Some generalized fractional integral inequalities with nonsingular function as a kernel

Integral inequalities play a key role in applied and theoretical mathematics. The purpose of inequalities is to develop mathematical techniques in analysis. The goal of this paper is to develop a fractional integral operator having a non-singular function (generalized multi-index Bessel function) as...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 6; no. 4; pp. 3352 - 3377
Main Authors Mubeen, Shahid, Ali, Rana Safdar, Nayab, Iqra, Rahman, Gauhar, Nisar, Kottakkaran Sooppy, Baleanu, Dumitru
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2021
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2021201

Cover

Abstract Integral inequalities play a key role in applied and theoretical mathematics. The purpose of inequalities is to develop mathematical techniques in analysis. The goal of this paper is to develop a fractional integral operator having a non-singular function (generalized multi-index Bessel function) as a kernel and then to obtain some significant inequalities like Hermit Hadamard Mercer inequality, exponentially (s−m)-preinvex inequalities, Pólya-Szegö and Chebyshev type integral inequalities with the newly developed fractional operator. These results describe in general behave and provide the extension of fractional operator theory (FOT) in inequalities.
AbstractList Integral inequalities play a key role in applied and theoretical mathematics. The purpose of inequalities is to develop mathematical techniques in analysis. The goal of this paper is to develop a fractional integral operator having a non-singular function (generalized multi-index Bessel function) as a kernel and then to obtain some significant inequalities like Hermit Hadamard Mercer inequality, exponentially (s−m)-preinvex inequalities, Pólya-Szegö and Chebyshev type integral inequalities with the newly developed fractional operator. These results describe in general behave and provide the extension of fractional operator theory (FOT) in inequalities.
Author Nayab, Iqra
Baleanu, Dumitru
Ali, Rana Safdar
Rahman, Gauhar
Nisar, Kottakkaran Sooppy
Mubeen, Shahid
Author_xml – sequence: 1
  givenname: Shahid
  surname: Mubeen
  fullname: Mubeen, Shahid
– sequence: 2
  givenname: Rana Safdar
  surname: Ali
  fullname: Ali, Rana Safdar
– sequence: 3
  givenname: Iqra
  surname: Nayab
  fullname: Nayab, Iqra
– sequence: 4
  givenname: Gauhar
  surname: Rahman
  fullname: Rahman, Gauhar
– sequence: 5
  givenname: Kottakkaran Sooppy
  surname: Nisar
  fullname: Nisar, Kottakkaran Sooppy
– sequence: 6
  givenname: Dumitru
  surname: Baleanu
  fullname: Baleanu, Dumitru
BookMark eNptUMtOwzAQtFCRKKU3PsAfQMGvOM4RVTwqVeIAiKO1SdapS5qA4wrB15O0RUKI0452d2Zn55SMmrZBQs45u5SZVFcbiKtLwQQXjB-RsVCpnOnMmNEvfEKmXbdmbNhSIlVj8vLYbpBW2GCA2n9hSV2AIvq2gZr6JmIVdgDft_08euzoh48r2h_vfFNtawjUbZsdg0JHgb5iaLA-I8cO6g6nhzohz7c3T_P72fLhbjG_Xs4KmZo4Q20U8t5OUpY5csxznUmdoCg14yoRzDlWlj2ABBOhmAZTsiKTBWPOcJfICVnsdcsW1vYt-A2ET9uCt7tGGyoLIfqiRqsRM5knLOMpVyyXoA0oDYDG5cpw6LXEXqsIbdcFdLbwEYbPYgBfW87skLQdkraHpHvSxR_Sj4l_178B75qDJQ
CitedBy_id crossref_primary_10_1155_2024_4082683
crossref_primary_10_1016_j_aej_2021_10_033
crossref_primary_10_1142_S1793557123502418
crossref_primary_10_1007_s40819_021_01202_3
crossref_primary_10_1186_s13660_022_02899_6
crossref_primary_10_1007_s00009_023_02547_3
Cites_doi 10.1002/mma.6188
10.3934/math.2019.6.1554
10.1007/BF01201355
10.1007/s13398-020-00843-1
10.1016/j.amc.2011.03.062
10.1556/012.2019.56.1.1418
10.1186/s13662-019-2381-0
10.3390/sym10110614
10.1007/978-3-662-38380-3
10.1186/s13662-017-1306-z
10.1186/s13662-019-2229-7
10.1186/s13660-020-02335-7
10.1007/s13398-019-00731-3
10.1155/2012/980438
10.1186/s13662-020-03075-0
10.1016/j.amc.2015.07.026
10.3390/math7040364
10.3934/math.2021052
10.3390/math8040504
10.1186/s13662-020-03036-7
10.3390/math7010029
10.1186/s13660-020-02420-x
10.4153/CMB-1968-091-5
10.1186/s13660-019-2150-3
10.1080/00036811.2019.1616083
10.18576/amis/120215
10.1186/s13660-018-1639-5
10.2298/FIL1607931C
10.1186/s13662-017-1126-1
10.1186/s13662-020-02559-3
10.1186/s13660-019-2170-z
10.1186/s13660-019-2197-1
10.1140/epjst/e2018-00021-7
10.3390/math8010113
10.1016/0022-247X(88)90113-8
10.3390/sym12040610
10.1186/s13662-020-02720-y
10.1186/s13660-019-2199-z
10.3390/sym11121448
10.1016/j.cam.2014.10.016
10.1016/j.na.2009.01.120
10.1186/s13662-020-2541-2
10.1186/s13662-019-2362-3
10.1186/s40064-016-3301-3
10.3390/math8040500
10.1155/2020/1378457
10.1186/s13662-020-02825-4
10.7153/jmi-2020-14-03
10.3390/math8020222
10.1016/j.amc.2009.01.055
10.3934/math.2020108
ContentType Journal Article
CorporateAuthor Department of Mathematics, College of Arts and Sciences, Prince Sattam bin Abdulaziz University, Wadi Aldawser 11991, Saudi Arabia
Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan
Department of Mathematics, University of Lahore, Lahore, Pakistan
Department of Mathematics and Statistics, Hazara University, Mansehra, Pakistan
Department of Mathematics, University of Sargodha, Sargodha, Pakistan
Department of Mathematics, Cankaya University, Ankara 06790, Turkey
Institute of Space Sciences, Magurele-Bucharest 077125, Romania
CorporateAuthor_xml – name: Institute of Space Sciences, Magurele-Bucharest 077125, Romania
– name: Department of Mathematics and Statistics, Hazara University, Mansehra, Pakistan
– name: Department of Mathematics, University of Lahore, Lahore, Pakistan
– name: Department of Mathematics, Cankaya University, Ankara 06790, Turkey
– name: Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan
– name: Department of Mathematics, College of Arts and Sciences, Prince Sattam bin Abdulaziz University, Wadi Aldawser 11991, Saudi Arabia
– name: Department of Mathematics, University of Sargodha, Sargodha, Pakistan
DBID AAYXX
CITATION
DOA
DOI 10.3934/math.2021201
DatabaseName CrossRef
DOAJ Directory of Open Access Journals (ODIN)
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 3377
ExternalDocumentID oai_doaj_org_article_6ee93b50917140b3a68a46aae8fb481a
10_3934_math_2021201
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ID FETCH-LOGICAL-c378t-e684e10215ddbe1ebb69365e2d6014520ff0dd452a5e52406a8d0c93c00f81f53
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Wed Aug 27 00:58:51 EDT 2025
Thu Apr 24 23:04:11 EDT 2025
Tue Jul 01 03:56:47 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-e684e10215ddbe1ebb69365e2d6014520ff0dd452a5e52406a8d0c93c00f81f53
OpenAccessLink https://doaj.org/article/6ee93b50917140b3a68a46aae8fb481a
PageCount 26
ParticipantIDs doaj_primary_oai_doaj_org_article_6ee93b50917140b3a68a46aae8fb481a
crossref_citationtrail_10_3934_math_2021201
crossref_primary_10_3934_math_2021201
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-01-01
PublicationDateYYYYMMDD 2021-01-01
PublicationDate_xml – month: 01
  year: 2021
  text: 2021-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2021
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References key-10.3934/math.2021201-7
key-10.3934/math.2021201-28
key-10.3934/math.2021201-6
key-10.3934/math.2021201-29
key-10.3934/math.2021201-9
key-10.3934/math.2021201-8
key-10.3934/math.2021201-24
key-10.3934/math.2021201-25
key-10.3934/math.2021201-26
key-10.3934/math.2021201-27
key-10.3934/math.2021201-20
key-10.3934/math.2021201-21
key-10.3934/math.2021201-22
key-10.3934/math.2021201-23
key-10.3934/math.2021201-60
key-10.3934/math.2021201-61
key-10.3934/math.2021201-62
key-10.3934/math.2021201-17
key-10.3934/math.2021201-18
key-10.3934/math.2021201-19
key-10.3934/math.2021201-13
key-10.3934/math.2021201-57
key-10.3934/math.2021201-14
key-10.3934/math.2021201-58
key-10.3934/math.2021201-15
key-10.3934/math.2021201-59
key-10.3934/math.2021201-16
key-10.3934/math.2021201-53
key-10.3934/math.2021201-10
key-10.3934/math.2021201-54
key-10.3934/math.2021201-11
key-10.3934/math.2021201-55
key-10.3934/math.2021201-12
key-10.3934/math.2021201-56
key-10.3934/math.2021201-50
key-10.3934/math.2021201-51
key-10.3934/math.2021201-52
key-10.3934/math.2021201-46
key-10.3934/math.2021201-47
key-10.3934/math.2021201-48
key-10.3934/math.2021201-49
key-10.3934/math.2021201-42
key-10.3934/math.2021201-43
key-10.3934/math.2021201-44
key-10.3934/math.2021201-45
key-10.3934/math.2021201-40
key-10.3934/math.2021201-41
key-10.3934/math.2021201-1
key-10.3934/math.2021201-3
key-10.3934/math.2021201-2
key-10.3934/math.2021201-5
key-10.3934/math.2021201-4
key-10.3934/math.2021201-39
key-10.3934/math.2021201-35
key-10.3934/math.2021201-36
key-10.3934/math.2021201-37
key-10.3934/math.2021201-38
key-10.3934/math.2021201-31
key-10.3934/math.2021201-32
key-10.3934/math.2021201-33
key-10.3934/math.2021201-34
key-10.3934/math.2021201-30
References_xml – ident: key-10.3934/math.2021201-18
  doi: 10.1002/mma.6188
– ident: key-10.3934/math.2021201-46
  doi: 10.3934/math.2019.6.1554
– ident: key-10.3934/math.2021201-50
  doi: 10.1007/BF01201355
– ident: key-10.3934/math.2021201-52
– ident: key-10.3934/math.2021201-15
  doi: 10.1007/s13398-020-00843-1
– ident: key-10.3934/math.2021201-10
– ident: key-10.3934/math.2021201-2
  doi: 10.1016/j.amc.2011.03.062
– ident: key-10.3934/math.2021201-9
  doi: 10.1556/012.2019.56.1.1418
– ident: key-10.3934/math.2021201-35
  doi: 10.1186/s13662-019-2381-0
– ident: key-10.3934/math.2021201-62
– ident: key-10.3934/math.2021201-26
  doi: 10.3390/sym10110614
– ident: key-10.3934/math.2021201-13
– ident: key-10.3934/math.2021201-51
  doi: 10.1007/978-3-662-38380-3
– ident: key-10.3934/math.2021201-23
  doi: 10.1186/s13662-017-1306-z
– ident: key-10.3934/math.2021201-37
  doi: 10.1186/s13662-019-2229-7
– ident: key-10.3934/math.2021201-41
  doi: 10.1186/s13660-020-02335-7
– ident: key-10.3934/math.2021201-31
  doi: 10.1007/s13398-019-00731-3
– ident: key-10.3934/math.2021201-4
  doi: 10.1155/2012/980438
– ident: key-10.3934/math.2021201-42
  doi: 10.1186/s13662-020-03075-0
– ident: key-10.3934/math.2021201-21
  doi: 10.1016/j.amc.2015.07.026
– ident: key-10.3934/math.2021201-32
  doi: 10.3390/math7040364
– ident: key-10.3934/math.2021201-47
  doi: 10.3934/math.2021052
– ident: key-10.3934/math.2021201-38
  doi: 10.3390/math8040504
– ident: key-10.3934/math.2021201-49
  doi: 10.1186/s13662-020-03036-7
– ident: key-10.3934/math.2021201-45
  doi: 10.3390/math7010029
– ident: key-10.3934/math.2021201-39
  doi: 10.1186/s13660-020-02420-x
– ident: key-10.3934/math.2021201-59
  doi: 10.4153/CMB-1968-091-5
– ident: key-10.3934/math.2021201-5
  doi: 10.1186/s13660-019-2150-3
– ident: key-10.3934/math.2021201-7
  doi: 10.1080/00036811.2019.1616083
– ident: key-10.3934/math.2021201-55
  doi: 10.18576/amis/120215
– ident: key-10.3934/math.2021201-3
  doi: 10.1186/s13660-018-1639-5
– ident: key-10.3934/math.2021201-58
  doi: 10.2298/FIL1607931C
– ident: key-10.3934/math.2021201-12
  doi: 10.1186/s13662-017-1126-1
– ident: key-10.3934/math.2021201-14
  doi: 10.1186/s13662-020-02559-3
– ident: key-10.3934/math.2021201-29
– ident: key-10.3934/math.2021201-54
– ident: key-10.3934/math.2021201-25
– ident: key-10.3934/math.2021201-28
  doi: 10.1186/s13660-019-2170-z
– ident: key-10.3934/math.2021201-27
  doi: 10.1186/s13660-019-2197-1
– ident: key-10.3934/math.2021201-24
  doi: 10.1140/epjst/e2018-00021-7
– ident: key-10.3934/math.2021201-33
  doi: 10.3390/math8010113
– ident: key-10.3934/math.2021201-57
  doi: 10.1016/0022-247X(88)90113-8
– ident: key-10.3934/math.2021201-8
– ident: key-10.3934/math.2021201-20
  doi: 10.3390/sym12040610
– ident: key-10.3934/math.2021201-44
  doi: 10.1186/s13662-020-02720-y
– ident: key-10.3934/math.2021201-36
  doi: 10.1186/s13660-019-2199-z
– ident: key-10.3934/math.2021201-48
  doi: 10.3390/sym11121448
– ident: key-10.3934/math.2021201-11
  doi: 10.1016/j.cam.2014.10.016
– ident: key-10.3934/math.2021201-16
  doi: 10.1016/j.na.2009.01.120
– ident: key-10.3934/math.2021201-17
  doi: 10.1186/s13662-020-2541-2
– ident: key-10.3934/math.2021201-30
  doi: 10.1186/s13662-019-2362-3
– ident: key-10.3934/math.2021201-53
– ident: key-10.3934/math.2021201-6
  doi: 10.1186/s40064-016-3301-3
– ident: key-10.3934/math.2021201-40
  doi: 10.3390/math8040500
– ident: key-10.3934/math.2021201-61
  doi: 10.1155/2020/1378457
– ident: key-10.3934/math.2021201-19
  doi: 10.1186/s13662-020-02825-4
– ident: key-10.3934/math.2021201-43
  doi: 10.7153/jmi-2020-14-03
– ident: key-10.3934/math.2021201-1
– ident: key-10.3934/math.2021201-34
  doi: 10.3390/math8020222
– ident: key-10.3934/math.2021201-56
– ident: key-10.3934/math.2021201-60
  doi: 10.1016/j.amc.2009.01.055
– ident: key-10.3934/math.2021201-22
  doi: 10.3934/math.2020108
SSID ssj0002124274
Score 2.1706882
Snippet Integral inequalities play a key role in applied and theoretical mathematics. The purpose of inequalities is to develop mathematical techniques in analysis....
SourceID doaj
crossref
SourceType Open Website
Enrichment Source
Index Database
StartPage 3352
SubjectTerms convexity
fractional derivatives and integrals
generalized multi-index bessel function
inequalities and integral operators
Title Some generalized fractional integral inequalities with nonsingular function as a kernel
URI https://doaj.org/article/6ee93b50917140b3a68a46aae8fb481a
Volume 6
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8gATiprEjmOPgKgqpLJARbfIjzNClIDSsvDr8cVp1QWxsFnJObHuLN999vk7Qi5ya73iAhLu8wBQcpcmKkyDRAEXCBectng5efwgRhN-Py2ma6W-MCcs0gNHxQ0EgGIG3RpSyxmmhdRcaA3SGy6zNjRKVboGpnANDgsyD3grZrozxfggxH949hBedPVflj5ojaq_9SnDHbLdBYP0Og5il2xAvUe2xism1fk-eX78eAf6EsmhX7_BUd_EuwihY8f1gA2ItyMD7qW4tUprTHytsc58Q9F3YQ-q51TTN2hqmB2QyfDu6XaUdMUQEstKuUhASA5Yh7twzkAGxgjFRAG5E3gymKfep86Fhi6gQDetpUutYjZNvcx8wQ5JL_wajgjVmRXcl7KlpvECjDWyVBDMybzyouyTq6V6KtsxhWPBilkVEAMqs0JlVp0y--RyJf0ZGTJ-kbtBTa9kkNe6fRCsXXXWrv6y9vF_fOSEbOKY4kbKKektmi84C6HFwpy3s-gHwy7OEw
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Some+generalized+fractional+integral+inequalities+with+nonsingular+function+as+a+kernel&rft.jtitle=AIMS+mathematics&rft.au=Shahid+Mubeen&rft.au=Rana+Safdar+Ali&rft.au=Iqra+Nayab&rft.au=Gauhar+Rahman&rft.date=2021-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=6&rft.issue=4&rft.spage=3352&rft.epage=3377&rft_id=info:doi/10.3934%2Fmath.2021201&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6ee93b50917140b3a68a46aae8fb481a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon