A hybrid self-adaptive Particle Swarm Optimization–Genetic Algorithm–Radial Basis Function model for annual electricity demand prediction

•A hybrid self-adaptive PSO–GA-RBF model is proposed for electricity demand prediction.•Each mixed-coding particle is composed by two coding parts of binary and real.•Five independent variables have been selected to predict future electricity consumption in Wuhan.•The proposed model has a simpler st...

Full description

Saved in:
Bibliographic Details
Published inEnergy conversion and management Vol. 91; pp. 176 - 185
Main Authors Yu, Shiwei, Wang, Ke, Wei, Yi-Ming
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.02.2015
Subjects
Online AccessGet full text
ISSN0196-8904
1879-2227
DOI10.1016/j.enconman.2014.11.059

Cover

Abstract •A hybrid self-adaptive PSO–GA-RBF model is proposed for electricity demand prediction.•Each mixed-coding particle is composed by two coding parts of binary and real.•Five independent variables have been selected to predict future electricity consumption in Wuhan.•The proposed model has a simpler structure or higher estimating precision than other ANN models.•No matter what the scenario, the electricity consumption of Wuhan will grow rapidly. The present study proposes a hybrid Particle Swarm Optimization and Genetic Algorithm optimized Radial Basis Function (PSO–GA-RBF) neural network for prediction of annual electricity demand. In the model, each mixed-coding particle (or chromosome) is composed of two coding parts, binary and real, which optimizes the structure of the RBF by GA operation and the parameters of the basis and weights by a PSO–GA implementation. Five independent variables have been selected to predict future electricity consumption in Wuhan by using optimized networks. The results shows that (1) the proposed PSO–GA-RBF model has a simpler network structure (fewer hidden neurons) or higher estimation precision than other selected ANN models; and (2) no matter what the scenario, the electricity consumption of Wuhan will grow rapidly at average annual growth rates of about 9.7–11.5%. By 2020, the electricity demand in the planning scenario, the highest among the scenarios, will be 95.85billionkWh. The lowest demand is estimated for the business-as-usual scenario, and will be 88.45billionkWh.
AbstractList The present study proposes a hybrid Particle Swarm Optimization and Genetic Algorithm optimized Radial Basis Function (PSO-GA-RBF) neural network for prediction of annual electricity demand. In the model, each mixed-coding particle (or chromosome) is composed of two coding parts, binary and real, which optimizes the structure of the RBF by GA operation and the parameters of the basis and weights by a PSO-GA implementation. Five independent variables have been selected to predict future electricity consumption in Wuhan by using optimized networks. The results shows that (1) the proposed PSO-GA-RBF model has a simpler network structure (fewer hidden neurons) or higher estimation precision than other selected ANN models; and (2) no matter what the scenario, the electricity consumption of Wuhan will grow rapidly at average annual growth rates of about 9.7-11.5%. By 2020, the electricity demand in the planning scenario, the highest among the scenarios, will be 95.85 billion kW h. The lowest demand is estimated for the business-as-usual scenario, and will be 88.45 billion kW h.
The present study proposes a hybrid Particle Swarm Optimization and Genetic Algorithm optimized Radial Basis Function (PSO–GA-RBF) neural network for prediction of annual electricity demand. In the model, each mixed-coding particle (or chromosome) is composed of two coding parts, binary and real, which optimizes the structure of the RBF by GA operation and the parameters of the basis and weights by a PSO–GA implementation. Five independent variables have been selected to predict future electricity consumption in Wuhan by using optimized networks. The results shows that (1) the proposed PSO–GA-RBF model has a simpler network structure (fewer hidden neurons) or higher estimation precision than other selected ANN models; and (2) no matter what the scenario, the electricity consumption of Wuhan will grow rapidly at average annual growth rates of about 9.7–11.5%. By 2020, the electricity demand in the planning scenario, the highest among the scenarios, will be 95.85billionkWh. The lowest demand is estimated for the business-as-usual scenario, and will be 88.45billionkWh.
•A hybrid self-adaptive PSO–GA-RBF model is proposed for electricity demand prediction.•Each mixed-coding particle is composed by two coding parts of binary and real.•Five independent variables have been selected to predict future electricity consumption in Wuhan.•The proposed model has a simpler structure or higher estimating precision than other ANN models.•No matter what the scenario, the electricity consumption of Wuhan will grow rapidly. The present study proposes a hybrid Particle Swarm Optimization and Genetic Algorithm optimized Radial Basis Function (PSO–GA-RBF) neural network for prediction of annual electricity demand. In the model, each mixed-coding particle (or chromosome) is composed of two coding parts, binary and real, which optimizes the structure of the RBF by GA operation and the parameters of the basis and weights by a PSO–GA implementation. Five independent variables have been selected to predict future electricity consumption in Wuhan by using optimized networks. The results shows that (1) the proposed PSO–GA-RBF model has a simpler network structure (fewer hidden neurons) or higher estimation precision than other selected ANN models; and (2) no matter what the scenario, the electricity consumption of Wuhan will grow rapidly at average annual growth rates of about 9.7–11.5%. By 2020, the electricity demand in the planning scenario, the highest among the scenarios, will be 95.85billionkWh. The lowest demand is estimated for the business-as-usual scenario, and will be 88.45billionkWh.
Author Yu, Shiwei
Wei, Yi-Ming
Wang, Ke
Author_xml – sequence: 1
  givenname: Shiwei
  surname: Yu
  fullname: Yu, Shiwei
  email: ysw81993@sina.com
  organization: School of Economics and Management, China University of Geosciences, Wuhan 430074, China
– sequence: 2
  givenname: Ke
  surname: Wang
  fullname: Wang, Ke
  organization: Center for Energy and Environmental Policy Research, Beijing Institute of Technology, Beijing 100181, China
– sequence: 3
  givenname: Yi-Ming
  surname: Wei
  fullname: Wei, Yi-Ming
  organization: Center for Energy and Environmental Policy Research, Beijing Institute of Technology, Beijing 100181, China
BookMark eNqFkc9u1DAQxi1UJLalr1D5yCXBdhInkTiwVG2pVKkVf87WxJ5Qrxx7sbNFy4kX4MQb8iT1dumFy55Gmvl9o5nvOyZHPngk5IyzkjMu365K9Dr4CXwpGK9LzkvW9C_IgndtXwgh2iOyYLyXRdez-hU5TmnFGKsaJhfk95Leb4doDU3oxgIMrGf7gPQO4my1Q_r5B8SJ3ubuZH_CbIP_--vPFXrMY7p030K08_2Ue5_AWHD0AySb6OXG6x1Lp2DQ0TFECt5v8hwd6jlabectNZiPNnQd0dgn_DV5OYJLePqvnpCvlxdfzj8WN7dX1-fLm0JXbTcXUItm7LiQg9BmkHUtataZtgEOoxCD7HVVS1ZrwWAwwwBtD7rmIwzQGWlEW52QN_u96xi-bzDNarJJo3PgMWySErzK5jWyP4xy2TUd6_bouz2qY0gp4qjyl0-WzRGsU5ypXWBqpZ4DU7vAFOcqB5bl8j_5OtoJ4vaw8P1eiNmyB4tRJW0zmV2N2Wxlgj204hExHbvf
