Dynamical significance of generalized fractional integral inequalities via convexity

The main goal of this paper is to develop the significance of generalized fractional integral inequalities via convex functions. We obtain the new version of fractional integral inequalities with the extended Wright generalized Bessel function acting as a kernel for the convex function, which deals...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 6; no. 9; pp. 9705 - 9730
Main Authors Ali, Sabila, Mubeen, Shahid, Ali, Rana Safdar, Rahman, Gauhar, Morsy, Ahmed, Nisar, Kottakkaran Sooppy, Purohit, Sunil Dutt, Zakarya, M.
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2021
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2021565

Cover

Abstract The main goal of this paper is to develop the significance of generalized fractional integral inequalities via convex functions. We obtain the new version of fractional integral inequalities with the extended Wright generalized Bessel function acting as a kernel for the convex function, which deals with the Hermite-Hadamard type and trapezoid type inequalities. Moreover, we establish new mid-point type and trapezoid type integral inequalities for (η1,η2)-convex function related to Hermite-Hadamard type inequality. We establish new version of integral inequality for (η1,η2)-convex function related to Fejér type. The results discussed in this paper are a generalized version of many inequalities in literature.
AbstractList The main goal of this paper is to develop the significance of generalized fractional integral inequalities via convex functions. We obtain the new version of fractional integral inequalities with the extended Wright generalized Bessel function acting as a kernel for the convex function, which deals with the Hermite-Hadamard type and trapezoid type inequalities. Moreover, we establish new mid-point type and trapezoid type integral inequalities for (η1,η2)-convex function related to Hermite-Hadamard type inequality. We establish new version of integral inequality for (η1,η2)-convex function related to Fejér type. The results discussed in this paper are a generalized version of many inequalities in literature.
Author Morsy, Ahmed
Zakarya, M.
Ali, Rana Safdar
Rahman, Gauhar
Mubeen, Shahid
Purohit, Sunil Dutt
Nisar, Kottakkaran Sooppy
Ali, Sabila
Author_xml – sequence: 1
  givenname: Sabila
  surname: Ali
  fullname: Ali, Sabila
– sequence: 2
  givenname: Shahid
  surname: Mubeen
  fullname: Mubeen, Shahid
– sequence: 3
  givenname: Rana Safdar
  surname: Ali
  fullname: Ali, Rana Safdar
– sequence: 4
  givenname: Gauhar
  surname: Rahman
  fullname: Rahman, Gauhar
– sequence: 5
  givenname: Ahmed
  surname: Morsy
  fullname: Morsy, Ahmed
– sequence: 6
  givenname: Kottakkaran Sooppy
  surname: Nisar
  fullname: Nisar, Kottakkaran Sooppy
– sequence: 7
  givenname: Sunil Dutt
  surname: Purohit
  fullname: Purohit, Sunil Dutt
– sequence: 8
  givenname: M.
  surname: Zakarya
  fullname: Zakarya, M.
BookMark eNptkMtOwzAQRS1UJErpjg_IB9Di2E6cLFF5VarEpntrYo-Dq9QBx1SUrydpK4QQq7maOXMW95KMfOuRkOuUznnJxe0W4uucUZZmeXZGxkxIPsvLohj9yhdk2nUbSnuKCSbFmKzv9x62TkOTdK72zvbRa0xam9ToMUDjvtAkNoCOrvU95nzEOhwCvn_09-iwS3YOEt36HX66uL8i5xaaDqenOSHrx4f14nm2enlaLu5WM81lEWdY2jQXhUlTK6GSZVbJtBJVhYUpOJUVZqzKGFqd0zLTkPMeEYJDZq1NBeUTsjxqTQsb9RbcFsJeteDUYdGGWkGITjeojEEYBFBKI7DkoCUzOWUGORfARe-6Obp0aLsuoP3xpVQN_aqhX3Xqt8fZH1y7CENDMYBr_n_6BmC0gt8
CitedBy_id crossref_primary_10_1515_ms_2024_0028
crossref_primary_10_3390_sym14122585
crossref_primary_10_3390_sym15081576
crossref_primary_10_3390_fractalfract7080580
crossref_primary_10_3390_axioms12050454
crossref_primary_10_3390_axioms11110618
crossref_primary_10_1155_2024_1988187
crossref_primary_10_1016_j_aej_2023_03_080
crossref_primary_10_3934_math_2022265
crossref_primary_10_3390_fractalfract8120690
crossref_primary_10_1142_S0218348X22501602
crossref_primary_10_1155_2022_9113745
crossref_primary_10_3934_math_2023193
crossref_primary_10_1515_anly_2022_1073
Cites_doi 10.1186/s13660-020-02363-3
10.1186/s13660-019-2170-z
10.1142/9789814355216_0001
10.4134/BKMS.2016.53.1.181
10.3934/math.2020482
10.1016/j.mcm.2011.12.048
10.1016/j.aej.2019.12.046
10.1155/2018/5864091
10.1080/02522667.1987.10698886
10.1002/mma.6188
10.1186/s13662-019-2458-9
10.7153/jmi-10-15
10.1017/S0334270000005142
10.3390/math7050467
10.1155/2020/1378457
10.1016/j.chaos.2020.109619
10.1016/j.jmaa.2016.09.018
10.1186/s13662-018-1722-8
10.1016/j.chaos.2020.110012
10.1186/s13662-021-03290-3
10.5937/MatMor0801037P
10.7153/mia-20-14
10.22436/jmcs.022.03.06
10.1186/s13660-019-2215-3
10.1186/s13662-018-1694-8
10.1016/j.aej.2020.04.019
10.1186/s13660-019-2265-6
10.2306/scienceasia1513-1874.2020.012
10.3390/math8010113
10.1186/s13662-021-03241-y
10.1155/2020/9858671
10.4153/CMB-1968-091-5
10.1016/j.cam.2020.112740
10.1002/mma.6208
10.1007/s00025-019-0960-8
10.1186/s13662-019-2438-0
10.1155/2010/531976
10.1186/s13660-019-2197-1
ContentType Journal Article
CorporateAuthor Department of Mathematics, University of Lahore, Sargodha Campus, Pakistan
King Khalid University, College of Science, Department of Mathematics, P. O. Box 9004, 61413 Abha, Saudi Arabia
Department of Mathematics, Faculty of Science, Al-Azhar University, 71524 Assiut, Egypt
Department of Mathematics and Statistics, Hazara University, Mansehra, Pakistan
Department of Mathematics, University of Sargodha, Sargodha, Pakistan
Department of Mathematics, College of Arts and Sciences, Wadi Aldawser, 11991, Prince Sattam bin Abdulaziz University, Saudi Arabia
Department of HEAS (Mathematics), Rajasthan Technical University, Kota, India
CorporateAuthor_xml – name: Department of Mathematics, College of Arts and Sciences, Wadi Aldawser, 11991, Prince Sattam bin Abdulaziz University, Saudi Arabia
– name: Department of Mathematics and Statistics, Hazara University, Mansehra, Pakistan
– name: King Khalid University, College of Science, Department of Mathematics, P. O. Box 9004, 61413 Abha, Saudi Arabia
– name: Department of Mathematics, Faculty of Science, Al-Azhar University, 71524 Assiut, Egypt
– name: Department of Mathematics, University of Lahore, Sargodha Campus, Pakistan
– name: Department of Mathematics, University of Sargodha, Sargodha, Pakistan
– name: Department of HEAS (Mathematics), Rajasthan Technical University, Kota, India
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2021565
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 9730
ExternalDocumentID oai_doaj_org_article_ddeaa637a97d4e93ac72d602de334a34
10_3934_math_2021565
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c378t-e9f1648d11f7ab795b71b4bbe8d8307be52b52efc6095ca63795443a5fff1403
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 01:31:10 EDT 2025
Thu Apr 24 22:56:21 EDT 2025
Tue Jul 01 03:56:49 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-e9f1648d11f7ab795b71b4bbe8d8307be52b52efc6095ca63795443a5fff1403
OpenAccessLink https://doaj.org/article/ddeaa637a97d4e93ac72d602de334a34
PageCount 26
ParticipantIDs doaj_primary_oai_doaj_org_article_ddeaa637a97d4e93ac72d602de334a34
crossref_primary_10_3934_math_2021565
crossref_citationtrail_10_3934_math_2021565
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2021
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2021565-4
key-10.3934/math.2021565-3
key-10.3934/math.2021565-2
key-10.3934/math.2021565-1
key-10.3934/math.2021565-31
key-10.3934/math.2021565-30
key-10.3934/math.2021565-33
key-10.3934/math.2021565-32
key-10.3934/math.2021565-35
key-10.3934/math.2021565-34
key-10.3934/math.2021565-37
key-10.3934/math.2021565-36
key-10.3934/math.2021565-39
key-10.3934/math.2021565-38
key-10.3934/math.2021565-20
key-10.3934/math.2021565-22
key-10.3934/math.2021565-21
key-10.3934/math.2021565-24
key-10.3934/math.2021565-23
key-10.3934/math.2021565-26
key-10.3934/math.2021565-25
key-10.3934/math.2021565-28
key-10.3934/math.2021565-27
key-10.3934/math.2021565-29
key-10.3934/math.2021565-50
key-10.3934/math.2021565-11
key-10.3934/math.2021565-10
key-10.3934/math.2021565-13
key-10.3934/math.2021565-12
key-10.3934/math.2021565-15
key-10.3934/math.2021565-14
key-10.3934/math.2021565-17
key-10.3934/math.2021565-16
key-10.3934/math.2021565-19
key-10.3934/math.2021565-18
key-10.3934/math.2021565-40
key-10.3934/math.2021565-42
key-10.3934/math.2021565-41
key-10.3934/math.2021565-44
key-10.3934/math.2021565-43
key-10.3934/math.2021565-46
key-10.3934/math.2021565-45
key-10.3934/math.2021565-48
key-10.3934/math.2021565-47
key-10.3934/math.2021565-9
key-10.3934/math.2021565-49
key-10.3934/math.2021565-8
key-10.3934/math.2021565-7
key-10.3934/math.2021565-6
key-10.3934/math.2021565-5
References_xml – ident: key-10.3934/math.2021565-40
  doi: 10.1186/s13660-020-02363-3
– ident: key-10.3934/math.2021565-18
– ident: key-10.3934/math.2021565-43
– ident: key-10.3934/math.2021565-32
  doi: 10.1186/s13660-019-2170-z
– ident: key-10.3934/math.2021565-23
  doi: 10.1142/9789814355216_0001
– ident: key-10.3934/math.2021565-46
  doi: 10.4134/BKMS.2016.53.1.181
– ident: key-10.3934/math.2021565-38
  doi: 10.3934/math.2020482
– ident: key-10.3934/math.2021565-25
  doi: 10.1016/j.mcm.2011.12.048
– ident: key-10.3934/math.2021565-30
– ident: key-10.3934/math.2021565-27
– ident: key-10.3934/math.2021565-5
  doi: 10.1016/j.aej.2019.12.046
– ident: key-10.3934/math.2021565-13
  doi: 10.1155/2018/5864091
– ident: key-10.3934/math.2021565-20
  doi: 10.1080/02522667.1987.10698886
– ident: key-10.3934/math.2021565-50
  doi: 10.1002/mma.6188
– ident: key-10.3934/math.2021565-36
  doi: 10.1186/s13662-019-2458-9
– ident: key-10.3934/math.2021565-15
  doi: 10.7153/jmi-10-15
– ident: key-10.3934/math.2021565-19
  doi: 10.1017/S0334270000005142
– ident: key-10.3934/math.2021565-39
  doi: 10.3390/math7050467
– ident: key-10.3934/math.2021565-34
  doi: 10.1155/2020/1378457
– ident: key-10.3934/math.2021565-2
  doi: 10.1016/j.chaos.2020.109619
– ident: key-10.3934/math.2021565-29
  doi: 10.1016/j.jmaa.2016.09.018
– ident: key-10.3934/math.2021565-45
  doi: 10.1186/s13662-018-1722-8
– ident: key-10.3934/math.2021565-6
  doi: 10.1016/j.chaos.2020.110012
– ident: key-10.3934/math.2021565-26
– ident: key-10.3934/math.2021565-47
  doi: 10.1186/s13662-021-03290-3
– ident: key-10.3934/math.2021565-35
  doi: 10.5937/MatMor0801037P
– ident: key-10.3934/math.2021565-16
  doi: 10.7153/mia-20-14
– ident: key-10.3934/math.2021565-37
  doi: 10.22436/jmcs.022.03.06
– ident: key-10.3934/math.2021565-41
  doi: 10.1186/s13660-019-2215-3
– ident: key-10.3934/math.2021565-44
  doi: 10.1186/s13662-018-1694-8
– ident: key-10.3934/math.2021565-22
– ident: key-10.3934/math.2021565-12
– ident: key-10.3934/math.2021565-4
  doi: 10.1016/j.aej.2020.04.019
– ident: key-10.3934/math.2021565-8
  doi: 10.1186/s13660-019-2265-6
– ident: key-10.3934/math.2021565-14
  doi: 10.7153/jmi-10-15
– ident: key-10.3934/math.2021565-11
  doi: 10.2306/scienceasia1513-1874.2020.012
– ident: key-10.3934/math.2021565-17
– ident: key-10.3934/math.2021565-33
  doi: 10.3390/math8010113
– ident: key-10.3934/math.2021565-48
  doi: 10.1186/s13662-021-03241-y
– ident: key-10.3934/math.2021565-7
  doi: 10.1155/2020/9858671
– ident: key-10.3934/math.2021565-21
– ident: key-10.3934/math.2021565-24
  doi: 10.4153/CMB-1968-091-5
– ident: key-10.3934/math.2021565-49
  doi: 10.1016/j.cam.2020.112740
– ident: key-10.3934/math.2021565-9
– ident: key-10.3934/math.2021565-1
  doi: 10.1002/mma.6208
– ident: key-10.3934/math.2021565-42
  doi: 10.1007/s00025-019-0960-8
– ident: key-10.3934/math.2021565-3
  doi: 10.1186/s13662-019-2438-0
– ident: key-10.3934/math.2021565-28
  doi: 10.1155/2010/531976
– ident: key-10.3934/math.2021565-10
– ident: key-10.3934/math.2021565-31
  doi: 10.1186/s13660-019-2197-1
SSID ssj0002124274
Score 2.2432911
Snippet The main goal of this paper is to develop the significance of generalized fractional integral inequalities via convex functions. We obtain the new version of...
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 9705
SubjectTerms fractional inequalities
generalized fractional inequalities
hadamard inequality
wright generalized bessel function
η1
η2)-convex function
Title Dynamical significance of generalized fractional integral inequalities via convexity
URI https://doaj.org/article/ddeaa637a97d4e93ac72d602de334a34
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Skx7EJ9YXOehJQneT7GZz9FWKUE8VelvylIK0UquIv96ZzVr2Il68LcuwhG-SzDfZyTeEXOQqky7YkpWZ8EzavGSGq8g0kImiVFZ4j0cD48dy9CQfpsW00-oLa8KSPHACbgDLz5hSKKOVl0EL4xT3ZcZ9EEIa0SiBZjrrJFO4B8OGLCHfSpXuQgs5AP6H_x4gwmEc6cSgjlR_E1OGO2S7JYP0Og1il2yE-R7ZGq-VVN_2yeQutYwHMyy1wMIe9BNdRPqcFKNnX8HTuEwXFMCsFYDAh5CuTEIyTD9mhjYV5p9Auw_IZHg_uR2xthMCc0JVKxZ0hLSm8nkelbFKF1blVlobKl_BIrWh4LbgITqUj3MIl0ZdO1PEGFGQ75D05ot5OCJURe0lB86ihJNAfSzehHdC8FhpwzPbJ1c_0NSuVQnHZhUvNWQLCGSNQNYtkH1yubZ-TeoYv9jdIMprG9S0bl6Ap-vW0_Vfnj7-j4-ckE0cUzpEOSW91fI9nAGtWNnzZgZ9A4PlzRI
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamical+significance+of+generalized+fractional+integral+inequalities+via+convexity&rft.jtitle=AIMS+mathematics&rft.au=Sabila+Ali&rft.au=Shahid+Mubeen&rft.au=Rana+Safdar+Ali&rft.au=Gauhar+Rahman&rft.date=2021-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=6&rft.issue=9&rft.spage=9705&rft.epage=9730&rft_id=info:doi/10.3934%2Fmath.2021565&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ddeaa637a97d4e93ac72d602de334a34
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon