Interpretable Faraday complexity classification
Faraday complexity describes whether a spectropolarimetric observation has simple or complex magnetic structure. Quickly determining the Faraday complexity of a spectropolarimetric observation is important for processing large, polarised radio surveys. Finding simple sources lets us build rotation m...
Saved in:
| Published in | Publications of the Astronomical Society of Australia Vol. 38 |
|---|---|
| Main Authors | , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
New York, USA
Cambridge University Press
2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1323-3580 1448-6083 1448-6083 |
| DOI | 10.1017/pasa.2021.10 |
Cover
| Abstract | Faraday complexity describes whether a spectropolarimetric observation has simple or complex magnetic structure. Quickly determining the Faraday complexity of a spectropolarimetric observation is important for processing large, polarised radio surveys. Finding simple sources lets us build rotation measure grids, and finding complex sources lets us follow these sources up with slower analysis techniques or further observations. We introduce five features that can be used to train simple, interpretable machine learning classifiers for estimating Faraday complexity. We train logistic regression and extreme gradient boosted tree classifiers on simulated polarised spectra using our features, analyse their behaviour, and demonstrate our features are effective for both simulated and real data. This is the first application of machine learning methods to real spectropolarimetry data. With 95% accuracy on simulated ASKAP data and 90% accuracy on simulated ATCA data, our method performs comparably to state-of-the-art convolutional neural networks while being simpler and easier to interpret. Logistic regression trained with our features behaves sensibly on real data and its outputs are useful for sorting polarised sources by apparent Faraday complexity. |
|---|---|
| AbstractList | Faraday complexity describes whether a spectropolarimetric observation has simple or complex magnetic structure. Quickly determining the Faraday complexity of a spectropolarimetric observation is important for processing large, polarised radio surveys. Finding simple sources lets us build rotation measure grids, and finding complex sources lets us follow these sources up with slower analysis techniques or further observations. We introduce five features that can be used to train simple, interpretable machine learning classifiers for estimating Faraday complexity. We train logistic regression and extreme gradient boosted tree classifiers on simulated polarised spectra using our features, analyse their behaviour, and demonstrate our features are effective for both simulated and real data. This is the first application of machine learning methods to real spectropolarimetry data. With 95% accuracy on simulated ASKAP data and 90% accuracy on simulated ATCA data, our method performs comparably to state-of-the-art convolutional neural networks while being simpler and easier to interpret. Logistic regression trained with our features behaves sensibly on real data and its outputs are useful for sorting polarised sources by apparent Faraday complexity. |
