Some generalized fractional integral inequalities with nonsingular function as a kernel
Integral inequalities play a key role in applied and theoretical mathematics. The purpose of inequalities is to develop mathematical techniques in analysis. The goal of this paper is to develop a fractional integral operator having a non-singular function (generalized multi-index Bessel function) as...
Saved in:
Published in | AIMS mathematics Vol. 6; no. 4; pp. 3352 - 3377 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.2021201 |
Cover
Abstract | Integral inequalities play a key role in applied and theoretical mathematics. The purpose of inequalities is to develop mathematical techniques in analysis. The goal of this paper is to develop a fractional integral operator having a non-singular function (generalized multi-index Bessel function) as a kernel and then to obtain some significant inequalities like Hermit Hadamard Mercer inequality, exponentially (s−m)-preinvex inequalities, Pólya-Szegö and Chebyshev type integral inequalities with the newly developed fractional operator. These results describe in general behave and provide the extension of fractional operator theory (FOT) in inequalities. |
---|---|
AbstractList | Integral inequalities play a key role in applied and theoretical mathematics. The purpose of inequalities is to develop mathematical techniques in analysis. The goal of this paper is to develop a fractional integral operator having a non-singular function (generalized multi-index Bessel function) as a kernel and then to obtain some significant inequalities like Hermit Hadamard Mercer inequality, exponentially (s−m)-preinvex inequalities, Pólya-Szegö and Chebyshev type integral inequalities with the newly developed fractional operator. These results describe in general behave and provide the extension of fractional operator theory (FOT) in inequalities. |
Author | Nayab, Iqra Baleanu, Dumitru Ali, Rana Safdar Rahman, Gauhar Nisar, Kottakkaran Sooppy Mubeen, Shahid |
Author_xml | – sequence: 1 givenname: Shahid surname: Mubeen fullname: Mubeen, Shahid – sequence: 2 givenname: Rana Safdar surname: Ali fullname: Ali, Rana Safdar – sequence: 3 givenname: Iqra surname: Nayab fullname: Nayab, Iqra – sequence: 4 givenname: Gauhar surname: Rahman fullname: Rahman, Gauhar – sequence: 5 givenname: Kottakkaran Sooppy surname: Nisar fullname: Nisar, Kottakkaran Sooppy – sequence: 6 givenname: Dumitru surname: Baleanu fullname: Baleanu, Dumitru |
BookMark | eNptUMtOwzAQtFCRKKU3PsAfQMGvOM4RVTwqVeIAiKO1SdapS5qA4wrB15O0RUKI0452d2Zn55SMmrZBQs45u5SZVFcbiKtLwQQXjB-RsVCpnOnMmNEvfEKmXbdmbNhSIlVj8vLYbpBW2GCA2n9hSV2AIvq2gZr6JmIVdgDft_08euzoh48r2h_vfFNtawjUbZsdg0JHgb5iaLA-I8cO6g6nhzohz7c3T_P72fLhbjG_Xs4KmZo4Q20U8t5OUpY5csxznUmdoCg14yoRzDlWlj2ABBOhmAZTsiKTBWPOcJfICVnsdcsW1vYt-A2ET9uCt7tGGyoLIfqiRqsRM5knLOMpVyyXoA0oDYDG5cpw6LXEXqsIbdcFdLbwEYbPYgBfW87skLQdkraHpHvSxR_Sj4l_178B75qDJQ |
CitedBy_id | crossref_primary_10_1155_2024_4082683 crossref_primary_10_1016_j_aej_2021_10_033 crossref_primary_10_1142_S1793557123502418 crossref_primary_10_1007_s40819_021_01202_3 crossref_primary_10_1186_s13660_022_02899_6 crossref_primary_10_1007_s00009_023_02547_3 |
Cites_doi | 10.1002/mma.6188 10.3934/math.2019.6.1554 10.1007/BF01201355 10.1007/s13398-020-00843-1 10.1016/j.amc.2011.03.062 10.1556/012.2019.56.1.1418 10.1186/s13662-019-2381-0 10.3390/sym10110614 10.1007/978-3-662-38380-3 10.1186/s13662-017-1306-z 10.1186/s13662-019-2229-7 10.1186/s13660-020-02335-7 10.1007/s13398-019-00731-3 10.1155/2012/980438 10.1186/s13662-020-03075-0 10.1016/j.amc.2015.07.026 10.3390/math7040364 10.3934/math.2021052 10.3390/math8040504 10.1186/s13662-020-03036-7 10.3390/math7010029 10.1186/s13660-020-02420-x 10.4153/CMB-1968-091-5 10.1186/s13660-019-2150-3 10.1080/00036811.2019.1616083 10.18576/amis/120215 10.1186/s13660-018-1639-5 10.2298/FIL1607931C 10.1186/s13662-017-1126-1 10.1186/s13662-020-02559-3 10.1186/s13660-019-2170-z 10.1186/s13660-019-2197-1 10.1140/epjst/e2018-00021-7 10.3390/math8010113 10.1016/0022-247X(88)90113-8 10.3390/sym12040610 10.1186/s13662-020-02720-y 10.1186/s13660-019-2199-z 10.3390/sym11121448 10.1016/j.cam.2014.10.016 10.1016/j.na.2009.01.120 10.1186/s13662-020-2541-2 10.1186/s13662-019-2362-3 10.1186/s40064-016-3301-3 10.3390/math8040500 10.1155/2020/1378457 10.1186/s13662-020-02825-4 10.7153/jmi-2020-14-03 10.3390/math8020222 10.1016/j.amc.2009.01.055 10.3934/math.2020108 |
ContentType | Journal Article |
CorporateAuthor | Department of Mathematics, College of Arts and Sciences, Prince Sattam bin Abdulaziz University, Wadi Aldawser 11991, Saudi Arabia Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan Department of Mathematics, University of Lahore, Lahore, Pakistan Department of Mathematics and Statistics, Hazara University, Mansehra, Pakistan Department of Mathematics, University of Sargodha, Sargodha, Pakistan Department of Mathematics, Cankaya University, Ankara 06790, Turkey Institute of Space Sciences, Magurele-Bucharest 077125, Romania |
CorporateAuthor_xml | – name: Institute of Space Sciences, Magurele-Bucharest 077125, Romania – name: Department of Mathematics and Statistics, Hazara University, Mansehra, Pakistan – name: Department of Mathematics, University of Lahore, Lahore, Pakistan – name: Department of Mathematics, Cankaya University, Ankara 06790, Turkey – name: Department of Medical Research, China Medical University Hospital, China Medical University, Taichung 40447, Taiwan – name: Department of Mathematics, College of Arts and Sciences, Prince Sattam bin Abdulaziz University, Wadi Aldawser 11991, Saudi Arabia – name: Department of Mathematics, University of Sargodha, Sargodha, Pakistan |
DBID | AAYXX CITATION DOA |
DOI | 10.3934/math.2021201 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals (ODIN) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 3377 |
ExternalDocumentID | oai_doaj_org_article_6ee93b50917140b3a68a46aae8fb481a 10_3934_math_2021201 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN |
ID | FETCH-LOGICAL-c378t-e684e10215ddbe1ebb69365e2d6014520ff0dd452a5e52406a8d0c93c00f81f53 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 00:58:51 EDT 2025 Thu Apr 24 23:04:11 EDT 2025 Tue Jul 01 03:56:47 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-e684e10215ddbe1ebb69365e2d6014520ff0dd452a5e52406a8d0c93c00f81f53 |
OpenAccessLink | https://doaj.org/article/6ee93b50917140b3a68a46aae8fb481a |
PageCount | 26 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_6ee93b50917140b3a68a46aae8fb481a crossref_citationtrail_10_3934_math_2021201 crossref_primary_10_3934_math_2021201 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-01-01 |
PublicationDateYYYYMMDD | 2021-01-01 |
