On the enumerative nature of Gomory’s dual cutting plane method

For 30 years after their invention half a century ago, cutting planes for integer programs have been an object of theoretical investigations that had no apparent practical use. When they finally proved their practical usefulness in the late eighties, that happened in the framework of branch and boun...

Full description

Saved in:
Bibliographic Details
Published inMathematical programming Vol. 125; no. 2; pp. 325 - 351
Main Authors Balas, Egon, Fischetti, Matteo, Zanette, Arrigo
Format Journal Article Conference Proceeding
LanguageEnglish
Published Berlin/Heidelberg Springer-Verlag 01.10.2010
Springer
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0025-5610
1436-4646
DOI10.1007/s10107-010-0392-4

Cover

Abstract For 30 years after their invention half a century ago, cutting planes for integer programs have been an object of theoretical investigations that had no apparent practical use. When they finally proved their practical usefulness in the late eighties, that happened in the framework of branch and bound procedures, as an auxiliary tool meant to reduce the number of enumerated nodes. To this day, pure cutting plane methods alone have poor convergence properties and are typically not used in practice. Our reason for studying them is our belief that these negative properties can be understood and thus remedied only based on a thorough investigation of such procedures in their pure form. In this paper, the second in a sequence, we address some important issues arising when designing a computationally sound pure cutting plane method. We analyze the dual cutting plane procedure proposed by Gomory in 1958, which is the first (and most famous) convergent cutting plane method for integer linear programming. We focus on the enumerative nature of this method as evidenced by the relative computational success of its lexicographic version (as documented in our previous paper on the subject), and we propose new versions of Gomory’s cutting plane procedure with an improved performance. In particular, the new versions are based on enumerative schemes that treat the objective function implicitly, and redefine the lexicographic order on the fly to mimic a sound branching strategy. Preliminary computational results are reported.
AbstractList Issue Title: 20th International Symposium on Mathematical Programming - ISMP 2009 For 30 years after their invention half a century ago, cutting planes for integer programs have been an object of theoretical investigations that had no apparent practical use. When they finally proved their practical usefulness in the late eighties, that happened in the framework of branch and bound procedures, as an auxiliary tool meant to reduce the number of enumerated nodes. To this day, pure cutting plane methods alone have poor convergence properties and are typically not used in practice. Our reason for studying them is our belief that these negative properties can be understood and thus remedied only based on a thorough investigation of such procedures in their pure form. In this paper, the second in a sequence, we address some important issues arising when designing a computationally sound pure cutting plane method. We analyze the dual cutting plane procedure proposed by Gomory in 1958, which is the first (and most famous) convergent cutting plane method for integer linear programming. We focus on the enumerative nature of this method as evidenced by the relative computational success of its lexicographic version (as documented in our previous paper on the subject), and we propose new versions of Gomory's cutting plane procedure with an improved performance. In particular, the new versions are based on enumerative schemes that treat the objective function implicitly, and redefine the lexicographic order on the fly to mimic a sound branching strategy. Preliminary computational results are reported.[PUBLICATION ABSTRACT]
For 30years after their invention half a century ago, cutting planes for integer programs have been an object of theoretical investigations that had no apparent practical use. When they finally proved their practical usefulness in the late eighties, that happened in the framework of branch and bound procedures, as an auxiliary tool meant to reduce the number of enumerated nodes. To this day, pure cutting plane methods alone have poor convergence properties and are typically not used in practice. Our reason for studying them is our belief that these negative properties can be understood and thus remedied only based on a thorough investigation of such procedures in their pure form. In this paper, the second in a sequence, we address some important issues arising when designing a computationally sound pure cutting plane method. We analyze the dual cutting plane procedure proposed by Gomory in 1958, which is the first (and most famous) convergent cutting plane method for integer linear programming. We focus on the enumerative nature of this method as evidenced by the relative computational success of its lexicographic version (as documented in our previous paper on the subject), and we propose new versions of Gomory's cutting plane procedure with an improved performance. In particular, the new versions are based on enumerative schemes that treat the objective function implicitly, and redefine the lexicographic order on the fly to mimic a sound branching strategy. Preliminary computational results are reported.
For 30 years after their invention half a century ago, cutting planes for integer programs have been an object of theoretical investigations that had no apparent practical use. When they finally proved their practical usefulness in the late eighties, that happened in the framework of branch and bound procedures, as an auxiliary tool meant to reduce the number of enumerated nodes. To this day, pure cutting plane methods alone have poor convergence properties and are typically not used in practice. Our reason for studying them is our belief that these negative properties can be understood and thus remedied only based on a thorough investigation of such procedures in their pure form. In this paper, the second in a sequence, we address some important issues arising when designing a computationally sound pure cutting plane method. We analyze the dual cutting plane procedure proposed by Gomory in 1958, which is the first (and most famous) convergent cutting plane method for integer linear programming. We focus on the enumerative nature of this method as evidenced by the relative computational success of its lexicographic version (as documented in our previous paper on the subject), and we propose new versions of Gomory’s cutting plane procedure with an improved performance. In particular, the new versions are based on enumerative schemes that treat the objective function implicitly, and redefine the lexicographic order on the fly to mimic a sound branching strategy. Preliminary computational results are reported.
Author Balas, Egon
Zanette, Arrigo
Fischetti, Matteo
Author_xml – sequence: 1
  givenname: Egon
  surname: Balas
  fullname: Balas, Egon
  organization: Carnegie Mellon University
– sequence: 2
  givenname: Matteo
  surname: Fischetti
  fullname: Fischetti, Matteo
  email: matteo.fischetti@unipd.it
  organization: DEI, University of Padova
– sequence: 3
  givenname: Arrigo
  surname: Zanette
  fullname: Zanette, Arrigo
  organization: DEI, University of Padova
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23415709$$DView record in Pascal Francis
BookMark eNp9kc9qFTEUh4NU8Lb6AO6CILgZzcnfybIUW4VCN-065GbOtFNmkmuSEbrzNfp6fRJzuRWhoFmcbL7v8OP8jslRTBEJeQ_sMzBmvhRgwEzXRseE5Z18RTYghe6klvqIbBjjqlMa2BtyXMo9YwxE32_I6VWk9Q4pxnXB7Ov0E2n0dc1I00gv0pLyw9Ovx0KH1c80rLVO8ZbuZh-RLljv0vCWvB79XPDd839Cbs6_Xp996y6vLr6fnV52QZi-dn60FrfAtxba47wX1pqtDIEz7YVSVg1KYg-2D9psBzmgRtSjUgPogFKIE_LpsHeX048VS3XLVALO-yhpLQ60ASUFqL6hH16g92nNsaVzxmgBllto0MdnyJfg5zH7GKbidnlafH5wXEhQhtnGmQMXciol4-jCVNuhUqzZT7MD5vYNuEMDrg23b8DJZsIL88_y_zn84JTGxlvMf6P_W_oNZGyYvA
CODEN MHPGA4
CitedBy_id crossref_primary_10_1007_s10107_023_01991_z
crossref_primary_10_1007_s10957_014_0652_1
crossref_primary_10_1007_s10107_011_0450_6
Cites_doi 10.1007/s10107-008-0225-x
10.1137/1011060
10.1007/BF01580858
10.1007/s10107-006-0054-8
10.1002/9781118627372
10.1016/0167-6377(82)90014-1
10.1016/0012-365X(73)90167-2
10.1007/s10107-009-0335-0
10.1007/BF02032309
10.1145/355900.355909
10.1007/s10107-006-0049-5
10.1016/j.orl.2005.07.009
10.1090/S0002-9904-1958-10224-4
ContentType Journal Article
Conference Proceeding
Copyright Springer and Mathematical Optimization Society 2010
2015 INIST-CNRS
Copyright_xml – notice: Springer and Mathematical Optimization Society 2010
– notice: 2015 INIST-CNRS
DBID AAYXX
CITATION
IQODW
3V.
7SC
7WY
7WZ
7XB
87Z
88I
8AL
8AO
8FD
8FE
8FG
8FK
8FL
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BEZIV
BGLVJ
CCPQU
DWQXO
FRNLG
F~G
GNUQQ
HCIFZ
JQ2
K60
K6~
K7-
L.-
L.0
L6V
L7M
L~C
L~D
M0C
M0N
M2P
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQBIZ
PQBZA
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
FR3
KR7
DOI 10.1007/s10107-010-0392-4
DatabaseName CrossRef
Pascal-Francis
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
ABI/INFORM Collection
ABI/INFORM Global (PDF only)
ProQuest Central (purchase pre-March 2016)
ABI/INFORM Collection
Science Database (Alumni Edition)
Computing Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ABI/INFORM Collection (Alumni)
Materials Science & Engineering Collection
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Computer Science Collection
ProQuest Central Essentials
ProQuest Central
Business Premium Collection
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Business Premium Collection (Alumni)
ABI/INFORM Global (Corporate)
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
ProQuest Business Collection (Alumni Edition)
ProQuest Business Collection
Computer Science Database
ABI/INFORM Professional Advanced
ABI/INFORM Professional Standard
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
ABI/INFORM Global
Computing Database
Science Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Business
ProQuest One Business (Alumni)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
Engineering Research Database
Civil Engineering Abstracts
DatabaseTitle CrossRef
ProQuest Business Collection (Alumni Edition)
Computer Science Database
ProQuest Central Student
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
ABI/INFORM Complete
ProQuest One Applied & Life Sciences
ProQuest Central (New)
Engineering Collection
Advanced Technologies & Aerospace Collection
Business Premium Collection
ABI/INFORM Global
Engineering Database
ProQuest Science Journals (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest Business Collection
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ABI/INFORM Global (Corporate)
ProQuest One Business
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest Pharma Collection
ProQuest Central
ABI/INFORM Professional Advanced
ProQuest Engineering Collection
ABI/INFORM Professional Standard
ProQuest Central Korea
Advanced Technologies Database with Aerospace
ABI/INFORM Complete (Alumni Edition)
ProQuest Computing
ABI/INFORM Global (Alumni Edition)
ProQuest Central Basic
ProQuest Science Journals
ProQuest Computing (Alumni Edition)
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
ProQuest One Business (Alumni)
ProQuest Central (Alumni)
Business Premium Collection (Alumni)
Civil Engineering Abstracts
Engineering Research Database
DatabaseTitleList ProQuest Business Collection (Alumni Edition)
Civil Engineering Abstracts

Database_xml – sequence: 1
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
Applied Sciences
EISSN 1436-4646
EndPage 351
ExternalDocumentID 2189202011
23415709
10_1007_s10107_010_0392_4
Genre Feature
GroupedDBID --K
--Z
-52
-5D
-5G
-BR
-EM
-Y2
-~C
-~X
.4S
.86
.DC
.VR
06D
0R~
0VY
199
1B1
1N0
1OL
1SB
203
28-
29M
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3V.
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
7WY
88I
8AO
8FE
8FG
8FL
8TC
8UJ
8VB
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACGOD
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACNCT
ACOKC
ACOMO
ACPIV
ACUHS
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMOZ
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFFNX
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHQJS
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
AKVCP
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCSS
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
AZQEC
B-.
B0M
BA0
BAPOH
BBWZM
BDATZ
BENPR
BEZIV
BGLVJ
BGNMA
BPHCQ
BSONS
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
DWQXO
EAD
EAP
EBA
EBLON
EBR
EBS
EBU
ECS
EDO
EIOEI
EJD
EMI
EMK
EPL
ESBYG
EST
ESX
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRNLG
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNUQQ
GNWQR
GQ6
GQ7
GQ8
GROUPED_ABI_INFORM_COMPLETE
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
H~9
I-F
I09
IAO
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
K1G
K60
K6V
K6~
K7-
KDC
KOV
KOW
L6V
LAS
LLZTM
M0C
M0N
M2P
M4Y
M7S
MA-
N2Q
N9A
NB0
NDZJH
NPVJJ
NQ-
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
P19
P2P
P62
P9R
PF0
PQBIZ
PQBZA
PQQKQ
PROAC
PT4
PT5
PTHSS
Q2X
QOK
QOS
QWB
R4E
R89
R9I
RHV
RIG
RNI
RNS
ROL
RPX
RPZ
RSV
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SDD
SDH
SDM
SHX
SISQX
SJYHP
SMT
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TH9
TN5
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WH7
WK8
XPP
YLTOR
Z45
Z5O
Z7R
Z7S
Z7X
Z7Y
Z7Z
Z81
Z83
Z86
Z88
Z8M
Z8N
Z8R
Z8T
Z8W
Z92
ZL0
ZMTXR
ZWQNP
~02
~8M
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ABRTQ
ACSTC
ADHKG
ADXHL
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
AMVHM
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
PQGLB
PUEGO
AABYN
AAFGU
AAPBV
AAYFA
ABFGW
ABKAS
ABPTK
ACBMV
ACBRV
ACBYP
ACIGE
ACIPQ
ACTTH
ACVWB
ACWMK
ADMDM
ADOXG
AEEQQ
AEFTE
AEPOP
AESTI
AEVTX
AFMKY
AFNRJ
AGGBP
AIMYW
AJDOV
AKQUC
IQODW
UNUBA
7SC
7XB
8AL
8FD
8FK
JQ2
L.-
L.0
L7M
L~C
L~D
PKEHL
PQEST
PQUKI
PRINS
Q9U
FR3
KR7
ID FETCH-LOGICAL-c378t-af99eb12b911112283997b4cc206a35595d54e8198c67bd4de6ee6f55d16ce433
IEDL.DBID U2A
ISSN 0025-5610
IngestDate Fri Sep 05 07:54:14 EDT 2025
Thu Sep 25 00:34:56 EDT 2025
Sun Oct 22 16:03:30 EDT 2023
Wed Oct 01 04:22:05 EDT 2025
Thu Apr 24 23:02:43 EDT 2025
Fri Feb 21 02:32:41 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords Cutting plane methods
90C10 Integer programming
Computational analysis
Degeneracy in linear programming
90C05 Linear programming
Lexicographic dual simplex
Gomory cuts
90C49 Extreme-point and pivoting methods
Belief
Branching
Pivoting method
Computational analysis 90C 10 Integer programming
Multicriteria analysis
Branch and bound method
Degenerate system
Linear programming
Cutting plane method
Cut generation
Integer programming
Extremum
Lexicography
Lexicographic order
Objective function
Mathematical programming
Language English
License http://www.springer.com/tdm
CC BY 4.0
LinkModel DirectLink
MeetingName 20th International Symposium on Mathematical Programming - ISMP 2009
MergedId FETCHMERGED-LOGICAL-c378t-af99eb12b911112283997b4cc206a35595d54e8198c67bd4de6ee6f55d16ce433
Notes SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 14
ObjectType-Article-1
ObjectType-Feature-2
content type line 23
PQID 776319291
PQPubID 25307
PageCount 27
ParticipantIDs proquest_miscellaneous_1671543158
proquest_journals_776319291
pascalfrancis_primary_23415709
crossref_citationtrail_10_1007_s10107_010_0392_4
crossref_primary_10_1007_s10107_010_0392_4
springer_journals_10_1007_s10107_010_0392_4
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2010-10-01
PublicationDateYYYYMMDD 2010-10-01
PublicationDate_xml – month: 10
  year: 2010
  text: 2010-10-01
  day: 01
PublicationDecade 2010
PublicationPlace Berlin/Heidelberg
PublicationPlace_xml – name: Berlin/Heidelberg
– name: Heidelberg
PublicationSubtitle A Publication of the Mathematical Optimization Society
PublicationTitle Mathematical programming
PublicationTitleAbbrev Math. Program
PublicationYear 2010
Publisher Springer-Verlag
Springer
Springer Nature B.V
Publisher_xml – name: Springer-Verlag
– name: Springer
– name: Springer Nature B.V
References NemhauserG.WolseyL.Integer and Combinatorial Optimization1988LondonWiley0652.90067
BorgI.GroenenP.J.F.Modern Multidimensional Scaling: Theory and Applications2005BerlinSpringer1085.62079
FischettiM.LodiA.Optimizing over the first Chvátal closureMath. Program. B200711013201192.9012510.1007/s10107-006-0054-82306128
Gomory, R.E.: An Algorithm for the Mixed Integer Problem. Technical Report RM-2597, The RAND Corporation (1960)
GomoryR.E.GravesR.L.WolfeP.An algorithm for integer solutions to linear programmingRecent Advances in Mathematical Programming1963New YorkMcGraw-Hill269302
Achterberg, T., Koch, T., Martin, A.: MIPLIB 2003. Oper. Res. Lett. 34, 361–372 (2006). Problems available at http://miplib.zib.de
BixbyR.E.CeriaS.McZealC.M.SavelsberghM.W.P.An updated mixed integer programming library: MIPLIB 3 0Optima1998581215
NourieF.J.VentaE.R.An upper bound on the number of cuts needed in Gomory’s method of integer formsOper. Res. Lett.198211291330492.9005810.1016/0167-6377(82)90014-1687353
ArthurJ.L.RavindranA.PAGP, a partitioning algorithm for (linear) goal programming problemsACM Trans. Math. Softw.1980633783860439.9008310.1145/355900.355909585344
ChvátalV.Edmonds polytopes and a hierarchy of combinatorial problemsDiscrete Math.197343053370253.0513110.1016/0012-365X(73)90167-2313080
DashS.GünlükO.LodiA.MIR closures of polyhedral setsMath. Program.201012133601184.9010710.1007/s10107-008-0225-x2520406
BalinskiM.L.TuckerA.W.Duality theory of linear programs: A constructive approach with applicationsSIAM Rev.19691133473770225.9002410.1137/1011060258451
Zanette, A., Fischetti, M., Balas, E.: Lexicography and degeneracy: Can a pure cutting plane algorithm work? Math. Program. (2010, to appear)
BalasE.SaxenaA.Optimizing over the split closureMath. Program.200811322192401135.9003010.1007/s10107-006-0049-52375481
TamizM.JonesD.F.El-DarziE.A review of goal programming and its applicationsAnn. Oper. Res.199558139530836.9010610.1007/BF020323091349606
CookW.KannanR.SchrijverA.Chvátal closures for mixed integer programming problemsMath. Program.1990471551740711.9005710.1007/BF015808581059391
GomoryR.E.Outline of an algorithm for integer solutions to linear programsBull. Am. Soc.1958642752780085.3580710.1090/S0002-9904-1958-10224-4102437
392_CR1
M.L. Balinski (392_CR4) 1969; 11
392_CR17
R.E. Gomory (392_CR13) 1963
392_CR12
G. Nemhauser (392_CR14) 1988
R.E. Bixby (392_CR5) 1998; 58
M. Tamiz (392_CR16) 1995; 58
S. Dash (392_CR9) 2010; 121
V. Chvátal (392_CR7) 1973; 4
M. Fischetti (392_CR10) 2007; 110
R.E. Gomory (392_CR11) 1958; 64
E. Balas (392_CR3) 2008; 113
I. Borg (392_CR6) 2005
J.L. Arthur (392_CR2) 1980; 6
W. Cook (392_CR8) 1990; 47
F.J. Nourie (392_CR15) 1982; 1
References_xml – reference: GomoryR.E.Outline of an algorithm for integer solutions to linear programsBull. Am. Soc.1958642752780085.3580710.1090/S0002-9904-1958-10224-4102437
– reference: ArthurJ.L.RavindranA.PAGP, a partitioning algorithm for (linear) goal programming problemsACM Trans. Math. Softw.1980633783860439.9008310.1145/355900.355909585344
– reference: GomoryR.E.GravesR.L.WolfeP.An algorithm for integer solutions to linear programmingRecent Advances in Mathematical Programming1963New YorkMcGraw-Hill269302
– reference: CookW.KannanR.SchrijverA.Chvátal closures for mixed integer programming problemsMath. Program.1990471551740711.9005710.1007/BF015808581059391
– reference: DashS.GünlükO.LodiA.MIR closures of polyhedral setsMath. Program.201012133601184.9010710.1007/s10107-008-0225-x2520406
– reference: NemhauserG.WolseyL.Integer and Combinatorial Optimization1988LondonWiley0652.90067
– reference: BalasE.SaxenaA.Optimizing over the split closureMath. Program.200811322192401135.9003010.1007/s10107-006-0049-52375481
– reference: BixbyR.E.CeriaS.McZealC.M.SavelsberghM.W.P.An updated mixed integer programming library: MIPLIB 3 0Optima1998581215
– reference: BalinskiM.L.TuckerA.W.Duality theory of linear programs: A constructive approach with applicationsSIAM Rev.19691133473770225.9002410.1137/1011060258451
– reference: BorgI.GroenenP.J.F.Modern Multidimensional Scaling: Theory and Applications2005BerlinSpringer1085.62079
– reference: Gomory, R.E.: An Algorithm for the Mixed Integer Problem. Technical Report RM-2597, The RAND Corporation (1960)
– reference: TamizM.JonesD.F.El-DarziE.A review of goal programming and its applicationsAnn. Oper. Res.199558139530836.9010610.1007/BF020323091349606
– reference: NourieF.J.VentaE.R.An upper bound on the number of cuts needed in Gomory’s method of integer formsOper. Res. Lett.198211291330492.9005810.1016/0167-6377(82)90014-1687353
– reference: FischettiM.LodiA.Optimizing over the first Chvátal closureMath. Program. B200711013201192.9012510.1007/s10107-006-0054-82306128
– reference: Zanette, A., Fischetti, M., Balas, E.: Lexicography and degeneracy: Can a pure cutting plane algorithm work? Math. Program. (2010, to appear)
– reference: Achterberg, T., Koch, T., Martin, A.: MIPLIB 2003. Oper. Res. Lett. 34, 361–372 (2006). Problems available at http://miplib.zib.de
– reference: ChvátalV.Edmonds polytopes and a hierarchy of combinatorial problemsDiscrete Math.197343053370253.0513110.1016/0012-365X(73)90167-2313080
– start-page: 269
  volume-title: Recent Advances in Mathematical Programming
  year: 1963
  ident: 392_CR13
– volume: 121
  start-page: 33
  year: 2010
  ident: 392_CR9
  publication-title: Math. Program.
  doi: 10.1007/s10107-008-0225-x
– volume: 58
  start-page: 12
  year: 1998
  ident: 392_CR5
  publication-title: Optima
– volume: 11
  start-page: 347
  issue: 3
  year: 1969
  ident: 392_CR4
  publication-title: SIAM Rev.
  doi: 10.1137/1011060
– volume: 47
  start-page: 155
  year: 1990
  ident: 392_CR8
  publication-title: Math. Program.
  doi: 10.1007/BF01580858
– volume: 110
  start-page: 3
  issue: 1
  year: 2007
  ident: 392_CR10
  publication-title: Math. Program. B
  doi: 10.1007/s10107-006-0054-8
– volume-title: Integer and Combinatorial Optimization
  year: 1988
  ident: 392_CR14
  doi: 10.1002/9781118627372
– volume: 1
  start-page: 129
  year: 1982
  ident: 392_CR15
  publication-title: Oper. Res. Lett.
  doi: 10.1016/0167-6377(82)90014-1
– ident: 392_CR12
– volume: 4
  start-page: 305
  year: 1973
  ident: 392_CR7
  publication-title: Discrete Math.
  doi: 10.1016/0012-365X(73)90167-2
– ident: 392_CR17
  doi: 10.1007/s10107-009-0335-0
– volume: 58
  start-page: 39
  issue: 1
  year: 1995
  ident: 392_CR16
  publication-title: Ann. Oper. Res.
  doi: 10.1007/BF02032309
– volume: 6
  start-page: 378
  issue: 3
  year: 1980
  ident: 392_CR2
  publication-title: ACM Trans. Math. Softw.
  doi: 10.1145/355900.355909
– volume: 113
  start-page: 219
  issue: 2
  year: 2008
  ident: 392_CR3
  publication-title: Math. Program.
  doi: 10.1007/s10107-006-0049-5
– volume-title: Modern Multidimensional Scaling: Theory and Applications
  year: 2005
  ident: 392_CR6
– ident: 392_CR1
  doi: 10.1016/j.orl.2005.07.009
– volume: 64
  start-page: 275
  year: 1958
  ident: 392_CR11
  publication-title: Bull. Am. Soc.
  doi: 10.1090/S0002-9904-1958-10224-4
SSID ssj0001388
Score 1.9469479
Snippet For 30 years after their invention half a century ago, cutting planes for integer programs have been an object of theoretical investigations that had no...
Issue Title: 20th International Symposium on Mathematical Programming - ISMP 2009 For 30 years after their invention half a century ago, cutting planes for...
For 30years after their invention half a century ago, cutting planes for integer programs have been an object of theoretical investigations that had no...
SourceID proquest
pascalfrancis
crossref
springer
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 325
SubjectTerms Algorithms
Applied sciences
Calculus of Variations and Optimal Control; Optimization
Combinatorics
Computation
Computational mathematics
Convergence
Cutting
Exact sciences and technology
Full Length Paper
Integer programming
Integers
Linear programming
Mathematical analysis
Mathematical and Computational Physics
Mathematical Methods in Physics
Mathematical programming
Mathematics
Mathematics and Statistics
Mathematics of Computing
Methods
Numerical Analysis
Operational research and scientific management
Operational research. Management science
Planes
Sound
Strategy
Studies
Theoretical
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Na9wwEB3SzaUllCZtiZsPFCgEWkwlW7KlQwhpyAeFTUJpIDcjyfIpWW_i3UP_fWf8lW6huRiELduMpNGz9fQewGfLU-8N0codfqLIRIRYe5fHQTte5Zo714r6TK-yy1v5407drcF02AtDtMohJ7aJuqw9_SP_luNAQDRixPH8MSbTKFpcHRw0bO-sUB61CmOvYD0hYawJrH8_u7r5OaZmkWo9eLgScBiWObu9dKJlYfKYI2aI5cpEtTG3Dcas6swuVtDoPwuo7bx0_g7e9oCSnXQ9YBPWwmwL3vwlM4il6ajN2ryH4-sZwyIjDnzodL9ZJ-_J6opd1A_10-_DhtEeLeaXLS2azYkSyzq36Q9we3726_Qy7m0UYp_mehHbyhjMyImjvCZI7saY3EnvE55ZhBtGlUoGRAbaZ7krZRmyELJKqVJkPsg0_QiTWT0L28CcSZLSSuu0xRsgLq8Ut06UyifWKKUi4EPMCt9rjJPVxX3xrI5MYS7wUFCYCxnBl7HKvBPYeOni_ZWGGGskOBmrnJsIdoaWKfrB2BRj14ngYDyLo4iWRjB69bIpRJYLUgVQOoKvQ4M-3-G_L_TpxeftwOuWbNBy_3Zhsnhahj3EMAu33_fMP0_j63s
  priority: 102
  providerName: ProQuest
Title On the enumerative nature of Gomory’s dual cutting plane method
URI https://link.springer.com/article/10.1007/s10107-010-0392-4
https://www.proquest.com/docview/776319291
https://www.proquest.com/docview/1671543158
Volume 125
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1436-4646
  dateEnd: 20241101
  omitProxy: true
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: ABDBF
  dateStart: 19990101
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: EBSCOhost Mathematics Source - trial do 30.11.2025
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20241101
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: AMVHM
  dateStart: 19711201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/mathematics-source
  providerName: EBSCOhost
– providerCode: PRVLSH
  databaseName: SpringerLink Journals
  customDbUrl:
  mediaType: online
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: AFBBN
  dateStart: 19711201
  isFulltext: true
  providerName: Library Specific Holdings
– providerCode: PRVPQU
  databaseName: Proquest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1436-4646
  dateEnd: 20190131
  omitProxy: true
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: BENPR
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 20190131
  omitProxy: true
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: 8FG
  dateStart: 20011001
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
– providerCode: PRVAVX
  databaseName: SpringerLINK - Czech Republic Consortium
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: AGYKE
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://link.springer.com
  providerName: Springer Nature
– providerCode: PRVAVX
  databaseName: SpringerLink Journals (ICM)
  customDbUrl:
  eissn: 1436-4646
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001388
  issn: 0025-5610
  databaseCode: U2A
  dateStart: 19970101
  isFulltext: true
  titleUrlDefault: http://www.springerlink.com/journals/
  providerName: Springer Nature
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1La9wwEB6a5NJSQvqizmNRoacEg2RLtnTchN0NLUlLyUJ6MpIsn9r1Eu8ecsvfyN_LL8nIr90NbSAXG2NJmBlpZsx88w3AV01ja5WHlRv8ReERc6G0Jg2dNLRIJTWmJvW5uEzOp_zbtbhu67irDu3epSRrS71W7MZqmCQNKTr1kG_BjvBsXriJp9GwN78slrLr0-qDgy6V-a8lNpzR27muUC5F09BiI-J8kiStfc94D3bboJEMGy2_g1du9h7erFEJ4tNFz79afYDhjxnBR-Jx7q7h9iYNhScpCzIp_5Y3tw939xXxlVjELmvwM5l74Ctpekp_hOl4dHV2HrbNEkIbp3IR6kIptLuR8daLeVIbpVLDrY1oojGoUCIX3KH_lzZJTc5zlziXFELkLLGOx_En2J6VM_cZiFFRlGuujdS4AEbfhaDasFzYSCshRAC0k1pmWyZx39DiT7biQPaCzvCSeUFnPIDjfsq8odF4bvBgQxX9jAhdrkipCuCg003WHrkqS9FS4nZQLIAv_Vs8Kz4BgtIrl1XGkpT52n8hAzjpVLpa4b8ftP-i0QfwuoYY1Ii_Q9he3CzdEUYuCzOALTmeDGBnOPn9fYT309Hlz1-Dev8-Alwp56E
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V7QEQQjxFKBQjgZBAEbbXTuxDVfFo2dLuglAr9WZsxzm1m6XZFeqP478xzqssEr31EslKnEQzHs-MZ-YbgJeWjrzXMa3coYsiOAup8i5Pg3K0zBV1rgH1mUyz8bH4ciJP1uB3XwsT0yr7PbHZqIvKxzPydzkKAlojmu3Mf6axaVQMrvYdNGzXWaHYbhDGurqOg3DxCz24env_E7L7Fed7u0cfx2nXZCD1o1wtUltqjfsVd1HqWQSD0Tp3wntOM4vKWMtCioB6U_ksd4UoQhZCVkpZsMwHEc9DUQNsiJHQ6PttfNidfvs-qAI2UqrvGRsNlT6s2tbusSbrk6YUbZRUrCjG23NbI4_KtrnGivX7T8C20YN7d-FOZ8CS9-2KuwdrYXYfbv0Fa4ijyYAFWz-Ana8zgkMSc-5DizNOWjhRUpXkc3VWnV-8rkmsCSN-2aRhk3lMwSVtd-uHcHwtFH0E67NqFh4DcZrzwgrrlMUXoB9QSmodK6TnVkspE6A9zYzvMM1ja41Tc4nGHMls8GIimY1I4M0wZd4Celz18NYKI4YZHJW_zKlOYLPnjOmEvzbDUk3gxXAXpTaGYpB61bI2LMtZRCGQKoG3PUMv3_DfH3py5feew43x0eTQHO5PDzbhZpPo0OQdPoX1xfkyPEP7aeG2ulVK4Md1C8Yf7fInvA
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB3RIlVFCEEpIhSKkXoqimondmIfV8BSWlp66Eq9WbbjnCBZbXYP3Pgb_D1-CeN8tVuVSlwiWbGtaMYev2ie3wAcGJo6pwKt3OIvCk-Yj6WzeeylpWUuqbWtqM_ZeXY84ydX4qqvc9oMbPchJdndaQgqTdXyaF6URzcuvrGWMkljigd8zDfgIQ86CbigZ8lkDMUslXKo2RqAwpDWvGuKtYPp8dw0aKOyK26xhj5vJUzbc2j6FJ70AJJMOo8_gwe-2oFHN2QFsXU2arE2z2HyrSLYJIHz7judb9LJeZK6JJ_rH_Xi559fvxsSbmURt2qJ0GQeSLCkqy-9C7Ppp8sPx3FfOCF2aS6XsSmVwhic2BDJWBC4USq33LmEZgYBhhKF4B6xgHRZbgte-Mz7rBSiYJnzPE1fwGZVV_4lEKuSpDDcWGlwAkTipaDGskK4xCghRAR0sJp2vap4KG7xXV_rIQdDa3zoYGjNIzgch8w7SY37Ou-vuWIckeDxK3KqItgbfKP77dfoHKMmQlfFIng3vsV9E5IhaL161WiW5SzoAAgZwfvBpdcz_PODXv1X77ewdfFxqr9-OT_dg-2WedASAV_D5nKx8m8Q0Cztfrto_wLZJOq1
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=proceeding&rft.title=Mathematical+programming+%28Print%29&rft.atitle=On+the+enumerative+nature+of+Gomory%27s+dual+cutting+plane+method&rft.au=BALAS%2C+Egon&rft.au=FISCHETTI%2C+Matteo&rft.au=ZANETTE%2C+Arrigo&rft.date=2010-10-01&rft.pub=Springer&rft.issn=0025-5610&rft.eissn=1436-4646&rft.volume=125&rft.issue=2&rft.spage=325&rft.epage=351&rft_id=info:doi/10.1007%2Fs10107-010-0392-4&rft.externalDBID=n%2Fa&rft.externalDocID=23415709
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0025-5610&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0025-5610&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0025-5610&client=summon