| ArticleNumber | e022 |
| Author | Livingston, J. D. Ong, C. S. Wong, O. I. Alger, M. J. McClure-Griffiths, N. M. Nabaglo, J. L. |
| Author_xml | – sequence: 1 givenname: M. J. orcidid: 0000-0001-5110-8845 surname: Alger fullname: Alger, M. J. email: matthew.alger@gmail.com organization: 1Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611, Australia – sequence: 2 givenname: J. D. orcidid: 0000-0002-4090-8000 surname: Livingston fullname: Livingston, J. D. organization: 1Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611, Australia – sequence: 3 givenname: N. M. orcidid: 0000-0003-2730-957X surname: McClure-Griffiths fullname: McClure-Griffiths, N. M. organization: 1Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611, Australia – sequence: 4 givenname: J. L. orcidid: 0000-0002-0280-2571 surname: Nabaglo fullname: Nabaglo, J. L. – sequence: 5 givenname: O. I. orcidid: 0000-0003-4264-3509 surname: Wong fullname: Wong, O. I. organization: 3CSIRO Astronomy & Space Science, PO Box 1130, Bentley, WA 6102, Australia – sequence: 6 givenname: C. S. orcidid: 0000-0002-2302-9733 surname: Ong fullname: Ong, C. S. organization: 2Data61, CSIRO, Canberra, ACT 2601, Australia |
| BookMark | eNqFkE1LAzEQhoNUsK3e_AH9AW6bj81u9ijF2kLBi56XSTIrKenukqRo_71b25MonuYdeN6BZyZk1HYtEnLP6JxRVi56iDDnlLNhvSJjlucqK6gSoyELLjIhFb0hkxh3lLK84HxMFps2YegDJtAeZysIYOE4M92-9_jp0hA9xOgaZyC5rr0l1w34iHeXOSVvq6fX5Trbvjxvlo_bzIhSpUyXVUlNhTlKmZtCSFsZkJWotNWSIVd5YblqrBWAaCQ3yMqqKIwqNUWlGzEl2fnuoe3h-AHe131wewjHmtH6ZFufbOuT7bAO_MOZN6GLMWDzH85_4Malb8EUwPm_SvNLCfY6OPuO9a47hHb4w--FL8b7ehA |
| CitedBy_id | crossref_primary_10_3847_1538_3881_ad2fc8 crossref_primary_10_1093_mnras_stab3375 crossref_primary_10_1051_0004_6361_202348993 crossref_primary_10_1093_mnras_stad1090 crossref_primary_10_3847_1538_4357_acfe11 crossref_primary_10_1093_pasj_psac052 crossref_primary_10_3847_1538_4365_acda24 crossref_primary_10_1051_0004_6361_202451265 crossref_primary_10_1051_0004_6361_202449556 crossref_primary_10_1093_mnras_stab1805 |
| Cites_doi | 10.1088/0004-6256/149/2/60 10.1534/genetics.120.303093 10.1093/mnras/stx1133 10.1088/0004-637X/728/1/57 10.1088/0067-0049/212/1/15 10.1086/162337 10.1088/1361-6382/aa5cea 10.1111/j.1365-2966.2012.20554.x 10.1093/mnras/stz1325 10.1103/PhysRevD.100.063015 10.1088/0004-637X/815/1/49 10.1093/mnras/stab253 10.1093/mnras/sty2862 |
| ContentType | Journal Article |
| Copyright | The Author(s), 2021. Published by Cambridge University Press on behalf of the Astronomical Society of Australia |
| Copyright_xml | – notice: The Author(s), 2021. Published by Cambridge University Press on behalf of the Astronomical Society of Australia |
| DBID | AAYXX CITATION ADTOC UNPAY |
| DOI | 10.1017/pasa.2021.10 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | CrossRef |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Astronomy & Astrophysics |
| EISSN | 1448-6083 |
| ExternalDocumentID | 10.1017/pasa.2021.10 10_1017_pasa_2021_10 |
| GroupedDBID | 09C 09E 0E1 0R~ 123 29P 5VS AAAZR AABES AABWE AACJH AAEED AAGFV AAKTX AANRG AARAB AASVR AAUKB ABBXD ABDBF ABGDZ ABJNI ABKKG ABMWE ABMYL ABQTM ABROB ABZCX ACBMC ACCHT ACGFO ACGFS ACIMK ACQFJ ACREK ACUIJ ACUYZ ACWGA ACYZP ACZBM ACZUX ACZWT ADDNB ADFEC ADGEJ ADKIL ADOCW ADVJH AEBAK AEGXH AENEX AENGE AEYYC AFFUJ AFKQG AFLOS AFLVW AFUTZ AGABE AGJUD AGOOT AHQXX AHRGI AIAGR AIGNW AIHIV AIOIP AISIE AJCYY AJPFC AJQAS ALMA_UNASSIGNED_HOLDINGS ALVPG ALWZO AQJOH ARABE ATUCA AUXHV BBLKV BGHMG BJBOZ BLZWO BMAJL C0O CBIIA CCQAD CFAFE CHEAL CJCSC CS3 DOHLZ DU5 E3Z EBS HG- HZ~ I.6 IH6 IOEEP IS6 I~P JHPGK KCGVB KFECR M-V NIKVX O9- P2P RAMDC RCA RCO RNP ROL RR0 S6- S6U SAAAG T9M UT1 WFFJZ WXY ZYDXJ 4.4 AAXMD AAYXX ABBZL ABVKB ABVZP ABXAU ABXHF ACDLN ACUHS ADOVH ADOVT AEHGV AENCP AFZFC AJAHB AKMAY AKZCZ ARZZG AYIQA BCGOX BESQT CAG CCUQV CFBFF CGQII CITATION COF EGQIC EJD IOO IPYYG KAFGG LHUNA LW7 NZEOI OK1 SJN TR2 ZDLDU ZJOSE ZMEZD ZY4 ADTOC UNPAY |
| ID | FETCH-LOGICAL-c378t-b7970c9e4e554c635d9ca5939bdb51e2846d28fdd3aeec52ce17966c87b0e8bf3 |
| IEDL.DBID | UNPAY |
| ISSN | 1323-3580 1448-6083 |
| IngestDate | Sun Oct 26 04:03:26 EDT 2025 Thu Apr 24 23:08:43 EDT 2025 Wed Oct 01 01:36:03 EDT 2025 Wed Mar 13 05:46:26 EDT 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | spectropolarimetry classification radio astronomy astrostatistics radio spectroscopy |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c378t-b7970c9e4e554c635d9ca5939bdb51e2846d28fdd3aeec52ce17966c87b0e8bf3 |
| ORCID | 0000-0002-0280-2571 0000-0003-4264-3509 0000-0001-5110-8845 0000-0003-2730-957X 0000-0002-2302-9733 0000-0002-4090-8000 |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://www.cambridge.org/core/services/aop-cambridge-core/content/view/EB430A90DDFB87B6B973DDF77F4A9666/S1323358021000102a.pdf/div-class-title-interpretable-faraday-complexity-classification-div.pdf |
| PageCount | 11 |
| ParticipantIDs | unpaywall_primary_10_1017_pasa_2021_10 crossref_primary_10_1017_pasa_2021_10 crossref_citationtrail_10_1017_pasa_2021_10 cambridge_journals_10_1017_pasa_2021_10 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-00-00 |
| PublicationDateYYYYMMDD | 2021-01-01 |
| PublicationDate_xml | – year: 2021 text: 2021-00-00 |
| PublicationDecade | 2020 |
| PublicationPlace | New York, USA |
| PublicationPlace_xml | – name: New York, USA |
| PublicationTitle | Publications of the Astronomical Society of Australia |
| PublicationTitleAlternate | Publ. Astron. Soc. Aust |
| PublicationYear | 2021 |
| Publisher | Cambridge University Press |
| Publisher_xml | – name: Cambridge University Press |
| References | 2010; 22 1984; 283 2012; 421 2005; 441 2011; 728 2015; 149 2020 2021; 502 2017; 34 2020; 17 2020; 215 2015; 815 2018 2019; 487 2008; 4 2019; 482 2017; 597 2019; 100 2017; 469 2014; 212 Pan (S1323358021000102_ref19) 2010; 22 Heald (S1323358021000102_ref10) 2008; 4 S1323358021000102_ref23 S1323358021000102_ref20 Brentjens (S1323358021000102_ref3) 2005; 441 S1323358021000102_ref24 S1323358021000102_ref25 S1323358021000102_ref7 S1323358021000102_ref6 S1323358021000102_ref9 S1323358021000102_ref8 Virtanen (S1323358021000102_ref22) 2020; 17 S1323358021000102_ref11 S1323358021000102_ref12 Agarwal (S1323358021000102_ref1) 2020 S1323358021000102_ref15 Brown (S1323358021000102_ref5) 2018 S1323358021000102_ref16 S1323358021000102_ref13 S1323358021000102_ref14 Van Eck (S1323358021000102_ref21) 2017; 597 S1323358021000102_ref2 S1323358021000102_ref17 S1323358021000102_ref4 S1323358021000102_ref18 |
| References_xml | – volume: 502 start-page: 3814 year: 2021 publication-title: MNRAS – volume: 100 start-page: 063015 year: 2019 publication-title: Phys. Rev. D – volume: 215 start-page: 25 year: 2020 publication-title: Genetics – volume: 34 start-page: 064003 year: 2017 publication-title: CQG – volume: 728 start-page: 57 year: 2011 publication-title: ApJ – volume: 441 start-page: 1217 year: 2005 publication-title: A&A – volume: 421 start-page: 3300 year: 2012 publication-title: MNRAS – volume: 212 start-page: 15 year: 2014 publication-title: ApJS – volume: 283 start-page: 540 year: 1984 publication-title: ApJ – volume: 149 start-page: 60 year: 2015 publication-title: AJ – volume: 815 start-page: 49 year: 2015 publication-title: ApJ – year: 2018 publication-title: MNRAS – volume: 22 start-page: 1345 year: 2010 publication-title: IEEE TKDE – year: 2020 publication-title: MNRAS – volume: 469 start-page: 4034 year: 2017 publication-title: MNRAS – volume: 4 start-page: 591 year: 2008 publication-title: PIAU – volume: 487 start-page: 3432 year: 2019 publication-title: MNRAS – volume: 482 start-page: 2739 year: 2019 publication-title: MNRAS – volume: 597 start-page: A98 year: 2017 publication-title: A&A – volume: 17 start-page: 261 year: 2020 publication-title: NM – ident: S1323358021000102_ref24 – ident: S1323358021000102_ref20 doi: 10.1088/0004-6256/149/2/60 – ident: S1323358021000102_ref15 – ident: S1323358021000102_ref7 – ident: S1323358021000102_ref25 doi: 10.1534/genetics.120.303093 – ident: S1323358021000102_ref11 – ident: S1323358021000102_ref18 doi: 10.1093/mnras/stx1133 – ident: S1323358021000102_ref12 doi: 10.1088/0004-637X/728/1/57 – year: 2020 ident: S1323358021000102_ref1 publication-title: MNRAS – volume: 17 start-page: 261 year: 2020 ident: S1323358021000102_ref22 publication-title: NM – ident: S1323358021000102_ref6 doi: 10.1088/0067-0049/212/1/15 – year: 2018 ident: S1323358021000102_ref5 publication-title: MNRAS – volume: 22 start-page: 1345 year: 2010 ident: S1323358021000102_ref19 publication-title: IEEE TKDE – ident: S1323358021000102_ref9 doi: 10.1086/162337 – ident: S1323358021000102_ref4 – ident: S1323358021000102_ref23 doi: 10.1088/1361-6382/aa5cea – volume: 4 start-page: 591 year: 2008 ident: S1323358021000102_ref10 publication-title: PIAU – ident: S1323358021000102_ref17 doi: 10.1111/j.1365-2966.2012.20554.x – ident: S1323358021000102_ref14 doi: 10.1093/mnras/stz1325 – ident: S1323358021000102_ref8 doi: 10.1103/PhysRevD.100.063015 – ident: S1323358021000102_ref2 doi: 10.1088/0004-637X/815/1/49 – volume: 441 start-page: 1217 year: 2005 ident: S1323358021000102_ref3 publication-title: AandA – volume: 597 start-page: A98 year: 2017 ident: S1323358021000102_ref21 publication-title: AandA – ident: S1323358021000102_ref13 doi: 10.1093/mnras/stab253 – ident: S1323358021000102_ref16 doi: 10.1093/mnras/sty2862 |
| SSID | ssj0014622 |
| Score | 2.348886 |
| Snippet | Faraday complexity describes whether a spectropolarimetric observation has simple or complex magnetic structure. Quickly determining the Faraday complexity of... |
| SourceID | unpaywall crossref cambridge |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| Title | Interpretable Faraday complexity classification |
| URI | https://www.cambridge.org/core/product/identifier/S1323358021000102/type/journal_article https://www.cambridge.org/core/services/aop-cambridge-core/content/view/EB430A90DDFB87B6B973DDF77F4A9666/S1323358021000102a.pdf/div-class-title-interpretable-faraday-complexity-classification-div.pdf |
| UnpaywallVersion | publishedVersion |
| Volume | 38 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Academic Search Ultimate - eBooks customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1448-6083 dateEnd: 20241105 omitProxy: true ssIdentifier: ssj0014622 issn: 1448-6083 databaseCode: ABDBF dateStart: 20130101 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw3V1Lb9QwELbK7gEuvFHLo8oBygF583Bix8eEbVSQqJBgpXKK_IpUsexGzW7L8gf5K_wMZpJs2iIVceZmy5OMZM94vhmPx4S8BBFQLhWaGi3AQVEho1JJRiOAtjpgukosOoofjvnRLH5_kpzskJ_buzCYVjnUOGhP8tv30ZpecXy1rOkwTtsxzOmGDdrHULp_mMcsyGQwnRZ5KnKeS8GgLUQRZ4Dsuf8J3C-GZ38RRrbBvKpJbSvfnp5Tg3iVtotET4eUPw29Sp0pqza0TfN23wEfd8SYzdNOIIXv8T-3yJgn4BSMyHh2_DH70rl7jCLD9p5TnFIOqKdPwcfi1bVqsP5RFE7wFu9lgYdrhvL2elGrzYWaz69Yv-Ie-bWdty7p5etkvdIT8-OPkpL_wcTeJ3d7hO5lnUo9IDtu8ZDsZg2eGSy_bbwDr213IaHmEfHfXeXlFR0v75KXd53XYzIrDj-_PaL9MxTUMJGuqBZSBEa62AH0MgDQrDQqkUxqq5PQgX3nNkora5lyziSRcbDJcW5AAwKX6oo9IaPFcuF2iRehYqSCudDq2AYyTVlo47jiVcVMZNgeeT2sQdlvJk3ZJeKJEiWlREmB7h55s5WO0vTV3PFRkfkN1K8G6rqrYnID3cEgaH8lfPqvhM_IHWx1QavnZLQ6W7sXAONWep-Ms3yaF_u9qvwGtmhMGw |
| linkProvider | Unpaywall |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMw3V1Lb9QwELbK9gAX3qjlpRygHJA3Dyd-HLO0UUGiQoKVyinyK1LVZTdqdmmXP8hf4Wcwk2TTFqmIMzdbnmQke8bzzXg8JuQViID2UhhqjQAHRceMKq0YTQDamoiZKnPoKH484ofT9MNxdrxFfm7uwmBa5VDjoD3Jb99Ha3rFCfWipsM4bccwpxs26BBD6eHBJGVRrqL9_WIixYRPlGDQFqJIc0D2PPwM7hfDs78EI9tgXvW4dlXoTr5Ti3iVtotET4aUPwO9Sp9pp9e0TfP2F4CPO2LM5mknkML3-J9bZJtn4BSMyPb06FP-tXP3GEWG7T2nVFIOqKdPwcfi1bVusP5REo_xFu9lgYdrhvL2al7r9bmeza5Yv-Ie-bWZty7p5XS8Wpqx_fFHScn_YGLvk7s9Qg_yTqUekC0_f0h28gbPDBbf1sFe0La7kFDziITvr_IKio5XcMkruM7rMZkWB1_eHdL-GQpqmZBLaoQSkVU-9QC9LAA0p6zOFFPGmSz2YN-5S2TlHNPe2yyxHjY5zi1oQOSlqdgTMpov5n6HBAkqhhTMx86kLlJSstilacWritnEsl3yZliDst9MmrJLxBMlSkqJkgLdXfJ2Ix2l7au546MisxuoXw_UdVfF5Aa6vUHQ_kr49F8Jn5E72OqCVs_JaHm28i8Axi3Ny15FfgNeAUqp |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Interpretable+Faraday+complexity+classification&rft.jtitle=Publications+of+the+Astronomical+Society+of+Australia&rft.au=Alger%2C+M.+J.&rft.au=Livingston%2C+J.+D.&rft.au=McClure-Griffiths%2C+N.+M.&rft.au=Nabaglo%2C+J.+L.&rft.date=2021&rft.issn=1323-3580&rft.eissn=1448-6083&rft.volume=38&rft_id=info:doi/10.1017%2Fpasa.2021.10&rft.externalDBID=n%2Fa&rft.externalDocID=10_1017_pasa_2021_10 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1323-3580&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1323-3580&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1323-3580&client=summon |