PublicationDate_xml | – month: 01 year: 2021 text: 2021-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2021 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2021201-7 key-10.3934/math.2021201-28 key-10.3934/math.2021201-6 key-10.3934/math.2021201-29 key-10.3934/math.2021201-9 key-10.3934/math.2021201-8 key-10.3934/math.2021201-24 key-10.3934/math.2021201-25 key-10.3934/math.2021201-26 key-10.3934/math.2021201-27 key-10.3934/math.2021201-20 key-10.3934/math.2021201-21 key-10.3934/math.2021201-22 key-10.3934/math.2021201-23 key-10.3934/math.2021201-60 key-10.3934/math.2021201-61 key-10.3934/math.2021201-62 key-10.3934/math.2021201-17 key-10.3934/math.2021201-18 key-10.3934/math.2021201-19 key-10.3934/math.2021201-13 key-10.3934/math.2021201-57 key-10.3934/math.2021201-14 key-10.3934/math.2021201-58 key-10.3934/math.2021201-15 key-10.3934/math.2021201-59 key-10.3934/math.2021201-16 key-10.3934/math.2021201-53 key-10.3934/math.2021201-10 key-10.3934/math.2021201-54 key-10.3934/math.2021201-11 key-10.3934/math.2021201-55 key-10.3934/math.2021201-12 key-10.3934/math.2021201-56 key-10.3934/math.2021201-50 key-10.3934/math.2021201-51 key-10.3934/math.2021201-52 key-10.3934/math.2021201-46 key-10.3934/math.2021201-47 key-10.3934/math.2021201-48 key-10.3934/math.2021201-49 key-10.3934/math.2021201-42 key-10.3934/math.2021201-43 key-10.3934/math.2021201-44 key-10.3934/math.2021201-45 key-10.3934/math.2021201-40 key-10.3934/math.2021201-41 key-10.3934/math.2021201-1 key-10.3934/math.2021201-3 key-10.3934/math.2021201-2 key-10.3934/math.2021201-5 key-10.3934/math.2021201-4 key-10.3934/math.2021201-39 key-10.3934/math.2021201-35 key-10.3934/math.2021201-36 key-10.3934/math.2021201-37 key-10.3934/math.2021201-38 key-10.3934/math.2021201-31 key-10.3934/math.2021201-32 key-10.3934/math.2021201-33 key-10.3934/math.2021201-34 key-10.3934/math.2021201-30 |
References_xml | – ident: key-10.3934/math.2021201-18 doi: 10.1002/mma.6188 – ident: key-10.3934/math.2021201-46 doi: 10.3934/math.2019.6.1554 – ident: key-10.3934/math.2021201-50 doi: 10.1007/BF01201355 – ident: key-10.3934/math.2021201-52 – ident: key-10.3934/math.2021201-15 doi: 10.1007/s13398-020-00843-1 – ident: key-10.3934/math.2021201-10 – ident: key-10.3934/math.2021201-2 doi: 10.1016/j.amc.2011.03.062 – ident: key-10.3934/math.2021201-9 doi: 10.1556/012.2019.56.1.1418 – ident: key-10.3934/math.2021201-35 doi: 10.1186/s13662-019-2381-0 – ident: key-10.3934/math.2021201-62 – ident: key-10.3934/math.2021201-26 doi: 10.3390/sym10110614 – ident: key-10.3934/math.2021201-13 – ident: key-10.3934/math.2021201-51 doi: 10.1007/978-3-662-38380-3 – ident: key-10.3934/math.2021201-23 doi: 10.1186/s13662-017-1306-z – ident: key-10.3934/math.2021201-37 doi: 10.1186/s13662-019-2229-7 – ident: key-10.3934/math.2021201-41 doi: 10.1186/s13660-020-02335-7 – ident: key-10.3934/math.2021201-31 doi: 10.1007/s13398-019-00731-3 – ident: key-10.3934/math.2021201-4 doi: 10.1155/2012/980438 – ident: key-10.3934/math.2021201-42 doi: 10.1186/s13662-020-03075-0 – ident: key-10.3934/math.2021201-21 doi: 10.1016/j.amc.2015.07.026 – ident: key-10.3934/math.2021201-32 doi: 10.3390/math7040364 – ident: key-10.3934/math.2021201-47 doi: 10.3934/math.2021052 – ident: key-10.3934/math.2021201-38 doi: 10.3390/math8040504 – ident: key-10.3934/math.2021201-49 doi: 10.1186/s13662-020-03036-7 – ident: key-10.3934/math.2021201-45 doi: 10.3390/math7010029 – ident: key-10.3934/math.2021201-39 doi: 10.1186/s13660-020-02420-x – ident: key-10.3934/math.2021201-59 doi: 10.4153/CMB-1968-091-5 – ident: key-10.3934/math.2021201-5 doi: 10.1186/s13660-019-2150-3 – ident: key-10.3934/math.2021201-7 doi: 10.1080/00036811.2019.1616083 – ident: key-10.3934/math.2021201-55 doi: 10.18576/amis/120215 – ident: key-10.3934/math.2021201-3 doi: 10.1186/s13660-018-1639-5 – ident: key-10.3934/math.2021201-58 doi: 10.2298/FIL1607931C – ident: key-10.3934/math.2021201-12 doi: 10.1186/s13662-017-1126-1 – ident: key-10.3934/math.2021201-14 doi: 10.1186/s13662-020-02559-3 – ident: key-10.3934/math.2021201-29 – ident: key-10.3934/math.2021201-54 – ident: key-10.3934/math.2021201-25 – ident: key-10.3934/math.2021201-28 doi: 10.1186/s13660-019-2170-z – ident: key-10.3934/math.2021201-27 doi: 10.1186/s13660-019-2197-1 – ident: key-10.3934/math.2021201-24 doi: 10.1140/epjst/e2018-00021-7 – ident: key-10.3934/math.2021201-33 doi: 10.3390/math8010113 – ident: key-10.3934/math.2021201-57 doi: 10.1016/0022-247X(88)90113-8 – ident: key-10.3934/math.2021201-8 – ident: key-10.3934/math.2021201-20 doi: 10.3390/sym12040610 – ident: key-10.3934/math.2021201-44 doi: 10.1186/s13662-020-02720-y – ident: key-10.3934/math.2021201-36 doi: 10.1186/s13660-019-2199-z – ident: key-10.3934/math.2021201-48 doi: 10.3390/sym11121448 – ident: key-10.3934/math.2021201-11 doi: 10.1016/j.cam.2014.10.016 – ident: key-10.3934/math.2021201-16 doi: 10.1016/j.na.2009.01.120 – ident: key-10.3934/math.2021201-17 doi: 10.1186/s13662-020-2541-2 – ident: key-10.3934/math.2021201-30 doi: 10.1186/s13662-019-2362-3 – ident: key-10.3934/math.2021201-53 – ident: key-10.3934/math.2021201-6 doi: 10.1186/s40064-016-3301-3 – ident: key-10.3934/math.2021201-40 doi: 10.3390/math8040500 – ident: key-10.3934/math.2021201-61 doi: 10.1155/2020/1378457 – ident: key-10.3934/math.2021201-19 doi: 10.1186/s13662-020-02825-4 – ident: key-10.3934/math.2021201-43 doi: 10.7153/jmi-2020-14-03 – ident: key-10.3934/math.2021201-1 – ident: key-10.3934/math.2021201-34 doi: 10.3390/math8020222 – ident: key-10.3934/math.2021201-56 – ident: key-10.3934/math.2021201-60 doi: 10.1016/j.amc.2009.01.055 – ident: key-10.3934/math.2021201-22 doi: 10.3934/math.2020108 |
SSID | ssj0002124274 |
Score | 2.1706882 |
Snippet | Integral inequalities play a key role in applied and theoretical mathematics. The purpose of inequalities is to develop mathematical techniques in analysis.... |
SourceID | doaj crossref |
SourceType | Open Website Enrichment Source Index Database |
StartPage | 3352 |
SubjectTerms | convexity fractional derivatives and integrals generalized multi-index bessel function inequalities and integral operators |
Title | Some generalized fractional integral inequalities with nonsingular function as a kernel |
URI | https://doaj.org/article/6ee93b50917140b3a68a46aae8fb481a |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8gATiprEjmOPgKgqpLJARbfIjzNClIDSsvDr8cVp1QWxsFnJObHuLN999vk7Qi5ya73iAhLu8wBQcpcmKkyDRAEXCBectng5efwgRhN-Py2ma6W-MCcs0gNHxQ0EgGIG3RpSyxmmhdRcaA3SGy6zNjRKVboGpnANDgsyD3grZrozxfggxH949hBedPVflj5ojaq_9SnDHbLdBYP0Og5il2xAvUe2xism1fk-eX78eAf6EsmhX7_BUd_EuwihY8f1gA2ItyMD7qW4tUprTHytsc58Q9F3YQ-q51TTN2hqmB2QyfDu6XaUdMUQEstKuUhASA5Yh7twzkAGxgjFRAG5E3gymKfep86Fhi6gQDetpUutYjZNvcx8wQ5JL_wajgjVmRXcl7KlpvECjDWyVBDMybzyouyTq6V6KtsxhWPBilkVEAMqs0JlVp0y--RyJf0ZGTJ-kbtBTa9kkNe6fRCsXXXWrv6y9vF_fOSEbOKY4kbKKektmi84C6HFwpy3s-gHwy7OEw |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Some+generalized+fractional+integral+inequalities+with+nonsingular+function+as+a+kernel&rft.jtitle=AIMS+mathematics&rft.au=Shahid+Mubeen&rft.au=Rana+Safdar+Ali&rft.au=Iqra+Nayab&rft.au=Gauhar+Rahman&rft.date=2021-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=6&rft.issue=4&rft.spage=3352&rft.epage=3377&rft_id=info:doi/10.3934%2Fmath.2021201&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_6ee93b50917140b3a68a46aae8fb481a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |