Emotion recognition of EEG signals based on contrastive learning graph convolutional model

Objective. Electroencephalogram (EEG) signals offer invaluable insights into the complexities of emotion generation within the brain. Yet, the variability in EEG signals across individuals presents a formidable obstacle for empirical implementations. Our research addresses these challenges innovativ...

Full description

Saved in:
Bibliographic Details
Published inJournal of neural engineering Vol. 21; no. 4; pp. 46060 - 46072
Main Authors Zhang, Yiling, Liao, Yuan, Chen, Wei, Zhang, Xiruo, Huang, Liya
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.08.2024
Subjects
Online AccessGet full text
ISSN1741-2560
1741-2552
1741-2552
DOI10.1088/1741-2552/ad7060

Cover

Abstract Objective. Electroencephalogram (EEG) signals offer invaluable insights into the complexities of emotion generation within the brain. Yet, the variability in EEG signals across individuals presents a formidable obstacle for empirical implementations. Our research addresses these challenges innovatively, focusing on the commonalities within distinct subjects’ EEG data. Approach. We introduce a novel approach named Contrastive Learning Graph Convolutional Network (CLGCN). This method captures the distinctive features and crucial channel nodes related to individuals’ emotional states. Specifically, CLGCN merges the dual benefits of CL’s synchronous multisubject data learning and the GCN’s proficiency in deciphering brain connectivity matrices. Understanding multifaceted brain functions and their information interchange processes is realized as CLGCN generates a standardized brain network learning matrix during a dataset’s learning process. Main results. Our model underwent rigorous testing on the Database for Emotion Analysis using Physiological Signals (DEAP) and SEED datasets. In the five-fold cross-validation used for dependent subject experimental setting, it achieved an accuracy of 97.13% on the DEAP dataset and surpassed 99% on the SEED and SEED_IV datasets. In the incremental learning experiments with the SEED dataset, merely 5% of the data was sufficient to fine-tune the model, resulting in an accuracy of 92.8% for the new subject. These findings validate the model’s efficacy. Significance. This work combines CL with GCN, improving the accuracy of decoding emotional states from EEG signals and offering valuable insights into uncovering the underlying mechanisms of emotional processes in the brain.
AbstractList Objective.Electroencephalogram (EEG) signals offer invaluable insights into the complexities of emotion generation within the brain. Yet, the variability in EEG signals across individuals presents a formidable obstacle for empirical implementations. Our research addresses these challenges innovatively, focusing on the commonalities within distinct subjects' EEG data.Approach.We introduce a novel approach named Contrastive Learning Graph Convolutional Network (CLGCN). This method captures the distinctive features and crucial channel nodes related to individuals' emotional states. Specifically, CLGCN merges the dual benefits of CL's synchronous multisubject data learning and the GCN's proficiency in deciphering brain connectivity matrices. Understanding multifaceted brain functions and their information interchange processes is realized as CLGCN generates a standardized brain network learning matrix during a dataset's learning process.Main results.Our model underwent rigorous testing on the Database for Emotion Analysis using Physiological Signals (DEAP) and SEED datasets. In the five-fold cross-validation used for dependent subject experimental setting, it achieved an accuracy of 97.13% on the DEAP dataset and surpassed 99% on the SEED and SEED_IV datasets. In the incremental learning experiments with the SEED dataset, merely 5% of the data was sufficient to fine-tune the model, resulting in an accuracy of 92.8% for the new subject. These findings validate the model's efficacy.Significance.This work combines CL with GCN, improving the accuracy of decoding emotional states from EEG signals and offering valuable insights into uncovering the underlying mechanisms of emotional processes in the brain.Objective.Electroencephalogram (EEG) signals offer invaluable insights into the complexities of emotion generation within the brain. Yet, the variability in EEG signals across individuals presents a formidable obstacle for empirical implementations. Our research addresses these challenges innovatively, focusing on the commonalities within distinct subjects' EEG data.Approach.We introduce a novel approach named Contrastive Learning Graph Convolutional Network (CLGCN). This method captures the distinctive features and crucial channel nodes related to individuals' emotional states. Specifically, CLGCN merges the dual benefits of CL's synchronous multisubject data learning and the GCN's proficiency in deciphering brain connectivity matrices. Understanding multifaceted brain functions and their information interchange processes is realized as CLGCN generates a standardized brain network learning matrix during a dataset's learning process.Main results.Our model underwent rigorous testing on the Database for Emotion Analysis using Physiological Signals (DEAP) and SEED datasets. In the five-fold cross-validation used for dependent subject experimental setting, it achieved an accuracy of 97.13% on the DEAP dataset and surpassed 99% on the SEED and SEED_IV datasets. In the incremental learning experiments with the SEED dataset, merely 5% of the data was sufficient to fine-tune the model, resulting in an accuracy of 92.8% for the new subject. These findings validate the model's efficacy.Significance.This work combines CL with GCN, improving the accuracy of decoding emotional states from EEG signals and offering valuable insights into uncovering the underlying mechanisms of emotional processes in the brain.
Electroencephalogram (EEG) signals offer invaluable insights into the complexities of emotion generation within the brain. Yet, the variability in EEG signals across individuals presents a formidable obstacle for empirical implementations. Our research addresses these challenges innovatively, focusing on the commonalities within distinct subjects' EEG data. We introduce a novel approach named Contrastive Learning Graph Convolutional Network (CLGCN). This method captures the distinctive features and crucial channel nodes related to individuals' emotional states. Specifically, CLGCN merges the dual benefits of CL's synchronous multisubject data learning and the GCN's proficiency in deciphering brain connectivity matrices. Understanding multifaceted brain functions and their information interchange processes is realized as CLGCN generates a standardized brain network learning matrix during a dataset's learning process. Our model underwent rigorous testing on the Database for Emotion Analysis using Physiological Signals (DEAP) and SEED datasets. In the five-fold cross-validation used for dependent subject experimental setting, it achieved an accuracy of 97.13% on the DEAP dataset and surpassed 99% on the SEED and SEED_IV datasets. In the incremental learning experiments with the SEED dataset, merely 5% of the data was sufficient to fine-tune the model, resulting in an accuracy of 92.8% for the new subject. These findings validate the model's efficacy. This work combines CL with GCN, improving the accuracy of decoding emotional states from EEG signals and offering valuable insights into uncovering the underlying mechanisms of emotional processes in the brain.
Objective. Electroencephalogram (EEG) signals offer invaluable insights into the complexities of emotion generation within the brain. Yet, the variability in EEG signals across individuals presents a formidable obstacle for empirical implementations. Our research addresses these challenges innovatively, focusing on the commonalities within distinct subjects’ EEG data. Approach. We introduce a novel approach named Contrastive Learning Graph Convolutional Network (CLGCN). This method captures the distinctive features and crucial channel nodes related to individuals’ emotional states. Specifically, CLGCN merges the dual benefits of CL’s synchronous multisubject data learning and the GCN’s proficiency in deciphering brain connectivity matrices. Understanding multifaceted brain functions and their information interchange processes is realized as CLGCN generates a standardized brain network learning matrix during a dataset’s learning process. Main results. Our model underwent rigorous testing on the Database for Emotion Analysis using Physiological Signals (DEAP) and SEED datasets. In the five-fold cross-validation used for dependent subject experimental setting, it achieved an accuracy of 97.13% on the DEAP dataset and surpassed 99% on the SEED and SEED_IV datasets. In the incremental learning experiments with the SEED dataset, merely 5% of the data was sufficient to fine-tune the model, resulting in an accuracy of 92.8% for the new subject. These findings validate the model’s efficacy. Significance. This work combines CL with GCN, improving the accuracy of decoding emotional states from EEG signals and offering valuable insights into uncovering the underlying mechanisms of emotional processes in the brain.
Author Chen, Wei
Zhang, Yiling
Zhang, Xiruo
Huang, Liya
Liao, Yuan
Author_xml – sequence: 1
  givenname: Yiling
  orcidid: 0000-0002-9041-3532
  surname: Zhang
  fullname: Zhang, Yiling
  organization: Nanjing University of Posts and Telecommunications College of electronic and optical engineering & college of flexible electronics (future technology), Jiangsu 210023, People’s Republic of China
– sequence: 2
  givenname: Yuan
  orcidid: 0000-0001-6069-4284
  surname: Liao
  fullname: Liao, Yuan
  organization: Nanjing University of Posts and Telecommunications College of electronic and optical engineering & college of flexible electronics (future technology), Jiangsu 210023, People’s Republic of China
– sequence: 3
  givenname: Wei
  surname: Chen
  fullname: Chen, Wei
  organization: Nanjing University of Posts and Telecommunications College of electronic and optical engineering & college of flexible electronics (future technology), Jiangsu 210023, People’s Republic of China
– sequence: 4
  givenname: Xiruo
  surname: Zhang
  fullname: Zhang, Xiruo
  organization: Nanjing University of Posts and Telecommunications College of electronic and optical engineering & college of flexible electronics (future technology), Jiangsu 210023, People’s Republic of China
– sequence: 5
  givenname: Liya
  surname: Huang
  fullname: Huang, Liya
  organization: Nanjing University of Posts and Telecommunications College of electronic and optical engineering & college of flexible electronics (future technology), Jiangsu 210023, People’s Republic of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39151459$$D View this record in MEDLINE/PubMed
BookMark eNqNkTFv2zAQRokiRe2k3TMFGjvUydGSSGksDDcJYKBLu3QhTtTZpUGRCik58L-PFKUeCiTIxMPd9w6Hx3N25rwjxi45XHMoihsuM75Y5vnyBmsJAj6w-al1dqoFzNh5jHuAlMsSPrFZWvKcZ3k5Z3_Wje-Md0kg7XfOPNd-m6zXt0k0O4c2JhVGqpOhr73rAsbOHCixhMEZt0t2Adu_4-jgbT_iaJPG12Q_s4_bAacvL-8F-_1j_Wt1t9j8vL1ffd8sdCqLbkEyrTRy1FJoqLmkrZZEVAlElJoXUJYFL3QmRK6h0qWQsoayWqYZ5lm1hPSC8Wlv71o8PqK1qg2mwXBUHNToSY0i1ChFTZ4G5uvEtME_9BQ71ZioyVp05PuoUigzyIb7xBC9eon2VUP1afc_h0NATAEdfIyBtkqbDkcTgyxj3zoC_gPfcfe3CTG-VXvfh_GDXo8_AcaboqM
CODEN JNEOBH
CitedBy_id crossref_primary_10_1016_j_bspc_2025_107511
Cites_doi 10.1038/nrn3214
10.1109/TNSRE.2023.3304660
10.1002/cpe.5199
10.3390/s18082739
10.1080/02699930802204677
10.1007/s11042-020-09354-y
10.1007/978-3-319-46448-0_32
10.1016/j.mlwa.2021.100031
10.3389/fnbot.2019.00037
10.1016/j.bspc.2023.104835
10.1007/s11571-020-09626-1
10.1038/s41467-019-13055-y
10.1038/s42254-019-0040-8
10.1093/brain/awu247
10.3389/fnhum.2023.1298845
10.1109/TNNLS.2022.3202569
10.1016/j.tics.2007.05.004
10.1109/TAFFC.2022.3170428
10.1016/j.wneu.2017.05.159
10.1109/TAFFC.2020.2994159
10.1007/s10044-016-0567-6
10.1016/j.patrec.2008.01.030
10.1016/S1364-6613(00)01813-1
10.1109/T-AFFC.2011.15
10.1016/0005-1098(66)90019-7
10.1016/j.compbiomed.2023.107126
10.1109/TAMD.2015.2431497
10.1109/ACCESS.2020.2974009
10.3390/math10040582
10.2139/ssrn.3509130
10.1016/j.neucom.2013.06.046
10.1155/2022/8980198
10.1109/TAFFC.2023.3243463
10.1109/TCYB.2018.2797176
10.1038/380069a0
10.3389/fnsys.2020.00043
10.3389/fneur.2021.651663
10.1109/JBHI.2021.3083525
10.1109/TCDS.2021.3071170
10.1016/j.bspc.2023.104799
10.1609/aaai.v31i1.11231
10.1016/j.neunet.2021.10.023
10.1109/ACCESS.2023.3266117
ContentType Journal Article
Copyright 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
Copyright_xml – notice: 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
DOI 10.1088/1741-2552/ad7060
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
MEDLINE
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1741-2552
ExternalDocumentID 10.1088/1741-2552/ad7060
39151459
10_1088_1741_2552_ad7060
jnead7060
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Open subject of cognitive EEG and transcranial, electrical stimulation regulation of neuracle
  grantid: No. BRKOT-NJUPT- 20220630H
– fundername: National Natural Science Foundation of China
  grantid: No. 61977039
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: New Infrastructure Development & University Informatization
  grantid: No.XJJ1202205007
GroupedDBID ---
1JI
4.4
53G
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
HAK
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
P2P
PJBAE
RIN
RO9
ROL
RPA
SY9
W28
XPP
AAYXX
ADEQX
AEINN
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
02O
1WK
AALHV
ACARI
ADTOC
AERVB
AGQPQ
AHSEE
ARNYC
BBWZM
EJD
FEDTE
HVGLF
JCGBZ
M45
NT-
NT.
Q02
RNS
S3P
UNPAY
ID FETCH-LOGICAL-c378t-e73bca1ac76c0d17efc7eeeb6aaa7c18099818c4665c0bc9677d09b234a54b203
IEDL.DBID IOP
ISSN 1741-2560
1741-2552
IngestDate Sun Sep 07 11:26:57 EDT 2025
Thu Oct 02 07:12:23 EDT 2025
Tue Jul 01 05:30:45 EDT 2025
Thu Apr 24 23:03:54 EDT 2025
Wed Oct 01 02:31:01 EDT 2025
Tue Sep 03 22:12:39 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Keywords contrastive learning
differential entropy
temporal and spatial feature
graph convolutional neural network
emotion recognition
Language English
License This article is available under the terms of the IOP-Standard License.
2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-e73bca1ac76c0d17efc7eeeb6aaa7c18099818c4665c0bc9677d09b234a54b203
Notes JNE-107507.R2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9041-3532
0000-0001-6069-4284
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1088/1741-2552/ad7060
PMID 39151459
PQID 3094043786
PQPubID 23479
PageCount 13
ParticipantIDs pubmed_primary_39151459
crossref_primary_10_1088_1741_2552_ad7060
proquest_miscellaneous_3094043786
iop_journals_10_1088_1741_2552_ad7060
unpaywall_primary_10_1088_1741_2552_ad7060
crossref_citationtrail_10_1088_1741_2552_ad7060
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-08-01
PublicationDateYYYYMMDD 2024-08-01
PublicationDate_xml – month: 08
  year: 2024
  text: 2024-08-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of neural engineering
PublicationTitleAbbrev JNE
PublicationTitleAlternate J. Neural Eng
PublicationYear 2024
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Mai (jnead7060bib26) 2021
Gidaris (jnead7060bib23) 2018
Mert (jnead7060bib3) 2018; 21
Lynn (jnead7060bib10) 2019; 1
Li (jnead7060bib22) 2008; 29
Li (jnead7060bib4) 2020; 32
Yang (jnead7060bib27) 2023; 14
Akpan (jnead7060bib36) 2021; 4
Wang (jnead7060bib56) 2021; 12
Chalupnik (jnead7060bib6) 2022
Chen (jnead7060bib13) 2022; 2022
Jiao (jnead7060bib57) 2017; 105
Ravi Kumar (jnead7060bib40) 2019; 8
Mayne (jnead7060bib29) 1966; 4
Huang (jnead7060bib20) 2023; 17
Ye (jnead7060bib52) 2022
Wei (jnead7060bib53) 2012
Liu (jnead7060bib2) 2013
Belkina (jnead7060bib49) 2019; 10
Liu (jnead7060bib39) 2022; 14
Bullmore (jnead7060bib11) 2012; 13
Chao (jnead7060bib41) 2020; 8
Liu (jnead7060bib46) 2023; 85
Zhong (jnead7060bib17) 2022; 13
Zheng (jnead7060bib37) 2015; 7
Wang (jnead7060bib5) 2014; 129
Li (jnead7060bib42) 2019
Wu (jnead7060bib58) 2015; 138
Zheng (jnead7060bib38) 2019; 49
Duan (jnead7060bib33) 2013
Li (jnead7060bib50) 2023; 14
Li (jnead7060bib15) 2021
Li (jnead7060bib25) 2021
Gong (jnead7060bib48) 2023; 84
Lu (jnead7060bib47) 2023; 11
Cipolla (jnead7060bib51) 2018
Misra (jnead7060bib24) 2016; 9905
Pan (jnead7060bib19) 2023; 31
Liu (jnead7060bib14) 2022; 145
Alazrai (jnead7060bib31) 2018; 18
Xing (jnead7060bib43) 2019; 13
Liu (jnead7060bib8) 2020; 14
Forney (jnead7060bib7) 2011
Liu (jnead7060bib9) 2022; 26
Cui (jnead7060bib44) 2022; 10
Mauss (jnead7060bib1) 2009; 23
Burgess (jnead7060bib55) 2007; 11
Hou (jnead7060bib18) 2022; 35
Qiu (jnead7060bib45) 2023; 163
Szegedy (jnead7060bib35) 2017; 31
Koelstra (jnead7060bib28) 2012; 3
Gao (jnead7060bib30) 2020; 79
Dias (jnead7060bib54) 1996; 380
Orgo (jnead7060bib21) 2015
Avramidis (jnead7060bib32) 2021
Demir (jnead7060bib16)
Gao (jnead7060bib12) 2021; 15
Stone (jnead7060bib34) 2002; 6
References_xml – volume: 13
  start-page: 336
  year: 2012
  ident: jnead7060bib11
  article-title: The economy of brain network organization
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3214
– volume: 31
  start-page: 3245
  year: 2023
  ident: jnead7060bib19
  article-title: MSFR-GCN: a multi-scale feature reconstruction graph convolutional network for EEG emotion and cognition recognition
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2023.3304660
– volume: 32
  start-page: e5199
  year: 2020
  ident: jnead7060bib4
  article-title: Deep learning for EEG data analytics: a survey
  publication-title: Concurr. Comput.
  doi: 10.1002/cpe.5199
– volume: 18
  start-page: 2739
  year: 2018
  ident: jnead7060bib31
  article-title: EEG-based emotion recognition using quadratic time-frequency distribution
  publication-title: Sensors
  doi: 10.3390/s18082739
– volume: 23
  start-page: 209
  year: 2009
  ident: jnead7060bib1
  article-title: Measures of emotion: a review
  publication-title: Cogn. Emot.
  doi: 10.1080/02699930802204677
– volume: 79
  start-page: 27057
  year: 2020
  ident: jnead7060bib30
  article-title: EEG based emotion recognition using fusion feature extraction method
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-020-09354-y
– volume: 9905
  start-page: 527
  year: 2016
  ident: jnead7060bib24
  article-title: Shuffle and learn: unsupervised learning using temporal order verification computer vision – ECCV
  publication-title: Lect. Notes Comput. Sci.
  doi: 10.1007/978-3-319-46448-0_32
– volume: 4
  year: 2021
  ident: jnead7060bib36
  article-title: Review of classification algorithms with changing inter-class distances
  publication-title: Mach. Learn. Appl.
  doi: 10.1016/j.mlwa.2021.100031
– volume: 13
  start-page: 37
  year: 2019
  ident: jnead7060bib43
  article-title: SAE+LSTM: a new framework for emotion recognition from multi-channel EEG
  publication-title: Front. Neurorobot.
  doi: 10.3389/fnbot.2019.00037
– volume: 84
  year: 2023
  ident: jnead7060bib48
  article-title: EEG emotion recognition using attention-based convolutional transformer neural network
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2023.104835
– volume: 15
  start-page: 369
  year: 2021
  ident: jnead7060bib12
  article-title: Complex networks and deep learning for EEG signal analysis
  publication-title: Cogn. Neurodyn.
  doi: 10.1007/s11571-020-09626-1
– year: 2021
  ident: jnead7060bib26
  article-title: Hybrid contrastive learning of tri-modal representation for multimodal sentiment analysis
– ident: jnead7060bib16
  article-title: 2021 EEG-GNN: graph neural networks for classification of electroencephalogram (EEG) signals
– volume: 10
  start-page: 5415
  year: 2019
  ident: jnead7060bib49
  article-title: Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-13055-y
– volume: 1
  start-page: 318
  year: 2019
  ident: jnead7060bib10
  article-title: The physics of brain network structure, function and control
  publication-title: Nat. Rev. Phys.
  doi: 10.1038/s42254-019-0040-8
– volume: 138
  start-page: e337
  year: 2015
  ident: jnead7060bib58
  article-title: Probabilistic map of language regions: challenge and implication
  publication-title: Brain
  doi: 10.1093/brain/awu247
– volume: 17
  year: 2023
  ident: jnead7060bib20
  article-title: Functional graph contrastive learning of hyperscanning EEG reveals emotional contagion evoked by stereotype-based stressors
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2023.1298845
– volume: 35
  start-page: 1
  year: 2022
  ident: jnead7060bib18
  article-title: GCNs-net: a graph convolutional neural network approach for decoding time-resolved EEG motor imagery signals
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2022.3202569
– start-page: 1
  year: 2019
  ident: jnead7060bib42
  article-title: EEG-based emotion recognition under convolutional neural network with differential entropy feature maps
– volume: 11
  start-page: 290
  year: 2007
  ident: jnead7060bib55
  article-title: The gateway hypothesis of rostral prefrontal cortex (area 10) function
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/j.tics.2007.05.004
– volume: 14
  start-page: 2512
  year: 2023
  ident: jnead7060bib50
  article-title: GMSS: graph-based multi-task self-supervised learning for EEG emotion recognition
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2022.3170428
– volume: 105
  start-page: 478
  year: 2017
  ident: jnead7060bib57
  article-title: Brain arteriovenous malformations located in language area: surgical outcomes and risk factors for postoperative language deficits
  publication-title: World Neurosurg.
  doi: 10.1016/j.wneu.2017.05.159
– start-page: 1316
  year: 2021
  ident: jnead7060bib32
  article-title: Multiscale fractal analysis on EEG signals for music-induced emotion recognition
– year: 2018
  ident: jnead7060bib23
  article-title: Unsupervised representation learning by predicting image rotations
– volume: 13
  start-page: 1290
  year: 2022
  ident: jnead7060bib17
  article-title: EEG-based emotion recognition using regularized graph neural networks
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2020.2994159
– start-page: 306
  year: 2022
  ident: jnead7060bib6
  article-title: Using simplified EEG-based brain computer interface and decision tree classifier for emotions
– start-page: 3976
  year: 2012
  ident: jnead7060bib53
  article-title: Degree centrality based on the weighted network
– volume: 21
  start-page: 81
  year: 2018
  ident: jnead7060bib3
  article-title: Emotion recognition from EEG signals by using multivariate empirical mode decomposition
  publication-title: Pattern Anal. Appl.
  doi: 10.1007/s10044-016-0567-6
– volume: 29
  start-page: 1285
  year: 2008
  ident: jnead7060bib22
  article-title: A self-training semi-supervised SVM algorithm and its application in an EEG-based brain computer interface speller system
  publication-title: Pattern Recognit. Lett.
  doi: 10.1016/j.patrec.2008.01.030
– volume: 6
  start-page: 59
  year: 2002
  ident: jnead7060bib34
  article-title: Independent component analysis: an introduction
  publication-title: Trends Cogn. Sci.
  doi: 10.1016/S1364-6613(00)01813-1
– start-page: 81
  year: 2013
  ident: jnead7060bib33
  article-title: Differential entropy feature for EEG-based emotion classification 2013
– volume: 3
  start-page: 18
  year: 2012
  ident: jnead7060bib28
  article-title: Deap: a database for emotion analysis;using physiological signals
  publication-title: IEEE Trans. Aff. Comput.
  doi: 10.1109/T-AFFC.2011.15
– start-page: 5565
  year: 2021
  ident: jnead7060bib15
  article-title: A multi-domain adaptive graph convolutional network for EEG-based emotion recognition
– volume: 4
  start-page: 73
  year: 1966
  ident: jnead7060bib29
  article-title: A solution of the smoothing problem for linear dynamic systems
  publication-title: Automatica
  doi: 10.1016/0005-1098(66)90019-7
– start-page: 302
  year: 2013
  ident: jnead7060bib2
  article-title: EEG databases for emotion recognition
– volume: 163
  year: 2023
  ident: jnead7060bib45
  article-title: A multi-head residual connection GCN for EEG emotion recognition
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2023.107126
– start-page: 6329
  year: 2021
  ident: jnead7060bib25
  article-title: Contrastive unsupervised learning for speech emotion recognition
– volume: 7
  start-page: 162
  year: 2015
  ident: jnead7060bib37
  article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks
  publication-title: IEEE Trans. Auton. Mental Dev.
  doi: 10.1109/TAMD.2015.2431497
– volume: 8
  start-page: 33002
  year: 2020
  ident: jnead7060bib41
  article-title: Emotion recognition from multi-channel EEG signals by exploiting the deep belief-conditional random fwield framework
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2020.2974009
– volume: 10
  start-page: 582
  year: 2022
  ident: jnead7060bib44
  article-title: A novel DE-CNN-BiLSTM multi-fusion model for EEG emotion recognition
  publication-title: Mathematics
  doi: 10.3390/math10040582
– start-page: 8107
  year: 2015
  ident: jnead7060bib21
  article-title: Effect of negative and positive emotions on EEG spectral asymmetry
– start-page: 1
  year: 2022
  ident: jnead7060bib52
  article-title: Hierarchical dynamic graph convolutional network with interpretability for EEG-based emotion recognition
– volume: 8
  start-page: 576
  year: 2019
  ident: jnead7060bib40
  article-title: Analysis of EEG based emotion detection of DEAP and SEED-IV databases using SVM
  publication-title: SSRN J.
  doi: 10.2139/ssrn.3509130
– volume: 129
  start-page: 94
  year: 2014
  ident: jnead7060bib5
  article-title: Emotional state classification from EEG data using machine learning approach
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2013.06.046
– volume: 2022
  start-page: 1
  year: 2022
  ident: jnead7060bib13
  article-title: Research on working memory states based on weighted K -order propagation number algorithm: an EEG perspective
  publication-title: J. Sens.
  doi: 10.1155/2022/8980198
– volume: 14
  start-page: 3269
  year: 2023
  ident: jnead7060bib27
  article-title: Cluster-level contrastive learning for emotion recognition in conversations
  publication-title: IEEE Trans. Aff. Comput.
  doi: 10.1109/TAFFC.2023.3243463
– volume: 49
  start-page: 1110
  year: 2019
  ident: jnead7060bib38
  article-title: EmotionMeter: a multimodal framework for recognizing human emotions
  publication-title: IEEE Trans. Cybern.
  doi: 10.1109/TCYB.2018.2797176
– volume: 380
  start-page: 69
  year: 1996
  ident: jnead7060bib54
  article-title: Dissociation in prefrontal cortex of affective and attentional shifts
  publication-title: Nature
  doi: 10.1038/380069a0
– volume: 14
  start-page: 43
  year: 2020
  ident: jnead7060bib8
  article-title: EEG-based emotion classification using a deep neural network and sparse autoencoder
  publication-title: Front. Syst. Neurosci.
  doi: 10.3389/fnsys.2020.00043
– volume: 12
  year: 2021
  ident: jnead7060bib56
  article-title: Chinese cerebrovascular neurosurgery society and Chinese interventional & hybrid operation society, of Chinese stroke association clinical practice guidelines for management of brain arteriovenous malformations in eloquent areas
  publication-title: Front. Neurol.
  doi: 10.3389/fneur.2021.651663
– start-page: 7482
  year: 2018
  ident: jnead7060bib51
  article-title: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics
– volume: 26
  start-page: 5321
  year: 2022
  ident: jnead7060bib9
  article-title: 3DCANN: a spatio-temporal convolution attention neural network for EEG emotion recognition
  publication-title: IEEE J. Biomed. Health Inform.
  doi: 10.1109/JBHI.2021.3083525
– volume: 14
  start-page: 715
  year: 2022
  ident: jnead7060bib39
  article-title: Comparing recognition performance and robustness of multimodal deep learning models for multimodal emotion recognition
  publication-title: IEEE Trans. Cogn. Dev. Syst.
  doi: 10.1109/TCDS.2021.3071170
– volume: 85
  year: 2023
  ident: jnead7060bib46
  article-title: GLFANet: a global to local feature aggregation network for EEG emotion recognition
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2023.104799
– volume: 31
  year: 2017
  ident: jnead7060bib35
  article-title: Inception-v4, inception-resnet and the impact of residual connections on learning
  publication-title: Proc. AAAI Conf. on Artificial Intelligence
  doi: 10.1609/aaai.v31i1.11231
– volume: 145
  start-page: 308
  year: 2022
  ident: jnead7060bib14
  article-title: Minimum spanning tree based graph neural network for emotion classification using EEG
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2021.10.023
– start-page: 2749
  year: 2011
  ident: jnead7060bib7
  article-title: Classification of EEG during imagined mental tasks by forecasting with Elman recurrent neural networks
– volume: 11
  start-page: 36233
  year: 2023
  ident: jnead7060bib47
  article-title: Bi-Branch vision transformer network for EEG emotion recognition
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2023.3266117
SSID ssj0031790
Score 2.4415042
Snippet Objective. Electroencephalogram (EEG) signals offer invaluable insights into the complexities of emotion generation within the brain. Yet, the variability in...
Electroencephalogram (EEG) signals offer invaluable insights into the complexities of emotion generation within the brain. Yet, the variability in EEG signals...
Objective.Electroencephalogram (EEG) signals offer invaluable insights into the complexities of emotion generation within the brain. Yet, the variability in...
SourceID unpaywall
proquest
pubmed
crossref
iop
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 46060
SubjectTerms Brain - physiology
contrastive learning
differential entropy
Electroencephalography - methods
emotion recognition
Emotions - physiology
graph convolutional neural network
Humans
Machine Learning
Neural Networks, Computer
temporal and spatial feature
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED-N8jD2MNhgW_mSkbZJIAWc2LGbxwoV0CQQD6vE9hKdHRtN69JqbYfgr8eOTfkQYvAWJZc4OZ9zZ9_PvwP4XAmbSUsxsZiqhCOjicoqm1TYsZJVPKcNqvL4RBz1-bez_Cyud_i9MPfy925y5gLmNHFhb7aHlSd6mYN5kbuouwXz_ZPT7o-w3zGI3B4LGjOSjz3ingea-zUcPRZcvoHX03qElxc4GNxxOAeLgf1o3PAUepzJ793pRO3qqwcsjs_5liV4G6NO0g1m8g5emfo9LHdrN-P-c0m-kgYH2iywL8PPXqjsQ2bYInc8tKTXOyQe7eHslXjfVxF3vkG649j_M0ksQHFOGhJsf-lftGvXdFNxZwX6B73v-0dJrMCQaCY7k8RIpjSmqKXQtEqlsVoaY5RARKk99VfhHL7mQuSaKl0IKStaqIxxzLnKKPsArXpYm09A3EwbmfGEkJnlhqYorChYqhQtbGZZ1oa9m14pdaQn91UyBmWTJu90Sq--0quvDOprw_bsjlGg5nhC9ovr6DKOz_ETcls3plC6ceaTJ1ib4XRcMk80yJ1WRBs-BhuZtepJ9lOeF23YmRnNf19p9SXCa7DgFMcD8nAdWpO_U7PhoqGJ2owD4RpDmP1T
  priority: 102
  providerName: Unpaywall
Title Emotion recognition of EEG signals based on contrastive learning graph convolutional model
URI https://iopscience.iop.org/article/10.1088/1741-2552/ad7060
https://www.ncbi.nlm.nih.gov/pubmed/39151459
https://www.proquest.com/docview/3094043786
https://doi.org/10.1088/1741-2552/ad7060
UnpaywallVersion publishedVersion
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: IOP Science Platform
  customDbUrl:
  eissn: 1741-2552
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0031790
  issn: 1741-2560
  databaseCode: IOP
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED7txwPsgQED1g0mIwESSGmd2LET8VShjgmJsQcqDYQUnR2bB7q0Wlum7a-fHbsRoGkg3qzkEl_OZ_scf_4O4EUtbCYtxcRiqhKOjCYqq21SY2Elq3lOW1Tlx2NxNOYfTvPTNXjbnYWZzuLQ33fFQBQcTBgBccXAxdBp4iLhbIC1535Zh01WuMDYn977dLIahpmnngqnIb20oHGP8qY3_DYnrbt6bwo3t-DOspnh5QVOJr9MQYfb8G2lfECe_OgvF6qvr_7gdfzPr7sP92JoSoZB9AGsmeYh7Awbtyw_uySvSAsWbf_C78DXUUj_QzoAkitPLRmN3hMPCXFOTfwEWRN3vYXD49wPrCRmqfhOWqZsf-tndH5XdZuW5xGMD0ef3x0lMU1DopksFomRTGlMUUuhaZ1KY7U0xiiBiFJ7frDSRQWaC5FrqnQppKxpqTLGMecqo-wxbDTTxuwCcctxZMazRmaWG5qisKJkqVK0tJllWQ8Gq4aqdOQw96k0JlW7l14UlTdf5c1XBfP14HX3xCzwd9wi-9K1ShU78fwWuecr76hcZ_Q7LNiY6XJeMc9GyJ1VRA-eBLfpavVM_CnPyx686fzoryrt_aNK-3DX2YwHZOJT2FicL80zFy0t1EHbKw5gc3x8MvxyDX3YC4g
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB7RIkF7KI9SGp5GAiSQNvGuvfbusYKE8io9UKnqxfjJgbCJSAJqfz1-JQJUFSRu1q69tscz9nj9-RuAx4a5ijssCydLVVBJcKEq4wojG8eJoTWOqMr3B2z_iL45ro9znNN4F2YyzVN_3ycTUXASYQbENQPvQ5eF94SrgTSB-2UwNW4NLkeeknCD78PhciomgX4q3YgMJRjO55TnfeW3dWnN132ey7kJVxfdVJ7-kOPxL8vQ6Bp8WnYgoU--9Bdz1ddnf3A7_kcPr8NWdlHRXsp-Ay7Z7iZs73V-e_71FD1FETQa_8Zvw8kwhQFCKyCST08cGg5foQAN8cqNwkJpkH8eYfFyFiZYlKNVfEaRMTu8-p6NwFcdw_PcgqPR8OOL_SKHayg04c28sJwoLUupOdPYlNw6za21ikkpuQ48Ya33DjRlrNZY6ZZxbnCrKkJlTVWFyQ6sd5PO7gLy23JJbGCPrBy1uJTMsZaUSuHWVY5UPRgsB0vozGUeQmqMRTxTbxoRRCiCCEUSYQ-erUpME4_HBXmf-JER2ZhnF-R7tNQQ4Y0ynLTIzk4WM0ECKyH1UmE9uJ1UZ1VrYOQvad324PlKl_7apDv_2KSHcOXw5Ui8e33w9i5sePHRBFa8B-vzbwt73ztQc_UgGslPYzAPOQ
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED-N8jD2MNhgW_mSkbZJIAWc2LGbxwoV0CQQD6vE9hKdHRtN69JqbYfgr8eOTfkQYvAWJZc4OZ9zZ9_PvwP4XAmbSUsxsZiqhCOjicoqm1TYsZJVPKcNqvL4RBz1-bez_Cyud_i9MPfy925y5gLmNHFhb7aHlSd6mYN5kbuouwXz_ZPT7o-w3zGI3B4LGjOSjz3ingea-zUcPRZcvoHX03qElxc4GNxxOAeLgf1o3PAUepzJ793pRO3qqwcsjs_5liV4G6NO0g1m8g5emfo9LHdrN-P-c0m-kgYH2iywL8PPXqjsQ2bYInc8tKTXOyQe7eHslXjfVxF3vkG649j_M0ksQHFOGhJsf-lftGvXdFNxZwX6B73v-0dJrMCQaCY7k8RIpjSmqKXQtEqlsVoaY5RARKk99VfhHL7mQuSaKl0IKStaqIxxzLnKKPsArXpYm09A3EwbmfGEkJnlhqYorChYqhQtbGZZ1oa9m14pdaQn91UyBmWTJu90Sq--0quvDOprw_bsjlGg5nhC9ovr6DKOz_ETcls3plC6ceaTJ1ib4XRcMk80yJ1WRBs-BhuZtepJ9lOeF23YmRnNf19p9SXCa7DgFMcD8nAdWpO_U7PhoqGJ2owD4RpDmP1T
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emotion+recognition+of+EEG+signals+based+on+contrastive+learning+graph+convolutional+model&rft.jtitle=Journal+of+neural+engineering&rft.au=Zhang%2C+Yiling&rft.au=Liao%2C+Yuan&rft.au=Chen%2C+Wei&rft.au=Zhang%2C+Xiruo&rft.date=2024-08-01&rft.issn=1741-2560&rft.eissn=1741-2552&rft.volume=21&rft.issue=4&rft.spage=46060&rft_id=info:doi/10.1088%2F1741-2552%2Fad7060&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1741_2552_ad7060
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon