A hybrid self-adaptive Particle Swarm Optimization–Genetic Algorithm–Radial Basis Function model for annual electricity demand prediction
•A hybrid self-adaptive PSO–GA-RBF model is proposed for electricity demand prediction.•Each mixed-coding particle is composed by two coding parts of binary and real.•Five independent variables have been selected to predict future electricity consumption in Wuhan.•The proposed model has a simpler st...
Saved in:
| Published in | Energy conversion and management Vol. 91; pp. 176 - 185 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.02.2015
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0196-8904 1879-2227 |
| DOI | 10.1016/j.enconman.2014.11.059 |
Cover
| Abstract | •A hybrid self-adaptive PSO–GA-RBF model is proposed for electricity demand prediction.•Each mixed-coding particle is composed by two coding parts of binary and real.•Five independent variables have been selected to predict future electricity consumption in Wuhan.•The proposed model has a simpler structure or higher estimating precision than other ANN models.•No matter what the scenario, the electricity consumption of Wuhan will grow rapidly.
The present study proposes a hybrid Particle Swarm Optimization and Genetic Algorithm optimized Radial Basis Function (PSO–GA-RBF) neural network for prediction of annual electricity demand. In the model, each mixed-coding particle (or chromosome) is composed of two coding parts, binary and real, which optimizes the structure of the RBF by GA operation and the parameters of the basis and weights by a PSO–GA implementation. Five independent variables have been selected to predict future electricity consumption in Wuhan by using optimized networks. The results shows that (1) the proposed PSO–GA-RBF model has a simpler network structure (fewer hidden neurons) or higher estimation precision than other selected ANN models; and (2) no matter what the scenario, the electricity consumption of Wuhan will grow rapidly at average annual growth rates of about 9.7–11.5%. By 2020, the electricity demand in the planning scenario, the highest among the scenarios, will be 95.85billionkWh. The lowest demand is estimated for the business-as-usual scenario, and will be 88.45billionkWh. |
|---|---|
| AbstractList | The present study proposes a hybrid Particle Swarm Optimization and Genetic Algorithm optimized Radial Basis Function (PSO-GA-RBF) neural network for prediction of annual electricity demand. In the model, each mixed-coding particle (or chromosome) is composed of two coding parts, binary and real, which optimizes the structure of the RBF by GA operation and the parameters of the basis and weights by a PSO-GA implementation. Five independent variables have been selected to predict future electricity consumption in Wuhan by using optimized networks. The results shows that (1) the proposed PSO-GA-RBF model has a simpler network structure (fewer hidden neurons) or higher estimation precision than other selected ANN models; and (2) no matter what the scenario, the electricity consumption of Wuhan will grow rapidly at average annual growth rates of about 9.7-11.5%. By 2020, the electricity demand in the planning scenario, the highest among the scenarios, will be 95.85 billion kW h. The lowest demand is estimated for the business-as-usual scenario, and will be 88.45 billion kW h. The present study proposes a hybrid Particle Swarm Optimization and Genetic Algorithm optimized Radial Basis Function (PSO–GA-RBF) neural network for prediction of annual electricity demand. In the model, each mixed-coding particle (or chromosome) is composed of two coding parts, binary and real, which optimizes the structure of the RBF by GA operation and the parameters of the basis and weights by a PSO–GA implementation. Five independent variables have been selected to predict future electricity consumption in Wuhan by using optimized networks. The results shows that (1) the proposed PSO–GA-RBF model has a simpler network structure (fewer hidden neurons) or higher estimation precision than other selected ANN models; and (2) no matter what the scenario, the electricity consumption of Wuhan will grow rapidly at average annual growth rates of about 9.7–11.5%. By 2020, the electricity demand in the planning scenario, the highest among the scenarios, will be 95.85billionkWh. The lowest demand is estimated for the business-as-usual scenario, and will be 88.45billionkWh. •A hybrid self-adaptive PSO–GA-RBF model is proposed for electricity demand prediction.•Each mixed-coding particle is composed by two coding parts of binary and real.•Five independent variables have been selected to predict future electricity consumption in Wuhan.•The proposed model has a simpler structure or higher estimating precision than other ANN models.•No matter what the scenario, the electricity consumption of Wuhan will grow rapidly. The present study proposes a hybrid Particle Swarm Optimization and Genetic Algorithm optimized Radial Basis Function (PSO–GA-RBF) neural network for prediction of annual electricity demand. In the model, each mixed-coding particle (or chromosome) is composed of two coding parts, binary and real, which optimizes the structure of the RBF by GA operation and the parameters of the basis and weights by a PSO–GA implementation. Five independent variables have been selected to predict future electricity consumption in Wuhan by using optimized networks. The results shows that (1) the proposed PSO–GA-RBF model has a simpler network structure (fewer hidden neurons) or higher estimation precision than other selected ANN models; and (2) no matter what the scenario, the electricity consumption of Wuhan will grow rapidly at average annual growth rates of about 9.7–11.5%. By 2020, the electricity demand in the planning scenario, the highest among the scenarios, will be 95.85billionkWh. The lowest demand is estimated for the business-as-usual scenario, and will be 88.45billionkWh. |
| Author | Yu, Shiwei Wei, Yi-Ming Wang, Ke |
| Author_xml | – sequence: 1 givenname: Shiwei surname: Yu fullname: Yu, Shiwei email: ysw81993@sina.com organization: School of Economics and Management, China University of Geosciences, Wuhan 430074, China – sequence: 2 givenname: Ke surname: Wang fullname: Wang, Ke organization: Center for Energy and Environmental Policy Research, Beijing Institute of Technology, Beijing 100181, China – sequence: 3 givenname: Yi-Ming surname: Wei fullname: Wei, Yi-Ming organization: Center for Energy and Environmental Policy Research, Beijing Institute of Technology, Beijing 100181, China |
| BookMark | eNqFkc9u1DAQxi1UJLalr1D5yCXBdhInkTiwVG2pVKkVf87WxJ5Qrxx7sbNFy4kX4MQb8iT1dumFy55Gmvl9o5nvOyZHPngk5IyzkjMu365K9Dr4CXwpGK9LzkvW9C_IgndtXwgh2iOyYLyXRdez-hU5TmnFGKsaJhfk95Leb4doDU3oxgIMrGf7gPQO4my1Q_r5B8SJ3ubuZH_CbIP_--vPFXrMY7p030K08_2Ue5_AWHD0AySb6OXG6x1Lp2DQ0TFECt5v8hwd6jlabectNZiPNnQd0dgn_DV5OYJLePqvnpCvlxdfzj8WN7dX1-fLm0JXbTcXUItm7LiQg9BmkHUtataZtgEOoxCD7HVVS1ZrwWAwwwBtD7rmIwzQGWlEW52QN_u96xi-bzDNarJJo3PgMWySErzK5jWyP4xy2TUd6_bouz2qY0gp4qjyl0-WzRGsU5ypXWBqpZ4DU7vAFOcqB5bl8j_5OtoJ4vaw8P1eiNmyB4tRJW0zmV2N2Wxlgj204hExHbvf |
| CitedBy_id | crossref_primary_10_1016_j_egyr_2023_01_094 crossref_primary_10_1049_iet_gtd_2020_0842 crossref_primary_10_1016_j_aei_2022_101707 crossref_primary_10_1155_2017_2379381 crossref_primary_10_1016_j_energy_2018_03_120 crossref_primary_10_3390_app14166862 crossref_primary_10_1016_j_ijhydene_2016_03_085 crossref_primary_10_1016_j_esr_2022_100813 crossref_primary_10_1007_s00521_017_3244_9 crossref_primary_10_3390_en15030735 crossref_primary_10_1016_j_enconman_2018_10_072 crossref_primary_10_1016_j_jnca_2017_11_013 crossref_primary_10_3390_su15010231 crossref_primary_10_1007_s10845_017_1313_7 crossref_primary_10_1155_2022_6379141 crossref_primary_10_2139_ssrn_3998847 crossref_primary_10_1007_s42452_020_2475_z crossref_primary_10_1016_j_ijheatmasstransfer_2018_05_022 crossref_primary_10_1016_j_rser_2018_02_002 crossref_primary_10_3390_en11051063 crossref_primary_10_1080_10042857_2018_1454737 crossref_primary_10_3390_su12155931 crossref_primary_10_3390_en12203903 crossref_primary_10_1108_IJESM_10_2014_0006 crossref_primary_10_3233_JIFS_179211 crossref_primary_10_3390_su14031181 crossref_primary_10_3390_e21070629 crossref_primary_10_1016_j_enconman_2020_112677 crossref_primary_10_1016_j_neucom_2015_12_077 crossref_primary_10_1016_j_asoc_2017_02_011 crossref_primary_10_1016_j_ecoinf_2021_101489 crossref_primary_10_1016_j_enconman_2023_117707 crossref_primary_10_1007_s00202_024_02599_y crossref_primary_10_1016_j_epsr_2020_106408 crossref_primary_10_1016_j_segan_2023_101245 crossref_primary_10_1016_j_asej_2023_102613 crossref_primary_10_1016_j_spc_2021_04_029 crossref_primary_10_1016_j_apenergy_2020_115503 crossref_primary_10_1080_23744731_2021_1996121 crossref_primary_10_1016_j_apenergy_2016_03_089 crossref_primary_10_1109_ACCESS_2025_3526943 crossref_primary_10_1109_ACCESS_2023_3250110 crossref_primary_10_1016_j_neucom_2017_01_016 crossref_primary_10_1007_s42835_022_01296_9 crossref_primary_10_1108_JM2_11_2017_0117 crossref_primary_10_31127_tuje_903876 crossref_primary_10_3390_en12214181 crossref_primary_10_1016_j_neucom_2017_08_017 crossref_primary_10_1142_S0218213016500044 crossref_primary_10_3390_en15228380 crossref_primary_10_1007_s10651_023_00569_4 crossref_primary_10_1016_j_asoc_2016_06_038 crossref_primary_10_1016_j_compeleceng_2020_106737 crossref_primary_10_1049_tje2_12151 crossref_primary_10_3390_en17236131 crossref_primary_10_1371_journal_pone_0196871 crossref_primary_10_36222_ejt_862862 crossref_primary_10_1049_iet_gtd_2017_1493 crossref_primary_10_3390_en10122001 crossref_primary_10_1016_j_applthermaleng_2018_10_070 |
| Cites_doi | 10.1016/j.eswa.2009.02.081 10.1016/j.asoc.2012.05.030 10.1016/j.enpol.2009.09.003 10.1016/j.apenergy.2013.09.062 10.1016/j.knosys.2010.11.001 10.1109/TPWRS.2011.2181981 10.1016/j.energy.2012.11.048 10.1016/j.energy.2006.11.010 10.1007/s00521-008-0214-2 10.1016/S0140-9883(03)00058-6 10.3141/1651-06 10.1016/S0140-9883(98)00007-3 10.1016/S0893-6080(03)00118-7 10.1016/j.energy.2008.05.008 10.1016/j.enpol.2006.10.001 10.1016/j.energy.2014.05.070 10.1109/TSMCC.2010.2040176 10.1016/j.enpol.2013.12.017 10.1016/j.asoc.2011.07.001 10.1016/0140-9883(83)90054-3 10.1016/j.energy.2012.10.035 10.1016/j.enpol.2013.11.025 10.1016/j.amc.2006.08.093 10.1016/j.energy.2009.07.046 10.1023/A:1012046824237 10.1016/j.eswa.2009.01.055 10.1016/j.eneco.2006.02.006 10.1109/TPWRS.2005.857397 10.1080/15567240903289549 10.1016/S1568-4946(01)00013-8 10.1016/j.enpol.2007.04.029 10.1016/j.enpol.2008.08.020 10.1016/j.enpol.2011.06.002 10.1016/j.energy.2014.01.016 10.1016/j.enconman.2009.06.016 10.1080/08839514.2011.559572 10.1016/S0360-5442(01)00008-1 10.1016/j.eneco.2008.02.003 10.1016/j.energy.2009.06.034 10.1016/j.enpol.2012.05.026 10.1016/j.eneco.2003.11.001 10.1016/j.amc.2007.04.088 10.1016/j.enconman.2012.03.016 10.1049/ip-gtd:19951602 10.1016/j.enpol.2011.03.078 10.3390/en4081246 10.1016/j.enpol.2010.05.057 10.1016/S0169-2070(99)00045-X 10.1016/j.enpol.2008.02.035 10.1016/S0196-8904(97)10008-5 10.1016/j.eneco.2010.10.001 10.1016/j.enbuild.2007.10.002 10.1109/ICIINFS.2011.6038087 10.1109/TSMCB.2003.818557 10.1016/j.energy.2009.04.026 10.1016/j.enpol.2011.11.090 10.1016/j.enpol.2006.02.013 10.1016/j.apenergy.2011.12.085 10.1109/TPWRS.2006.889078 10.1016/j.ijepes.2010.08.008 |
| ContentType | Journal Article |
| Copyright | 2014 Elsevier Ltd |
| Copyright_xml | – notice: 2014 Elsevier Ltd |
| DBID | AAYXX CITATION 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D 7S9 L.6 |
| DOI | 10.1016/j.enconman.2014.11.059 |
| DatabaseName | CrossRef Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database ProQuest Computer Science Collection Civil Engineering Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
| DatabaseTitle | CrossRef Civil Engineering Abstracts Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Engineering Research Database Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional AGRICOLA AGRICOLA - Academic |
| DatabaseTitleList | Civil Engineering Abstracts AGRICOLA |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EISSN | 1879-2227 |
| EndPage | 185 |
| ExternalDocumentID | 10_1016_j_enconman_2014_11_059 S0196890414010280 |
| GroupedDBID | --K --M .DC .~1 0R~ 1B1 1~. 1~5 29G 4.4 457 4G. 5GY 5VS 6TJ 7-5 71M 8P~ 8WZ 9JN A6W AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABFNM ABFRF ABJNI ABMAC ABXDB ABYKQ ACBEA ACDAQ ACGFO ACGFS ACIWK ACNCT ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ H~9 IHE J1W JARJE KOM LY6 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SAC SDF SDG SDP SES SEW SPC SPCBC SSR SST SSZ T5K TN5 WUQ XPP ZMT ~02 ~G- AAHBH AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 7SC 7TB 8FD FR3 JQ2 KR7 L7M L~C L~D 7S9 L.6 |
| ID | FETCH-LOGICAL-c378t-a425f8126b2cdb6442408d75a1af22b69c34604c20abdbba79ac41faba8d6d273 |
| IEDL.DBID | .~1 |
| ISSN | 0196-8904 |
| IngestDate | Sun Sep 28 11:34:41 EDT 2025 Thu Sep 25 08:41:36 EDT 2025 Wed Oct 01 01:59:38 EDT 2025 Thu Apr 24 23:01:14 EDT 2025 Fri Feb 23 02:20:54 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Radial Basis Function neural network Electricity demand prediction Particle Swarm Optimization Genetic Algorithm Mixed coding |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c378t-a425f8126b2cdb6442408d75a1af22b69c34604c20abdbba79ac41faba8d6d273 |
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| PQID | 1685808697 |
| PQPubID | 23500 |
| PageCount | 10 |
| ParticipantIDs | proquest_miscellaneous_2131875697 proquest_miscellaneous_1685808697 crossref_citationtrail_10_1016_j_enconman_2014_11_059 crossref_primary_10_1016_j_enconman_2014_11_059 elsevier_sciencedirect_doi_10_1016_j_enconman_2014_11_059 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2015-02-01 |
| PublicationDateYYYYMMDD | 2015-02-01 |
| PublicationDate_xml | – month: 02 year: 2015 text: 2015-02-01 day: 01 |
| PublicationDecade | 2010 |
| PublicationTitle | Energy conversion and management |
| PublicationYear | 2015 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Inglesi-Lotz (b0090) 2011; 39 Hu (b0015) 2003; 8 Bessec, Fouquau (b0315) 2008; 30 Yu, Zhu, Diao (b0095) 2008; 195 Bianco, Manca, Nardini (b0055) 2013; 8 Kavaklioglu, Ceylan, Ozturk, Canyurt (b0335) 2009; 50 Chen, Kuo, Chen (b0265) 2007; 35 Yu, Wei, Wang (b0230) 2014; 66 Wang, Fang (b0040) 2012; 14 Narayan, Smyth (b0275) 2009; 37 Abraham, Nath (b0330) 2001; 1 Lim, Lim, Yoo (b0035) 2014; 67 Jumbe (b0260) 2004; 26 Dilaver, Hunt (b0060) 2011; 33 Yu, Zhu, Gao (b0220) 2009; 18 Bianco, Manca, Nardini (b0045) 2009; 34 Erdogdu (b0080) 2007; 35 SGCC (State Grid Corporation of China). China electricity market analysis and research in 2003. 2004 [in Chinese]. Hankinson, Rhys (b0285) 1983; 5 Filippini (b0345) 2011; 39 Yu, Wei, Guo, Ding (b0005) 2014; 114 Sözen, Arcaklioglu (b0150) 2007; 35 Azadeh, Ghaderi, Sohrabkhani (b0140) 2008; 36 Esen, Inalli, Sengur, Esen (b0175) 2008; 40 Singh NK, Tripathy M, Singh AK. A radial basis function neural network approach for multi-hour short term load-price forecasting with type of day parameter. In: Industrial and Information Systems (ICIIS), 2011 6th IEEE international conference on, IEEE; 2011. p. 316–21. Kandananond (b0110) 2011; 4 Gontar, Sideratos, Hatziargyriou (b0210) 2004 Park, Messer, Urbanik (b0185) 1998; 1651 Wang, Wang, Zhao, Dong (b0085) 2012; 48 Yu, Wei, Wang (b0225) 2012; 61 Lewis (b0350) 1982 Pao (b0145) 2009; 34 Cai S. Electricity demand analysis based on consumption elastic elasticity coefficient. Social Sciences in Yunnan; 2007. p. 53–7. Pappas, Ekonomou, Karamousantas, Chatzarakis, Katsikas, Liatsis (b0075) 2008; 33 Esen, Inalli (b0125) 2009; 36 Jamil, Ahmad (b0270) 2010; 38 Hor, Watson, Majithia (b0050) 2005; 20 Sideratos, Hatziargyriou (b0190) 2007; 22 Elattar, Goulermas, Wu (b0120) 2010; 40 Arisoy, Ozturk (b0065) 2014; 66 Azadeh, Saberi, Gitiforouz, Saberi (b0105) 2009; 36 Shen, Guo, Wu, Wu (b0200) 2011; 24 Kraft, Kraft (b0255) 1978; 3 Askarzadeh (b0340) 2014; 72 McLoughlin, Duffy, Conlon (b0070) 2013; 50 Lam (b0320) 1998; 39 Azadeh, Ghaderi, Tarverdian, Saberi (b0170) 2007; 186 Ghodsi, Schuurmans (b0180) 2003; 16 Bonanno, Capizzi, Graditi, Napoli, Tina (b0195) 2012; 97 An, Zhao, Wang, Shang, Zhao (b0165) 2013; 49 Khosravi, Nahavandi, Creighton, Srinivasan (b0100) 2012; 27 Holtedahl, Joutz (b0310) 2004; 26 Behrang, Assareh, Assari, Ghanbarzadeh (b0115) 2011; 25 Ranaweera D, Hubele N, Papalexopoulos A. Application of radial basis function neural network model for short-term load forecasting. In: Generation, transmission and distribution, IEE proceedings: IET; 1995. p. 45–50. Chang, Fan, Lin (b0325) 2011; 33 Ringwood, Bofelli, Murray (b0160) 2001; 31 Juang (b0235) 2004; 34 Yu, Wei, Wang (b0245) 2012; 42 Tso, Yau (b0135) 2007; 32 Pao (b0250) 2009; 34 Niu, Shi, Wu (b0155) 2012; 12 Steenhof (b0290) 2006; 28 Yoo, Kwak (b0280) 2010; 38 CAIJING. Electricity shortage getting serious and rolling blackouts in some areas in summer CEC (China Electricity Council). Power industry statistical bulletin in 2013. 2014 [in Chinese]. Yang, Dong (b0030) 2009; 30 2011 [in Chinese]. Egelioglu, Mohamad, Guven (b0300) 2001; 26 Gálvez, Iglesias (b0240) 2013; 13 Larivière, Lafrance (b0305) 1999; 21 Darbellay, Slama (b0130) 2000; 16 Egelioglu (10.1016/j.enconman.2014.11.059_b0300) 2001; 26 Esen (10.1016/j.enconman.2014.11.059_b0175) 2008; 40 10.1016/j.enconman.2014.11.059_b0295 Sözen (10.1016/j.enconman.2014.11.059_b0150) 2007; 35 Juang (10.1016/j.enconman.2014.11.059_b0235) 2004; 34 McLoughlin (10.1016/j.enconman.2014.11.059_b0070) 2013; 50 Ringwood (10.1016/j.enconman.2014.11.059_b0160) 2001; 31 10.1016/j.enconman.2014.11.059_b0010 Wang (10.1016/j.enconman.2014.11.059_b0085) 2012; 48 Elattar (10.1016/j.enconman.2014.11.059_b0120) 2010; 40 Shen (10.1016/j.enconman.2014.11.059_b0200) 2011; 24 10.1016/j.enconman.2014.11.059_b0215 Yu (10.1016/j.enconman.2014.11.059_b0245) 2012; 42 Yoo (10.1016/j.enconman.2014.11.059_b0280) 2010; 38 Esen (10.1016/j.enconman.2014.11.059_b0125) 2009; 36 Yu (10.1016/j.enconman.2014.11.059_b0095) 2008; 195 Gálvez (10.1016/j.enconman.2014.11.059_b0240) 2013; 13 Pappas (10.1016/j.enconman.2014.11.059_b0075) 2008; 33 An (10.1016/j.enconman.2014.11.059_b0165) 2013; 49 Chen (10.1016/j.enconman.2014.11.059_b0265) 2007; 35 Holtedahl (10.1016/j.enconman.2014.11.059_b0310) 2004; 26 Lewis (10.1016/j.enconman.2014.11.059_b0350) 1982 Arisoy (10.1016/j.enconman.2014.11.059_b0065) 2014; 66 Erdogdu (10.1016/j.enconman.2014.11.059_b0080) 2007; 35 Lim (10.1016/j.enconman.2014.11.059_b0035) 2014; 67 Yang (10.1016/j.enconman.2014.11.059_b0030) 2009; 30 Pao (10.1016/j.enconman.2014.11.059_b0145) 2009; 34 Yu (10.1016/j.enconman.2014.11.059_b0225) 2012; 61 Jamil (10.1016/j.enconman.2014.11.059_b0270) 2010; 38 Abraham (10.1016/j.enconman.2014.11.059_b0330) 2001; 1 Chang (10.1016/j.enconman.2014.11.059_b0325) 2011; 33 Kandananond (10.1016/j.enconman.2014.11.059_b0110) 2011; 4 10.1016/j.enconman.2014.11.059_b0205 Inglesi-Lotz (10.1016/j.enconman.2014.11.059_b0090) 2011; 39 Larivière (10.1016/j.enconman.2014.11.059_b0305) 1999; 21 Bessec (10.1016/j.enconman.2014.11.059_b0315) 2008; 30 Khosravi (10.1016/j.enconman.2014.11.059_b0100) 2012; 27 Lam (10.1016/j.enconman.2014.11.059_b0320) 1998; 39 Yu (10.1016/j.enconman.2014.11.059_b0220) 2009; 18 Azadeh (10.1016/j.enconman.2014.11.059_b0105) 2009; 36 Hu (10.1016/j.enconman.2014.11.059_b0015) 2003; 8 Bianco (10.1016/j.enconman.2014.11.059_b0045) 2009; 34 Azadeh (10.1016/j.enconman.2014.11.059_b0170) 2007; 186 Pao (10.1016/j.enconman.2014.11.059_b0250) 2009; 34 Azadeh (10.1016/j.enconman.2014.11.059_b0140) 2008; 36 Yu (10.1016/j.enconman.2014.11.059_b0005) 2014; 114 Ghodsi (10.1016/j.enconman.2014.11.059_b0180) 2003; 16 Hankinson (10.1016/j.enconman.2014.11.059_b0285) 1983; 5 Sideratos (10.1016/j.enconman.2014.11.059_b0190) 2007; 22 Behrang (10.1016/j.enconman.2014.11.059_b0115) 2011; 25 Yu (10.1016/j.enconman.2014.11.059_b0230) 2014; 66 Kraft (10.1016/j.enconman.2014.11.059_b0255) 1978; 3 10.1016/j.enconman.2014.11.059_b0020 Kavaklioglu (10.1016/j.enconman.2014.11.059_b0335) 2009; 50 Tso (10.1016/j.enconman.2014.11.059_b0135) 2007; 32 Darbellay (10.1016/j.enconman.2014.11.059_b0130) 2000; 16 Park (10.1016/j.enconman.2014.11.059_b0185) 1998; 1651 10.1016/j.enconman.2014.11.059_b0025 Bonanno (10.1016/j.enconman.2014.11.059_b0195) 2012; 97 Hor (10.1016/j.enconman.2014.11.059_b0050) 2005; 20 Jumbe (10.1016/j.enconman.2014.11.059_b0260) 2004; 26 Wang (10.1016/j.enconman.2014.11.059_b0040) 2012; 14 Steenhof (10.1016/j.enconman.2014.11.059_b0290) 2006; 28 Filippini (10.1016/j.enconman.2014.11.059_b0345) 2011; 39 Bianco (10.1016/j.enconman.2014.11.059_b0055) 2013; 8 Niu (10.1016/j.enconman.2014.11.059_b0155) 2012; 12 Narayan (10.1016/j.enconman.2014.11.059_b0275) 2009; 37 Dilaver (10.1016/j.enconman.2014.11.059_b0060) 2011; 33 Askarzadeh (10.1016/j.enconman.2014.11.059_b0340) 2014; 72 Gontar (10.1016/j.enconman.2014.11.059_b0210) 2004 |
| References_xml | – volume: 97 start-page: 956 year: 2012 end-page: 961 ident: b0195 article-title: A radial basis function neural network based approach for the electrical characteristics estimation of a photovoltaic module publication-title: Appl Energy – volume: 50 start-page: 120 year: 2013 end-page: 130 ident: b0070 article-title: Evaluation of time series techniques to characterise domestic electricity demand publication-title: Energy – volume: 26 start-page: 61 year: 2004 end-page: 68 ident: b0260 article-title: Cointegration and causality between electricity consumption and GDP: empirical evidence from Malawi publication-title: Energy Econ – volume: 3 start-page: 401 year: 1978 end-page: 403 ident: b0255 article-title: On the relationship between energy and GNP publication-title: J Energy Dev – volume: 186 start-page: 1731 year: 2007 end-page: 1741 ident: b0170 article-title: Integration of artificial neural networks and genetic algorithm to predict electrical energy consumption publication-title: Appl Math Comput – reference: Singh NK, Tripathy M, Singh AK. A radial basis function neural network approach for multi-hour short term load-price forecasting with type of day parameter. In: Industrial and Information Systems (ICIIS), 2011 6th IEEE international conference on, IEEE; 2011. p. 316–21. – volume: 12 start-page: 1822 year: 2012 end-page: 1827 ident: b0155 article-title: Short-term load forecasting using bayesian neural networks learned by Hybrid Monte Carlo algorithm publication-title: Appl Soft Comput – volume: 14 start-page: 21 year: 2012 end-page: 23 ident: b0040 article-title: The application of per person electricity consumption method in saturation load forecasting publication-title: Power Demand Side Manage – volume: 8 start-page: 86 year: 2013 end-page: 93 ident: b0055 article-title: Linear regression models to forecast electricity consumption in Italy publication-title: Energy Sources Part B – volume: 21 start-page: 53 year: 1999 end-page: 66 ident: b0305 article-title: Modelling the electricity consumption of cities: effect of urban density publication-title: Energy Econ – volume: 16 start-page: 71 year: 2000 end-page: 83 ident: b0130 article-title: Forecasting the short-term demand for electricity: do neural networks stand a better chance? publication-title: Int J Forecast – volume: 48 start-page: 284 year: 2012 end-page: 294 ident: b0085 article-title: Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: a case study of China publication-title: Energy Policy – volume: 50 start-page: 2719 year: 2009 end-page: 2727 ident: b0335 article-title: Modeling and prediction of Turkey’s electricity consumption using artificial neural networks publication-title: Energy Convers Manage – year: 1982 ident: b0350 article-title: Industrial and business forecasting methods: a practical guide to exponential smoothing and curve fitting – volume: 36 start-page: 10229 year: 2009 end-page: 10238 ident: b0125 article-title: Modelling of a vertical ground coupled heat pump system by using artificial neural networks publication-title: Expert Syst Appl – volume: 22 start-page: 258 year: 2007 end-page: 265 ident: b0190 article-title: An advanced statistical method for wind power forecasting publication-title: IEEE Trans, Power Syst – volume: 27 start-page: 1274 year: 2012 end-page: 1282 ident: b0100 article-title: Interval type-2 fuzzy logic systems for load forecasting: a comparative study publication-title: IEEE Trans, Power Syst – volume: 40 start-page: 438 year: 2010 end-page: 447 ident: b0120 article-title: Electric load forecasting based on locally weighted support vector regression publication-title: IEEE Trans, Syst Man Cybern Part C: Appl Rev – volume: 28 start-page: 370 year: 2006 end-page: 384 ident: b0290 article-title: Decomposition of electricity demand in China’s industrial sector publication-title: Energy Econ – volume: 66 start-page: 630 year: 2014 end-page: 644 ident: b0230 article-title: Provincial allocation of carbon emission reduction targets in China: an approach based on improved fuzzy cluster and Shapley value decomposition publication-title: Energy Policy – volume: 35 start-page: 2611 year: 2007 end-page: 2621 ident: b0265 article-title: The relationship between GDP and electricity consumption in 10 Asian countries publication-title: Energy Policy – volume: 37 start-page: 229 year: 2009 end-page: 236 ident: b0275 article-title: Multivariate granger causality between electricity consumption, exports and GDP: evidence from a panel of Middle Eastern countries publication-title: Energy Policy – volume: 195 start-page: 66 year: 2008 end-page: 75 ident: b0095 article-title: A dynamic all parameters adaptive BP neural networks model and its application on oil reservoir prediction publication-title: Appl Math Comput – volume: 49 start-page: 279 year: 2013 end-page: 288 ident: b0165 article-title: Using multi-output feedforward neural network with empirical mode decomposition based signal filtering for electricity demand forecasting publication-title: Energy – volume: 16 start-page: 809 year: 2003 end-page: 816 ident: b0180 article-title: Automatic basis selection techniques for RBF networks publication-title: Neural Networks – volume: 1651 start-page: 39 year: 1998 end-page: 47 ident: b0185 article-title: Short-term freeway traffic volume forecasting using radial basis function neural network publication-title: Transport Res Rec: J Transport Res Board – volume: 13 start-page: 1491 year: 2013 end-page: 1504 ident: b0240 article-title: A new iterative mutually coupled hybrid GA–PSO approach for curve fitting in manufacturing publication-title: Appl Soft Comput – volume: 8 start-page: 50 year: 2003 end-page: 52 ident: b0015 article-title: China’s electric power supply and demand situation analysis and its strategies in response publication-title: Macroeconomics – volume: 33 start-page: 1353 year: 2008 end-page: 1360 ident: b0075 article-title: Electricity demand loads modeling using Auto Regressive Moving Average (ARMA) models publication-title: Energy – volume: 66 start-page: 959 year: 2014 end-page: 964 ident: b0065 article-title: Estimating industrial and residential electricity demand in Turkey: a time varying parameter approach publication-title: Energy – volume: 35 start-page: 1129 year: 2007 end-page: 1146 ident: b0080 article-title: Electricity demand analysis using cointegration and ARIMA modelling: a case study of Turkey publication-title: Energy Policy – volume: 35 start-page: 4981 year: 2007 end-page: 4992 ident: b0150 article-title: Prediction of net energy consumption based on economic indicators (GNP and GDP) in Turkey publication-title: Energy Policy – volume: 33 start-page: 17 year: 2011 end-page: 27 ident: b0325 article-title: Monthly electricity demand forecasting based on a weighted evolving fuzzy neural network approach publication-title: Int J Electr Power Energy Syst – volume: 31 start-page: 129 year: 2001 end-page: 147 ident: b0160 article-title: Forecasting electricity demand on short, medium and long time scales using neural networks publication-title: J Intell Rob Syst – volume: 1 start-page: 127 year: 2001 end-page: 138 ident: b0330 article-title: A neuro-fuzzy approach for modelling electricity demand in Victoria publication-title: Appl Soft Comput – volume: 30 start-page: 73 year: 2009 end-page: 76 ident: b0030 article-title: Application of unit consumption method of output value in load forecasting publication-title: J North China Inst Water Conservancy Hydroelectr Power – volume: 39 start-page: 3690 year: 2011 end-page: 3696 ident: b0090 article-title: The evolution of price elasticity of electricity demand in South Africa: a Kalman filter application publication-title: Energy Policy – volume: 34 start-page: 1779 year: 2009 end-page: 1791 ident: b0250 article-title: Forecast of electricity consumption and economic growth in Taiwan by state space modeling publication-title: Energy – volume: 38 start-page: 6016 year: 2010 end-page: 6025 ident: b0270 article-title: The relationship between electricity consumption, electricity prices and GDP in Pakistan publication-title: Energy Policy – volume: 4 start-page: 1246 year: 2011 end-page: 1257 ident: b0110 article-title: Forecasting electricity demand in Thailand with an artificial neural network approach publication-title: Energies – start-page: 432 year: 2004 end-page: 438 ident: b0210 article-title: Short-term load forecasting using radial basis function networks publication-title: Methods and applications of artificial intelligence – volume: 26 start-page: 355 year: 2001 end-page: 362 ident: b0300 article-title: Economic variables and electricity consumption in Northern Cyprus publication-title: Energy – volume: 26 start-page: 201 year: 2004 end-page: 224 ident: b0310 article-title: Residential electricity demand in Taiwan publication-title: Energy Econ – volume: 36 start-page: 11108 year: 2009 end-page: 11117 ident: b0105 article-title: A hybrid simulation-adaptive network based fuzzy inference system for improvement of electricity consumption estimation publication-title: Expert Syst Appl – volume: 34 start-page: 1413 year: 2009 end-page: 1421 ident: b0045 article-title: Electricity consumption forecasting in Italy using linear regression models publication-title: Energy – volume: 40 start-page: 1074 year: 2008 end-page: 1083 ident: b0175 article-title: Artificial neural networks and adaptive neuro-fuzzy assessments for ground-coupled heat pump system publication-title: Energy Build – volume: 39 start-page: 623 year: 1998 end-page: 629 ident: b0320 article-title: Climatic and economic influences on residential electricity consumption publication-title: Energy Convers Manage – volume: 25 start-page: 292 year: 2011 end-page: 304 ident: b0115 article-title: Assessment of electricity demand in Iran’s industrial sector using different intelligent optimization techniques publication-title: Appl Artif Int – reference: Cai S. Electricity demand analysis based on consumption elastic elasticity coefficient. Social Sciences in Yunnan; 2007. p. 53–7. – volume: 30 start-page: 2705 year: 2008 end-page: 2721 ident: b0315 article-title: The non-linear link between electricity consumption and temperature in Europe: a threshold panel approach publication-title: Energy Econ – volume: 67 start-page: 517 year: 2014 end-page: 521 ident: b0035 article-title: Short-and long-run elasticities of electricity demand in the Korean service sector publication-title: Energy Policy – volume: 72 start-page: 484 year: 2014 end-page: 491 ident: b0340 article-title: Comparison of particle swarm optimization and other metaheuristics on electricity estimation: a case study of Iran publication-title: Energy – volume: 39 start-page: 5811 year: 2011 end-page: 5817 ident: b0345 article-title: Short-and long-run time-of-use price elasticities in Swiss residential electricity demand publication-title: Energy Policy – volume: 114 start-page: 290 year: 2014 end-page: 300 ident: b0005 article-title: Carbon emission coefficient measurement of the coal-to-power energy chain in China publication-title: Appl Energy – volume: 18 start-page: 769 year: 2009 end-page: 779 ident: b0220 article-title: A hybrid MPSO-BP structure adaptive algorithm for RBFNs publication-title: Neural Comput Appl – volume: 42 start-page: 329 year: 2012 end-page: 340 ident: b0245 article-title: A PSO–GA optimal model to estimate primary energy demand of China publication-title: Energy Policy – volume: 5 start-page: 146 year: 1983 end-page: 152 ident: b0285 article-title: Electricity consumption, electricity intensity and industrial structure publication-title: Energy Econ – volume: 33 start-page: 426 year: 2011 end-page: 436 ident: b0060 article-title: Industrial electricity demand for Turkey: a structural time series analysis publication-title: Energy Econ – volume: 34 start-page: 997 year: 2004 end-page: 1006 ident: b0235 article-title: A hybrid of genetic algorithm and particle swarm optimization for recurrent network design publication-title: IEEE Trans Syst Man Cybern Part B: Cybern – volume: 36 start-page: 2637 year: 2008 end-page: 2644 ident: b0140 article-title: A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran publication-title: Energy Policy – reference: CEC (China Electricity Council). Power industry statistical bulletin in 2013. 2014 [in Chinese]. – reference: SGCC (State Grid Corporation of China). China electricity market analysis and research in 2003. 2004 [in Chinese]. – volume: 32 start-page: 1761 year: 2007 end-page: 1768 ident: b0135 article-title: Predicting electricity energy consumption: a comparison of regression analysis, decision tree and neural networks publication-title: Energy – volume: 20 start-page: 2078 year: 2005 end-page: 2085 ident: b0050 article-title: Analyzing the impact of weather variables on monthly electricity demand publication-title: IEEE Trans, Power Syst – volume: 38 start-page: 181 year: 2010 end-page: 188 ident: b0280 article-title: Electricity consumption and economic growth in seven South American countries publication-title: Energy Policy – volume: 61 start-page: 59 year: 2012 end-page: 66 ident: b0225 article-title: China’s primary energy demands in 2020: predictions from an MPSO–RBF estimation model publication-title: Energy Convers Manage – volume: 24 start-page: 378 year: 2011 end-page: 385 ident: b0200 article-title: Forecasting stock indices using radial basis function neural networks optimized by artificial fish swarm algorithm publication-title: Knowl-Based Syst – volume: 34 start-page: 1438 year: 2009 end-page: 1446 ident: b0145 article-title: Forecasting energy consumption in Taiwan using hybrid nonlinear models publication-title: Energy – reference: CAIJING. Electricity shortage getting serious and rolling blackouts in some areas in summer < – reference: > 2011 [in Chinese]. – reference: Ranaweera D, Hubele N, Papalexopoulos A. Application of radial basis function neural network model for short-term load forecasting. In: Generation, transmission and distribution, IEE proceedings: IET; 1995. p. 45–50. – volume: 36 start-page: 11108 year: 2009 ident: 10.1016/j.enconman.2014.11.059_b0105 article-title: A hybrid simulation-adaptive network based fuzzy inference system for improvement of electricity consumption estimation publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.02.081 – volume: 13 start-page: 1491 year: 2013 ident: 10.1016/j.enconman.2014.11.059_b0240 article-title: A new iterative mutually coupled hybrid GA–PSO approach for curve fitting in manufacturing publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2012.05.030 – volume: 38 start-page: 181 year: 2010 ident: 10.1016/j.enconman.2014.11.059_b0280 article-title: Electricity consumption and economic growth in seven South American countries publication-title: Energy Policy doi: 10.1016/j.enpol.2009.09.003 – volume: 114 start-page: 290 year: 2014 ident: 10.1016/j.enconman.2014.11.059_b0005 article-title: Carbon emission coefficient measurement of the coal-to-power energy chain in China publication-title: Appl Energy doi: 10.1016/j.apenergy.2013.09.062 – volume: 24 start-page: 378 year: 2011 ident: 10.1016/j.enconman.2014.11.059_b0200 article-title: Forecasting stock indices using radial basis function neural networks optimized by artificial fish swarm algorithm publication-title: Knowl-Based Syst doi: 10.1016/j.knosys.2010.11.001 – volume: 27 start-page: 1274 year: 2012 ident: 10.1016/j.enconman.2014.11.059_b0100 article-title: Interval type-2 fuzzy logic systems for load forecasting: a comparative study publication-title: IEEE Trans, Power Syst doi: 10.1109/TPWRS.2011.2181981 – volume: 50 start-page: 120 year: 2013 ident: 10.1016/j.enconman.2014.11.059_b0070 article-title: Evaluation of time series techniques to characterise domestic electricity demand publication-title: Energy doi: 10.1016/j.energy.2012.11.048 – volume: 32 start-page: 1761 year: 2007 ident: 10.1016/j.enconman.2014.11.059_b0135 article-title: Predicting electricity energy consumption: a comparison of regression analysis, decision tree and neural networks publication-title: Energy doi: 10.1016/j.energy.2006.11.010 – volume: 18 start-page: 769 year: 2009 ident: 10.1016/j.enconman.2014.11.059_b0220 article-title: A hybrid MPSO-BP structure adaptive algorithm for RBFNs publication-title: Neural Comput Appl doi: 10.1007/s00521-008-0214-2 – volume: 26 start-page: 61 year: 2004 ident: 10.1016/j.enconman.2014.11.059_b0260 article-title: Cointegration and causality between electricity consumption and GDP: empirical evidence from Malawi publication-title: Energy Econ doi: 10.1016/S0140-9883(03)00058-6 – ident: 10.1016/j.enconman.2014.11.059_b0010 – volume: 1651 start-page: 39 year: 1998 ident: 10.1016/j.enconman.2014.11.059_b0185 article-title: Short-term freeway traffic volume forecasting using radial basis function neural network publication-title: Transport Res Rec: J Transport Res Board doi: 10.3141/1651-06 – volume: 21 start-page: 53 year: 1999 ident: 10.1016/j.enconman.2014.11.059_b0305 article-title: Modelling the electricity consumption of cities: effect of urban density publication-title: Energy Econ doi: 10.1016/S0140-9883(98)00007-3 – volume: 16 start-page: 809 year: 2003 ident: 10.1016/j.enconman.2014.11.059_b0180 article-title: Automatic basis selection techniques for RBF networks publication-title: Neural Networks doi: 10.1016/S0893-6080(03)00118-7 – volume: 33 start-page: 1353 year: 2008 ident: 10.1016/j.enconman.2014.11.059_b0075 article-title: Electricity demand loads modeling using Auto Regressive Moving Average (ARMA) models publication-title: Energy doi: 10.1016/j.energy.2008.05.008 – volume: 35 start-page: 2611 year: 2007 ident: 10.1016/j.enconman.2014.11.059_b0265 article-title: The relationship between GDP and electricity consumption in 10 Asian countries publication-title: Energy Policy doi: 10.1016/j.enpol.2006.10.001 – volume: 72 start-page: 484 year: 2014 ident: 10.1016/j.enconman.2014.11.059_b0340 article-title: Comparison of particle swarm optimization and other metaheuristics on electricity estimation: a case study of Iran publication-title: Energy doi: 10.1016/j.energy.2014.05.070 – volume: 40 start-page: 438 year: 2010 ident: 10.1016/j.enconman.2014.11.059_b0120 article-title: Electric load forecasting based on locally weighted support vector regression publication-title: IEEE Trans, Syst Man Cybern Part C: Appl Rev doi: 10.1109/TSMCC.2010.2040176 – volume: 67 start-page: 517 year: 2014 ident: 10.1016/j.enconman.2014.11.059_b0035 article-title: Short-and long-run elasticities of electricity demand in the Korean service sector publication-title: Energy Policy doi: 10.1016/j.enpol.2013.12.017 – volume: 12 start-page: 1822 year: 2012 ident: 10.1016/j.enconman.2014.11.059_b0155 article-title: Short-term load forecasting using bayesian neural networks learned by Hybrid Monte Carlo algorithm publication-title: Appl Soft Comput doi: 10.1016/j.asoc.2011.07.001 – volume: 5 start-page: 146 year: 1983 ident: 10.1016/j.enconman.2014.11.059_b0285 article-title: Electricity consumption, electricity intensity and industrial structure publication-title: Energy Econ doi: 10.1016/0140-9883(83)90054-3 – ident: 10.1016/j.enconman.2014.11.059_b0020 – volume: 49 start-page: 279 year: 2013 ident: 10.1016/j.enconman.2014.11.059_b0165 article-title: Using multi-output feedforward neural network with empirical mode decomposition based signal filtering for electricity demand forecasting publication-title: Energy doi: 10.1016/j.energy.2012.10.035 – volume: 66 start-page: 630 year: 2014 ident: 10.1016/j.enconman.2014.11.059_b0230 article-title: Provincial allocation of carbon emission reduction targets in China: an approach based on improved fuzzy cluster and Shapley value decomposition publication-title: Energy Policy doi: 10.1016/j.enpol.2013.11.025 – volume: 186 start-page: 1731 year: 2007 ident: 10.1016/j.enconman.2014.11.059_b0170 article-title: Integration of artificial neural networks and genetic algorithm to predict electrical energy consumption publication-title: Appl Math Comput doi: 10.1016/j.amc.2006.08.093 – volume: 34 start-page: 1779 year: 2009 ident: 10.1016/j.enconman.2014.11.059_b0250 article-title: Forecast of electricity consumption and economic growth in Taiwan by state space modeling publication-title: Energy doi: 10.1016/j.energy.2009.07.046 – volume: 31 start-page: 129 year: 2001 ident: 10.1016/j.enconman.2014.11.059_b0160 article-title: Forecasting electricity demand on short, medium and long time scales using neural networks publication-title: J Intell Rob Syst doi: 10.1023/A:1012046824237 – volume: 8 start-page: 50 year: 2003 ident: 10.1016/j.enconman.2014.11.059_b0015 article-title: China’s electric power supply and demand situation analysis and its strategies in response publication-title: Macroeconomics – volume: 36 start-page: 10229 year: 2009 ident: 10.1016/j.enconman.2014.11.059_b0125 article-title: Modelling of a vertical ground coupled heat pump system by using artificial neural networks publication-title: Expert Syst Appl doi: 10.1016/j.eswa.2009.01.055 – volume: 28 start-page: 370 year: 2006 ident: 10.1016/j.enconman.2014.11.059_b0290 article-title: Decomposition of electricity demand in China’s industrial sector publication-title: Energy Econ doi: 10.1016/j.eneco.2006.02.006 – volume: 30 start-page: 73 year: 2009 ident: 10.1016/j.enconman.2014.11.059_b0030 article-title: Application of unit consumption method of output value in load forecasting publication-title: J North China Inst Water Conservancy Hydroelectr Power – volume: 20 start-page: 2078 year: 2005 ident: 10.1016/j.enconman.2014.11.059_b0050 article-title: Analyzing the impact of weather variables on monthly electricity demand publication-title: IEEE Trans, Power Syst doi: 10.1109/TPWRS.2005.857397 – volume: 8 start-page: 86 year: 2013 ident: 10.1016/j.enconman.2014.11.059_b0055 article-title: Linear regression models to forecast electricity consumption in Italy publication-title: Energy Sources Part B doi: 10.1080/15567240903289549 – volume: 1 start-page: 127 year: 2001 ident: 10.1016/j.enconman.2014.11.059_b0330 article-title: A neuro-fuzzy approach for modelling electricity demand in Victoria publication-title: Appl Soft Comput doi: 10.1016/S1568-4946(01)00013-8 – volume: 35 start-page: 4981 year: 2007 ident: 10.1016/j.enconman.2014.11.059_b0150 article-title: Prediction of net energy consumption based on economic indicators (GNP and GDP) in Turkey publication-title: Energy Policy doi: 10.1016/j.enpol.2007.04.029 – volume: 37 start-page: 229 year: 2009 ident: 10.1016/j.enconman.2014.11.059_b0275 article-title: Multivariate granger causality between electricity consumption, exports and GDP: evidence from a panel of Middle Eastern countries publication-title: Energy Policy doi: 10.1016/j.enpol.2008.08.020 – volume: 39 start-page: 5811 year: 2011 ident: 10.1016/j.enconman.2014.11.059_b0345 article-title: Short-and long-run time-of-use price elasticities in Swiss residential electricity demand publication-title: Energy Policy doi: 10.1016/j.enpol.2011.06.002 – volume: 66 start-page: 959 year: 2014 ident: 10.1016/j.enconman.2014.11.059_b0065 article-title: Estimating industrial and residential electricity demand in Turkey: a time varying parameter approach publication-title: Energy doi: 10.1016/j.energy.2014.01.016 – volume: 50 start-page: 2719 year: 2009 ident: 10.1016/j.enconman.2014.11.059_b0335 article-title: Modeling and prediction of Turkey’s electricity consumption using artificial neural networks publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2009.06.016 – volume: 25 start-page: 292 year: 2011 ident: 10.1016/j.enconman.2014.11.059_b0115 article-title: Assessment of electricity demand in Iran’s industrial sector using different intelligent optimization techniques publication-title: Appl Artif Int doi: 10.1080/08839514.2011.559572 – volume: 26 start-page: 355 year: 2001 ident: 10.1016/j.enconman.2014.11.059_b0300 article-title: Economic variables and electricity consumption in Northern Cyprus publication-title: Energy doi: 10.1016/S0360-5442(01)00008-1 – volume: 30 start-page: 2705 year: 2008 ident: 10.1016/j.enconman.2014.11.059_b0315 article-title: The non-linear link between electricity consumption and temperature in Europe: a threshold panel approach publication-title: Energy Econ doi: 10.1016/j.eneco.2008.02.003 – volume: 34 start-page: 1413 year: 2009 ident: 10.1016/j.enconman.2014.11.059_b0045 article-title: Electricity consumption forecasting in Italy using linear regression models publication-title: Energy doi: 10.1016/j.energy.2009.06.034 – ident: 10.1016/j.enconman.2014.11.059_b0025 – volume: 48 start-page: 284 year: 2012 ident: 10.1016/j.enconman.2014.11.059_b0085 article-title: Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: a case study of China publication-title: Energy Policy doi: 10.1016/j.enpol.2012.05.026 – volume: 26 start-page: 201 year: 2004 ident: 10.1016/j.enconman.2014.11.059_b0310 article-title: Residential electricity demand in Taiwan publication-title: Energy Econ doi: 10.1016/j.eneco.2003.11.001 – volume: 195 start-page: 66 year: 2008 ident: 10.1016/j.enconman.2014.11.059_b0095 article-title: A dynamic all parameters adaptive BP neural networks model and its application on oil reservoir prediction publication-title: Appl Math Comput doi: 10.1016/j.amc.2007.04.088 – ident: 10.1016/j.enconman.2014.11.059_b0295 – volume: 61 start-page: 59 year: 2012 ident: 10.1016/j.enconman.2014.11.059_b0225 article-title: China’s primary energy demands in 2020: predictions from an MPSO–RBF estimation model publication-title: Energy Convers Manage doi: 10.1016/j.enconman.2012.03.016 – ident: 10.1016/j.enconman.2014.11.059_b0205 doi: 10.1049/ip-gtd:19951602 – volume: 39 start-page: 3690 year: 2011 ident: 10.1016/j.enconman.2014.11.059_b0090 article-title: The evolution of price elasticity of electricity demand in South Africa: a Kalman filter application publication-title: Energy Policy doi: 10.1016/j.enpol.2011.03.078 – volume: 4 start-page: 1246 year: 2011 ident: 10.1016/j.enconman.2014.11.059_b0110 article-title: Forecasting electricity demand in Thailand with an artificial neural network approach publication-title: Energies doi: 10.3390/en4081246 – volume: 38 start-page: 6016 year: 2010 ident: 10.1016/j.enconman.2014.11.059_b0270 article-title: The relationship between electricity consumption, electricity prices and GDP in Pakistan publication-title: Energy Policy doi: 10.1016/j.enpol.2010.05.057 – volume: 16 start-page: 71 year: 2000 ident: 10.1016/j.enconman.2014.11.059_b0130 article-title: Forecasting the short-term demand for electricity: do neural networks stand a better chance? publication-title: Int J Forecast doi: 10.1016/S0169-2070(99)00045-X – volume: 36 start-page: 2637 year: 2008 ident: 10.1016/j.enconman.2014.11.059_b0140 article-title: A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran publication-title: Energy Policy doi: 10.1016/j.enpol.2008.02.035 – volume: 39 start-page: 623 year: 1998 ident: 10.1016/j.enconman.2014.11.059_b0320 article-title: Climatic and economic influences on residential electricity consumption publication-title: Energy Convers Manage doi: 10.1016/S0196-8904(97)10008-5 – volume: 33 start-page: 426 year: 2011 ident: 10.1016/j.enconman.2014.11.059_b0060 article-title: Industrial electricity demand for Turkey: a structural time series analysis publication-title: Energy Econ doi: 10.1016/j.eneco.2010.10.001 – year: 1982 ident: 10.1016/j.enconman.2014.11.059_b0350 – volume: 14 start-page: 21 year: 2012 ident: 10.1016/j.enconman.2014.11.059_b0040 article-title: The application of per person electricity consumption method in saturation load forecasting publication-title: Power Demand Side Manage – volume: 40 start-page: 1074 year: 2008 ident: 10.1016/j.enconman.2014.11.059_b0175 article-title: Artificial neural networks and adaptive neuro-fuzzy assessments for ground-coupled heat pump system publication-title: Energy Build doi: 10.1016/j.enbuild.2007.10.002 – ident: 10.1016/j.enconman.2014.11.059_b0215 doi: 10.1109/ICIINFS.2011.6038087 – volume: 34 start-page: 997 year: 2004 ident: 10.1016/j.enconman.2014.11.059_b0235 article-title: A hybrid of genetic algorithm and particle swarm optimization for recurrent network design publication-title: IEEE Trans Syst Man Cybern Part B: Cybern doi: 10.1109/TSMCB.2003.818557 – volume: 34 start-page: 1438 year: 2009 ident: 10.1016/j.enconman.2014.11.059_b0145 article-title: Forecasting energy consumption in Taiwan using hybrid nonlinear models publication-title: Energy doi: 10.1016/j.energy.2009.04.026 – volume: 42 start-page: 329 year: 2012 ident: 10.1016/j.enconman.2014.11.059_b0245 article-title: A PSO–GA optimal model to estimate primary energy demand of China publication-title: Energy Policy doi: 10.1016/j.enpol.2011.11.090 – start-page: 432 year: 2004 ident: 10.1016/j.enconman.2014.11.059_b0210 article-title: Short-term load forecasting using radial basis function networks – volume: 35 start-page: 1129 year: 2007 ident: 10.1016/j.enconman.2014.11.059_b0080 article-title: Electricity demand analysis using cointegration and ARIMA modelling: a case study of Turkey publication-title: Energy Policy doi: 10.1016/j.enpol.2006.02.013 – volume: 97 start-page: 956 year: 2012 ident: 10.1016/j.enconman.2014.11.059_b0195 article-title: A radial basis function neural network based approach for the electrical characteristics estimation of a photovoltaic module publication-title: Appl Energy doi: 10.1016/j.apenergy.2011.12.085 – volume: 22 start-page: 258 year: 2007 ident: 10.1016/j.enconman.2014.11.059_b0190 article-title: An advanced statistical method for wind power forecasting publication-title: IEEE Trans, Power Syst doi: 10.1109/TPWRS.2006.889078 – volume: 3 start-page: 401 year: 1978 ident: 10.1016/j.enconman.2014.11.059_b0255 article-title: On the relationship between energy and GNP publication-title: J Energy Dev – volume: 33 start-page: 17 year: 2011 ident: 10.1016/j.enconman.2014.11.059_b0325 article-title: Monthly electricity demand forecasting based on a weighted evolving fuzzy neural network approach publication-title: Int J Electr Power Energy Syst doi: 10.1016/j.ijepes.2010.08.008 |
| SSID | ssj0003506 |
| Score | 2.4280462 |
| Snippet | •A hybrid self-adaptive PSO–GA-RBF model is proposed for electricity demand prediction.•Each mixed-coding particle is composed by two coding parts of binary... The present study proposes a hybrid Particle Swarm Optimization and Genetic Algorithm optimized Radial Basis Function (PSO-GA-RBF) neural network for... The present study proposes a hybrid Particle Swarm Optimization and Genetic Algorithm optimized Radial Basis Function (PSO–GA-RBF) neural network for... |
| SourceID | proquest crossref elsevier |
| SourceType | Aggregation Database Enrichment Source Index Database Publisher |
| StartPage | 176 |
| SubjectTerms | Algorithms chromosomes Demand electric energy consumption Electricity Electricity consumption Electricity demand prediction Genetic Algorithm Genetic algorithms Learning theory Mathematical models Mixed coding Networks Neural networks neurons Particle Swarm Optimization planning prediction Radial Basis Function neural network |
| Title | A hybrid self-adaptive Particle Swarm Optimization–Genetic Algorithm–Radial Basis Function model for annual electricity demand prediction |
| URI | https://dx.doi.org/10.1016/j.enconman.2014.11.059 https://www.proquest.com/docview/1685808697 https://www.proquest.com/docview/2131875697 |
| Volume | 91 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-2227 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-2227 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1879-2227 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1879-2227 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-2227 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0003506 issn: 0196-8904 databaseCode: AKRWK dateStart: 19800101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELaqcikHVCiItlC5ElcnWcfexzFURAHUFlEq9WaNX3SrZBMlqRAXxB_gxD_klzCzD1oQqAeO6x1Ltseehz3zDWMvEp8rHaQSNmZOqFjkwg58EBEiKbhCyUBXA8cn6eRcvbnQFxvsqMuFobDKVvY3Mr2W1m1Lv13N_qIs-2eE7JIXA0UuAj0QUga7yqiKQe_LTZjHUNf1NYlYEPWtLOGrHmFFVjMgHNRE9QjNkzBL_66g_hDVtf4Zb7MHreHIR83YHrKNUD1i92_BCe6wbyN--ZkysPgqTKMADwsSZvxdOyF-9gmWM36KrbM2_fLH1-8EPI2_-Wj6cb4s15czbHtPiAVT_hJW5YqPUfURLa-r5nC0cnmDZMqbGjqlQ0ue-4Az9HyxpJcfIn_MzsevPhxNRFtuQbhhlq8F4PGNqO9TK523aCcR-pnPNCQQpbRp4YYqHSgnB2C9tZAV4FQSwULuU49m0BO2Wc2r8JTxVEbn0DGKBPelAwHQKFdQ8QUrLYDeZbpbY-NaLHIqiTE1XdDZlel4Y4g36KgY5M0u6__qt2jQOO7sUXQsNL_tK4Mq486-hx3PDR46ekmBKsyvVyYh1H50Bovs3zQyQXGZaaTZ-48x7LMt_NJNnPgztrleXofnaAat7UG9zw_YvdHrt5OTn9k9Ddg |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb1MxELZKOQCHilWUshiJq5M8x37LMVREAdqCaCv1Zo239lXJS5SkQlwQf4AT_5BfwsxboCBQD1ztsWR77FnsmW8Ye5H4XOkglbAxc0LFIhd24IOIEEnBFUoGehrYP0gnx-rNiT7ZYLtdLgyFVbayv5HptbRuW_rtbvYXZdk_JGSXvBgochHog_Aau660zMgD633-Fecx1HWBTaIWRH4pTfi8R2CR1QwICDVRPYLzJNDSv2uoP2R1rYDGt9lWaznyUTO5O2wjVHfZrUt4gvfY1xE_-0QpWHwVplGAhwVJM_6-XRE__AjLGX-HrbM2__L7l2-EPI3dfDQ9nS_L9dkM2z4QZMGUv4RVueJj1H1Ey-uyORzNXN5AmfKmiE7p0JTnPuAKPV8s6euHyO-z4_Gro92JaOstCDfM8rUAvL8RFX5qpfMWDSWCP_OZhgSilDYt3FClA-XkAKy3FrICnEoiWMh96tEOesA2q3kVHjKeyugcekaR8L50IAQa5QqqvmClBdDbTHd7bFwLRk41Maamizo7Nx1vDPEGPRWDvNlm_Z_jFg0cx5Ujio6F5reDZVBnXDn2ecdzg7eOvlKgCvOLlUkIth-9wSL7N41MUF5mGmke_cccnrEbk6P9PbP3-uDtDruJPboJGn_MNtfLi_AEbaK1fVqf-R_0WA9t |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+self-adaptive+Particle+Swarm+Optimization%E2%80%93Genetic+Algorithm%E2%80%93Radial+Basis+Function+model+for+annual+electricity+demand+prediction&rft.jtitle=Energy+conversion+and+management&rft.au=Yu%2C+Shiwei&rft.au=Wang%2C+Ke&rft.au=Wei%2C+Yiming&rft.date=2015-02-01&rft.issn=0196-8904&rft.volume=91+p.176-185&rft.spage=176&rft.epage=185&rft_id=info:doi/10.1016%2Fj.enconman.2014.11.059&rft.externalDBID=NO_FULL_TEXT |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon |