Failure probability estimation through high-dimensional elliptical distribution modeling with multiple importance sampling
This paper addresses the challenge of performing importance sampling in high-dimensional space (several hundred inputs) in order to estimate the failure probability of a physical system subject to randomness. It is assumed that the failure domain defined in the input space can possibly include multi...
Saved in:
| Published in | Reliability engineering & system safety Vol. 235; p. 109238 |
|---|---|
| Main Authors | , , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
01.07.2023
Elsevier |
| Subjects | |
| Online Access | Get full text |
| ISSN | 0951-8320 1879-0836 1879-0836 |
| DOI | 10.1016/j.ress.2023.109238 |
Cover
| Abstract | This paper addresses the challenge of performing importance sampling in high-dimensional space (several hundred inputs) in order to estimate the failure probability of a physical system subject to randomness. It is assumed that the failure domain defined in the input space can possibly include multiple failure regions. A new approach is developed to construct auxiliary importance sampling densities sequentially for each failure region identified as part of the failure domain. The search for failure regions is achieved through optimization. A stochastic decomposition of the elliptically distributed inputs is exploited in the structure of the auxiliary densities, which are expressed as the product of a parametric conditional distribution for the radial component, and a parametric von Mises–Fisher distribution for the directional vector. The failure probability is then estimated by multiple importance sampling with a mixture of the densities. To demonstrate the efficiency of the proposed method in high-dimensional space, several numerical examples are considered involving the multivariate Gaussian and Student distributions, which are commonly used elliptical distributions for input modeling. In comparison with other simulation methods, the numerical cost of the proposed approach is found to be quite low when the gradient of the performance function defining the failure domain is available.
•Importance sampling in high-dimensional space for elliptical distributions.•Auxiliary distribution based on a stochastic decomposition of the inputs.•Failure probability estimated by multiple importance sampling.•Adaptive search for the multiple failure regions of the failure domain. |
|---|---|
| AbstractList | This paper addresses the challenge of performing importance sampling in high-dimensional space (several hundred inputs) in order to estimate the failure probability of a physical system subject to randomness. It is assumed that the failure domain defined in the input space can possibly include multiple failure regions. A new approach is developed to construct auxiliary importance sampling densities sequentially for each failure region identified as part of the failure domain. The search for failure regions is achieved through optimization. A stochastic decomposition of the elliptically distributed inputs is exploited in the structure of the auxiliary densities, which are expressed as the product of a parametric conditional distribution for the radial component, and a parametric von Mises–Fisher distribution for the directional vector. The failure probability is then estimated by multiple importance sampling with a mixture of the densities. To demonstrate the efficiency of the proposed method in high-dimensional space, several numerical examples are considered involving the multivariate Gaussian and Student distributions, which are commonly used elliptical distributions for input modeling. In comparison with other simulation methods, the numerical cost of the proposed approach is found to be quite low when the gradient of the performance function defining the failure domain is available. This paper addresses the challenge of performing importance sampling in high-dimensional space (several hundred inputs) in order to estimate the failure probability of a physical system subject to randomness. It is assumed that the failure domain defined in the input space can possibly include multiple failure regions. A new approach is developed to construct auxiliary importance sampling densities sequentially for each failure region identified as part of the failure domain. The search for failure regions is achieved through optimization. A stochastic decomposition of the elliptically distributed inputs is exploited in the structure of the auxiliary densities, which are expressed as the product of a parametric conditional distribution for the radial component, and a parametric von Mises–Fisher distribution for the directional vector. The failure probability is then estimated by multiple importance sampling with a mixture of the densities. To demonstrate the efficiency of the proposed method in high-dimensional space, several numerical examples are considered involving the multivariate Gaussian and Student distributions, which are commonly used elliptical distributions for input modeling. In comparison with other simulation methods, the numerical cost of the proposed approach is found to be quite low when the gradient of the performance function defining the failure domain is available. •Importance sampling in high-dimensional space for elliptical distributions.•Auxiliary distribution based on a stochastic decomposition of the inputs.•Failure probability estimated by multiple importance sampling.•Adaptive search for the multiple failure regions of the failure domain. |
| ArticleNumber | 109238 |
| Author | Chiron, Marie Morio, Jérôme Genest, Christian Dubreuil, Sylvain |
| Author_xml | – sequence: 1 givenname: Marie surname: Chiron fullname: Chiron, Marie email: marie.chiron@onera.fr organization: ONERA/DTIS, Université de Toulouse, F-31055 Toulouse, France – sequence: 2 givenname: Christian orcidid: 0000-0002-1764-0202 surname: Genest fullname: Genest, Christian organization: Department of Mathematics and Statistics, McGill University, Montréal (Québec), Canada – sequence: 3 givenname: Jérôme orcidid: 0000-0002-8811-8956 surname: Morio fullname: Morio, Jérôme organization: ONERA/DTIS, Université de Toulouse, F-31055 Toulouse, France – sequence: 4 givenname: Sylvain surname: Dubreuil fullname: Dubreuil, Sylvain organization: ONERA/DTIS, Université de Toulouse, F-31055 Toulouse, France |
| BackLink | https://hal.science/hal-04624540$$DView record in HAL |
| BookMark | eNqNkM1q3DAURkVIIZO0L5CVt114qj_bMnQTQpMUBrpp10KSpfEdZMtIcsL06WvHgUIXoStdPr5zJZ1rdDmG0SJ0S_CeYFJ_Oe2jTWlPMWVL0FImLtCOiKYtsWD1JdrhtiKlYBRfoeuUThhj3lbNDv1-UODnaIspBq00eMjnwqYMg8oQxiL3MczHvujh2JcdDHZMS6x8Yb2HKYNZxg5SjqDnV2AInfUwHosXyH0xzD7D5G0BwxRiVqOxRVLDtDY-og9O-WQ_vZ036NfDt5_3T-Xhx-P3-7tDaVgjctlqwlsraocVJ23NBXXG8YZy5lRV1Y7hTujOUMwrS6jRTivRcGa17oSrcMVuENv2zuOkzi_KeznF5X_xLAmWqz55kqs-ueqTm76F-rxRvfrbDwrk091BrhnmNeUVx89k6Yqta2JIKVonDeRXfzkuet-_hv6D_tfbvm6QXbQ9g40yGbCL2w6iNVl2Ad7D_wCmuLCD |
| CitedBy_id | crossref_primary_10_1016_j_compgeo_2024_106148 crossref_primary_10_1016_j_ress_2023_109615 crossref_primary_10_1016_j_ress_2024_110519 crossref_primary_10_1016_j_ress_2024_110706 crossref_primary_10_1016_j_ress_2025_111034 crossref_primary_10_1177_1748006X241284054 crossref_primary_10_1016_j_probengmech_2023_103554 crossref_primary_10_1016_j_ress_2025_110993 crossref_primary_10_1016_j_ress_2023_109552 crossref_primary_10_1016_j_ress_2023_109750 crossref_primary_10_1016_j_ress_2025_111028 crossref_primary_10_1016_j_tust_2024_105928 |
| Cites_doi | 10.1016/j.ress.2019.106564 10.1016/0045-7949(90)90134-N 10.1007/s00158-015-1232-1 10.1287/opre.1080.0513 10.1029/2006WR005275 10.1007/s00158-020-02587-3 10.1016/0167-4730(86)90012-3 10.1016/j.probengmech.2004.05.004 10.1016/j.strusafe.2021.102128 10.1016/S0266-8920(01)00019-4 10.1016/j.strusafe.2007.10.002 10.1016/j.strusafe.2013.01.006 10.1016/j.strusafe.2015.11.002 10.1016/j.strusafe.2011.01.002 10.1007/s11222-011-9275-7 10.1016/j.ress.2021.107710 10.2514/1.J053813 10.1016/j.cma.2022.114730 10.1016/j.probengmech.2008.05.001 10.1016/j.strusafe.2020.102025 10.1016/j.ress.2021.107991 10.1016/j.paerosci.2019.05.002 10.1016/j.strusafe.2022.102291 10.1016/S0167-4730(97)00026-X 10.1016/j.strusafe.2021.102116 10.1016/j.ress.2015.05.023 10.1016/j.ress.2021.108306 10.1016/j.probengmech.2004.05.001 10.1016/j.simpat.2014.10.007 10.1016/j.ijleo.2018.10.073 10.1016/j.probengmech.2007.12.026 10.1137/20M1344585 10.1016/j.ress.2020.107289 10.1016/S0167-4730(02)00047-4 10.1016/j.ress.2020.106852 10.1016/j.strusafe.2022.102182 10.1016/j.strusafe.2022.102216 10.1016/j.cma.2018.10.003 10.1016/j.strusafe.2006.07.003 10.1016/j.strusafe.2021.102099 |
| ContentType | Journal Article |
| Copyright | 2023 The Author(s) Attribution - NonCommercial - NoDerivatives |
| Copyright_xml | – notice: 2023 The Author(s) – notice: Attribution - NonCommercial - NoDerivatives |
| DBID | 6I. AAFTH AAYXX CITATION 1XC VOOES ADTOC UNPAY |
| DOI | 10.1016/j.ress.2023.109238 |
| DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering Mathematics Computer Science |
| EISSN | 1879-0836 |
| ExternalDocumentID | 10.1016/j.ress.2023.109238 oai:HAL:hal-04624540v1 10_1016_j_ress_2023_109238 S0951832023001539 |
| GroupedDBID | --K --M .~1 0R~ 123 1B1 1~. 1~5 29P 4.4 457 4G. 5VS 6I. 7-5 71M 8P~ 9JN 9JO AABNK AACTN AAEDT AAEDW AAFJI AAFTH AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABEFU ABFNM ABJNI ABMAC ABMMH ABTAH ABXDB ABYKQ ACDAQ ACGFS ACIWK ACNNM ACRLP ADBBV ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFRAH AFTJW AGHFR AGUBO AGYEJ AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKYCK ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOMHK ASPBG AVARZ AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W JJJVA KOM LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. PRBVW Q38 R2- RIG ROL RPZ SDF SDG SES SET SEW SPC SPCBC SSB SSO SST SSZ T5K TN5 WUQ XPP ZMT ZY4 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD 1XC VOOES ADTOC AGCQF UNPAY |
| ID | FETCH-LOGICAL-c378t-9b149e86f0a4196482fcf47243fa556f30d8bdc2045e12cbfba8743ebbd8f5053 |
| IEDL.DBID | .~1 |
| ISSN | 0951-8320 1879-0836 |
| IngestDate | Tue Aug 19 22:37:33 EDT 2025 Tue Oct 14 20:54:18 EDT 2025 Sat Oct 25 05:28:24 EDT 2025 Thu Apr 24 23:07:39 EDT 2025 Fri Feb 23 02:38:30 EST 2024 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Multiple importance sampling Reliability analysis High dimension Simulation method Elliptical distribution stochastic system loi de probabilité échantillonnage d'importance méthode numérique numerical method probability distribution importance sampling système stochastique |
| Language | English |
| License | This is an open access article under the CC BY-NC-ND license. Attribution - NonCommercial - NoDerivatives: http://creativecommons.org/licenses/by-nc-nd cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c378t-9b149e86f0a4196482fcf47243fa556f30d8bdc2045e12cbfba8743ebbd8f5053 |
| ORCID | 0000-0002-1764-0202 0000-0002-8811-8956 |
| OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0951832023001539 |
| ParticipantIDs | unpaywall_primary_10_1016_j_ress_2023_109238 hal_primary_oai_HAL_hal_04624540v1 crossref_citationtrail_10_1016_j_ress_2023_109238 crossref_primary_10_1016_j_ress_2023_109238 elsevier_sciencedirect_doi_10_1016_j_ress_2023_109238 |
| PublicationCentury | 2000 |
| PublicationDate | 2023-07-01 |
| PublicationDateYYYYMMDD | 2023-07-01 |
| PublicationDate_xml | – month: 07 year: 2023 text: 2023-07-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | Reliability engineering & system safety |
| PublicationYear | 2023 |
| Publisher | Elsevier Ltd Elsevier |
| Publisher_xml | – name: Elsevier Ltd – name: Elsevier |
| References | Papaioannou, Geyer, Straub (b33) 2019; 191 Der Kiureghian, Dakessian (b8) 1998; 20 Banerjee, Dhillon, Ghosh, Sra, Ridgeway (b27) 2005; 6 Zuev (b39) 2009 Papaioannou, Straub (b20) 2021; 88 Bassamboo, Juneja, Zeevi (b40) 2008; 56 Xiao, Oladyshkin, Nowak (b10) 2020; 197 Uribe, Papaioannou, Marzouk, Straub (b34) 2021; 9 Genest, Nešlehová (b2) 2012; 2 Zuniga, Murangira, Perdrizet (b13) 2021; 207 Zhang, Lu, Cheng (b26) 2022; 220 Katafygiotis, Cheung (b16) 2007; 29 Lacaze, Brevault, Missoum, Balesdent (b46) 2015; 52 El Masri, Morio, Simatos (b42) 2021; 216 Owen (b18) 2013 Kenway, Mader, He, Martins (b47) 2019; 110 Rubinstein, Kroese (b35) 2004 Thedy, Liao (b25) 2021; 91 Leng, Lu, Cai, Li, Zhao (b31) 2022; 96 Zhu, Keshtegar, Seghier, Zio, Taylan (b49) 2022; 393 Genest, Favre, Béliveau, Jacques (b1) 2007; 43 Sahin (b44) 2019; 178 Ditlevsen, Melchers, Gluver (b21) 1990; 36 Ester, Kriegel, Sander, Xu (b28) 1996; 96 Jiang, Feng, Zhou, Tao (b12) 2021; 213 Cheng, Papaioannou, Lu, Zhang, Wang (b22) 2023; 100 Koutsourelakis, Pradlwarter, Schueller (b19) 2004; 19 Shields, Teferra, Hapij, Daddazio (b45) 2015; 142 Katafygiotis, Zuev (b30) 2008; 23 Zhong, Wang, Dang, Ke, Guo (b48) 2020; 62 Wang, Song (b32) 2016; 59 Jia, Tabandeh, Gardoni (b38) 2021; 93 Ditlevsen, Madsen (b4) 1996 Grooteman (b24) 2008; 30 Lebrun, Dutfoy (b37) 2009; 24 Tabandeh, Jia, Gardoni (b7) 2022; 97 Au, Beck (b17) 2003; 25 Schueller, Pradlwarter, Koutsourelakis (b5) 2004; 19 Au, Beck (b15) 2001; 16 Menz, Dubreuil, Morio, Gogu, Bartoli, Chiron (b11) 2021; 93 Klawonn, Höppner, Jayaram (b29) 2012 Morio, Balesdent, Jacquemart, Vergé (b14) 2014; 49 Echard, Gayton, Lemaire (b9) 2011; 33 Kurtz, Song (b36) 2013; 42 Chan, Kroese (b41) 2012; 22 Harbitz (b23) 1986; 3 Zhang, Xiao, Gao, Chu (b6) 2019; 344 Economon, Palacios, Copeland, Lukaczyk, Alonso (b43) 2016; 54 Fang, Kotz, Ng (b3) 2018 Zuev (10.1016/j.ress.2023.109238_b39) 2009 Papaioannou (10.1016/j.ress.2023.109238_b20) 2021; 88 Ditlevsen (10.1016/j.ress.2023.109238_b4) 1996 Zuniga (10.1016/j.ress.2023.109238_b13) 2021; 207 Zhu (10.1016/j.ress.2023.109238_b49) 2022; 393 Banerjee (10.1016/j.ress.2023.109238_b27) 2005; 6 Klawonn (10.1016/j.ress.2023.109238_b29) 2012 Leng (10.1016/j.ress.2023.109238_b31) 2022; 96 Lebrun (10.1016/j.ress.2023.109238_b37) 2009; 24 Wang (10.1016/j.ress.2023.109238_b32) 2016; 59 Cheng (10.1016/j.ress.2023.109238_b22) 2023; 100 Bassamboo (10.1016/j.ress.2023.109238_b40) 2008; 56 Zhang (10.1016/j.ress.2023.109238_b6) 2019; 344 Morio (10.1016/j.ress.2023.109238_b14) 2014; 49 Grooteman (10.1016/j.ress.2023.109238_b24) 2008; 30 Fang (10.1016/j.ress.2023.109238_b3) 2018 Rubinstein (10.1016/j.ress.2023.109238_b35) 2004 El Masri (10.1016/j.ress.2023.109238_b42) 2021; 216 Owen (10.1016/j.ress.2023.109238_b18) 2013 Au (10.1016/j.ress.2023.109238_b15) 2001; 16 Ditlevsen (10.1016/j.ress.2023.109238_b21) 1990; 36 Zhong (10.1016/j.ress.2023.109238_b48) 2020; 62 Katafygiotis (10.1016/j.ress.2023.109238_b30) 2008; 23 Echard (10.1016/j.ress.2023.109238_b9) 2011; 33 Jia (10.1016/j.ress.2023.109238_b38) 2021; 93 Au (10.1016/j.ress.2023.109238_b17) 2003; 25 Menz (10.1016/j.ress.2023.109238_b11) 2021; 93 Chan (10.1016/j.ress.2023.109238_b41) 2012; 22 Kurtz (10.1016/j.ress.2023.109238_b36) 2013; 42 Harbitz (10.1016/j.ress.2023.109238_b23) 1986; 3 Sahin (10.1016/j.ress.2023.109238_b44) 2019; 178 Genest (10.1016/j.ress.2023.109238_b2) 2012; 2 Jiang (10.1016/j.ress.2023.109238_b12) 2021; 213 Kenway (10.1016/j.ress.2023.109238_b47) 2019; 110 Papaioannou (10.1016/j.ress.2023.109238_b33) 2019; 191 Thedy (10.1016/j.ress.2023.109238_b25) 2021; 91 Uribe (10.1016/j.ress.2023.109238_b34) 2021; 9 Tabandeh (10.1016/j.ress.2023.109238_b7) 2022; 97 Genest (10.1016/j.ress.2023.109238_b1) 2007; 43 Zhang (10.1016/j.ress.2023.109238_b26) 2022; 220 Shields (10.1016/j.ress.2023.109238_b45) 2015; 142 Katafygiotis (10.1016/j.ress.2023.109238_b16) 2007; 29 Koutsourelakis (10.1016/j.ress.2023.109238_b19) 2004; 19 Lacaze (10.1016/j.ress.2023.109238_b46) 2015; 52 Schueller (10.1016/j.ress.2023.109238_b5) 2004; 19 Ester (10.1016/j.ress.2023.109238_b28) 1996; 96 Economon (10.1016/j.ress.2023.109238_b43) 2016; 54 Der Kiureghian (10.1016/j.ress.2023.109238_b8) 1998; 20 Xiao (10.1016/j.ress.2023.109238_b10) 2020; 197 |
| References_xml | – volume: 49 start-page: 287 year: 2014 end-page: 304 ident: b14 article-title: A survey of rare event simulation methods for static input–output models publication-title: Simul Model Pract Theory – volume: 9 start-page: 818 year: 2021 end-page: 847 ident: b34 article-title: Cross-entropy-based importance sampling with failure-informed dimension reduction for rare event simulation publication-title: SIAM/ASA J Uncertain Quantif – volume: 20 start-page: 37 year: 1998 end-page: 49 ident: b8 article-title: Multiple design points in first and second-order reliability publication-title: Struct Saf – volume: 62 start-page: 1951 year: 2020 end-page: 1968 ident: b48 article-title: First-order reliability method based on Harris–Hawks optimization for high-dimensional reliability analysis publication-title: Struct Multidiscip Optim – volume: 142 start-page: 310 year: 2015 end-page: 325 ident: b45 article-title: Refined stratified sampling for efficient Monte Carlo based uncertainty quantification publication-title: Reliab Eng Syst Saf – volume: 93 year: 2021 ident: b38 article-title: A density extrapolation approach to estimate failure probabilities publication-title: Struct Saf – volume: 33 start-page: 145 year: 2011 end-page: 154 ident: b9 article-title: AK-MCS: An active learning reliability method combining Kriging and Monte Carlo simulation publication-title: Struct Saf – volume: 42 start-page: 35 year: 2013 end-page: 44 ident: b36 article-title: Cross-entropy-based adaptive importance sampling using Gaussian mixture publication-title: Struct Saf – volume: 207 year: 2021 ident: b13 article-title: Structural reliability assessment through surrogate based importance sampling with dimension reduction publication-title: Reliab Eng Syst Saf – volume: 36 start-page: 355 year: 1990 end-page: 368 ident: b21 article-title: General multi-dimensional probability integration by directional simulation publication-title: Comput Struct – volume: 97 year: 2022 ident: b7 article-title: A review and assessment of importance sampling methods for reliability analysis publication-title: Struct Saf – volume: 88 year: 2021 ident: b20 article-title: Combination line sampling for structural reliability analysis publication-title: Struct Saf – volume: 25 start-page: 139 year: 2003 end-page: 163 ident: b17 article-title: Important sampling in high dimensions publication-title: Struct Saf – volume: 197 year: 2020 ident: b10 article-title: Reliability analysis with stratified importance sampling based on adaptive Kriging publication-title: Reliab Eng Syst Saf – start-page: 14 year: 2012 end-page: 33 ident: b29 article-title: What are clusters in high dimensions and are they difficult to find? publication-title: International Workshop on Clustering High-DImensional Data – volume: 54 start-page: 828 year: 2016 end-page: 846 ident: b43 article-title: SU2: An open-source suite for multiphysics simulation and design publication-title: AIAA J – volume: 19 start-page: 409 year: 2004 end-page: 417 ident: b19 article-title: Reliability of structures in high dimensions, part I: algorithms and applications publication-title: Probab Eng Mech – volume: 6 year: 2005 ident: b27 article-title: Clustering on the unit hypersphere using von Mises–Fisher distributions publication-title: J Mach Learn Res – volume: 91 year: 2021 ident: b25 article-title: Multisphere-based importance sampling for structural reliability publication-title: Struct Saf – year: 2004 ident: b35 article-title: The cross-entropy method: A unified approach to combinatorial optimization, Monte Carlo Simulation, and Machine Learning – volume: 178 start-page: 1016 year: 2019 end-page: 1022 ident: b44 article-title: Open-source optimization algorithms for optical design publication-title: Optik – volume: 393 year: 2022 ident: b49 article-title: Hybrid and enhanced PSO: Novel first order reliability method-based hybrid intelligent approaches publication-title: Comput Methods Appl Mech Engrg – volume: 19 start-page: 463 year: 2004 end-page: 474 ident: b5 article-title: A critical appraisal of reliability estimation procedures for high dimensions publication-title: Probab Eng Mech – volume: 213 year: 2021 ident: b12 article-title: A recursive dimension-reduction method for high-dimensional reliability analysis with rare failure event publication-title: Reliab Eng Syst Saf – volume: 2 start-page: 541 year: 2012 end-page: 553 ident: b2 article-title: Copulas and copula models publication-title: Encycl Environmetrics – volume: 220 year: 2022 ident: b26 article-title: Cross-entropy-based directional importance sampling with von Mises–Fisher mixture model for reliability analysis publication-title: Reliab Eng Syst Saf – volume: 52 start-page: 375 year: 2015 end-page: 381 ident: b46 article-title: Probability of failure sensitivity with respect to decision variables publication-title: Struct Multidiscip Optim – volume: 344 start-page: 13 year: 2019 end-page: 33 ident: b6 article-title: A combined projection-outline-based active learning Kriging and adaptive importance sampling method for hybrid reliability analysis with small failure probabilities publication-title: Comput Methods Appl Mech Engrg – volume: 59 start-page: 42 year: 2016 end-page: 52 ident: b32 article-title: Cross-entropy-based adaptive importance sampling using von Mises–Fisher mixture for high dimensional reliability analysis publication-title: Struct Saf – volume: 96 year: 2022 ident: b31 article-title: Ring simulation: A novel simple and efficient simulation method for structural reliability analysis publication-title: Struct Saf – volume: 23 start-page: 208 year: 2008 end-page: 218 ident: b30 article-title: Geometric insight into the challenges of solving high-dimensional reliability problems publication-title: Probab Eng Mech – volume: 22 start-page: 1031 year: 2012 end-page: 1040 ident: b41 article-title: Improved cross-entropy method for estimation publication-title: Stat Comput – year: 2009 ident: b39 article-title: Advanced stochastic simulation methods for solving high-dimensional reliability problems – volume: 30 start-page: 533 year: 2008 end-page: 542 ident: b24 article-title: Adaptive radial-based importance sampling method for structural reliability publication-title: Struct Saf – volume: 16 start-page: 263 year: 2001 end-page: 277 ident: b15 article-title: Estimation of small failure probabilities in high dimensions by subset simulation publication-title: Probab Eng Mech – volume: 43 year: 2007 ident: b1 article-title: Metaelliptical copulas and their use in frequency analysis of multivariate hydrological data publication-title: Water Resour Res – year: 2013 ident: b18 article-title: Monte Carlo theory, methods and examples – volume: 93 year: 2021 ident: b11 article-title: Variance based sensitivity analysis for Monte Carlo and importance sampling reliability assessment with Gaussian processes publication-title: Struct Saf – volume: 3 start-page: 109 year: 1986 end-page: 115 ident: b23 article-title: An efficient sampling method for probability of failure calculation publication-title: Struct Saf – volume: 29 start-page: 194 year: 2007 end-page: 207 ident: b16 article-title: Application of spherical subset simulation method and auxiliary domain method on a benchmark reliability study publication-title: Struct Saf – volume: 191 year: 2019 ident: b33 article-title: Improved cross entropy-based importance sampling with a flexible mixture model publication-title: Reliab Eng Syst Saf – volume: 216 year: 2021 ident: b42 article-title: Improvement of the cross-entropy method in high dimension for failure probability estimation through a one-dimensional projection without gradient estimation publication-title: Reliab Eng Syst Saf – year: 1996 ident: b4 article-title: Structural reliability methods – volume: 96 start-page: 226 year: 1996 end-page: 231 ident: b28 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise publication-title: Kdd – volume: 56 start-page: 593 year: 2008 end-page: 606 ident: b40 article-title: Portfolio credit risk with extremal dependence: Asymptotic analysis and efficient simulation publication-title: Oper Res – year: 2018 ident: b3 article-title: Symmetric multivariate and related distributions – volume: 24 start-page: 172 year: 2009 end-page: 178 ident: b37 article-title: A generalization of the nataf transformation to distributions with elliptical copula publication-title: Probab Eng Mech – volume: 100 year: 2023 ident: b22 article-title: Rare event estimation with sequential directional importance sampling publication-title: Struct Saf – volume: 110 year: 2019 ident: b47 article-title: Effective adjoint approaches for computational fluid dynamics publication-title: Prog Aerosp Sci – volume: 191 year: 2019 ident: 10.1016/j.ress.2023.109238_b33 article-title: Improved cross entropy-based importance sampling with a flexible mixture model publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2019.106564 – volume: 36 start-page: 355 issue: 2 year: 1990 ident: 10.1016/j.ress.2023.109238_b21 article-title: General multi-dimensional probability integration by directional simulation publication-title: Comput Struct doi: 10.1016/0045-7949(90)90134-N – volume: 52 start-page: 375 issue: 2 year: 2015 ident: 10.1016/j.ress.2023.109238_b46 article-title: Probability of failure sensitivity with respect to decision variables publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-015-1232-1 – volume: 96 start-page: 226 year: 1996 ident: 10.1016/j.ress.2023.109238_b28 article-title: A density-based algorithm for discovering clusters in large spatial databases with noise – volume: 56 start-page: 593 issue: 3 year: 2008 ident: 10.1016/j.ress.2023.109238_b40 article-title: Portfolio credit risk with extremal dependence: Asymptotic analysis and efficient simulation publication-title: Oper Res doi: 10.1287/opre.1080.0513 – volume: 43 issue: 9 year: 2007 ident: 10.1016/j.ress.2023.109238_b1 article-title: Metaelliptical copulas and their use in frequency analysis of multivariate hydrological data publication-title: Water Resour Res doi: 10.1029/2006WR005275 – volume: 62 start-page: 1951 issue: 4 year: 2020 ident: 10.1016/j.ress.2023.109238_b48 article-title: First-order reliability method based on Harris–Hawks optimization for high-dimensional reliability analysis publication-title: Struct Multidiscip Optim doi: 10.1007/s00158-020-02587-3 – volume: 3 start-page: 109 issue: 2 year: 1986 ident: 10.1016/j.ress.2023.109238_b23 article-title: An efficient sampling method for probability of failure calculation publication-title: Struct Saf doi: 10.1016/0167-4730(86)90012-3 – volume: 19 start-page: 463 issue: 4 year: 2004 ident: 10.1016/j.ress.2023.109238_b5 article-title: A critical appraisal of reliability estimation procedures for high dimensions publication-title: Probab Eng Mech doi: 10.1016/j.probengmech.2004.05.004 – volume: 93 year: 2021 ident: 10.1016/j.ress.2023.109238_b38 article-title: A density extrapolation approach to estimate failure probabilities publication-title: Struct Saf doi: 10.1016/j.strusafe.2021.102128 – volume: 2 start-page: 541 year: 2012 ident: 10.1016/j.ress.2023.109238_b2 article-title: Copulas and copula models publication-title: Encycl Environmetrics – volume: 16 start-page: 263 issue: 4 year: 2001 ident: 10.1016/j.ress.2023.109238_b15 article-title: Estimation of small failure probabilities in high dimensions by subset simulation publication-title: Probab Eng Mech doi: 10.1016/S0266-8920(01)00019-4 – volume: 30 start-page: 533 issue: 6 year: 2008 ident: 10.1016/j.ress.2023.109238_b24 article-title: Adaptive radial-based importance sampling method for structural reliability publication-title: Struct Saf doi: 10.1016/j.strusafe.2007.10.002 – volume: 42 start-page: 35 year: 2013 ident: 10.1016/j.ress.2023.109238_b36 article-title: Cross-entropy-based adaptive importance sampling using Gaussian mixture publication-title: Struct Saf doi: 10.1016/j.strusafe.2013.01.006 – volume: 6 issue: 9 year: 2005 ident: 10.1016/j.ress.2023.109238_b27 article-title: Clustering on the unit hypersphere using von Mises–Fisher distributions publication-title: J Mach Learn Res – volume: 59 start-page: 42 year: 2016 ident: 10.1016/j.ress.2023.109238_b32 article-title: Cross-entropy-based adaptive importance sampling using von Mises–Fisher mixture for high dimensional reliability analysis publication-title: Struct Saf doi: 10.1016/j.strusafe.2015.11.002 – volume: 33 start-page: 145 issue: 2 year: 2011 ident: 10.1016/j.ress.2023.109238_b9 article-title: AK-MCS: An active learning reliability method combining Kriging and Monte Carlo simulation publication-title: Struct Saf doi: 10.1016/j.strusafe.2011.01.002 – volume: 22 start-page: 1031 issue: 5 year: 2012 ident: 10.1016/j.ress.2023.109238_b41 article-title: Improved cross-entropy method for estimation publication-title: Stat Comput doi: 10.1007/s11222-011-9275-7 – volume: 213 year: 2021 ident: 10.1016/j.ress.2023.109238_b12 article-title: A recursive dimension-reduction method for high-dimensional reliability analysis with rare failure event publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2021.107710 – volume: 54 start-page: 828 issue: 3 year: 2016 ident: 10.1016/j.ress.2023.109238_b43 article-title: SU2: An open-source suite for multiphysics simulation and design publication-title: AIAA J doi: 10.2514/1.J053813 – volume: 393 year: 2022 ident: 10.1016/j.ress.2023.109238_b49 article-title: Hybrid and enhanced PSO: Novel first order reliability method-based hybrid intelligent approaches publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2022.114730 – volume: 24 start-page: 172 issue: 2 year: 2009 ident: 10.1016/j.ress.2023.109238_b37 article-title: A generalization of the nataf transformation to distributions with elliptical copula publication-title: Probab Eng Mech doi: 10.1016/j.probengmech.2008.05.001 – volume: 88 year: 2021 ident: 10.1016/j.ress.2023.109238_b20 article-title: Combination line sampling for structural reliability analysis publication-title: Struct Saf doi: 10.1016/j.strusafe.2020.102025 – volume: 216 year: 2021 ident: 10.1016/j.ress.2023.109238_b42 article-title: Improvement of the cross-entropy method in high dimension for failure probability estimation through a one-dimensional projection without gradient estimation publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2021.107991 – volume: 110 year: 2019 ident: 10.1016/j.ress.2023.109238_b47 article-title: Effective adjoint approaches for computational fluid dynamics publication-title: Prog Aerosp Sci doi: 10.1016/j.paerosci.2019.05.002 – volume: 100 year: 2023 ident: 10.1016/j.ress.2023.109238_b22 article-title: Rare event estimation with sequential directional importance sampling publication-title: Struct Saf doi: 10.1016/j.strusafe.2022.102291 – year: 2009 ident: 10.1016/j.ress.2023.109238_b39 – volume: 20 start-page: 37 issue: 1 year: 1998 ident: 10.1016/j.ress.2023.109238_b8 article-title: Multiple design points in first and second-order reliability publication-title: Struct Saf doi: 10.1016/S0167-4730(97)00026-X – volume: 93 year: 2021 ident: 10.1016/j.ress.2023.109238_b11 article-title: Variance based sensitivity analysis for Monte Carlo and importance sampling reliability assessment with Gaussian processes publication-title: Struct Saf doi: 10.1016/j.strusafe.2021.102116 – year: 2013 ident: 10.1016/j.ress.2023.109238_b18 – start-page: 14 year: 2012 ident: 10.1016/j.ress.2023.109238_b29 article-title: What are clusters in high dimensions and are they difficult to find? – volume: 142 start-page: 310 year: 2015 ident: 10.1016/j.ress.2023.109238_b45 article-title: Refined stratified sampling for efficient Monte Carlo based uncertainty quantification publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2015.05.023 – volume: 220 year: 2022 ident: 10.1016/j.ress.2023.109238_b26 article-title: Cross-entropy-based directional importance sampling with von Mises–Fisher mixture model for reliability analysis publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2021.108306 – volume: 19 start-page: 409 issue: 4 year: 2004 ident: 10.1016/j.ress.2023.109238_b19 article-title: Reliability of structures in high dimensions, part I: algorithms and applications publication-title: Probab Eng Mech doi: 10.1016/j.probengmech.2004.05.001 – volume: 49 start-page: 287 year: 2014 ident: 10.1016/j.ress.2023.109238_b14 article-title: A survey of rare event simulation methods for static input–output models publication-title: Simul Model Pract Theory doi: 10.1016/j.simpat.2014.10.007 – volume: 178 start-page: 1016 year: 2019 ident: 10.1016/j.ress.2023.109238_b44 article-title: Open-source optimization algorithms for optical design publication-title: Optik doi: 10.1016/j.ijleo.2018.10.073 – year: 1996 ident: 10.1016/j.ress.2023.109238_b4 – volume: 23 start-page: 208 issue: 2–3 year: 2008 ident: 10.1016/j.ress.2023.109238_b30 article-title: Geometric insight into the challenges of solving high-dimensional reliability problems publication-title: Probab Eng Mech doi: 10.1016/j.probengmech.2007.12.026 – volume: 9 start-page: 818 issue: 2 year: 2021 ident: 10.1016/j.ress.2023.109238_b34 article-title: Cross-entropy-based importance sampling with failure-informed dimension reduction for rare event simulation publication-title: SIAM/ASA J Uncertain Quantif doi: 10.1137/20M1344585 – volume: 207 year: 2021 ident: 10.1016/j.ress.2023.109238_b13 article-title: Structural reliability assessment through surrogate based importance sampling with dimension reduction publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2020.107289 – volume: 25 start-page: 139 issue: 2 year: 2003 ident: 10.1016/j.ress.2023.109238_b17 article-title: Important sampling in high dimensions publication-title: Struct Saf doi: 10.1016/S0167-4730(02)00047-4 – volume: 197 year: 2020 ident: 10.1016/j.ress.2023.109238_b10 article-title: Reliability analysis with stratified importance sampling based on adaptive Kriging publication-title: Reliab Eng Syst Saf doi: 10.1016/j.ress.2020.106852 – volume: 96 year: 2022 ident: 10.1016/j.ress.2023.109238_b31 article-title: Ring simulation: A novel simple and efficient simulation method for structural reliability analysis publication-title: Struct Saf doi: 10.1016/j.strusafe.2022.102182 – volume: 97 year: 2022 ident: 10.1016/j.ress.2023.109238_b7 article-title: A review and assessment of importance sampling methods for reliability analysis publication-title: Struct Saf doi: 10.1016/j.strusafe.2022.102216 – volume: 344 start-page: 13 year: 2019 ident: 10.1016/j.ress.2023.109238_b6 article-title: A combined projection-outline-based active learning Kriging and adaptive importance sampling method for hybrid reliability analysis with small failure probabilities publication-title: Comput Methods Appl Mech Engrg doi: 10.1016/j.cma.2018.10.003 – volume: 29 start-page: 194 issue: 3 year: 2007 ident: 10.1016/j.ress.2023.109238_b16 article-title: Application of spherical subset simulation method and auxiliary domain method on a benchmark reliability study publication-title: Struct Saf doi: 10.1016/j.strusafe.2006.07.003 – volume: 91 year: 2021 ident: 10.1016/j.ress.2023.109238_b25 article-title: Multisphere-based importance sampling for structural reliability publication-title: Struct Saf doi: 10.1016/j.strusafe.2021.102099 – year: 2004 ident: 10.1016/j.ress.2023.109238_b35 – year: 2018 ident: 10.1016/j.ress.2023.109238_b3 |
| SSID | ssj0004957 |
| Score | 2.5168612 |
| Snippet | This paper addresses the challenge of performing importance sampling in high-dimensional space (several hundred inputs) in order to estimate the failure... |
| SourceID | unpaywall hal crossref elsevier |
| SourceType | Open Access Repository Enrichment Source Index Database Publisher |
| StartPage | 109238 |
| SubjectTerms | Computer Science Data Structures and Algorithms Elliptical distribution Engineering Sciences High dimension Mathematics Multiple importance sampling Other Probability Reliability analysis Simulation method |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3JTwIxFMYbwYN6cDfilsZ40yEwWztHYiTEKPEgCZ4mXaaK4khk0MBfb9-0Q9AoweMwK-1j-rW89_sQOgtdX_ih9ByXSKknKIFwosBljs94QkKlBW--DnnbDlsd_7obdC0mB2phvv1_n-dhwayzCibfQD7SA0wJLYeB1t1ltNxp3zUeCq94HZp59SMlUY5cthUyv1_kr1Go9ATpkCujdMDGn6zfnxlrmhvGtGiYIwohxeSlOsp4VUx-ABwX-xqbaN1KTtwwMbKFlpJ0G63NgAh30KTJepCfjsFfxpC7xxj4G6awEVs3HwxwY0eCIYCBeWDAeQ7y5XAsAcFr3bNwbrCjL41hnRcXWYu495rLfR1oeMgglz193EWd5tX9ZcuxrgyO8AjNnIjrSVVCQ1VjPtC8qKuE8onre4oFQai8mqRcCsDcJ3VXcMUZ1TIl4VxSpfWWt4fK6Vua7CMspaqFQu8IqNLTRMIpF5HLhX5Bs8gnpILqRS_FwiLLwTmjHxe5ac8xtGsM7Rqbdq2g8-k5AwPsmHt0UHR-bCWHkRKx7sG5553qSJneABjdrcZNDJ9BtS9gDT_qFXQxDaQFnuXgf4cfolXYMqnDR6icvY-SYy2QMn5ifxlfumQL9w priority: 102 providerName: Unpaywall |
| Title | Failure probability estimation through high-dimensional elliptical distribution modeling with multiple importance sampling |
| URI | https://dx.doi.org/10.1016/j.ress.2023.109238 https://hal.science/hal-04624540 https://doi.org/10.1016/j.ress.2023.109238 |
| UnpaywallVersion | publishedVersion |
| Volume | 235 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1879-0836 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004957 issn: 1879-0836 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier Science Direct Freedom Collection eJournals customDbUrl: eissn: 1879-0836 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004957 issn: 1879-0836 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1879-0836 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004957 issn: 1879-0836 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1879-0836 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004957 issn: 1879-0836 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1879-0836 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0004957 issn: 1879-0836 databaseCode: AKRWK dateStart: 19880101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bS8MwFA5zPqgP4hXnZQTxTbtLm7bZ4xiOeRuCDuZTyaXRyaxFN2U--NvNadI5QYb4VJomacgJyTnhO9-H0FHgEkEC6TluKKUOUHzhNHyXOYTxOAyUdnize8irbtDpkfO-3y-gVp4LA7BKu_ebPT3brW1J1c5mNR0MqjfgHNBM_hsOfg-S-AgJQcWg8vkN89ABQJjLyUNtmzhjMF4Q0VagB2BVciFH5ffDaeEBUJJL4yRlk3c2HM4cQe01tGp9R9w0w1tHhTjZQCszjIKb6KPNBgA0xyAUYyi4JxiINEyGIrayPBhYih0JzP6GlQMDL2ea3WtjCVy6VgYLZ0o5umsMF7Y4hx_iwVPmt-vZwq8MQOnJ_RbqtU9vWx3Hyis4wgvpyGlwHR3FNFA1RoCWi7pKKD2BxFPM9wPl1STlUgBffVx3BVecUe1vxJxLqrTj5G2jYvKcxDsIS6lqgdAffKp0vBdyykXD5ULvtKxBwrCE6vm8RsJyj4MExjDKQWaPEdgiAltExhYldDxtkxrmjbm1_dxc0Y_1E-mjYW67Q23b6Q-AbLvTvIygDNJ2gZ_wrV5CJ1PT_2Esu_8cyx5ahjcDBt5HxdHLOD7QLs-Il7M1XUaLzbOLTlc_e93r5t0XybAEDQ |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1NTxsxEB0BPVAOiLYgAm2xKm50SeL1rr1HhIhCG7gAEjfLH2sICksEAQQHfjuetTcFCSHU6_pjLY81nrHevAewmVNmWG7ThHJrfYKSmaTIqEqY0iXPnQ9463fIg8O8f8L-nGanM7Db1MIgrDL6_uDTa28dv7TjbrbHw2H7CIMDUct_48WfFrPwiWWUYwa2_fQP5-EzAN7oyWP3WDkTQF6Y0m7jFEirRLFI5e3bafYcYZLzt9VYPdyr0ejFHdRbgsUYPJKdsL4vMFNWX2HhBaXgN3jsqSEizQkqxQQO7geCTBqhRJFEXR6CNMWJRWr_QMtBkJhzXD9sE4tkulEHi9RSOX5qgi-2pMEfkuFlHbj77SI3ClHp1dkynPT2jnf7SdRXSEzKxSQptE-PSpG7jmLIyyWoM45xylKnsix3accKbQ0S1pddarTTSviAo9TaCucjp3QF5qqrqlwFYq3r5MY3ZML5hI9roU1BtfGuVhWM8xZ0m32VJpKPowbGSDYoswuJtpBoCxls0YKt6ZhxoN54t3fWmEu-OkDS3w3vjvvlbTv9AbJt93cGEr9h3S4SFN51W_B7avoPrGXtP9eyAfP944OBHOwf_l2Hz9gSkMHfYW5yfVv-8PHPRP-sz_czmPoD8g |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ3JTwIxFMYbwYN6cDfilsZ40yEwWztHYiTEKPEgCZ4mXaaK4khk0MBfb9-0Q9AoweMwK-1j-rW89_sQOgtdX_ih9ByXSKknKIFwosBljs94QkKlBW--DnnbDlsd_7obdC0mB2phvv1_n-dhwayzCibfQD7SA0wJLYeB1t1ltNxp3zUeCq94HZp59SMlUY5cthUyv1_kr1Go9ATpkCujdMDGn6zfnxlrmhvGtGiYIwohxeSlOsp4VUx-ABwX-xqbaN1KTtwwMbKFlpJ0G63NgAh30KTJepCfjsFfxpC7xxj4G6awEVs3HwxwY0eCIYCBeWDAeQ7y5XAsAcFr3bNwbrCjL41hnRcXWYu495rLfR1oeMgglz193EWd5tX9ZcuxrgyO8AjNnIjrSVVCQ1VjPtC8qKuE8onre4oFQai8mqRcCsDcJ3VXcMUZ1TIl4VxSpfWWt4fK6Vua7CMspaqFQu8IqNLTRMIpF5HLhX5Bs8gnpILqRS_FwiLLwTmjHxe5ac8xtGsM7Rqbdq2g8-k5AwPsmHt0UHR-bCWHkRKx7sG5553qSJneABjdrcZNDJ9BtS9gDT_qFXQxDaQFnuXgf4cfolXYMqnDR6icvY-SYy2QMn5ifxlfumQL9w |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Failure+probability+estimation+through+high-dimensional+elliptical+distribution+modeling+with+multiple+importance+sampling&rft.jtitle=Reliability+engineering+%26+system+safety&rft.au=Chiron%2C+Marie&rft.au=Genest%2C+Christian&rft.au=Morio%2C+J%C3%A9r%C3%B4me&rft.au=Dubreuil%2C+Sylvain&rft.date=2023-07-01&rft.issn=0951-8320&rft.volume=235&rft.spage=109238&rft_id=info:doi/10.1016%2Fj.ress.2023.109238&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_ress_2023_109238 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0951-8320&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0951-8320&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0951-8320&client=summon |