Convolutional neural-based algorithm for port occupancy status detection of optical distribution frames
As optical distribution frames (ODFs) carry increasing amounts of data, issues relating to their port management are becoming crucial. Image backhaul inspection has been widely accepted as an effective technology to monitor the occupancy status of ODF ports. However, the massive amount of on-site im...
Saved in:
| Published in | Optical engineering Vol. 59; no. 8; p. 086102 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Society of Photo-Optical Instrumentation Engineers
01.08.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0091-3286 1560-2303 |
| DOI | 10.1117/1.OE.59.8.086102 |
Cover
| Abstract | As optical distribution frames (ODFs) carry increasing amounts of data, issues relating to their port management are becoming crucial. Image backhaul inspection has been widely accepted as an effective technology to monitor the occupancy status of ODF ports. However, the massive amount of on-site images requires a large team of off-site technologists to manually identify the occupancy status of each ODF port, which is time-consuming. We employ the you only look once version 3 (YOLOv3) network to automatically recognize ODF port occupancy. The YOLOv3 is a state-of-the-art convolutional neural network that has been shown to be very efficient for object detection in terms of processing speed and accuracy for the common objects in context. To accommodate ODF images with densely arranged small objects, high resolutions, closely spaced adjacent ports, and occlusion, we modified the original YOLOv3 with four-scale feature fusion, anchor box dimension clustering, and soft nonmaximum suppression filtering. Experiments showed a 7.38% increase in the original YOLOv3 detection accuracy rate of 91.45%. The new method can update the image backhaul inspection to automatically realize port resource management. The number of required port management technologists is considerably reduced, and the accuracy of port resources is increased, resulting in significant network investment savings. |
|---|---|
| AbstractList | As optical distribution frames (ODFs) carry increasing amounts of data, issues relating to their port management are becoming crucial. Image backhaul inspection has been widely accepted as an effective technology to monitor the occupancy status of ODF ports. However, the massive amount of on-site images requires a large team of off-site technologists to manually identify the occupancy status of each ODF port, which is time-consuming. We employ the you only look once version 3 (YOLOv3) network to automatically recognize ODF port occupancy. The YOLOv3 is a state-of-the-art convolutional neural network that has been shown to be very efficient for object detection in terms of processing speed and accuracy for the common objects in context. To accommodate ODF images with densely arranged small objects, high resolutions, closely spaced adjacent ports, and occlusion, we modified the original YOLOv3 with four-scale feature fusion, anchor box dimension clustering, and soft nonmaximum suppression filtering. Experiments showed a 7.38% increase in the original YOLOv3 detection accuracy rate of 91.45%. The new method can update the image backhaul inspection to automatically realize port resource management. The number of required port management technologists is considerably reduced, and the accuracy of port resources is increased, resulting in significant network investment savings. |
| Author | Yu, Ningmei Su, Dong |
| Author_xml | – sequence: 1 givenname: Dong orcidid: 0000-0001-6892-4099 surname: Su fullname: Su, Dong email: sudong@stu.xaut.edu.cn organization: Xi’an University of Technology, School of Automation and Information Engineering, Xi’an, China – sequence: 2 givenname: Ningmei orcidid: 0000-0002-4219-8364 surname: Yu fullname: Yu, Ningmei email: yunm@xaut.edu.cn organization: Xi’an University of Technology, School of Automation and Information Engineering, Xi’an, China |
| BookMark | eNqNkU9PwjAchhuDiYDePfYLbLYdjPZoENQEgwdNvDVd_0DJWJe2M8FPb3GeiCGe2sPzvHnz_kZg0LhGA3CLUY4xnt3hfL3IpyynOaIlRuQCDPG0RBkpUDEAQ4QYzgpCyyswCmGHECKM0iHYzF3z6eouWteIGja686LOKhG0gqLeOG_jdg-N87B1PkInZdeKRh5giCJ2ASodtTzK0Bno2mhlSlE2RG-rn1BovNjrcA0ujaiDvvl9x-B9uXibP2Wr9ePz_H6VyWJGYyYFLiktTYWZoOkvCJOVIIqUFSooNkTKQk8UYqrCekL1bEokmxjFGCKlRqYYg7LPld6F4LXh0qamqUj0wtYcI36ci2O-XvAp45T3cyURnYitt3vhD-eUrFdCazXfuc6nCcM5fvsXn6h0gZ5c-lT042UlGvX6sORftj0J-QfRKlN8A4WXo5E |
| CitedBy_id | crossref_primary_10_1117_1_OE_62_12_125101 crossref_primary_10_3390_s24010215 |
| ContentType | Journal Article |
| Copyright | 2020 Society of Photo-Optical Instrumentation Engineers (SPIE) |
| Copyright_xml | – notice: 2020 Society of Photo-Optical Instrumentation Engineers (SPIE) |
| DBID | AAYXX CITATION |
| DOI | 10.1117/1.OE.59.8.086102 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Visual Arts Engineering Physics |
| EISSN | 1560-2303 |
| EndPage | 086102 |
| ExternalDocumentID | 10_1117_1_OE_59_8_086102 |
| GrantInformation_xml | – fundername: Primary Research Development Plan of Shaanxi Province grantid: 2019TSLGY08-03 |
| GroupedDBID | 02 0R 123 29N AAPBV ABFLS ABPTK ABTRL ACGFS AENEX ALMA_UNASSIGNED_HOLDINGS CS3 DU5 EBS F5P FQ0 HZ M4X O9- P2P RNS SPBNH TAE TWZ UCJ UT2 WH7 X -~X .DC 0R~ 4.4 AAYXX ABJNI ACGFO ADMLS AKROS CITATION HZ~ P-S XJE ~02 |
| ID | FETCH-LOGICAL-c378t-ca16886fb19a8a16a29cba2d26b0381f2cc3e4d09db1e48e752c94fd99026e0f3 |
| ISSN | 0091-3286 |
| IngestDate | Thu Apr 24 23:03:01 EDT 2025 Tue Jul 01 02:47:17 EDT 2025 Fri Jan 15 20:12:51 EST 2021 Fri Jan 15 19:57:08 EST 2021 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 8 |
| Keywords | you only look once version 3 object detection optical distribution frame port occupancy |
| Language | English |
| LinkModel | OpenURL |
| MergedId | FETCHMERGED-LOGICAL-c378t-ca16886fb19a8a16a29cba2d26b0381f2cc3e4d09db1e48e752c94fd99026e0f3 |
| ORCID | 0000-0002-4219-8364 0000-0001-6892-4099 |
| PageCount | 1 |
| ParticipantIDs | spie_journals_10_1117_1_OE_59_8_086102 crossref_citationtrail_10_1117_1_OE_59_8_086102 crossref_primary_10_1117_1_OE_59_8_086102 |
| ProviderPackageCode | FQ0 SPBNH UT2 CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-08-01 |
| PublicationDateYYYYMMDD | 2020-08-01 |
| PublicationDate_xml | – month: 08 year: 2020 text: 2020-08-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Optical engineering |
| PublicationTitleAlternate | Opt. Eng |
| PublicationYear | 2020 |
| Publisher | Society of Photo-Optical Instrumentation Engineers |
| Publisher_xml | – name: Society of Photo-Optical Instrumentation Engineers |
| SSID | ssj0002988 |
| Score | 2.2939901 |
| Snippet | As optical distribution frames (ODFs) carry increasing amounts of data, issues relating to their port management are becoming crucial. Image backhaul... |
| SourceID | crossref spie |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 086102 |
| Title | Convolutional neural-based algorithm for port occupancy status detection of optical distribution frames |
| URI | http://www.dx.doi.org/10.1117/1.OE.59.8.086102 |
| Volume | 59 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1560-2303 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0002988 issn: 0091-3286 databaseCode: ADMLS dateStart: 19900101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKJyQ4IBggxpd8QEioSpc438dpazXQSpHYUDlFju10ldokUlIOO_OH8xw7iTuNqXCJIvc5bvJ-tt-z3_sZoQ--4JwJl1tZ7FLLk3k-sZ9SK7SFzbIwZVGz3jH7GpxfeV8W_mIw-G1ELW3rdMxu7swr-R-tQhnoVWbJ_oNmu4dCAdyDfuEKGobrXjo-LfJfugH40pKakq4tOS_xEV0vC_D7rzdNHKE0skdFQygsMy1lFtG2GnFRC9ZajEVZtzs23SFYo0yGblWmATvXYqLnMez3lZRF3pf83Cqw5cuNWJnrC6SPbtPrizp4VEbkXRd1YbXtfG4Ybjc6Qyrv-BPNNUYwRiyXtFzXeoQNbAv8HtccgjUpuIJaZIyn4HA5NjFm577gjrG_YQ8YzydjH6AyNuvuMGorvydMnGQ-Sfw4iRIl-gAdEJgb7CE6ODmbXXzvZnQSR2pG16_Tbnc74fHt5nbMm2FVroRhrlw-RU-0n4FPFGieoYHID9Fjg33yED1son9ZBeU_VtVWSVfP0XIHVtiEFe5ghQFWWMIKd7DCCla4gxUuMqxhhU1YYQWrF-hqOrk8Pbf0eRwWc8Oothh1gigKstSJaQT3lMQspYSTIJX7zRlhzBUet2OeOsKLROgTFnsZB4OHBMLO3JdomBe5eIVwRimjYEtKd9kDqzUVsR8HTsa5PENUBEfouP2MCdNk9fLMlHXyN-UdoU9djVIRtdwj-1FqJtFdubpHkO4Kws-gACUylQwji9kFzfm3s2lysypv1d5DouTZ633_zBv0qO-fb9EQep94BxZxnb7XgP0DacG3zg |
| linkProvider | EBSCOhost |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+neural-based+algorithm+for+port+occupancy+status+detection+of+optical+distribution+frames&rft.jtitle=Optical+engineering&rft.au=Su%2C+Dong&rft.au=Yu%2C+Ningmei&rft.date=2020-08-01&rft.pub=Society+of+Photo-Optical+Instrumentation+Engineers&rft.issn=0091-3286&rft.eissn=1560-2303&rft.volume=59&rft.issue=8&rft.spage=086102&rft.epage=086102&rft_id=info:doi/10.1117%2F1.OE.59.8.086102&rft.externalDocID=10_1117_1_OE_59_8_086102 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0091-3286&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0091-3286&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0091-3286&client=summon |