CitedBy_id crossref_primary_10_1016_j_egyr_2023_01_094
crossref_primary_10_1049_iet_gtd_2020_0842
crossref_primary_10_1016_j_aei_2022_101707
crossref_primary_10_1155_2017_2379381
crossref_primary_10_1016_j_energy_2018_03_120
crossref_primary_10_3390_app14166862
crossref_primary_10_1016_j_ijhydene_2016_03_085
crossref_primary_10_1016_j_esr_2022_100813
crossref_primary_10_1007_s00521_017_3244_9
crossref_primary_10_3390_en15030735
crossref_primary_10_1016_j_enconman_2018_10_072
crossref_primary_10_1016_j_jnca_2017_11_013
crossref_primary_10_3390_su15010231
crossref_primary_10_1007_s10845_017_1313_7
crossref_primary_10_1155_2022_6379141
crossref_primary_10_2139_ssrn_3998847
crossref_primary_10_1007_s42452_020_2475_z
crossref_primary_10_1016_j_ijheatmasstransfer_2018_05_022
crossref_primary_10_1016_j_rser_2018_02_002
crossref_primary_10_3390_en11051063
crossref_primary_10_1080_10042857_2018_1454737
crossref_primary_10_3390_su12155931
crossref_primary_10_3390_en12203903
crossref_primary_10_1108_IJESM_10_2014_0006
crossref_primary_10_3233_JIFS_179211
crossref_primary_10_3390_su14031181
crossref_primary_10_3390_e21070629
crossref_primary_10_1016_j_enconman_2020_112677
crossref_primary_10_1016_j_neucom_2015_12_077
crossref_primary_10_1016_j_asoc_2017_02_011
crossref_primary_10_1016_j_ecoinf_2021_101489
crossref_primary_10_1016_j_enconman_2023_117707
crossref_primary_10_1007_s00202_024_02599_y
crossref_primary_10_1016_j_epsr_2020_106408
crossref_primary_10_1016_j_segan_2023_101245
crossref_primary_10_1016_j_asej_2023_102613
crossref_primary_10_1016_j_spc_2021_04_029
crossref_primary_10_1016_j_apenergy_2020_115503
crossref_primary_10_1080_23744731_2021_1996121
crossref_primary_10_1016_j_apenergy_2016_03_089
crossref_primary_10_1109_ACCESS_2025_3526943
crossref_primary_10_1109_ACCESS_2023_3250110
crossref_primary_10_1016_j_neucom_2017_01_016
crossref_primary_10_1007_s42835_022_01296_9
crossref_primary_10_1108_JM2_11_2017_0117
crossref_primary_10_31127_tuje_903876
crossref_primary_10_3390_en12214181
crossref_primary_10_1016_j_neucom_2017_08_017
crossref_primary_10_1142_S0218213016500044
crossref_primary_10_3390_en15228380
crossref_primary_10_1007_s10651_023_00569_4
crossref_primary_10_1016_j_asoc_2016_06_038
crossref_primary_10_1016_j_compeleceng_2020_106737
crossref_primary_10_1049_tje2_12151
crossref_primary_10_3390_en17236131
crossref_primary_10_1371_journal_pone_0196871
crossref_primary_10_36222_ejt_862862
crossref_primary_10_1049_iet_gtd_2017_1493
crossref_primary_10_3390_en10122001
crossref_primary_10_1016_j_applthermaleng_2018_10_070
Cites_doi 10.1016/j.eswa.2009.02.081
10.1016/j.asoc.2012.05.030
10.1016/j.enpol.2009.09.003
10.1016/j.apenergy.2013.09.062
10.1016/j.knosys.2010.11.001
10.1109/TPWRS.2011.2181981
10.1016/j.energy.2012.11.048
10.1016/j.energy.2006.11.010
10.1007/s00521-008-0214-2
10.1016/S0140-9883(03)00058-6
10.3141/1651-06
10.1016/S0140-9883(98)00007-3
10.1016/S0893-6080(03)00118-7
10.1016/j.energy.2008.05.008
10.1016/j.enpol.2006.10.001
10.1016/j.energy.2014.05.070
10.1109/TSMCC.2010.2040176
10.1016/j.enpol.2013.12.017
10.1016/j.asoc.2011.07.001
10.1016/0140-9883(83)90054-3
10.1016/j.energy.2012.10.035
10.1016/j.enpol.2013.11.025
10.1016/j.amc.2006.08.093
10.1016/j.energy.2009.07.046
10.1023/A:1012046824237
10.1016/j.eswa.2009.01.055
10.1016/j.eneco.2006.02.006
10.1109/TPWRS.2005.857397
10.1080/15567240903289549
10.1016/S1568-4946(01)00013-8
10.1016/j.enpol.2007.04.029
10.1016/j.enpol.2008.08.020
10.1016/j.enpol.2011.06.002
10.1016/j.energy.2014.01.016
10.1016/j.enconman.2009.06.016
10.1080/08839514.2011.559572
10.1016/S0360-5442(01)00008-1
10.1016/j.eneco.2008.02.003
10.1016/j.energy.2009.06.034
10.1016/j.enpol.2012.05.026
10.1016/j.eneco.2003.11.001
10.1016/j.amc.2007.04.088
10.1016/j.enconman.2012.03.016
10.1049/ip-gtd:19951602
10.1016/j.enpol.2011.03.078
10.3390/en4081246
10.1016/j.enpol.2010.05.057
10.1016/S0169-2070(99)00045-X
10.1016/j.enpol.2008.02.035
10.1016/S0196-8904(97)10008-5
10.1016/j.eneco.2010.10.001
10.1016/j.enbuild.2007.10.002
10.1109/ICIINFS.2011.6038087
10.1109/TSMCB.2003.818557
10.1016/j.energy.2009.04.026
10.1016/j.enpol.2011.11.090
10.1016/j.enpol.2006.02.013
10.1016/j.apenergy.2011.12.085
10.1109/TPWRS.2006.889078
10.1016/j.ijepes.2010.08.008
ContentType Journal Article
Copyright 2014 Elsevier Ltd
Copyright_xml – notice: 2014 Elsevier Ltd
DBID AAYXX
CITATION
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7S9
L.6
DOI 10.1016/j.enconman.2014.11.059
DatabaseName CrossRef
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList Civil Engineering Abstracts
AGRICOLA

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1879-2227
EndPage 185
ExternalDocumentID 10_1016_j_enconman_2014_11_059
S0196890414010280
GroupedDBID --K
--M
.DC
.~1
0R~
1B1
1~.
1~5
29G
4.4
457
4G.
5GY
5VS
6TJ
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABFRF
ABJNI
ABMAC
ABXDB
ABYKQ
ACBEA
ACDAQ
ACGFO
ACGFS
ACIWK
ACNCT
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
H~9
IHE
J1W
JARJE
KOM
LY6
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SEW
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
WUQ
XPP
ZMT
~02
~G-
AAHBH
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
7SC
7TB
8FD
FR3
JQ2
KR7
L7M
L~C
L~D
7S9
L.6
ID FETCH-LOGICAL-c378t-a425f8126b2cdb6442408d75a1af22b69c34604c20abdbba79ac41faba8d6d273
IEDL.DBID .~1
ISSN 0196-8904
IngestDate Sun Sep 28 11:34:41 EDT 2025
Thu Sep 25 08:41:36 EDT 2025
Wed Oct 01 01:59:38 EDT 2025
Thu Apr 24 23:01:14 EDT 2025
Fri Feb 23 02:20:54 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Radial Basis Function neural network
Electricity demand prediction
Particle Swarm Optimization
Genetic Algorithm
Mixed coding
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-a425f8126b2cdb6442408d75a1af22b69c34604c20abdbba79ac41faba8d6d273
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PQID 1685808697
PQPubID 23500
PageCount 10
ParticipantIDs proquest_miscellaneous_2131875697
proquest_miscellaneous_1685808697
crossref_citationtrail_10_1016_j_enconman_2014_11_059
crossref_primary_10_1016_j_enconman_2014_11_059
elsevier_sciencedirect_doi_10_1016_j_enconman_2014_11_059
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-02-01
PublicationDateYYYYMMDD 2015-02-01
PublicationDate_xml – month: 02
  year: 2015
  text: 2015-02-01
  day: 01
PublicationDecade 2010
PublicationTitle Energy conversion and management
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Inglesi-Lotz (b0090) 2011; 39
Hu (b0015) 2003; 8
Bessec, Fouquau (b0315) 2008; 30
Yu, Zhu, Diao (b0095) 2008; 195
Bianco, Manca, Nardini (b0055) 2013; 8
Kavaklioglu, Ceylan, Ozturk, Canyurt (b0335) 2009; 50
Chen, Kuo, Chen (b0265) 2007; 35
Yu, Wei, Wang (b0230) 2014; 66
Wang, Fang (b0040) 2012; 14
Narayan, Smyth (b0275) 2009; 37
Abraham, Nath (b0330) 2001; 1
Lim, Lim, Yoo (b0035) 2014; 67
Jumbe (b0260) 2004; 26
Dilaver, Hunt (b0060) 2011; 33
Yu, Zhu, Gao (b0220) 2009; 18
Bianco, Manca, Nardini (b0045) 2009; 34
Erdogdu (b0080) 2007; 35
SGCC (State Grid Corporation of China). China electricity market analysis and research in 2003. 2004 [in Chinese].
Hankinson, Rhys (b0285) 1983; 5
Filippini (b0345) 2011; 39
Yu, Wei, Guo, Ding (b0005) 2014; 114
Sözen, Arcaklioglu (b0150) 2007; 35
Azadeh, Ghaderi, Sohrabkhani (b0140) 2008; 36
Esen, Inalli, Sengur, Esen (b0175) 2008; 40
Singh NK, Tripathy M, Singh AK. A radial basis function neural network approach for multi-hour short term load-price forecasting with type of day parameter. In: Industrial and Information Systems (ICIIS), 2011 6th IEEE international conference on, IEEE; 2011. p. 316–21.
Kandananond (b0110) 2011; 4
Gontar, Sideratos, Hatziargyriou (b0210) 2004
Park, Messer, Urbanik (b0185) 1998; 1651
Wang, Wang, Zhao, Dong (b0085) 2012; 48
Yu, Wei, Wang (b0225) 2012; 61
Lewis (b0350) 1982
Pao (b0145) 2009; 34
Cai S. Electricity demand analysis based on consumption elastic elasticity coefficient. Social Sciences in Yunnan; 2007. p. 53–7.
Pappas, Ekonomou, Karamousantas, Chatzarakis, Katsikas, Liatsis (b0075) 2008; 33
Esen, Inalli (b0125) 2009; 36
Jamil, Ahmad (b0270) 2010; 38
Hor, Watson, Majithia (b0050) 2005; 20
Sideratos, Hatziargyriou (b0190) 2007; 22
Elattar, Goulermas, Wu (b0120) 2010; 40
Arisoy, Ozturk (b0065) 2014; 66
Azadeh, Saberi, Gitiforouz, Saberi (b0105) 2009; 36
Shen, Guo, Wu, Wu (b0200) 2011; 24
Kraft, Kraft (b0255) 1978; 3
Askarzadeh (b0340) 2014; 72
McLoughlin, Duffy, Conlon (b0070) 2013; 50
Lam (b0320) 1998; 39
Azadeh, Ghaderi, Tarverdian, Saberi (b0170) 2007; 186
Ghodsi, Schuurmans (b0180) 2003; 16
Bonanno, Capizzi, Graditi, Napoli, Tina (b0195) 2012; 97
An, Zhao, Wang, Shang, Zhao (b0165) 2013; 49
Khosravi, Nahavandi, Creighton, Srinivasan (b0100) 2012; 27
Holtedahl, Joutz (b0310) 2004; 26
Behrang, Assareh, Assari, Ghanbarzadeh (b0115) 2011; 25
Ranaweera D, Hubele N, Papalexopoulos A. Application of radial basis function neural network model for short-term load forecasting. In: Generation, transmission and distribution, IEE proceedings: IET; 1995. p. 45–50.
Chang, Fan, Lin (b0325) 2011; 33
Ringwood, Bofelli, Murray (b0160) 2001; 31
Juang (b0235) 2004; 34
Yu, Wei, Wang (b0245) 2012; 42
Tso, Yau (b0135) 2007; 32
Pao (b0250) 2009; 34
Niu, Shi, Wu (b0155) 2012; 12
Steenhof (b0290) 2006; 28
Yoo, Kwak (b0280) 2010; 38
CAIJING. Electricity shortage getting serious and rolling blackouts in some areas in summer
CEC (China Electricity Council). Power industry statistical bulletin in 2013. 2014 [in Chinese].
Yang, Dong (b0030) 2009; 30
2011 [in Chinese].
Egelioglu, Mohamad, Guven (b0300) 2001; 26
Gálvez, Iglesias (b0240) 2013; 13
Larivière, Lafrance (b0305) 1999; 21
Darbellay, Slama (b0130) 2000; 16
Egelioglu (10.1016/j.enconman.2014.11.059_b0300) 2001; 26
Esen (10.1016/j.enconman.2014.11.059_b0175) 2008; 40
10.1016/j.enconman.2014.11.059_b0295
Sözen (10.1016/j.enconman.2014.11.059_b0150) 2007; 35
Juang (10.1016/j.enconman.2014.11.059_b0235) 2004; 34
McLoughlin (10.1016/j.enconman.2014.11.059_b0070) 2013; 50
Ringwood (10.1016/j.enconman.2014.11.059_b0160) 2001; 31
10.1016/j.enconman.2014.11.059_b0010
Wang (10.1016/j.enconman.2014.11.059_b0085) 2012; 48
Elattar (10.1016/j.enconman.2014.11.059_b0120) 2010; 40
Shen (10.1016/j.enconman.2014.11.059_b0200) 2011; 24
10.1016/j.enconman.2014.11.059_b0215
Yu (10.1016/j.enconman.2014.11.059_b0245) 2012; 42
Yoo (10.1016/j.enconman.2014.11.059_b0280) 2010; 38
Esen (10.1016/j.enconman.2014.11.059_b0125) 2009; 36
Yu (10.1016/j.enconman.2014.11.059_b0095) 2008; 195
Gálvez (10.1016/j.enconman.2014.11.059_b0240) 2013; 13
Pappas (10.1016/j.enconman.2014.11.059_b0075) 2008; 33
An (10.1016/j.enconman.2014.11.059_b0165) 2013; 49
Chen (10.1016/j.enconman.2014.11.059_b0265) 2007; 35
Holtedahl (10.1016/j.enconman.2014.11.059_b0310) 2004; 26
Lewis (10.1016/j.enconman.2014.11.059_b0350) 1982
Arisoy (10.1016/j.enconman.2014.11.059_b0065) 2014; 66
Erdogdu (10.1016/j.enconman.2014.11.059_b0080) 2007; 35
Lim (10.1016/j.enconman.2014.11.059_b0035) 2014; 67
Yang (10.1016/j.enconman.2014.11.059_b0030) 2009; 30
Pao (10.1016/j.enconman.2014.11.059_b0145) 2009; 34
Yu (10.1016/j.enconman.2014.11.059_b0225) 2012; 61
Jamil (10.1016/j.enconman.2014.11.059_b0270) 2010; 38
Abraham (10.1016/j.enconman.2014.11.059_b0330) 2001; 1
Chang (10.1016/j.enconman.2014.11.059_b0325) 2011; 33
Kandananond (10.1016/j.enconman.2014.11.059_b0110) 2011; 4
10.1016/j.enconman.2014.11.059_b0205
Inglesi-Lotz (10.1016/j.enconman.2014.11.059_b0090) 2011; 39
Larivière (10.1016/j.enconman.2014.11.059_b0305) 1999; 21
Bessec (10.1016/j.enconman.2014.11.059_b0315) 2008; 30
Khosravi (10.1016/j.enconman.2014.11.059_b0100) 2012; 27
Lam (10.1016/j.enconman.2014.11.059_b0320) 1998; 39
Yu (10.1016/j.enconman.2014.11.059_b0220) 2009; 18
Azadeh (10.1016/j.enconman.2014.11.059_b0105) 2009; 36
Hu (10.1016/j.enconman.2014.11.059_b0015) 2003; 8
Bianco (10.1016/j.enconman.2014.11.059_b0045) 2009; 34
Azadeh (10.1016/j.enconman.2014.11.059_b0170) 2007; 186
Pao (10.1016/j.enconman.2014.11.059_b0250) 2009; 34
Azadeh (10.1016/j.enconman.2014.11.059_b0140) 2008; 36
Yu (10.1016/j.enconman.2014.11.059_b0005) 2014; 114
Ghodsi (10.1016/j.enconman.2014.11.059_b0180) 2003; 16
Hankinson (10.1016/j.enconman.2014.11.059_b0285) 1983; 5
Sideratos (10.1016/j.enconman.2014.11.059_b0190) 2007; 22
Behrang (10.1016/j.enconman.2014.11.059_b0115) 2011; 25
Yu (10.1016/j.enconman.2014.11.059_b0230) 2014; 66
Kraft (10.1016/j.enconman.2014.11.059_b0255) 1978; 3
10.1016/j.enconman.2014.11.059_b0020
Kavaklioglu (10.1016/j.enconman.2014.11.059_b0335) 2009; 50
Tso (10.1016/j.enconman.2014.11.059_b0135) 2007; 32
Darbellay (10.1016/j.enconman.2014.11.059_b0130) 2000; 16
Park (10.1016/j.enconman.2014.11.059_b0185) 1998; 1651
10.1016/j.enconman.2014.11.059_b0025
Bonanno (10.1016/j.enconman.2014.11.059_b0195) 2012; 97
Hor (10.1016/j.enconman.2014.11.059_b0050) 2005; 20
Jumbe (10.1016/j.enconman.2014.11.059_b0260) 2004; 26
Wang (10.1016/j.enconman.2014.11.059_b0040) 2012; 14
Steenhof (10.1016/j.enconman.2014.11.059_b0290) 2006; 28
Filippini (10.1016/j.enconman.2014.11.059_b0345) 2011; 39
Bianco (10.1016/j.enconman.2014.11.059_b0055) 2013; 8
Niu (10.1016/j.enconman.2014.11.059_b0155) 2012; 12
Narayan (10.1016/j.enconman.2014.11.059_b0275) 2009; 37
Dilaver (10.1016/j.enconman.2014.11.059_b0060) 2011; 33
Askarzadeh (10.1016/j.enconman.2014.11.059_b0340) 2014; 72
Gontar (10.1016/j.enconman.2014.11.059_b0210) 2004
References_xml – volume: 97
  start-page: 956
  year: 2012
  end-page: 961
  ident: b0195
  article-title: A radial basis function neural network based approach for the electrical characteristics estimation of a photovoltaic module
  publication-title: Appl Energy
– volume: 50
  start-page: 120
  year: 2013
  end-page: 130
  ident: b0070
  article-title: Evaluation of time series techniques to characterise domestic electricity demand
  publication-title: Energy
– volume: 26
  start-page: 61
  year: 2004
  end-page: 68
  ident: b0260
  article-title: Cointegration and causality between electricity consumption and GDP: empirical evidence from Malawi
  publication-title: Energy Econ
– volume: 3
  start-page: 401
  year: 1978
  end-page: 403
  ident: b0255
  article-title: On the relationship between energy and GNP
  publication-title: J Energy Dev
– volume: 186
  start-page: 1731
  year: 2007
  end-page: 1741
  ident: b0170
  article-title: Integration of artificial neural networks and genetic algorithm to predict electrical energy consumption
  publication-title: Appl Math Comput
– reference: Singh NK, Tripathy M, Singh AK. A radial basis function neural network approach for multi-hour short term load-price forecasting with type of day parameter. In: Industrial and Information Systems (ICIIS), 2011 6th IEEE international conference on, IEEE; 2011. p. 316–21.
– volume: 12
  start-page: 1822
  year: 2012
  end-page: 1827
  ident: b0155
  article-title: Short-term load forecasting using bayesian neural networks learned by Hybrid Monte Carlo algorithm
  publication-title: Appl Soft Comput
– volume: 14
  start-page: 21
  year: 2012
  end-page: 23
  ident: b0040
  article-title: The application of per person electricity consumption method in saturation load forecasting
  publication-title: Power Demand Side Manage
– volume: 8
  start-page: 86
  year: 2013
  end-page: 93
  ident: b0055
  article-title: Linear regression models to forecast electricity consumption in Italy
  publication-title: Energy Sources Part B
– volume: 21
  start-page: 53
  year: 1999
  end-page: 66
  ident: b0305
  article-title: Modelling the electricity consumption of cities: effect of urban density
  publication-title: Energy Econ
– volume: 16
  start-page: 71
  year: 2000
  end-page: 83
  ident: b0130
  article-title: Forecasting the short-term demand for electricity: do neural networks stand a better chance?
  publication-title: Int J Forecast
– volume: 48
  start-page: 284
  year: 2012
  end-page: 294
  ident: b0085
  article-title: Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: a case study of China
  publication-title: Energy Policy
– volume: 50
  start-page: 2719
  year: 2009
  end-page: 2727
  ident: b0335
  article-title: Modeling and prediction of Turkey’s electricity consumption using artificial neural networks
  publication-title: Energy Convers Manage
– year: 1982
  ident: b0350
  article-title: Industrial and business forecasting methods: a practical guide to exponential smoothing and curve fitting
– volume: 36
  start-page: 10229
  year: 2009
  end-page: 10238
  ident: b0125
  article-title: Modelling of a vertical ground coupled heat pump system by using artificial neural networks
  publication-title: Expert Syst Appl
– volume: 22
  start-page: 258
  year: 2007
  end-page: 265
  ident: b0190
  article-title: An advanced statistical method for wind power forecasting
  publication-title: IEEE Trans, Power Syst
– volume: 27
  start-page: 1274
  year: 2012
  end-page: 1282
  ident: b0100
  article-title: Interval type-2 fuzzy logic systems for load forecasting: a comparative study
  publication-title: IEEE Trans, Power Syst
– volume: 40
  start-page: 438
  year: 2010
  end-page: 447
  ident: b0120
  article-title: Electric load forecasting based on locally weighted support vector regression
  publication-title: IEEE Trans, Syst Man Cybern Part C: Appl Rev
– volume: 28
  start-page: 370
  year: 2006
  end-page: 384
  ident: b0290
  article-title: Decomposition of electricity demand in China’s industrial sector
  publication-title: Energy Econ
– volume: 66
  start-page: 630
  year: 2014
  end-page: 644
  ident: b0230
  article-title: Provincial allocation of carbon emission reduction targets in China: an approach based on improved fuzzy cluster and Shapley value decomposition
  publication-title: Energy Policy
– volume: 35
  start-page: 2611
  year: 2007
  end-page: 2621
  ident: b0265
  article-title: The relationship between GDP and electricity consumption in 10 Asian countries
  publication-title: Energy Policy
– volume: 37
  start-page: 229
  year: 2009
  end-page: 236
  ident: b0275
  article-title: Multivariate granger causality between electricity consumption, exports and GDP: evidence from a panel of Middle Eastern countries
  publication-title: Energy Policy
– volume: 195
  start-page: 66
  year: 2008
  end-page: 75
  ident: b0095
  article-title: A dynamic all parameters adaptive BP neural networks model and its application on oil reservoir prediction
  publication-title: Appl Math Comput
– volume: 49
  start-page: 279
  year: 2013
  end-page: 288
  ident: b0165
  article-title: Using multi-output feedforward neural network with empirical mode decomposition based signal filtering for electricity demand forecasting
  publication-title: Energy
– volume: 16
  start-page: 809
  year: 2003
  end-page: 816
  ident: b0180
  article-title: Automatic basis selection techniques for RBF networks
  publication-title: Neural Networks
– volume: 1651
  start-page: 39
  year: 1998
  end-page: 47
  ident: b0185
  article-title: Short-term freeway traffic volume forecasting using radial basis function neural network
  publication-title: Transport Res Rec: J Transport Res Board
– volume: 13
  start-page: 1491
  year: 2013
  end-page: 1504
  ident: b0240
  article-title: A new iterative mutually coupled hybrid GA–PSO approach for curve fitting in manufacturing
  publication-title: Appl Soft Comput
– volume: 8
  start-page: 50
  year: 2003
  end-page: 52
  ident: b0015
  article-title: China’s electric power supply and demand situation analysis and its strategies in response
  publication-title: Macroeconomics
– volume: 33
  start-page: 1353
  year: 2008
  end-page: 1360
  ident: b0075
  article-title: Electricity demand loads modeling using Auto Regressive Moving Average (ARMA) models
  publication-title: Energy
– volume: 66
  start-page: 959
  year: 2014
  end-page: 964
  ident: b0065
  article-title: Estimating industrial and residential electricity demand in Turkey: a time varying parameter approach
  publication-title: Energy
– volume: 35
  start-page: 1129
  year: 2007
  end-page: 1146
  ident: b0080
  article-title: Electricity demand analysis using cointegration and ARIMA modelling: a case study of Turkey
  publication-title: Energy Policy
– volume: 35
  start-page: 4981
  year: 2007
  end-page: 4992
  ident: b0150
  article-title: Prediction of net energy consumption based on economic indicators (GNP and GDP) in Turkey
  publication-title: Energy Policy
– volume: 33
  start-page: 17
  year: 2011
  end-page: 27
  ident: b0325
  article-title: Monthly electricity demand forecasting based on a weighted evolving fuzzy neural network approach
  publication-title: Int J Electr Power Energy Syst
– volume: 31
  start-page: 129
  year: 2001
  end-page: 147
  ident: b0160
  article-title: Forecasting electricity demand on short, medium and long time scales using neural networks
  publication-title: J Intell Rob Syst
– volume: 1
  start-page: 127
  year: 2001
  end-page: 138
  ident: b0330
  article-title: A neuro-fuzzy approach for modelling electricity demand in Victoria
  publication-title: Appl Soft Comput
– volume: 30
  start-page: 73
  year: 2009
  end-page: 76
  ident: b0030
  article-title: Application of unit consumption method of output value in load forecasting
  publication-title: J North China Inst Water Conservancy Hydroelectr Power
– volume: 39
  start-page: 3690
  year: 2011
  end-page: 3696
  ident: b0090
  article-title: The evolution of price elasticity of electricity demand in South Africa: a Kalman filter application
  publication-title: Energy Policy
– volume: 34
  start-page: 1779
  year: 2009
  end-page: 1791
  ident: b0250
  article-title: Forecast of electricity consumption and economic growth in Taiwan by state space modeling
  publication-title: Energy
– volume: 38
  start-page: 6016
  year: 2010
  end-page: 6025
  ident: b0270
  article-title: The relationship between electricity consumption, electricity prices and GDP in Pakistan
  publication-title: Energy Policy
– volume: 4
  start-page: 1246
  year: 2011
  end-page: 1257
  ident: b0110
  article-title: Forecasting electricity demand in Thailand with an artificial neural network approach
  publication-title: Energies
– start-page: 432
  year: 2004
  end-page: 438
  ident: b0210
  article-title: Short-term load forecasting using radial basis function networks
  publication-title: Methods and applications of artificial intelligence
– volume: 26
  start-page: 355
  year: 2001
  end-page: 362
  ident: b0300
  article-title: Economic variables and electricity consumption in Northern Cyprus
  publication-title: Energy
– volume: 26
  start-page: 201
  year: 2004
  end-page: 224
  ident: b0310
  article-title: Residential electricity demand in Taiwan
  publication-title: Energy Econ
– volume: 36
  start-page: 11108
  year: 2009
  end-page: 11117
  ident: b0105
  article-title: A hybrid simulation-adaptive network based fuzzy inference system for improvement of electricity consumption estimation
  publication-title: Expert Syst Appl
– volume: 34
  start-page: 1413
  year: 2009
  end-page: 1421
  ident: b0045
  article-title: Electricity consumption forecasting in Italy using linear regression models
  publication-title: Energy
– volume: 40
  start-page: 1074
  year: 2008
  end-page: 1083
  ident: b0175
  article-title: Artificial neural networks and adaptive neuro-fuzzy assessments for ground-coupled heat pump system
  publication-title: Energy Build
– volume: 39
  start-page: 623
  year: 1998
  end-page: 629
  ident: b0320
  article-title: Climatic and economic influences on residential electricity consumption
  publication-title: Energy Convers Manage
– volume: 25
  start-page: 292
  year: 2011
  end-page: 304
  ident: b0115
  article-title: Assessment of electricity demand in Iran’s industrial sector using different intelligent optimization techniques
  publication-title: Appl Artif Int
– reference: Cai S. Electricity demand analysis based on consumption elastic elasticity coefficient. Social Sciences in Yunnan; 2007. p. 53–7.
– volume: 30
  start-page: 2705
  year: 2008
  end-page: 2721
  ident: b0315
  article-title: The non-linear link between electricity consumption and temperature in Europe: a threshold panel approach
  publication-title: Energy Econ
– volume: 67
  start-page: 517
  year: 2014
  end-page: 521
  ident: b0035
  article-title: Short-and long-run elasticities of electricity demand in the Korean service sector
  publication-title: Energy Policy
– volume: 72
  start-page: 484
  year: 2014
  end-page: 491
  ident: b0340
  article-title: Comparison of particle swarm optimization and other metaheuristics on electricity estimation: a case study of Iran
  publication-title: Energy
– volume: 39
  start-page: 5811
  year: 2011
  end-page: 5817
  ident: b0345
  article-title: Short-and long-run time-of-use price elasticities in Swiss residential electricity demand
  publication-title: Energy Policy
– volume: 114
  start-page: 290
  year: 2014
  end-page: 300
  ident: b0005
  article-title: Carbon emission coefficient measurement of the coal-to-power energy chain in China
  publication-title: Appl Energy
– volume: 18
  start-page: 769
  year: 2009
  end-page: 779
  ident: b0220
  article-title: A hybrid MPSO-BP structure adaptive algorithm for RBFNs
  publication-title: Neural Comput Appl
– volume: 42
  start-page: 329
  year: 2012
  end-page: 340
  ident: b0245
  article-title: A PSO–GA optimal model to estimate primary energy demand of China
  publication-title: Energy Policy
– volume: 5
  start-page: 146
  year: 1983
  end-page: 152
  ident: b0285
  article-title: Electricity consumption, electricity intensity and industrial structure
  publication-title: Energy Econ
– volume: 33
  start-page: 426
  year: 2011
  end-page: 436
  ident: b0060
  article-title: Industrial electricity demand for Turkey: a structural time series analysis
  publication-title: Energy Econ
– volume: 34
  start-page: 997
  year: 2004
  end-page: 1006
  ident: b0235
  article-title: A hybrid of genetic algorithm and particle swarm optimization for recurrent network design
  publication-title: IEEE Trans Syst Man Cybern Part B: Cybern
– volume: 36
  start-page: 2637
  year: 2008
  end-page: 2644
  ident: b0140
  article-title: A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran
  publication-title: Energy Policy
– reference: CEC (China Electricity Council). Power industry statistical bulletin in 2013. 2014 [in Chinese].
– reference: SGCC (State Grid Corporation of China). China electricity market analysis and research in 2003. 2004 [in Chinese].
– volume: 32
  start-page: 1761
  year: 2007
  end-page: 1768
  ident: b0135
  article-title: Predicting electricity energy consumption: a comparison of regression analysis, decision tree and neural networks
  publication-title: Energy
– volume: 20
  start-page: 2078
  year: 2005
  end-page: 2085
  ident: b0050
  article-title: Analyzing the impact of weather variables on monthly electricity demand
  publication-title: IEEE Trans, Power Syst
– volume: 38
  start-page: 181
  year: 2010
  end-page: 188
  ident: b0280
  article-title: Electricity consumption and economic growth in seven South American countries
  publication-title: Energy Policy
– volume: 61
  start-page: 59
  year: 2012
  end-page: 66
  ident: b0225
  article-title: China’s primary energy demands in 2020: predictions from an MPSO–RBF estimation model
  publication-title: Energy Convers Manage
– volume: 24
  start-page: 378
  year: 2011
  end-page: 385
  ident: b0200
  article-title: Forecasting stock indices using radial basis function neural networks optimized by artificial fish swarm algorithm
  publication-title: Knowl-Based Syst
– volume: 34
  start-page: 1438
  year: 2009
  end-page: 1446
  ident: b0145
  article-title: Forecasting energy consumption in Taiwan using hybrid nonlinear models
  publication-title: Energy
– reference: CAIJING. Electricity shortage getting serious and rolling blackouts in some areas in summer <
– reference: > 2011 [in Chinese].
– reference: Ranaweera D, Hubele N, Papalexopoulos A. Application of radial basis function neural network model for short-term load forecasting. In: Generation, transmission and distribution, IEE proceedings: IET; 1995. p. 45–50.
– volume: 36
  start-page: 11108
  year: 2009
  ident: 10.1016/j.enconman.2014.11.059_b0105
  article-title: A hybrid simulation-adaptive network based fuzzy inference system for improvement of electricity consumption estimation
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.02.081
– volume: 13
  start-page: 1491
  year: 2013
  ident: 10.1016/j.enconman.2014.11.059_b0240
  article-title: A new iterative mutually coupled hybrid GA–PSO approach for curve fitting in manufacturing
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2012.05.030
– volume: 38
  start-page: 181
  year: 2010
  ident: 10.1016/j.enconman.2014.11.059_b0280
  article-title: Electricity consumption and economic growth in seven South American countries
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2009.09.003
– volume: 114
  start-page: 290
  year: 2014
  ident: 10.1016/j.enconman.2014.11.059_b0005
  article-title: Carbon emission coefficient measurement of the coal-to-power energy chain in China
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2013.09.062
– volume: 24
  start-page: 378
  year: 2011
  ident: 10.1016/j.enconman.2014.11.059_b0200
  article-title: Forecasting stock indices using radial basis function neural networks optimized by artificial fish swarm algorithm
  publication-title: Knowl-Based Syst
  doi: 10.1016/j.knosys.2010.11.001
– volume: 27
  start-page: 1274
  year: 2012
  ident: 10.1016/j.enconman.2014.11.059_b0100
  article-title: Interval type-2 fuzzy logic systems for load forecasting: a comparative study
  publication-title: IEEE Trans, Power Syst
  doi: 10.1109/TPWRS.2011.2181981
– volume: 50
  start-page: 120
  year: 2013
  ident: 10.1016/j.enconman.2014.11.059_b0070
  article-title: Evaluation of time series techniques to characterise domestic electricity demand
  publication-title: Energy
  doi: 10.1016/j.energy.2012.11.048
– volume: 32
  start-page: 1761
  year: 2007
  ident: 10.1016/j.enconman.2014.11.059_b0135
  article-title: Predicting electricity energy consumption: a comparison of regression analysis, decision tree and neural networks
  publication-title: Energy
  doi: 10.1016/j.energy.2006.11.010
– volume: 18
  start-page: 769
  year: 2009
  ident: 10.1016/j.enconman.2014.11.059_b0220
  article-title: A hybrid MPSO-BP structure adaptive algorithm for RBFNs
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-008-0214-2
– volume: 26
  start-page: 61
  year: 2004
  ident: 10.1016/j.enconman.2014.11.059_b0260
  article-title: Cointegration and causality between electricity consumption and GDP: empirical evidence from Malawi
  publication-title: Energy Econ
  doi: 10.1016/S0140-9883(03)00058-6
– ident: 10.1016/j.enconman.2014.11.059_b0010
– volume: 1651
  start-page: 39
  year: 1998
  ident: 10.1016/j.enconman.2014.11.059_b0185
  article-title: Short-term freeway traffic volume forecasting using radial basis function neural network
  publication-title: Transport Res Rec: J Transport Res Board
  doi: 10.3141/1651-06
– volume: 21
  start-page: 53
  year: 1999
  ident: 10.1016/j.enconman.2014.11.059_b0305
  article-title: Modelling the electricity consumption of cities: effect of urban density
  publication-title: Energy Econ
  doi: 10.1016/S0140-9883(98)00007-3
– volume: 16
  start-page: 809
  year: 2003
  ident: 10.1016/j.enconman.2014.11.059_b0180
  article-title: Automatic basis selection techniques for RBF networks
  publication-title: Neural Networks
  doi: 10.1016/S0893-6080(03)00118-7
– volume: 33
  start-page: 1353
  year: 2008
  ident: 10.1016/j.enconman.2014.11.059_b0075
  article-title: Electricity demand loads modeling using Auto Regressive Moving Average (ARMA) models
  publication-title: Energy
  doi: 10.1016/j.energy.2008.05.008
– volume: 35
  start-page: 2611
  year: 2007
  ident: 10.1016/j.enconman.2014.11.059_b0265
  article-title: The relationship between GDP and electricity consumption in 10 Asian countries
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2006.10.001
– volume: 72
  start-page: 484
  year: 2014
  ident: 10.1016/j.enconman.2014.11.059_b0340
  article-title: Comparison of particle swarm optimization and other metaheuristics on electricity estimation: a case study of Iran
  publication-title: Energy
  doi: 10.1016/j.energy.2014.05.070
– volume: 40
  start-page: 438
  year: 2010
  ident: 10.1016/j.enconman.2014.11.059_b0120
  article-title: Electric load forecasting based on locally weighted support vector regression
  publication-title: IEEE Trans, Syst Man Cybern Part C: Appl Rev
  doi: 10.1109/TSMCC.2010.2040176
– volume: 67
  start-page: 517
  year: 2014
  ident: 10.1016/j.enconman.2014.11.059_b0035
  article-title: Short-and long-run elasticities of electricity demand in the Korean service sector
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2013.12.017
– volume: 12
  start-page: 1822
  year: 2012
  ident: 10.1016/j.enconman.2014.11.059_b0155
  article-title: Short-term load forecasting using bayesian neural networks learned by Hybrid Monte Carlo algorithm
  publication-title: Appl Soft Comput
  doi: 10.1016/j.asoc.2011.07.001
– volume: 5
  start-page: 146
  year: 1983
  ident: 10.1016/j.enconman.2014.11.059_b0285
  article-title: Electricity consumption, electricity intensity and industrial structure
  publication-title: Energy Econ
  doi: 10.1016/0140-9883(83)90054-3
– ident: 10.1016/j.enconman.2014.11.059_b0020
– volume: 49
  start-page: 279
  year: 2013
  ident: 10.1016/j.enconman.2014.11.059_b0165
  article-title: Using multi-output feedforward neural network with empirical mode decomposition based signal filtering for electricity demand forecasting
  publication-title: Energy
  doi: 10.1016/j.energy.2012.10.035
– volume: 66
  start-page: 630
  year: 2014
  ident: 10.1016/j.enconman.2014.11.059_b0230
  article-title: Provincial allocation of carbon emission reduction targets in China: an approach based on improved fuzzy cluster and Shapley value decomposition
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2013.11.025
– volume: 186
  start-page: 1731
  year: 2007
  ident: 10.1016/j.enconman.2014.11.059_b0170
  article-title: Integration of artificial neural networks and genetic algorithm to predict electrical energy consumption
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2006.08.093
– volume: 34
  start-page: 1779
  year: 2009
  ident: 10.1016/j.enconman.2014.11.059_b0250
  article-title: Forecast of electricity consumption and economic growth in Taiwan by state space modeling
  publication-title: Energy
  doi: 10.1016/j.energy.2009.07.046
– volume: 31
  start-page: 129
  year: 2001
  ident: 10.1016/j.enconman.2014.11.059_b0160
  article-title: Forecasting electricity demand on short, medium and long time scales using neural networks
  publication-title: J Intell Rob Syst
  doi: 10.1023/A:1012046824237
– volume: 8
  start-page: 50
  year: 2003
  ident: 10.1016/j.enconman.2014.11.059_b0015
  article-title: China’s electric power supply and demand situation analysis and its strategies in response
  publication-title: Macroeconomics
– volume: 36
  start-page: 10229
  year: 2009
  ident: 10.1016/j.enconman.2014.11.059_b0125
  article-title: Modelling of a vertical ground coupled heat pump system by using artificial neural networks
  publication-title: Expert Syst Appl
  doi: 10.1016/j.eswa.2009.01.055
– volume: 28
  start-page: 370
  year: 2006
  ident: 10.1016/j.enconman.2014.11.059_b0290
  article-title: Decomposition of electricity demand in China’s industrial sector
  publication-title: Energy Econ
  doi: 10.1016/j.eneco.2006.02.006
– volume: 30
  start-page: 73
  year: 2009
  ident: 10.1016/j.enconman.2014.11.059_b0030
  article-title: Application of unit consumption method of output value in load forecasting
  publication-title: J North China Inst Water Conservancy Hydroelectr Power
– volume: 20
  start-page: 2078
  year: 2005
  ident: 10.1016/j.enconman.2014.11.059_b0050
  article-title: Analyzing the impact of weather variables on monthly electricity demand
  publication-title: IEEE Trans, Power Syst
  doi: 10.1109/TPWRS.2005.857397
– volume: 8
  start-page: 86
  year: 2013
  ident: 10.1016/j.enconman.2014.11.059_b0055
  article-title: Linear regression models to forecast electricity consumption in Italy
  publication-title: Energy Sources Part B
  doi: 10.1080/15567240903289549
– volume: 1
  start-page: 127
  year: 2001
  ident: 10.1016/j.enconman.2014.11.059_b0330
  article-title: A neuro-fuzzy approach for modelling electricity demand in Victoria
  publication-title: Appl Soft Comput
  doi: 10.1016/S1568-4946(01)00013-8
– volume: 35
  start-page: 4981
  year: 2007
  ident: 10.1016/j.enconman.2014.11.059_b0150
  article-title: Prediction of net energy consumption based on economic indicators (GNP and GDP) in Turkey
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2007.04.029
– volume: 37
  start-page: 229
  year: 2009
  ident: 10.1016/j.enconman.2014.11.059_b0275
  article-title: Multivariate granger causality between electricity consumption, exports and GDP: evidence from a panel of Middle Eastern countries
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2008.08.020
– volume: 39
  start-page: 5811
  year: 2011
  ident: 10.1016/j.enconman.2014.11.059_b0345
  article-title: Short-and long-run time-of-use price elasticities in Swiss residential electricity demand
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2011.06.002
– volume: 66
  start-page: 959
  year: 2014
  ident: 10.1016/j.enconman.2014.11.059_b0065
  article-title: Estimating industrial and residential electricity demand in Turkey: a time varying parameter approach
  publication-title: Energy
  doi: 10.1016/j.energy.2014.01.016
– volume: 50
  start-page: 2719
  year: 2009
  ident: 10.1016/j.enconman.2014.11.059_b0335
  article-title: Modeling and prediction of Turkey’s electricity consumption using artificial neural networks
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2009.06.016
– volume: 25
  start-page: 292
  year: 2011
  ident: 10.1016/j.enconman.2014.11.059_b0115
  article-title: Assessment of electricity demand in Iran’s industrial sector using different intelligent optimization techniques
  publication-title: Appl Artif Int
  doi: 10.1080/08839514.2011.559572
– volume: 26
  start-page: 355
  year: 2001
  ident: 10.1016/j.enconman.2014.11.059_b0300
  article-title: Economic variables and electricity consumption in Northern Cyprus
  publication-title: Energy
  doi: 10.1016/S0360-5442(01)00008-1
– volume: 30
  start-page: 2705
  year: 2008
  ident: 10.1016/j.enconman.2014.11.059_b0315
  article-title: The non-linear link between electricity consumption and temperature in Europe: a threshold panel approach
  publication-title: Energy Econ
  doi: 10.1016/j.eneco.2008.02.003
– volume: 34
  start-page: 1413
  year: 2009
  ident: 10.1016/j.enconman.2014.11.059_b0045
  article-title: Electricity consumption forecasting in Italy using linear regression models
  publication-title: Energy
  doi: 10.1016/j.energy.2009.06.034
– ident: 10.1016/j.enconman.2014.11.059_b0025
– volume: 48
  start-page: 284
  year: 2012
  ident: 10.1016/j.enconman.2014.11.059_b0085
  article-title: Application of residual modification approach in seasonal ARIMA for electricity demand forecasting: a case study of China
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2012.05.026
– volume: 26
  start-page: 201
  year: 2004
  ident: 10.1016/j.enconman.2014.11.059_b0310
  article-title: Residential electricity demand in Taiwan
  publication-title: Energy Econ
  doi: 10.1016/j.eneco.2003.11.001
– volume: 195
  start-page: 66
  year: 2008
  ident: 10.1016/j.enconman.2014.11.059_b0095
  article-title: A dynamic all parameters adaptive BP neural networks model and its application on oil reservoir prediction
  publication-title: Appl Math Comput
  doi: 10.1016/j.amc.2007.04.088
– ident: 10.1016/j.enconman.2014.11.059_b0295
– volume: 61
  start-page: 59
  year: 2012
  ident: 10.1016/j.enconman.2014.11.059_b0225
  article-title: China’s primary energy demands in 2020: predictions from an MPSO–RBF estimation model
  publication-title: Energy Convers Manage
  doi: 10.1016/j.enconman.2012.03.016
– ident: 10.1016/j.enconman.2014.11.059_b0205
  doi: 10.1049/ip-gtd:19951602
– volume: 39
  start-page: 3690
  year: 2011
  ident: 10.1016/j.enconman.2014.11.059_b0090
  article-title: The evolution of price elasticity of electricity demand in South Africa: a Kalman filter application
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2011.03.078
– volume: 4
  start-page: 1246
  year: 2011
  ident: 10.1016/j.enconman.2014.11.059_b0110
  article-title: Forecasting electricity demand in Thailand with an artificial neural network approach
  publication-title: Energies
  doi: 10.3390/en4081246
– volume: 38
  start-page: 6016
  year: 2010
  ident: 10.1016/j.enconman.2014.11.059_b0270
  article-title: The relationship between electricity consumption, electricity prices and GDP in Pakistan
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2010.05.057
– volume: 16
  start-page: 71
  year: 2000
  ident: 10.1016/j.enconman.2014.11.059_b0130
  article-title: Forecasting the short-term demand for electricity: do neural networks stand a better chance?
  publication-title: Int J Forecast
  doi: 10.1016/S0169-2070(99)00045-X
– volume: 36
  start-page: 2637
  year: 2008
  ident: 10.1016/j.enconman.2014.11.059_b0140
  article-title: A simulated-based neural network algorithm for forecasting electrical energy consumption in Iran
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2008.02.035
– volume: 39
  start-page: 623
  year: 1998
  ident: 10.1016/j.enconman.2014.11.059_b0320
  article-title: Climatic and economic influences on residential electricity consumption
  publication-title: Energy Convers Manage
  doi: 10.1016/S0196-8904(97)10008-5
– volume: 33
  start-page: 426
  year: 2011
  ident: 10.1016/j.enconman.2014.11.059_b0060
  article-title: Industrial electricity demand for Turkey: a structural time series analysis
  publication-title: Energy Econ
  doi: 10.1016/j.eneco.2010.10.001
– year: 1982
  ident: 10.1016/j.enconman.2014.11.059_b0350
– volume: 14
  start-page: 21
  year: 2012
  ident: 10.1016/j.enconman.2014.11.059_b0040
  article-title: The application of per person electricity consumption method in saturation load forecasting
  publication-title: Power Demand Side Manage
– volume: 40
  start-page: 1074
  year: 2008
  ident: 10.1016/j.enconman.2014.11.059_b0175
  article-title: Artificial neural networks and adaptive neuro-fuzzy assessments for ground-coupled heat pump system
  publication-title: Energy Build
  doi: 10.1016/j.enbuild.2007.10.002
– ident: 10.1016/j.enconman.2014.11.059_b0215
  doi: 10.1109/ICIINFS.2011.6038087
– volume: 34
  start-page: 997
  year: 2004
  ident: 10.1016/j.enconman.2014.11.059_b0235
  article-title: A hybrid of genetic algorithm and particle swarm optimization for recurrent network design
  publication-title: IEEE Trans Syst Man Cybern Part B: Cybern
  doi: 10.1109/TSMCB.2003.818557
– volume: 34
  start-page: 1438
  year: 2009
  ident: 10.1016/j.enconman.2014.11.059_b0145
  article-title: Forecasting energy consumption in Taiwan using hybrid nonlinear models
  publication-title: Energy
  doi: 10.1016/j.energy.2009.04.026
– volume: 42
  start-page: 329
  year: 2012
  ident: 10.1016/j.enconman.2014.11.059_b0245
  article-title: A PSO–GA optimal model to estimate primary energy demand of China
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2011.11.090
– start-page: 432
  year: 2004
  ident: 10.1016/j.enconman.2014.11.059_b0210
  article-title: Short-term load forecasting using radial basis function networks
– volume: 35
  start-page: 1129
  year: 2007
  ident: 10.1016/j.enconman.2014.11.059_b0080
  article-title: Electricity demand analysis using cointegration and ARIMA modelling: a case study of Turkey
  publication-title: Energy Policy
  doi: 10.1016/j.enpol.2006.02.013
– volume: 97
  start-page: 956
  year: 2012
  ident: 10.1016/j.enconman.2014.11.059_b0195
  article-title: A radial basis function neural network based approach for the electrical characteristics estimation of a photovoltaic module
  publication-title: Appl Energy
  doi: 10.1016/j.apenergy.2011.12.085
– volume: 22
  start-page: 258
  year: 2007
  ident: 10.1016/j.enconman.2014.11.059_b0190
  article-title: An advanced statistical method for wind power forecasting
  publication-title: IEEE Trans, Power Syst
  doi: 10.1109/TPWRS.2006.889078
– volume: 3
  start-page: 401
  year: 1978
  ident: 10.1016/j.enconman.2014.11.059_b0255
  article-title: On the relationship between energy and GNP
  publication-title: J Energy Dev
– volume: 33
  start-page: 17
  year: 2011
  ident: 10.1016/j.enconman.2014.11.059_b0325
  article-title: Monthly electricity demand forecasting based on a weighted evolving fuzzy neural network approach
  publication-title: Int J Electr Power Energy Syst
  doi: 10.1016/j.ijepes.2010.08.008
SSID ssj0003506
Score 2.4280462
Snippet •A hybrid self-adaptive PSO–GA-RBF model is proposed for electricity demand prediction.•Each mixed-coding particle is composed by two coding parts of binary...
The present study proposes a hybrid Particle Swarm Optimization and Genetic Algorithm optimized Radial Basis Function (PSO-GA-RBF) neural network for...
The present study proposes a hybrid Particle Swarm Optimization and Genetic Algorithm optimized Radial Basis Function (PSO–GA-RBF) neural network for...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 176
SubjectTerms Algorithms
chromosomes
Demand
electric energy consumption
Electricity
Electricity consumption
Electricity demand prediction
Genetic Algorithm
Genetic algorithms
Learning theory
Mathematical models
Mixed coding
Networks
Neural networks
neurons
Particle Swarm Optimization
planning
prediction
Radial Basis Function neural network
Title A hybrid self-adaptive Particle Swarm Optimization–Genetic Algorithm–Radial Basis Function model for annual electricity demand prediction
URI https://dx.doi.org/10.1016/j.enconman.2014.11.059
https://www.proquest.com/docview/1685808697
https://www.proquest.com/docview/2131875697
Volume 91
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1879-2227
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0003506
  issn: 0196-8904
  databaseCode: AKRWK
  dateStart: 19800101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxELaqcikHVCiItlC5ElcnWcfexzFURAHUFlEq9WaNX3SrZBMlqRAXxB_gxD_klzCzD1oQqAeO6x1Ltseehz3zDWMvEp8rHaQSNmZOqFjkwg58EBEiKbhCyUBXA8cn6eRcvbnQFxvsqMuFobDKVvY3Mr2W1m1Lv13N_qIs-2eE7JIXA0UuAj0QUga7yqiKQe_LTZjHUNf1NYlYEPWtLOGrHmFFVjMgHNRE9QjNkzBL_66g_hDVtf4Zb7MHreHIR83YHrKNUD1i92_BCe6wbyN--ZkysPgqTKMADwsSZvxdOyF-9gmWM36KrbM2_fLH1-8EPI2_-Wj6cb4s15czbHtPiAVT_hJW5YqPUfURLa-r5nC0cnmDZMqbGjqlQ0ue-4Az9HyxpJcfIn_MzsevPhxNRFtuQbhhlq8F4PGNqO9TK523aCcR-pnPNCQQpbRp4YYqHSgnB2C9tZAV4FQSwULuU49m0BO2Wc2r8JTxVEbn0DGKBPelAwHQKFdQ8QUrLYDeZbpbY-NaLHIqiTE1XdDZlel4Y4g36KgY5M0u6__qt2jQOO7sUXQsNL_tK4Mq486-hx3PDR46ekmBKsyvVyYh1H50Bovs3zQyQXGZaaTZ-48x7LMt_NJNnPgztrleXofnaAat7UG9zw_YvdHrt5OTn9k9Ddg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Jb1MxELZKOQCHilWUshiJq5M8x37LMVREAdqCaCv1Zo239lXJS5SkQlwQf4AT_5BfwsxboCBQD1ztsWR77FnsmW8Ye5H4XOkglbAxc0LFIhd24IOIEEnBFUoGehrYP0gnx-rNiT7ZYLtdLgyFVbayv5HptbRuW_rtbvYXZdk_JGSXvBgochHog_Aau660zMgD633-Fecx1HWBTaIWRH4pTfi8R2CR1QwICDVRPYLzJNDSv2uoP2R1rYDGt9lWaznyUTO5O2wjVHfZrUt4gvfY1xE_-0QpWHwVplGAhwVJM_6-XRE__AjLGX-HrbM2__L7l2-EPI3dfDQ9nS_L9dkM2z4QZMGUv4RVueJj1H1Ey-uyORzNXN5AmfKmiE7p0JTnPuAKPV8s6euHyO-z4_Gro92JaOstCDfM8rUAvL8RFX5qpfMWDSWCP_OZhgSilDYt3FClA-XkAKy3FrICnEoiWMh96tEOesA2q3kVHjKeyugcekaR8L50IAQa5QqqvmClBdDbTHd7bFwLRk41Maamizo7Nx1vDPEGPRWDvNlm_Z_jFg0cx5Ujio6F5reDZVBnXDn2ecdzg7eOvlKgCvOLlUkIth-9wSL7N41MUF5mGmke_cccnrEbk6P9PbP3-uDtDruJPboJGn_MNtfLi_AEbaK1fVqf-R_0WA9t
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+hybrid+self-adaptive+Particle+Swarm+Optimization%E2%80%93Genetic+Algorithm%E2%80%93Radial+Basis+Function+model+for+annual+electricity+demand+prediction&rft.jtitle=Energy+conversion+and+management&rft.au=Yu%2C+Shiwei&rft.au=Wang%2C+Ke&rft.au=Wei%2C+Yiming&rft.date=2015-02-01&rft.issn=0196-8904&rft.volume=91+p.176-185&rft.spage=176&rft.epage=185&rft_id=info:doi/10.1016%2Fj.enconman.2014.11.059&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0196-8904&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0196-8904&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0196-8904&client=summon