Convolutional neural-based algorithm for port occupancy status detection of optical distribution frames

As optical distribution frames (ODFs) carry increasing amounts of data, issues relating to their port management are becoming crucial. Image backhaul inspection has been widely accepted as an effective technology to monitor the occupancy status of ODF ports. However, the massive amount of on-site im...

Full description

Saved in:
Bibliographic Details
Published inOptical engineering Vol. 59; no. 8; p. 086102
Main Authors Su, Dong, Yu, Ningmei
Format Journal Article
LanguageEnglish
Published Society of Photo-Optical Instrumentation Engineers 01.08.2020
Subjects
Online AccessGet full text
ISSN0091-3286
1560-2303
DOI10.1117/1.OE.59.8.086102

Cover

Abstract As optical distribution frames (ODFs) carry increasing amounts of data, issues relating to their port management are becoming crucial. Image backhaul inspection has been widely accepted as an effective technology to monitor the occupancy status of ODF ports. However, the massive amount of on-site images requires a large team of off-site technologists to manually identify the occupancy status of each ODF port, which is time-consuming. We employ the you only look once version 3 (YOLOv3) network to automatically recognize ODF port occupancy. The YOLOv3 is a state-of-the-art convolutional neural network that has been shown to be very efficient for object detection in terms of processing speed and accuracy for the common objects in context. To accommodate ODF images with densely arranged small objects, high resolutions, closely spaced adjacent ports, and occlusion, we modified the original YOLOv3 with four-scale feature fusion, anchor box dimension clustering, and soft nonmaximum suppression filtering. Experiments showed a 7.38% increase in the original YOLOv3 detection accuracy rate of 91.45%. The new method can update the image backhaul inspection to automatically realize port resource management. The number of required port management technologists is considerably reduced, and the accuracy of port resources is increased, resulting in significant network investment savings.
AbstractList As optical distribution frames (ODFs) carry increasing amounts of data, issues relating to their port management are becoming crucial. Image backhaul inspection has been widely accepted as an effective technology to monitor the occupancy status of ODF ports. However, the massive amount of on-site images requires a large team of off-site technologists to manually identify the occupancy status of each ODF port, which is time-consuming. We employ the you only look once version 3 (YOLOv3) network to automatically recognize ODF port occupancy. The YOLOv3 is a state-of-the-art convolutional neural network that has been shown to be very efficient for object detection in terms of processing speed and accuracy for the common objects in context. To accommodate ODF images with densely arranged small objects, high resolutions, closely spaced adjacent ports, and occlusion, we modified the original YOLOv3 with four-scale feature fusion, anchor box dimension clustering, and soft nonmaximum suppression filtering. Experiments showed a 7.38% increase in the original YOLOv3 detection accuracy rate of 91.45%. The new method can update the image backhaul inspection to automatically realize port resource management. The number of required port management technologists is considerably reduced, and the accuracy of port resources is increased, resulting in significant network investment savings.
Author Yu, Ningmei
Su, Dong
Author_xml – sequence: 1
  givenname: Dong
  orcidid: 0000-0001-6892-4099
  surname: Su
  fullname: Su, Dong
  email: sudong@stu.xaut.edu.cn
  organization: Xi’an University of Technology, School of Automation and Information Engineering, Xi’an, China
– sequence: 2
  givenname: Ningmei
  orcidid: 0000-0002-4219-8364
  surname: Yu
  fullname: Yu, Ningmei
  email: yunm@xaut.edu.cn
  organization: Xi’an University of Technology, School of Automation and Information Engineering, Xi’an, China
BookMark eNqNkU9PwjAchhuDiYDePfYLbLYdjPZoENQEgwdNvDVd_0DJWJe2M8FPb3GeiCGe2sPzvHnz_kZg0LhGA3CLUY4xnt3hfL3IpyynOaIlRuQCDPG0RBkpUDEAQ4QYzgpCyyswCmGHECKM0iHYzF3z6eouWteIGja686LOKhG0gqLeOG_jdg-N87B1PkInZdeKRh5giCJ2ASodtTzK0Bno2mhlSlE2RG-rn1BovNjrcA0ujaiDvvl9x-B9uXibP2Wr9ePz_H6VyWJGYyYFLiktTYWZoOkvCJOVIIqUFSooNkTKQk8UYqrCekL1bEokmxjFGCKlRqYYg7LPld6F4LXh0qamqUj0wtYcI36ci2O-XvAp45T3cyURnYitt3vhD-eUrFdCazXfuc6nCcM5fvsXn6h0gZ5c-lT042UlGvX6sORftj0J-QfRKlN8A4WXo5E
