Emotion recognition of EEG signals based on contrastive learning graph convolutional model
Objective. Electroencephalogram (EEG) signals offer invaluable insights into the complexities of emotion generation within the brain. Yet, the variability in EEG signals across individuals presents a formidable obstacle for empirical implementations. Our research addresses these challenges innovativ...
Saved in:
| Published in | Journal of neural engineering Vol. 21; no. 4; pp. 46060 - 46072 |
|---|---|
| Main Authors | , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
IOP Publishing
01.08.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1741-2560 1741-2552 1741-2552 |
| DOI | 10.1088/1741-2552/ad7060 |
Cover
| Abstract | Objective.
Electroencephalogram (EEG) signals offer invaluable insights into the complexities of emotion generation within the brain. Yet, the variability in EEG signals across individuals presents a formidable obstacle for empirical implementations. Our research addresses these challenges innovatively, focusing on the commonalities within distinct subjects’ EEG data.
Approach.
We introduce a novel approach named Contrastive Learning Graph Convolutional Network (CLGCN). This method captures the distinctive features and crucial channel nodes related to individuals’ emotional states. Specifically, CLGCN merges the dual benefits of CL’s synchronous multisubject data learning and the GCN’s proficiency in deciphering brain connectivity matrices. Understanding multifaceted brain functions and their information interchange processes is realized as CLGCN generates a standardized brain network learning matrix during a dataset’s learning process.
Main results.
Our model underwent rigorous testing on the Database for Emotion Analysis using Physiological Signals (DEAP) and SEED datasets. In the five-fold cross-validation used for dependent subject experimental setting, it achieved an accuracy of 97.13% on the DEAP dataset and surpassed 99% on the SEED and SEED_IV datasets. In the incremental learning experiments with the SEED dataset, merely 5% of the data was sufficient to fine-tune the model, resulting in an accuracy of 92.8% for the new subject. These findings validate the model’s efficacy.
Significance.
This work combines CL with GCN, improving the accuracy of decoding emotional states from EEG signals and offering valuable insights into uncovering the underlying mechanisms of emotional processes in the brain. |
|---|---|
| AbstractList | Objective.Electroencephalogram (EEG) signals offer invaluable insights into the complexities of emotion generation within the brain. Yet, the variability in EEG signals across individuals presents a formidable obstacle for empirical implementations. Our research addresses these challenges innovatively, focusing on the commonalities within distinct subjects' EEG data.Approach.We introduce a novel approach named Contrastive Learning Graph Convolutional Network (CLGCN). This method captures the distinctive features and crucial channel nodes related to individuals' emotional states. Specifically, CLGCN merges the dual benefits of CL's synchronous multisubject data learning and the GCN's proficiency in deciphering brain connectivity matrices. Understanding multifaceted brain functions and their information interchange processes is realized as CLGCN generates a standardized brain network learning matrix during a dataset's learning process.Main results.Our model underwent rigorous testing on the Database for Emotion Analysis using Physiological Signals (DEAP) and SEED datasets. In the five-fold cross-validation used for dependent subject experimental setting, it achieved an accuracy of 97.13% on the DEAP dataset and surpassed 99% on the SEED and SEED_IV datasets. In the incremental learning experiments with the SEED dataset, merely 5% of the data was sufficient to fine-tune the model, resulting in an accuracy of 92.8% for the new subject. These findings validate the model's efficacy.Significance.This work combines CL with GCN, improving the accuracy of decoding emotional states from EEG signals and offering valuable insights into uncovering the underlying mechanisms of emotional processes in the brain.Objective.Electroencephalogram (EEG) signals offer invaluable insights into the complexities of emotion generation within the brain. Yet, the variability in EEG signals across individuals presents a formidable obstacle for empirical implementations. Our research addresses these challenges innovatively, focusing on the commonalities within distinct subjects' EEG data.Approach.We introduce a novel approach named Contrastive Learning Graph Convolutional Network (CLGCN). This method captures the distinctive features and crucial channel nodes related to individuals' emotional states. Specifically, CLGCN merges the dual benefits of CL's synchronous multisubject data