8ZcCEq0NxJRuSZkiAFRh5CWQpmniKx-MQXOB1oEfIl6k3ydREGPCSpM1AkItj1k1m2ZwwngAOkFMmICGWCVgojYpjfoyiiLKRrwak-V62tipjlPzixdb0suebWEFS1bAhMSiFWpMrGfNCtWNDeNNaSr74-mxGBg2zLwsLWvxxaK_JWEG09XCIvYJ8pZK3um_z37GtnEvKJg-56y6nK_gAkHMMqrnT2mdbXVu7vqDLysj9D4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5KPagH8Yn1uYLXbUk33U2OUixVaw_aQm9LHhOp2LT04ePib3cm2RQVpOAlh2Q3CTvJzDfJN98wdhm5roySROErrrVwQ0xYAxXgJtD1BAOuVFFGkO2qdt-9HTQGJdYsamGIVml9f-7TM29t99TsatYmw2HtkcA3gnlEyBKzhDr64TW3UdeUgVU_lzwPp-HlUsw4WtDwon4uI3mRbGRKapmOV83EPOVf8emXp87CT2ubbVncyK_yW9thJUh32eY3NcE99vGAoE9Qs3g-RkcwshWWfJxwuoE3KpLikNX68fyb_YxPqEkaJ_L7EydpS7xEmhPDBcW3mOPCW9r1K05-n09htBiJGQB9YueW6L7P-q3rXrMtbGcFEUntzQXESmmIKN-SMkEE6AahE0OSJLHneqA12guU8r0AASP9Pwn9CDNWmqwQESp5wMrpOIVDxn1QMYLCGBREbgw6bJDUqCfDMKR0xKkwWayniazsOHW_eDEFv-zZ5FYwZAXMSAxaocLEctYkl91YMV4XpjI_Hh-DkWHFzIvCsgbfLPpdEqQwXswMgh8_66nkHP377Odsvd2775jOTffumG3gET-n_Zyw8ny6gFNENPPwLHtivwDQjfXT
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Real-time+optimization+of+renewable+energy+sources+power+using+neural+network-based+anticipative+extremum-seeking+control&rft.jtitle=Renewable+energy&rft.au=Kebir%2C+Anouer&rft.au=Woodward%2C+Lyne&rft.au=Akhrif%2C+Ouassima&rft.date=2019-04-01&rft.issn=0960-1481&rft.volume=134&rft.spage=914&rft.epage=926&rft_id=info:doi/10.1016%2Fj.renene.2018.11.083&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_renene_2018_11_083
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0960-1481&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0960-1481&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0960-1481&client=summon