CitedBy_id crossref_primary_10_1117_1_OE_62_12_125101
crossref_primary_10_3390_s24010215
ContentType Journal Article
Copyright 2020 Society of Photo-Optical Instrumentation Engineers (SPIE)
Copyright_xml – notice: 2020 Society of Photo-Optical Instrumentation Engineers (SPIE)
DBID AAYXX
CITATION
DOI 10.1117/1.OE.59.8.086102
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Visual Arts
Engineering
Physics
EISSN 1560-2303
EndPage 086102
ExternalDocumentID 10_1117_1_OE_59_8_086102
GrantInformation_xml – fundername: Primary Research Development Plan of Shaanxi Province
  grantid: 2019TSLGY08-03
GroupedDBID 02
0R
123
29N
AAPBV
ABFLS
ABPTK
ABTRL
ACGFS
AENEX
ALMA_UNASSIGNED_HOLDINGS
CS3
DU5
EBS
F5P
FQ0
HZ
M4X
O9-
P2P
RNS
SPBNH
TAE
TWZ
UCJ
UT2
WH7
X
-~X
.DC
0R~
4.4
AAYXX
ABJNI
ACGFO
ADMLS
AKROS
CITATION
HZ~
P-S
XJE
~02
ID FETCH-LOGICAL-c378t-ca16886fb19a8a16a29cba2d26b0381f2cc3e4d09db1e48e752c94fd99026e0f3
ISSN 0091-3286
IngestDate Thu Apr 24 23:03:01 EDT 2025
Tue Jul 01 02:47:17 EDT 2025
Fri Jan 15 20:12:51 EST 2021
Fri Jan 15 19:57:08 EST 2021
IsPeerReviewed true
IsScholarly true
Issue 8
Keywords you only look once version 3
object detection
optical distribution frame
port occupancy
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c378t-ca16886fb19a8a16a29cba2d26b0381f2cc3e4d09db1e48e752c94fd99026e0f3
ORCID 0000-0002-4219-8364
0000-0001-6892-4099
PageCount 1
ParticipantIDs spie_journals_10_1117_1_OE_59_8_086102
crossref_citationtrail_10_1117_1_OE_59_8_086102
crossref_primary_10_1117_1_OE_59_8_086102
ProviderPackageCode FQ0
SPBNH
UT2
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-08-01
PublicationDateYYYYMMDD 2020-08-01
PublicationDate_xml – month: 08
  year: 2020
  text: 2020-08-01
  day: 01
PublicationDecade 2020
PublicationTitle Optical engineering
PublicationTitleAlternate Opt. Eng
PublicationYear 2020
Publisher Society of Photo-Optical Instrumentation Engineers
Publisher_xml – name: Society of Photo-Optical Instrumentation Engineers
SSID ssj0002988
Score 2.2939901
Snippet As optical distribution frames (ODFs) carry increasing amounts of data, issues relating to their port management are becoming crucial. Image backhaul...
SourceID crossref
spie
SourceType Enrichment Source
Index Database
Publisher
StartPage 086102
Title Convolutional neural-based algorithm for port occupancy status detection of optical distribution frames
URI http://www.dx.doi.org/10.1117/1.OE.59.8.086102
Volume 59
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1560-2303
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0002988
  issn: 0091-3286
  databaseCode: ADMLS
  dateStart: 19900101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3Nb9MwFLdKJyQ4IBggxpd8QEioSpc438dpazXQSpHYUDlFju10ldokUlIOO_OH8xw7iTuNqXCJIvc5bvJ-tt-z3_sZoQ--4JwJl1tZ7FLLk3k-sZ9SK7SFzbIwZVGz3jH7GpxfeV8W_mIw-G1ELW3rdMxu7swr-R-tQhnoVWbJ_oNmu4dCAdyDfuEKGobrXjo-LfJfugH40pKakq4tOS_xEV0vC_D7rzdNHKE0skdFQygsMy1lFtG2GnFRC9ZajEVZtzs23SFYo0yGblWmATvXYqLnMez3lZRF3pf83Cqw5cuNWJnrC6SPbtPrizp4VEbkXRd1YbXtfG4Ybjc6Qyrv-BPNNUYwRiyXtFzXeoQNbAv8HtccgjUpuIJaZIyn4HA5NjFm577gjrG_YQ8YzydjH6AyNuvuMGorvydMnGQ-Sfw4iRIl-gAdEJgb7CE6ODmbXXzvZnQSR2pG16_Tbnc74fHt5nbMm2FVroRhrlw-RU-0n4FPFGieoYHID9Fjg33yED1son9ZBeU_VtVWSVfP0XIHVtiEFe5ghQFWWMIKd7DCCla4gxUuMqxhhU1YYQWrF-hqOrk8Pbf0eRwWc8Oothh1gigKstSJaQT3lMQspYSTIJX7zRlhzBUet2OeOsKLROgTFnsZB4OHBMLO3JdomBe5eIVwRimjYEtKd9kDqzUVsR8HTsa5PENUBEfouP2MCdNk9fLMlHXyN-UdoU9djVIRtdwj-1FqJtFdubpHkO4Kws-gACUylQwji9kFzfm3s2lysypv1d5DouTZ633_zBv0qO-fb9EQep94BxZxnb7XgP0DacG3zg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Convolutional+neural-based+algorithm+for+port+occupancy+status+detection+of+optical+distribution+frames&rft.jtitle=Optical+engineering&rft.au=Su%2C+Dong&rft.au=Yu%2C+Ningmei&rft.date=2020-08-01&rft.pub=Society+of+Photo-Optical+Instrumentation+Engineers&rft.issn=0091-3286&rft.eissn=1560-2303&rft.volume=59&rft.issue=8&rft.spage=086102&rft.epage=086102&rft_id=info:doi/10.1117%2F1.OE.59.8.086102&rft.externalDocID=10_1117_1_OE_59_8_086102
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0091-3286&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0091-3286&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0091-3286&client=summon