learning and the GCN's proficiency in deciphering brain connectivity matrices. Understanding multifaceted brain functions and their information interchange processes is realized as CLGCN generates a standardized brain network learning matrix during a dataset's learning process.Main results.Our model underwent rigorous testing on the Database for Emotion Analysis using Physiological Signals (DEAP) and SEED datasets. In the five-fold cross-validation used for dependent subject experimental setting, it achieved an accuracy of 97.13% on the DEAP dataset and surpassed 99% on the SEED and SEED_IV datasets. In the incremental learning experiments with the SEED dataset, merely 5% of the data was sufficient to fine-tune the model, resulting in an accuracy of 92.8% for the new subject. These findings validate the model's efficacy.Significance.This work combines CL with GCN, improving the accuracy of decoding emotional states from EEG signals and offering valuable insights into uncovering the underlying mechanisms of emotional processes in the brain. Electroencephalogram (EEG) signals offer invaluable insights into the complexities of emotion generation within the brain. Yet, the variability in EEG signals across individuals presents a formidable obstacle for empirical implementations. Our research addresses these challenges innovatively, focusing on the commonalities within distinct subjects' EEG data. We introduce a novel approach named Contrastive Learning Graph Convolutional Network (CLGCN). This method captures the distinctive features and crucial channel nodes related to individuals' emotional states. Specifically, CLGCN merges the dual benefits of CL's synchronous multisubject data learning and the GCN's proficiency in deciphering brain connectivity matrices. Understanding multifaceted brain functions and their information interchange processes is realized as CLGCN generates a standardized brain network learning matrix during a dataset's learning process. Our model underwent rigorous testing on the Database for Emotion Analysis using Physiological Signals (DEAP) and SEED datasets. In the five-fold cross-validation used for dependent subject experimental setting, it achieved an accuracy of 97.13% on the DEAP dataset and surpassed 99% on the SEED and SEED_IV datasets. In the incremental learning experiments with the SEED dataset, merely 5% of the data was sufficient to fine-tune the model, resulting in an accuracy of 92.8% for the new subject. These findings validate the model's efficacy. This work combines CL with GCN, improving the accuracy of decoding emotional states from EEG signals and offering valuable insights into uncovering the underlying mechanisms of emotional processes in the brain. Objective. Electroencephalogram (EEG) signals offer invaluable insights into the complexities of emotion generation within the brain. Yet, the variability in EEG signals across individuals presents a formidable obstacle for empirical implementations. Our research addresses these challenges innovatively, focusing on the commonalities within distinct subjects’ EEG data. Approach. We introduce a novel approach named Contrastive Learning Graph Convolutional Network (CLGCN). This method captures the distinctive features and crucial channel nodes related to individuals’ emotional states. Specifically, CLGCN merges the dual benefits of CL’s synchronous multisubject data learning and the GCN’s proficiency in deciphering brain connectivity matrices. Understanding multifaceted brain functions and their information interchange processes is realized as CLGCN generates a standardized brain network learning matrix during a dataset’s learning process. Main results. Our model underwent rigorous testing on the Database for Emotion Analysis using Physiological Signals (DEAP) and SEED datasets. In the five-fold cross-validation used for dependent subject experimental setting, it achieved an accuracy of 97.13% on the DEAP dataset and surpassed 99% on the SEED and SEED_IV datasets. In the incremental learning experiments with the SEED dataset, merely 5% of the data was sufficient to fine-tune the model, resulting in an accuracy of 92.8% for the new subject. These findings validate the model’s efficacy. Significance. This work combines CL with GCN, improving the accuracy of decoding emotional states from EEG signals and offering valuable insights into uncovering the underlying mechanisms of emotional processes in the brain. |
| Author | Chen, Wei Zhang, Yiling Zhang, Xiruo Huang, Liya Liao, Yuan |
| Author_xml | – sequence: 1 givenname: Yiling orcidid: 0000-0002-9041-3532 surname: Zhang fullname: Zhang, Yiling organization: Nanjing University of Posts and Telecommunications College of electronic and optical engineering & college of flexible electronics (future technology), Jiangsu 210023, People’s Republic of China – sequence: 2 givenname: Yuan orcidid: 0000-0001-6069-4284 surname: Liao fullname: Liao, Yuan organization: Nanjing University of Posts and Telecommunications College of electronic and optical engineering & college of flexible electronics (future technology), Jiangsu 210023, People’s Republic of China – sequence: 3 givenname: Wei surname: Chen fullname: Chen, Wei organization: Nanjing University of Posts and Telecommunications College of electronic and optical engineering & college of flexible electronics (future technology), Jiangsu 210023, People’s Republic of China – sequence: 4 givenname: Xiruo surname: Zhang fullname: Zhang, Xiruo organization: Nanjing University of Posts and Telecommunications College of electronic and optical engineering & college of flexible electronics (future technology), Jiangsu 210023, People’s Republic of China – sequence: 5 givenname: Liya surname: Huang fullname: Huang, Liya organization: Nanjing University of Posts and Telecommunications College of electronic and optical engineering & college of flexible electronics (future technology), Jiangsu 210023, People’s Republic of China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/39151459$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkTFv2zAQRokiRe2k3TMFGjvUydGSSGksDDcJYKBLu3QhTtTZpUGRCik58L-PFKUeCiTIxMPd9w6Hx3N25rwjxi45XHMoihsuM75Y5vnyBmsJAj6w-al1dqoFzNh5jHuAlMsSPrFZWvKcZ3k5Z3_Wje-Md0kg7XfOPNd-m6zXt0k0O4c2JhVGqpOhr73rAsbOHCixhMEZt0t2Adu_4-jgbT_iaJPG12Q_s4_bAacvL-8F-_1j_Wt1t9j8vL1ffd8sdCqLbkEyrTRy1FJoqLmkrZZEVAlElJoXUJYFL3QmRK6h0qWQsoayWqYZ5lm1hPSC8Wlv71o8PqK1qg2mwXBUHNToSY0i1ChFTZ4G5uvEtME_9BQ71ZioyVp05PuoUigzyIb7xBC9eon2VUP1afc_h0NATAEdfIyBtkqbDkcTgyxj3zoC_gPfcfe3CTG-VXvfh_GDXo8_AcaboqM |
| CODEN | JNEOBH |
| CitedBy_id | crossref_primary_10_1016_j_bspc_2025_107511 |
| Cites_doi | 10.1038/nrn3214 10.1109/TNSRE.2023.3304660 10.1002/cpe.5199 10.3390/s18082739 10.1080/02699930802204677 10.1007/s11042-020-09354-y 10.1007/978-3-319-46448-0_32 10.1016/j.mlwa.2021.100031 10.3389/fnbot.2019.00037 10.1016/j.bspc.2023.104835 10.1007/s11571-020-09626-1 10.1038/s41467-019-13055-y 10.1038/s42254-019-0040-8 10.1093/brain/awu247 10.3389/fnhum.2023.1298845 10.1109/TNNLS.2022.3202569 10.1016/j.tics.2007.05.004 10.1109/TAFFC.2022.3170428 10.1016/j.wneu.2017.05.159 10.1109/TAFFC.2020.2994159 10.1007/s10044-016-0567-6 10.1016/j.patrec.2008.01.030 10.1016/S1364-6613(00)01813-1 10.1109/T-AFFC.2011.15 10.1016/0005-1098(66)90019-7 10.1016/j.compbiomed.2023.107126 10.1109/TAMD.2015.2431497 10.1109/ACCESS.2020.2974009 10.3390/math10040582 10.2139/ssrn.3509130 10.1016/j.neucom.2013.06.046 10.1155/2022/8980198 10.1109/TAFFC.2023.3243463 10.1109/TCYB.2018.2797176 10.1038/380069a0 10.3389/fnsys.2020.00043 10.3389/fneur.2021.651663 10.1109/JBHI.2021.3083525 10.1109/TCDS.2021.3071170 10.1016/j.bspc.2023.104799 10.1609/aaai.v31i1.11231 10.1016/j.neunet.2021.10.023 10.1109/ACCESS.2023.3266117 |
| ContentType | Journal Article |
| Copyright | 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
| Copyright_xml | – notice: 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY |
| DOI | 10.1088/1741-2552/ad7060 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | MEDLINE - Academic MEDLINE CrossRef |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1741-2552 |
| ExternalDocumentID | 10.1088/1741-2552/ad7060 39151459 10_1088_1741_2552_ad7060 jnead7060 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Open subject of cognitive EEG and transcranial, electrical stimulation regulation of neuracle grantid: No. BRKOT-NJUPT- 20220630H – fundername: National Natural Science Foundation of China grantid: No. 61977039 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: New Infrastructure Development & University Informatization grantid: No.XJJ1202205007 |
| GroupedDBID | --- 1JI 4.4 53G 5B3 5GY 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P HAK IHE IJHAN IOP IZVLO KOT LAP N5L N9A P2P PJBAE RIN RO9 ROL RPA SY9 W28 XPP AAYXX ADEQX AEINN CITATION CGR CUY CVF ECM EIF NPM 7X8 02O 1WK AALHV ACARI ADTOC AERVB AGQPQ AHSEE ARNYC BBWZM EJD FEDTE HVGLF JCGBZ M45 NT- NT. Q02 RNS S3P UNPAY |
| ID | FETCH-LOGICAL-c378t-e73bca1ac76c0d17efc7eeeb6aaa7c18099818c4665c0bc9677d09b234a54b203 |
| IEDL.DBID | IOP |
| ISSN | 1741-2560 1741-2552 |
| IngestDate | Sun Sep 07 11:26:57 EDT 2025 Thu Oct 02 07:12:23 EDT 2025 Tue Jul 01 05:30:45 EDT 2025 Thu Apr 24 23:03:54 EDT 2025 Wed Oct 01 02:31:01 EDT 2025 Tue Sep 03 22:12:39 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Keywords | contrastive learning differential entropy temporal and spatial feature graph convolutional neural network emotion recognition |
| Language | English |
| License | This article is available under the terms of the IOP-Standard License. 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c378t-e73bca1ac76c0d17efc7eeeb6aaa7c18099818c4665c0bc9677d09b234a54b203 |
| Notes | JNE-107507.R2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-9041-3532 0000-0001-6069-4284 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1088/1741-2552/ad7060 |
| PMID | 39151459 |
| PQID | 3094043786 |
| PQPubID | 23479 |
| PageCount | 13 |
| ParticipantIDs | pubmed_primary_39151459 crossref_primary_10_1088_1741_2552_ad7060 proquest_miscellaneous_3094043786 iop_journals_10_1088_1741_2552_ad7060 unpaywall_primary_10_1088_1741_2552_ad7060 crossref_citationtrail_10_1088_1741_2552_ad7060 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-08-01 |
| PublicationDateYYYYMMDD | 2024-08-01 |
| PublicationDate_xml | – month: 08 year: 2024 text: 2024-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Journal of neural engineering |
| PublicationTitleAbbrev | JNE |
| PublicationTitleAlternate | J. Neural Eng |
| PublicationYear | 2024 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | Mai (jnead7060bib26) 2021 Gidaris (jnead7060bib23) 2018 Mert (jnead7060bib3) 2018; 21 Lynn (jnead7060bib10) 2019; 1 Li (jnead7060bib22) 2008; 29 Li (jnead7060bib4) 2020; 32 Yang (jnead7060bib27) 2023; 14 Akpan (jnead7060bib36) 2021; 4 Wang (jnead7060bib56) 2021; 12 Chalupnik (jnead7060bib6) 2022 Chen (jnead7060bib13) 2022; 2022 Jiao (jnead7060bib57) 2017; 105 Ravi Kumar (jnead7060bib40) 2019; 8 Mayne (jnead7060bib29) 1966; 4 Huang (jnead7060bib20) 2023; 17 Ye (jnead7060bib52) 2022 Wei (jnead7060bib53) 2012 Liu (jnead7060bib2) 2013 Belkina (jnead7060bib49) 2019; 10 Liu (jnead7060bib39) 2022; 14 Bullmore (jnead7060bib11) 2012; 13 Chao (jnead7060bib41) 2020; 8 Liu (jnead7060bib46) 2023; 85 Zhong (jnead7060bib17) 2022; 13 Zheng (jnead7060bib37) 2015; 7 Wang (jnead7060bib5) 2014; 129 Li (jnead7060bib42) 2019 Wu (jnead7060bib58) 2015; 138 Zheng (jnead7060bib38) 2019; 49 Duan (jnead7060bib33) 2013 Li (jnead7060bib50) 2023; 14 Li (jnead7060bib15) 2021 Li (jnead7060bib25) 2021 Gong (jnead7060bib48) 2023; 84 Lu (jnead7060bib47) 2023; 11 Cipolla (jnead7060bib51) 2018 Misra (jnead7060bib24) 2016; 9905 Pan (jnead7060bib19) 2023; 31 Liu (jnead7060bib14) 2022; 145 Alazrai (jnead7060bib31) 2018; 18 Xing (jnead7060bib43) 2019; 13 Liu (jnead7060bib8) 2020; 14 Forney (jnead7060bib7) 2011 Liu (jnead7060bib9) 2022; 26 Cui (jnead7060bib44) 2022; 10 Mauss (jnead7060bib1) 2009; 23 Burgess (jnead7060bib55) 2007; 11 Hou (jnead7060bib18) 2022; 35 Qiu (jnead7060bib45) 2023; 163 Szegedy (jnead7060bib35) 2017; 31 Koelstra (jnead7060bib28) 2012; 3 Gao (jnead7060bib30) 2020; 79 Dias (jnead7060bib54) 1996; 380 Orgo (jnead7060bib21) 2015 Avramidis (jnead7060bib32) 2021 Demir (jnead7060bib16) Gao (jnead7060bib12) 2021; 15 Stone (jnead7060bib34) 2002; 6 |
| References_xml | – volume: 13 start-page: 336 year: 2012 ident: jnead7060bib11 article-title: The economy of brain network organization publication-title: Nat. Rev. Neurosci. doi: 10.1038/nrn3214 – volume: 31 start-page: 3245 year: 2023 ident: jnead7060bib19 article-title: MSFR-GCN: a multi-scale feature reconstruction graph convolutional network for EEG emotion and cognition recognition publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2023.3304660 – volume: 32 start-page: e5199 year: 2020 ident: jnead7060bib4 article-title: Deep learning for EEG data analytics: a survey publication-title: Concurr. Comput. doi: 10.1002/cpe.5199 – volume: 18 start-page: 2739 year: 2018 ident: jnead7060bib31 article-title: EEG-based emotion recognition using quadratic time-frequency distribution publication-title: Sensors doi: 10.3390/s18082739 – volume: 23 start-page: 209 year: 2009 ident: jnead7060bib1 article-title: Measures of emotion: a review publication-title: Cogn. Emot. doi: 10.1080/02699930802204677 – volume: 79 start-page: 27057 year: 2020 ident: jnead7060bib30 article-title: EEG based emotion recognition using fusion feature extraction method publication-title: Multimed. Tools Appl. doi: 10.1007/s11042-020-09354-y – volume: 9905 start-page: 527 year: 2016 ident: jnead7060bib24 article-title: Shuffle and learn: unsupervised learning using temporal order verification computer vision – ECCV publication-title: Lect. Notes Comput. Sci. doi: 10.1007/978-3-319-46448-0_32 – volume: 4 year: 2021 ident: jnead7060bib36 article-title: Review of classification algorithms with changing inter-class distances publication-title: Mach. Learn. Appl. doi: 10.1016/j.mlwa.2021.100031 – volume: 13 start-page: 37 year: 2019 ident: jnead7060bib43 article-title: SAE+LSTM: a new framework for emotion recognition from multi-channel EEG publication-title: Front. Neurorobot. doi: 10.3389/fnbot.2019.00037 – volume: 84 year: 2023 ident: jnead7060bib48 article-title: EEG emotion recognition using attention-based convolutional transformer neural network publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2023.104835 – volume: 15 start-page: 369 year: 2021 ident: jnead7060bib12 article-title: Complex networks and deep learning for EEG signal analysis publication-title: Cogn. Neurodyn. doi: 10.1007/s11571-020-09626-1 – year: 2021 ident: jnead7060bib26 article-title: Hybrid contrastive learning of tri-modal representation for multimodal sentiment analysis – ident: jnead7060bib16 article-title: 2021 EEG-GNN: graph neural networks for classification of electroencephalogram (EEG) signals – volume: 10 start-page: 5415 year: 2019 ident: jnead7060bib49 article-title: Automated optimized parameters for T-distributed stochastic neighbor embedding improve visualization and analysis of large datasets publication-title: Nat. Commun. doi: 10.1038/s41467-019-13055-y – volume: 1 start-page: 318 year: 2019 ident: jnead7060bib10 article-title: The physics of brain network structure, function and control publication-title: Nat. Rev. Phys. doi: 10.1038/s42254-019-0040-8 – volume: 138 start-page: e337 year: 2015 ident: jnead7060bib58 article-title: Probabilistic map of language regions: challenge and implication publication-title: Brain doi: 10.1093/brain/awu247 – volume: 17 year: 2023 ident: jnead7060bib20 article-title: Functional graph contrastive learning of hyperscanning EEG reveals emotional contagion evoked by stereotype-based stressors publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2023.1298845 – volume: 35 start-page: 1 year: 2022 ident: jnead7060bib18 article-title: GCNs-net: a graph convolutional neural network approach for decoding time-resolved EEG motor imagery signals publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2022.3202569 – start-page: 1 year: 2019 ident: jnead7060bib42 article-title: EEG-based emotion recognition under convolutional neural network with differential entropy feature maps – volume: 11 start-page: 290 year: 2007 ident: jnead7060bib55 article-title: The gateway hypothesis of rostral prefrontal cortex (area 10) function publication-title: Trends Cogn. Sci. doi: 10.1016/j.tics.2007.05.004 – volume: 14 start-page: 2512 year: 2023 ident: jnead7060bib50 article-title: GMSS: graph-based multi-task self-supervised learning for EEG emotion recognition publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2022.3170428 – volume: 105 start-page: 478 year: 2017 ident: jnead7060bib57 article-title: Brain arteriovenous malformations located in language area: surgical outcomes and risk factors for postoperative language deficits publication-title: World Neurosurg. doi: 10.1016/j.wneu.2017.05.159 – start-page: 1316 year: 2021 ident: jnead7060bib32 article-title: Multiscale fractal analysis on EEG signals for music-induced emotion recognition – year: 2018 ident: jnead7060bib23 article-title: Unsupervised representation learning by predicting image rotations – volume: 13 start-page: 1290 year: 2022 ident: jnead7060bib17 article-title: EEG-based emotion recognition using regularized graph neural networks publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2020.2994159 – start-page: 306 year: 2022 ident: jnead7060bib6 article-title: Using simplified EEG-based brain computer interface and decision tree classifier for emotions – start-page: 3976 year: 2012 ident: jnead7060bib53 article-title: Degree centrality based on the weighted network – volume: 21 start-page: 81 year: 2018 ident: jnead7060bib3 article-title: Emotion recognition from EEG signals by using multivariate empirical mode decomposition publication-title: Pattern Anal. Appl. doi: 10.1007/s10044-016-0567-6 – volume: 29 start-page: 1285 year: 2008 ident: jnead7060bib22 article-title: A self-training semi-supervised SVM algorithm and its application in an EEG-based brain computer interface speller system publication-title: Pattern Recognit. Lett. doi: 10.1016/j.patrec.2008.01.030 – volume: 6 start-page: 59 year: 2002 ident: jnead7060bib34 article-title: Independent component analysis: an introduction publication-title: Trends Cogn. Sci. doi: 10.1016/S1364-6613(00)01813-1 – start-page: 81 year: 2013 ident: jnead7060bib33 article-title: Differential entropy feature for EEG-based emotion classification 2013 – volume: 3 start-page: 18 year: 2012 ident: jnead7060bib28 article-title: Deap: a database for emotion analysis;using physiological signals publication-title: IEEE Trans. Aff. Comput. doi: 10.1109/T-AFFC.2011.15 – start-page: 5565 year: 2021 ident: jnead7060bib15 article-title: A multi-domain adaptive graph convolutional network for EEG-based emotion recognition – volume: 4 start-page: 73 year: 1966 ident: jnead7060bib29 article-title: A solution of the smoothing problem for linear dynamic systems publication-title: Automatica doi: 10.1016/0005-1098(66)90019-7 – start-page: 302 year: 2013 ident: jnead7060bib2 article-title: EEG databases for emotion recognition – volume: 163 year: 2023 ident: jnead7060bib45 article-title: A multi-head residual connection GCN for EEG emotion recognition publication-title: Comput. Biol. Med. doi: 10.1016/j.compbiomed.2023.107126 – start-page: 6329 year: 2021 ident: jnead7060bib25 article-title: Contrastive unsupervised learning for speech emotion recognition – volume: 7 start-page: 162 year: 2015 ident: jnead7060bib37 article-title: Investigating critical frequency bands and channels for EEG-based emotion recognition with deep neural networks publication-title: IEEE Trans. Auton. Mental Dev. doi: 10.1109/TAMD.2015.2431497 – volume: 8 start-page: 33002 year: 2020 ident: jnead7060bib41 article-title: Emotion recognition from multi-channel EEG signals by exploiting the deep belief-conditional random fwield framework publication-title: IEEE Access doi: 10.1109/ACCESS.2020.2974009 – volume: 10 start-page: 582 year: 2022 ident: jnead7060bib44 article-title: A novel DE-CNN-BiLSTM multi-fusion model for EEG emotion recognition publication-title: Mathematics doi: 10.3390/math10040582 – start-page: 8107 year: 2015 ident: jnead7060bib21 article-title: Effect of negative and positive emotions on EEG spectral asymmetry – start-page: 1 year: 2022 ident: jnead7060bib52 article-title: Hierarchical dynamic graph convolutional network with interpretability for EEG-based emotion recognition – volume: 8 start-page: 576 year: 2019 ident: jnead7060bib40 article-title: Analysis of EEG based emotion detection of DEAP and SEED-IV databases using SVM publication-title: SSRN J. doi: 10.2139/ssrn.3509130 – volume: 129 start-page: 94 year: 2014 ident: jnead7060bib5 article-title: Emotional state classification from EEG data using machine learning approach publication-title: Neurocomputing doi: 10.1016/j.neucom.2013.06.046 – volume: 2022 start-page: 1 year: 2022 ident: jnead7060bib13 article-title: Research on working memory states based on weighted K -order propagation number algorithm: an EEG perspective publication-title: J. Sens. doi: 10.1155/2022/8980198 – volume: 14 start-page: 3269 year: 2023 ident: jnead7060bib27 article-title: Cluster-level contrastive learning for emotion recognition in conversations publication-title: IEEE Trans. Aff. Comput. doi: 10.1109/TAFFC.2023.3243463 – volume: 49 start-page: 1110 year: 2019 ident: jnead7060bib38 article-title: EmotionMeter: a multimodal framework for recognizing human emotions publication-title: IEEE Trans. Cybern. doi: 10.1109/TCYB.2018.2797176 – volume: 380 start-page: 69 year: 1996 ident: jnead7060bib54 article-title: Dissociation in prefrontal cortex of affective and attentional shifts publication-title: Nature doi: 10.1038/380069a0 – volume: 14 start-page: 43 year: 2020 ident: jnead7060bib8 article-title: EEG-based emotion classification using a deep neural network and sparse autoencoder publication-title: Front. Syst. Neurosci. doi: 10.3389/fnsys.2020.00043 – volume: 12 year: 2021 ident: jnead7060bib56 article-title: Chinese cerebrovascular neurosurgery society and Chinese interventional & hybrid operation society, of Chinese stroke association clinical practice guidelines for management of brain arteriovenous malformations in eloquent areas publication-title: Front. Neurol. doi: 10.3389/fneur.2021.651663 – start-page: 7482 year: 2018 ident: jnead7060bib51 article-title: Multi-task learning using uncertainty to weigh losses for scene geometry and semantics – volume: 26 start-page: 5321 year: 2022 ident: jnead7060bib9 article-title: 3DCANN: a spatio-temporal convolution attention neural network for EEG emotion recognition publication-title: IEEE J. Biomed. Health Inform. doi: 10.1109/JBHI.2021.3083525 – volume: 14 start-page: 715 year: 2022 ident: jnead7060bib39 article-title: Comparing recognition performance and robustness of multimodal deep learning models for multimodal emotion recognition publication-title: IEEE Trans. Cogn. Dev. Syst. doi: 10.1109/TCDS.2021.3071170 – volume: 85 year: 2023 ident: jnead7060bib46 article-title: GLFANet: a global to local feature aggregation network for EEG emotion recognition publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2023.104799 – volume: 31 year: 2017 ident: jnead7060bib35 article-title: Inception-v4, inception-resnet and the impact of residual connections on learning publication-title: Proc. AAAI Conf. on Artificial Intelligence doi: 10.1609/aaai.v31i1.11231 – volume: 145 start-page: 308 year: 2022 ident: jnead7060bib14 article-title: Minimum spanning tree based graph neural network for emotion classification using EEG publication-title: Neural Netw. doi: 10.1016/j.neunet.2021.10.023 – start-page: 2749 year: 2011 ident: jnead7060bib7 article-title: Classification of EEG during imagined mental tasks by forecasting with Elman recurrent neural networks – volume: 11 start-page: 36233 year: 2023 ident: jnead7060bib47 article-title: Bi-Branch vision transformer network for EEG emotion recognition publication-title: IEEE Access doi: 10.1109/ACCESS.2023.3266117 |
| SSID | ssj0031790 |
| Score | 2.4415042 |
| Snippet | Objective.
Electroencephalogram (EEG) signals offer invaluable insights into the complexities of emotion generation within the brain. Yet, the variability in... Electroencephalogram (EEG) signals offer invaluable insights into the complexities of emotion generation within the brain. Yet, the variability in EEG signals... Objective.Electroencephalogram (EEG) signals offer invaluable insights into the complexities of emotion generation within the brain. Yet, the variability in... |
| SourceID | unpaywall proquest pubmed crossref iop |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 46060 |
| SubjectTerms | Brain - physiology contrastive learning differential entropy Electroencephalography - methods emotion recognition Emotions - physiology graph convolutional neural network Humans Machine Learning Neural Networks, Computer temporal and spatial feature |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED-N8jD2MNhgW_mSkbZJIAWc2LGbxwoV0CQQD6vE9hKdHRtN69JqbYfgr8eOTfkQYvAWJZc4OZ9zZ9_PvwP4XAmbSUsxsZiqhCOjicoqm1TYsZJVPKcNqvL4RBz1-bez_Cyud_i9MPfy925y5gLmNHFhb7aHlSd6mYN5kbuouwXz_ZPT7o-w3zGI3B4LGjOSjz3ingea-zUcPRZcvoHX03qElxc4GNxxOAeLgf1o3PAUepzJ793pRO3qqwcsjs_5liV4G6NO0g1m8g5emfo9LHdrN-P-c0m-kgYH2iywL8PPXqjsQ2bYInc8tKTXOyQe7eHslXjfVxF3vkG649j_M0ksQHFOGhJsf-lftGvXdFNxZwX6B73v-0dJrMCQaCY7k8RIpjSmqKXQtEqlsVoaY5RARKk99VfhHL7mQuSaKl0IKStaqIxxzLnKKPsArXpYm09A3EwbmfGEkJnlhqYorChYqhQtbGZZ1oa9m14pdaQn91UyBmWTJu90Sq--0quvDOprw_bsjlGg5nhC9ovr6DKOz_ETcls3plC6ceaTJ1ib4XRcMk80yJ1WRBs-BhuZtepJ9lOeF23YmRnNf19p9SXCa7DgFMcD8nAdWpO_U7PhoqGJ2owD4RpDmP1T priority: 102 providerName: Unpaywall |
| Title | Emotion recognition of EEG signals based on contrastive learning graph convolutional model |
| URI | https://iopscience.iop.org/article/10.1088/1741-2552/ad7060 https://www.ncbi.nlm.nih.gov/pubmed/39151459 https://www.proquest.com/docview/3094043786 https://doi.org/10.1088/1741-2552/ad7060 |
| UnpaywallVersion | publishedVersion |
| Volume | 21 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: IOP Science Platform customDbUrl: eissn: 1741-2552 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0031790 issn: 1741-2560 databaseCode: IOP dateStart: 20040101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fb9MwED7txwPsgQED1g0mIwESSGmd2LET8VShjgmJsQcqDYQUnR2bB7q0Wlum7a-fHbsRoGkg3qzkEl_OZ_scf_4O4EUtbCYtxcRiqhKOjCYqq21SY2Elq3lOW1Tlx2NxNOYfTvPTNXjbnYWZzuLQ33fFQBQcTBgBccXAxdBp4iLhbIC1535Zh01WuMDYn977dLIahpmnngqnIb20oHGP8qY3_DYnrbt6bwo3t-DOspnh5QVOJr9MQYfb8G2lfECe_OgvF6qvr_7gdfzPr7sP92JoSoZB9AGsmeYh7Awbtyw_uySvSAsWbf_C78DXUUj_QzoAkitPLRmN3hMPCXFOTfwEWRN3vYXD49wPrCRmqfhOWqZsf-tndH5XdZuW5xGMD0ef3x0lMU1DopksFomRTGlMUUuhaZ1KY7U0xiiBiFJ7frDSRQWaC5FrqnQppKxpqTLGMecqo-wxbDTTxuwCcctxZMazRmaWG5qisKJkqVK0tJllWQ8Gq4aqdOQw96k0JlW7l14UlTdf5c1XBfP14HX3xCzwd9wi-9K1ShU78fwWuecr76hcZ_Q7LNiY6XJeMc9GyJ1VRA-eBLfpavVM_CnPyx686fzoryrt_aNK-3DX2YwHZOJT2FicL80zFy0t1EHbKw5gc3x8MvxyDX3YC4g |
| linkProvider | IOP Publishing |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB7RIkF7KI9SGp5GAiSQNvGuvfbusYKE8io9UKnqxfjJgbCJSAJqfz1-JQJUFSRu1q69tscz9nj9-RuAx4a5ijssCydLVVBJcKEq4wojG8eJoTWOqMr3B2z_iL45ro9znNN4F2YyzVN_3ycTUXASYQbENQPvQ5eF94SrgTSB-2UwNW4NLkeeknCD78PhciomgX4q3YgMJRjO55TnfeW3dWnN132ey7kJVxfdVJ7-kOPxL8vQ6Bp8WnYgoU--9Bdz1ddnf3A7_kcPr8NWdlHRXsp-Ay7Z7iZs73V-e_71FD1FETQa_8Zvw8kwhQFCKyCST08cGg5foQAN8cqNwkJpkH8eYfFyFiZYlKNVfEaRMTu8-p6NwFcdw_PcgqPR8OOL_SKHayg04c28sJwoLUupOdPYlNw6za21ikkpuQ48Ya33DjRlrNZY6ZZxbnCrKkJlTVWFyQ6sd5PO7gLy23JJbGCPrBy1uJTMsZaUSuHWVY5UPRgsB0vozGUeQmqMRTxTbxoRRCiCCEUSYQ-erUpME4_HBXmf-JER2ZhnF-R7tNQQ4Y0ynLTIzk4WM0ECKyH1UmE9uJ1UZ1VrYOQvad324PlKl_7apDv_2KSHcOXw5Ui8e33w9i5sePHRBFa8B-vzbwt73ztQc_UgGslPYzAPOQ |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9swED-N8jD2MNhgW_mSkbZJIAWc2LGbxwoV0CQQD6vE9hKdHRtN69JqbYfgr8eOTfkQYvAWJZc4OZ9zZ9_PvwP4XAmbSUsxsZiqhCOjicoqm1TYsZJVPKcNqvL4RBz1-bez_Cyud_i9MPfy925y5gLmNHFhb7aHlSd6mYN5kbuouwXz_ZPT7o-w3zGI3B4LGjOSjz3ingea-zUcPRZcvoHX03qElxc4GNxxOAeLgf1o3PAUepzJ793pRO3qqwcsjs_5liV4G6NO0g1m8g5emfo9LHdrN-P-c0m-kgYH2iywL8PPXqjsQ2bYInc8tKTXOyQe7eHslXjfVxF3vkG649j_M0ksQHFOGhJsf-lftGvXdFNxZwX6B73v-0dJrMCQaCY7k8RIpjSmqKXQtEqlsVoaY5RARKk99VfhHL7mQuSaKl0IKStaqIxxzLnKKPsArXpYm09A3EwbmfGEkJnlhqYorChYqhQtbGZZ1oa9m14pdaQn91UyBmWTJu90Sq--0quvDOprw_bsjlGg5nhC9ovr6DKOz_ETcls3plC6ceaTJ1ib4XRcMk80yJ1WRBs-BhuZtepJ9lOeF23YmRnNf19p9SXCa7DgFMcD8nAdWpO_U7PhoqGJ2owD4RpDmP1T |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Emotion+recognition+of+EEG+signals+based+on+contrastive+learning+graph+convolutional+model&rft.jtitle=Journal+of+neural+engineering&rft.au=Zhang%2C+Yiling&rft.au=Liao%2C+Yuan&rft.au=Chen%2C+Wei&rft.au=Zhang%2C+Xiruo&rft.date=2024-08-01&rft.issn=1741-2560&rft.eissn=1741-2552&rft.volume=21&rft.issue=4&rft.spage=46060&rft_id=info:doi/10.1088%2F1741-2552%2Fad7060&rft.externalDBID=n%2Fa&rft.externalDocID=10_1088_1741_2552_ad7060 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon |