Dynamical significance of generalized fractional integral inequalities via convexity
The main goal of this paper is to develop the significance of generalized fractional integral inequalities via convex functions. We obtain the new version of fractional integral inequalities with the extended Wright generalized Bessel function acting as a kernel for the convex function, which deals...
Saved in:
Published in | AIMS mathematics Vol. 6; no. 9; pp. 9705 - 9730 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.2021565 |
Cover
Abstract | The main goal of this paper is to develop the significance of generalized fractional integral inequalities via convex functions. We obtain the new version of fractional integral inequalities with the extended Wright generalized Bessel function acting as a kernel for the convex function, which deals with the Hermite-Hadamard type and trapezoid type inequalities. Moreover, we establish new mid-point type and trapezoid type integral inequalities for (η1,η2)-convex function related to Hermite-Hadamard type inequality. We establish new version of integral inequality for (η1,η2)-convex function related to Fejér type. The results discussed in this paper are a generalized version of many inequalities in literature. |
---|---|
AbstractList | The main goal of this paper is to develop the significance of generalized fractional integral inequalities via convex functions. We obtain the new version of fractional integral inequalities with the extended Wright generalized Bessel function acting as a kernel for the convex function, which deals with the Hermite-Hadamard type and trapezoid type inequalities. Moreover, we establish new mid-point type and trapezoid type integral inequalities for (η1,η2)-convex function related to Hermite-Hadamard type inequality. We establish new version of integral inequality for (η1,η2)-convex function related to Fejér type. The results discussed in this paper are a generalized version of many inequalities in literature. |
Author | Morsy, Ahmed Zakarya, M. Ali, Rana Safdar Rahman, Gauhar Mubeen, Shahid Purohit, Sunil Dutt Nisar, Kottakkaran Sooppy Ali, Sabila |
Author_xml | – sequence: 1 givenname: Sabila surname: Ali fullname: Ali, Sabila – sequence: 2 givenname: Shahid surname: Mubeen fullname: Mubeen, Shahid – sequence: 3 givenname: Rana Safdar surname: Ali fullname: Ali, Rana Safdar – sequence: 4 givenname: Gauhar surname: Rahman fullname: Rahman, Gauhar – sequence: 5 givenname: Ahmed surname: Morsy fullname: Morsy, Ahmed – sequence: 6 givenname: Kottakkaran Sooppy surname: Nisar fullname: Nisar, Kottakkaran Sooppy – sequence: 7 givenname: Sunil Dutt surname: Purohit fullname: Purohit, Sunil Dutt – sequence: 8 givenname: M. surname: Zakarya fullname: Zakarya, M. |
BookMark | eNptkMtOwzAQRS1UJErpjg_IB9Di2E6cLFF5VarEpntrYo-Dq9QBx1SUrydpK4QQq7maOXMW95KMfOuRkOuUznnJxe0W4uucUZZmeXZGxkxIPsvLohj9yhdk2nUbSnuKCSbFmKzv9x62TkOTdK72zvbRa0xam9ToMUDjvtAkNoCOrvU95nzEOhwCvn_09-iwS3YOEt36HX66uL8i5xaaDqenOSHrx4f14nm2enlaLu5WM81lEWdY2jQXhUlTK6GSZVbJtBJVhYUpOJUVZqzKGFqd0zLTkPMeEYJDZq1NBeUTsjxqTQsb9RbcFsJeteDUYdGGWkGITjeojEEYBFBKI7DkoCUzOWUGORfARe-6Obp0aLsuoP3xpVQN_aqhX3Xqt8fZH1y7CENDMYBr_n_6BmC0gt8 |
CitedBy_id | crossref_primary_10_1515_ms_2024_0028 crossref_primary_10_3390_sym14122585 crossref_primary_10_3390_sym15081576 crossref_primary_10_3390_fractalfract7080580 crossref_primary_10_3390_axioms12050454 crossref_primary_10_3390_axioms11110618 crossref_primary_10_1155_2024_1988187 crossref_primary_10_1016_j_aej_2023_03_080 crossref_primary_10_3934_math_2022265 crossref_primary_10_3390_fractalfract8120690 crossref_primary_10_1142_S0218348X22501602 crossref_primary_10_1155_2022_9113745 crossref_primary_10_3934_math_2023193 crossref_primary_10_1515_anly_2022_1073 |
Cites_doi | 10.1186/s13660-020-02363-3 10.1186/s13660-019-2170-z 10.1142/9789814355216_0001 10.4134/BKMS.2016.53.1.181 10.3934/math.2020482 10.1016/j.mcm.2011.12.048 10.1016/j.aej.2019.12.046 10.1155/2018/5864091 10.1080/02522667.1987.10698886 10.1002/mma.6188 10.1186/s13662-019-2458-9 10.7153/jmi-10-15 10.1017/S0334270000005142 10.3390/math7050467 10.1155/2020/1378457 10.1016/j.chaos.2020.109619 10.1016/j.jmaa.2016.09.018 10.1186/s13662-018-1722-8 10.1016/j.chaos.2020.110012 10.1186/s13662-021-03290-3 10.5937/MatMor0801037P 10.7153/mia-20-14 10.22436/jmcs.022.03.06 10.1186/s13660-019-2215-3 10.1186/s13662-018-1694-8 10.1016/j.aej.2020.04.019 10.1186/s13660-019-2265-6 10.2306/scienceasia1513-1874.2020.012 10.3390/math8010113 10.1186/s13662-021-03241-y 10.1155/2020/9858671 10.4153/CMB-1968-091-5 10.1016/j.cam.2020.112740 10.1002/mma.6208 10.1007/s00025-019-0960-8 10.1186/s13662-019-2438-0 10.1155/2010/531976 10.1186/s13660-019-2197-1 |
ContentType | Journal Article |
CorporateAuthor | Department of Mathematics, University of Lahore, Sargodha Campus, Pakistan King Khalid University, College of Science, Department of Mathematics, P. O. Box 9004, 61413 Abha, Saudi Arabia Department of Mathematics, Faculty of Science, Al-Azhar University, 71524 Assiut, Egypt Department of Mathematics and Statistics, Hazara University, Mansehra, Pakistan Department of Mathematics, University of Sargodha, Sargodha, Pakistan Department of Mathematics, College of Arts and Sciences, Wadi Aldawser, 11991, Prince Sattam bin Abdulaziz University, Saudi Arabia Department of HEAS (Mathematics), Rajasthan Technical University, Kota, India |
CorporateAuthor_xml | – name: Department of Mathematics, College of Arts and Sciences, Wadi Aldawser, 11991, Prince Sattam bin Abdulaziz University, Saudi Arabia – name: Department of Mathematics and Statistics, Hazara University, Mansehra, Pakistan – name: King Khalid University, College of Science, Department of Mathematics, P. O. Box 9004, 61413 Abha, Saudi Arabia – name: Department of Mathematics, Faculty of Science, Al-Azhar University, 71524 Assiut, Egypt – name: Department of Mathematics, University of Lahore, Sargodha Campus, Pakistan – name: Department of Mathematics, University of Sargodha, Sargodha, Pakistan – name: Department of HEAS (Mathematics), Rajasthan Technical University, Kota, India |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2021565 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 9730 |
ExternalDocumentID | oai_doaj_org_article_ddeaa637a97d4e93ac72d602de334a34 10_3934_math_2021565 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c378t-e9f1648d11f7ab795b71b4bbe8d8307be52b52efc6095ca63795443a5fff1403 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:31:10 EDT 2025 Thu Apr 24 22:56:21 EDT 2025 Tue Jul 01 03:56:49 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 9 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-e9f1648d11f7ab795b71b4bbe8d8307be52b52efc6095ca63795443a5fff1403 |
OpenAccessLink | https://doaj.org/article/ddeaa637a97d4e93ac72d602de334a34 |
PageCount | 26 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_ddeaa637a97d4e93ac72d602de334a34 crossref_primary_10_3934_math_2021565 crossref_citationtrail_10_3934_math_2021565 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2021 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2021565-4 key-10.3934/math.2021565-3 key-10.3934/math.2021565-2 key-10.3934/math.2021565-1 key-10.3934/math.2021565-31 key-10.3934/math.2021565-30 key-10.3934/math.2021565-33 key-10.3934/math.2021565-32 key-10.3934/math.2021565-35 key-10.3934/math.2021565-34 key-10.3934/math.2021565-37 key-10.3934/math.2021565-36 key-10.3934/math.2021565-39 key-10.3934/math.2021565-38 key-10.3934/math.2021565-20 key-10.3934/math.2021565-22 key-10.3934/math.2021565-21 key-10.3934/math.2021565-24 key-10.3934/math.2021565-23 key-10.3934/math.2021565-26 key-10.3934/math.2021565-25 key-10.3934/math.2021565-28 key-10.3934/math.2021565-27 key-10.3934/math.2021565-29 key-10.3934/math.2021565-50 key-10.3934/math.2021565-11 key-10.3934/math.2021565-10 key-10.3934/math.2021565-13 key-10.3934/math.2021565-12 key-10.3934/math.2021565-15 key-10.3934/math.2021565-14 key-10.3934/math.2021565-17 key-10.3934/math.2021565-16 key-10.3934/math.2021565-19 key-10.3934/math.2021565-18 key-10.3934/math.2021565-40 key-10.3934/math.2021565-42 key-10.3934/math.2021565-41 key-10.3934/math.2021565-44 key-10.3934/math.2021565-43 key-10.3934/math.2021565-46 key-10.3934/math.2021565-45 key-10.3934/math.2021565-48 key-10.3934/math.2021565-47 key-10.3934/math.2021565-9 key-10.3934/math.2021565-49 key-10.3934/math.2021565-8 key-10.3934/math.2021565-7 key-10.3934/math.2021565-6 key-10.3934/math.2021565-5 |
References_xml | – ident: key-10.3934/math.2021565-40 doi: 10.1186/s13660-020-02363-3 – ident: key-10.3934/math.2021565-18 – ident: key-10.3934/math.2021565-43 – ident: key-10.3934/math.2021565-32 doi: 10.1186/s13660-019-2170-z – ident: key-10.3934/math.2021565-23 doi: 10.1142/9789814355216_0001 – ident: key-10.3934/math.2021565-46 doi: 10.4134/BKMS.2016.53.1.181 – ident: key-10.3934/math.2021565-38 doi: 10.3934/math.2020482 – ident: key-10.3934/math.2021565-25 doi: 10.1016/j.mcm.2011.12.048 – ident: key-10.3934/math.2021565-30 – ident: key-10.3934/math.2021565-27 – ident: key-10.3934/math.2021565-5 doi: 10.1016/j.aej.2019.12.046 – ident: key-10.3934/math.2021565-13 doi: 10.1155/2018/5864091 – ident: key-10.3934/math.2021565-20 doi: 10.1080/02522667.1987.10698886 – ident: key-10.3934/math.2021565-50 doi: 10.1002/mma.6188 – ident: key-10.3934/math.2021565-36 doi: 10.1186/s13662-019-2458-9 – ident: key-10.3934/math.2021565-15 doi: 10.7153/jmi-10-15 – ident: key-10.3934/math.2021565-19 doi: 10.1017/S0334270000005142 – ident: key-10.3934/math.2021565-39 doi: 10.3390/math7050467 – ident: key-10.3934/math.2021565-34 doi: 10.1155/2020/1378457 – ident: key-10.3934/math.2021565-2 doi: 10.1016/j.chaos.2020.109619 – ident: key-10.3934/math.2021565-29 doi: 10.1016/j.jmaa.2016.09.018 – ident: key-10.3934/math.2021565-45 doi: 10.1186/s13662-018-1722-8 – ident: key-10.3934/math.2021565-6 doi: 10.1016/j.chaos.2020.110012 – ident: key-10.3934/math.2021565-26 – ident: key-10.3934/math.2021565-47 doi: 10.1186/s13662-021-03290-3 – ident: key-10.3934/math.2021565-35 doi: 10.5937/MatMor0801037P – ident: key-10.3934/math.2021565-16 doi: 10.7153/mia-20-14 – ident: key-10.3934/math.2021565-37 doi: 10.22436/jmcs.022.03.06 – ident: key-10.3934/math.2021565-41 doi: 10.1186/s13660-019-2215-3 – ident: key-10.3934/math.2021565-44 doi: 10.1186/s13662-018-1694-8 – ident: key-10.3934/math.2021565-22 – ident: key-10.3934/math.2021565-12 – ident: key-10.3934/math.2021565-4 doi: 10.1016/j.aej.2020.04.019 – ident: key-10.3934/math.2021565-8 doi: 10.1186/s13660-019-2265-6 – ident: key-10.3934/math.2021565-14 doi: 10.7153/jmi-10-15 – ident: key-10.3934/math.2021565-11 doi: 10.2306/scienceasia1513-1874.2020.012 – ident: key-10.3934/math.2021565-17 – ident: key-10.3934/math.2021565-33 doi: 10.3390/math8010113 – ident: key-10.3934/math.2021565-48 doi: 10.1186/s13662-021-03241-y – ident: key-10.3934/math.2021565-7 doi: 10.1155/2020/9858671 – ident: key-10.3934/math.2021565-21 – ident: key-10.3934/math.2021565-24 doi: 10.4153/CMB-1968-091-5 – ident: key-10.3934/math.2021565-49 doi: 10.1016/j.cam.2020.112740 – ident: key-10.3934/math.2021565-9 – ident: key-10.3934/math.2021565-1 doi: 10.1002/mma.6208 – ident: key-10.3934/math.2021565-42 doi: 10.1007/s00025-019-0960-8 – ident: key-10.3934/math.2021565-3 doi: 10.1186/s13662-019-2438-0 – ident: key-10.3934/math.2021565-28 doi: 10.1155/2010/531976 – ident: key-10.3934/math.2021565-10 – ident: key-10.3934/math.2021565-31 doi: 10.1186/s13660-019-2197-1 |
SSID | ssj0002124274 |
Score | 2.2432911 |
Snippet | The main goal of this paper is to develop the significance of generalized fractional integral inequalities via convex functions. We obtain the new version of... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 9705 |
SubjectTerms | fractional inequalities generalized fractional inequalities hadamard inequality wright generalized bessel function η1 η2)-convex function |
Title | Dynamical significance of generalized fractional integral inequalities via convexity |
URI | https://doaj.org/article/ddeaa637a97d4e93ac72d602de334a34 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA7Skx7EJ9YXOehJQneT7GZz9FWKUE8VelvylIK0UquIv96ZzVr2Il68LcuwhG-SzDfZyTeEXOQqky7YkpWZ8EzavGSGq8g0kImiVFZ4j0cD48dy9CQfpsW00-oLa8KSPHACbgDLz5hSKKOVl0EL4xT3ZcZ9EEIa0SiBZjrrJFO4B8OGLCHfSpXuQgs5AP6H_x4gwmEc6cSgjlR_E1OGO2S7JYP0Og1il2yE-R7ZGq-VVN_2yeQutYwHMyy1wMIe9BNdRPqcFKNnX8HTuEwXFMCsFYDAh5CuTEIyTD9mhjYV5p9Auw_IZHg_uR2xthMCc0JVKxZ0hLSm8nkelbFKF1blVlobKl_BIrWh4LbgITqUj3MIl0ZdO1PEGFGQ75D05ot5OCJURe0lB86ihJNAfSzehHdC8FhpwzPbJ1c_0NSuVQnHZhUvNWQLCGSNQNYtkH1yubZ-TeoYv9jdIMprG9S0bl6Ap-vW0_Vfnj7-j4-ckE0cUzpEOSW91fI9nAGtWNnzZgZ9A4PlzRI |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Dynamical+significance+of+generalized+fractional+integral+inequalities+via+convexity&rft.jtitle=AIMS+mathematics&rft.au=Sabila+Ali&rft.au=Shahid+Mubeen&rft.au=Rana+Safdar+Ali&rft.au=Gauhar+Rahman&rft.date=2021-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=6&rft.issue=9&rft.spage=9705&rft.epage=9730&rft_id=info:doi/10.3934%2Fmath.2021565&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_ddeaa637a97d4e93ac72d602de334a34 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |