Computational evaluation for the mechanical behavior of U10Mo fuel mini plates subject to thermal cycling

► The foil has a specific stress reversal temperature. ► A tensile state in the foil is a contributing factor for blister migrations. ► The presence of a higher compressive stress field increases blister temperature. ► The corners and the long transverse edges of the foil are possible blister locati...

Full description

Saved in:
Bibliographic Details
Published inNuclear engineering and design Vol. 254; pp. 165 - 178
Main Authors Ozaltun, Hakan, Herman Shen, M.-H., Medvedev, Pavel, Miller, Samuel J.
Format Journal Article
LanguageEnglish
Published Amsterdam Elsevier B.V 01.01.2013
Elsevier
Subjects
Online AccessGet full text
ISSN0029-5493
1872-759X
DOI10.1016/j.nucengdes.2012.09.008

Cover

Abstract ► The foil has a specific stress reversal temperature. ► A tensile state in the foil is a contributing factor for blister migrations. ► The presence of a higher compressive stress field increases blister temperature. ► The corners and the long transverse edges of the foil are possible blister locations. ► Each thermal cycle reduces the compressive foil stresses incrementally. Mechanical behavior of the monolithic mini-plates during a post-fabrication furnace annealing was investigated. Monolithic fuel is a proposed fuel form to accomplish higher uranium densities in the reactor core and thermal cycling is a standard performance evaluation procedure for these fuel elements. To evaluate the mechanical performance of the plate under a thermal loading, a thermo-mechanical finite element simulation was performed. All three stages of the thermal cycling process were considered: (1) heating of a newly fabricated plate to 500°C, (2) holding at a constant temperature of 500°C for 60min, and finally (3) cooling the plate to room temperature. Fabrication induced residual stress fields were implemented as the initial state for the thermal cycle model. It was shown that the fuel foil remains in the elastic regime during the entire process, while the cladding material exhibits additional plasticity. In particular, simulations have revealed the existence of a critical temperature at which the net stress fields on the fuel foils change directions. This stress reversal occurs between 400 and 450°C which matches the experimental blister temperature of irradiated plates. It was shown that the fuel foil would be in fully tensile state above this transition temperature, facilitating the initiation of blisters. Long transverse edges and the regions around the corners of the fuel foil were identified as possible blister locations. The results have implied that a higher post-fabrication compressive stress field of the foil yields higher threshold temperatures; however, each thermal cycle would progressively relieve compressive stresses of the foil. Comparison with experiments has shown agreement, thus substantiated the capability of the model.
AbstractList Mechanical behavior of the monolithic mini-plates during a post-fabrication furnace annealing was investigated. Monolithic fuel is a proposed fuel form to accomplish higher uranium densities in the reactor core and thermal cycling is a standard performance evaluation procedure for these fuel elements. To evaluate the mechanical performance of the plate under a thermal loading, a thermo-mechanical finite element simulation was performed. All three stages of the thermal cycling process were considered: (1) heating of a newly fabricated plate to 500 degree C, (2) holding at a constant temperature of 500 degree C for 60 min, and finally (3) cooling the plate to room temperature. Fabrication induced residual stress fields were implemented as the initial state for the thermal cycle model. It was shown that the fuel foil remains in the elastic regime during the entire process, while the cladding material exhibits additional plasticity. In particular, simulations have revealed the existence of a critical temperature at which the net stress fields on the fuel foils change directions. This stress reversal occurs between 400 and 450 degree C which matches the experimental blister temperature of irradiated plates. It was shown that the fuel foil would be in fully tensile state above this transition temperature, facilitating the initiation of blisters. Long transverse edges and the regions around the corners of the fuel foil were identified as possible blister locations. The results have implied that a higher post-fabrication compressive stress field of the foil yields higher threshold temperatures; however, each thermal cycle would progressively relieve compressive stresses of the foil. Comparison with experiments has shown agreement, thus substantiated the capability of the model.
► The foil has a specific stress reversal temperature. ► A tensile state in the foil is a contributing factor for blister migrations. ► The presence of a higher compressive stress field increases blister temperature. ► The corners and the long transverse edges of the foil are possible blister locations. ► Each thermal cycle reduces the compressive foil stresses incrementally. Mechanical behavior of the monolithic mini-plates during a post-fabrication furnace annealing was investigated. Monolithic fuel is a proposed fuel form to accomplish higher uranium densities in the reactor core and thermal cycling is a standard performance evaluation procedure for these fuel elements. To evaluate the mechanical performance of the plate under a thermal loading, a thermo-mechanical finite element simulation was performed. All three stages of the thermal cycling process were considered: (1) heating of a newly fabricated plate to 500°C, (2) holding at a constant temperature of 500°C for 60min, and finally (3) cooling the plate to room temperature. Fabrication induced residual stress fields were implemented as the initial state for the thermal cycle model. It was shown that the fuel foil remains in the elastic regime during the entire process, while the cladding material exhibits additional plasticity. In particular, simulations have revealed the existence of a critical temperature at which the net stress fields on the fuel foils change directions. This stress reversal occurs between 400 and 450°C which matches the experimental blister temperature of irradiated plates. It was shown that the fuel foil would be in fully tensile state above this transition temperature, facilitating the initiation of blisters. Long transverse edges and the regions around the corners of the fuel foil were identified as possible blister locations. The results have implied that a higher post-fabrication compressive stress field of the foil yields higher threshold temperatures; however, each thermal cycle would progressively relieve compressive stresses of the foil. Comparison with experiments has shown agreement, thus substantiated the capability of the model.
Author Herman Shen, M.-H.
Medvedev, Pavel
Miller, Samuel J.
Ozaltun, Hakan
Author_xml – sequence: 1
  givenname: Hakan
  surname: Ozaltun
  fullname: Ozaltun, Hakan
  email: Hakan.Ozaltun@inl.gov
  organization: Department of Mechanical and Aerospace Engineering, The Ohio State University, N350 Scott Lab, 201 W. 19th Avenue, Columbus, OH 43210, United States
– sequence: 2
  givenname: M.-H.
  surname: Herman Shen
  fullname: Herman Shen, M.-H.
  organization: Department of Mechanical and Aerospace Engineering, The Ohio State University, N350 Scott Lab, 201 W. 19th Avenue, Columbus, OH 43210, United States
– sequence: 3
  givenname: Pavel
  surname: Medvedev
  fullname: Medvedev, Pavel
  organization: Idaho National Laboratory, PO Box 1625, Idaho Falls, ID 83415, United States
– sequence: 4
  givenname: Samuel J.
  surname: Miller
  fullname: Miller, Samuel J.
  organization: Idaho National Laboratory, PO Box 1625, Idaho Falls, ID 83415, United States
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26811125$$DView record in Pascal Francis
BookMark eNqNkUFvFCEYhompidvqb5CLiZcZgZlh4OCh2Vg1qfFSE2-EYT66bBhYgdmk_76s2_TgpXIhwPN8Ce97iS5CDIDQe0paSij_tG_DaiDcz5BbRihriWwJEa_QhoqRNeMgf1-gDSFMNkMvuzfoMuc9OS3JNsht43JYiy4uBu0xHLVf_x6wjQmXHeAFzE4HZ-rrBDt9dPU-WvyLkh8R2xU8Xlxw-OB1gYzzOu3BFFziSU5LtcyD8S7cv0WvrfYZ3j3tV-ju5svd9ltz-_Pr9-31bWO6UZRmNOM09kbMknYG-GRGybnUXHNm-dRPwyzFRCfNB0EH24t-ppxYPsxMcEtFd4U-nsceUvyzQi5qcdmA9zpAXLOiXS97QQSRFf3whOpcv2eTDsZldUhu0elBMS4opWyo3HjmTIo5J7DPCCXq1IHaq-cO1KkDRaSqHVTz8z-mceesS9LO_4d_ffahBnZ0kFQ2DoKB2aWaspqje3HGIyQ7q8Y
CODEN NEDEAU
CitedBy_id crossref_primary_10_1016_j_jnucmat_2018_08_024
crossref_primary_10_1115_1_4063163
crossref_primary_10_1016_j_anucene_2019_06_030
crossref_primary_10_1016_j_jnucmat_2022_153628
crossref_primary_10_1016_j_nucengdes_2014_12_030
crossref_primary_10_1016_j_pnucene_2024_105068
crossref_primary_10_1016_j_jnucmat_2019_151746
Cites_doi 10.1243/03093247V293185
10.1108/02644400210419067
10.13182/NT80-A32515
10.1016/0029-5493(81)90032-7
10.1016/j.jnucmat.2011.08.029
10.1016/j.nucengdes.2010.02.008
10.1115/1.2716719
10.2172/4819260
10.1007/s00170-006-0707-z
10.1016/j.ijmachtools.2005.02.008
10.1016/j.jnucmat.2010.06.018
10.2172/1335129
ContentType Journal Article
Copyright 2012 Elsevier B.V.
2014 INIST-CNRS
Copyright_xml – notice: 2012 Elsevier B.V.
– notice: 2014 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SP
7SU
7TB
8FD
C1K
FR3
KR7
L7M
DOI 10.1016/j.nucengdes.2012.09.008
DatabaseName CrossRef
Pascal-Francis
Electronics & Communications Abstracts
Environmental Engineering Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Civil Engineering Abstracts
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
Environmental Engineering Abstracts
Engineering Research Database
Advanced Technologies Database with Aerospace
Environmental Sciences and Pollution Management
DatabaseTitleList Civil Engineering Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Applied Sciences
EISSN 1872-759X
EndPage 178
ExternalDocumentID 26811125
10_1016_j_nucengdes_2012_09_008
S002954931200489X
GroupedDBID --K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
5VS
7-5
71M
8P~
9JN
AACTN
AAEDT
AAEDW
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABYKQ
ACDAQ
ACGFS
ACIWK
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFRAH
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HME
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
KOM
LY6
LY7
LZ3
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SES
SET
SEW
SHN
SPC
SPCBC
SSR
SST
SSZ
T5K
TN5
UHS
WUQ
XPP
ZMT
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
AFXIZ
AGCQF
AGRNS
BNPGV
IQODW
SSH
7SP
7SU
7TB
8FD
C1K
FR3
KR7
L7M
ID FETCH-LOGICAL-c378t-7c7b74c8d913ce6bc79669a6a62f6b4b5d98b1ba65815f484d160f65d286f183
IEDL.DBID .~1
ISSN 0029-5493
IngestDate Sun Sep 28 11:41:00 EDT 2025
Mon Jul 21 09:16:06 EDT 2025
Thu Apr 24 22:52:05 EDT 2025
Wed Oct 01 05:20:01 EDT 2025
Fri Feb 23 02:28:29 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Performance evaluation
Cooling
Thermal cycle
Nuclear fuel
Clad
Standards
Nuclear reactor
Finite element method
Uranium
Thermal reactor
Critical temperature
Residual stress
Reactor core
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-7c7b74c8d913ce6bc79669a6a62f6b4b5d98b1ba65815f484d160f65d286f183
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
PQID 1349480809
PQPubID 23500
PageCount 14
ParticipantIDs proquest_miscellaneous_1349480809
pascalfrancis_primary_26811125
crossref_primary_10_1016_j_nucengdes_2012_09_008
crossref_citationtrail_10_1016_j_nucengdes_2012_09_008
elsevier_sciencedirect_doi_10_1016_j_nucengdes_2012_09_008
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2013
2013-01-00
2013
20130101
PublicationDateYYYYMMDD 2013-01-01
PublicationDate_xml – month: 01
  year: 2013
  text: January 2013
PublicationDecade 2010
PublicationPlace Amsterdam
PublicationPlace_xml – name: Amsterdam
PublicationTitle Nuclear engineering and design
PublicationYear 2013
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References Kaufman (bib0035) 2006
Miller, Shih (bib0055) 2007; 129
Zhang, Zhang (bib0110) 2007; 35
Becker, Hyde, Xia (bib0010) 1994; 29
Mackerle (bib0040) 2002; 19
Rest, J., Kim, Y.S., Hofman, G.L., Meyer, M.K., Hayes, S.L., 2006. U–Mo fuels handbook, V.1.0. Argonne National Laboratory Internal Report, Idaho Falls, ID.
Ozaltun, Shen, Medvedev (bib0065) 2011; 419
Polkinghorne, S.T., Lacy, J.M., 1991. Thermo-physical and mechanical properties of ATR core materials. EG&G Idaho Inc. Technical Report PG-T-91-031.
Meyer, M.K., Moore, G.A., Jue, J.F., 2012. Investigation of the cause of low blister threshold temperatures in the RERTR-12 and AFIP-4 experiments. Idaho National Laboratory Technical Report INL/EXT-12-26500.
Ozaltun, Miller (bib0075) 2012
Beeston, Hobbins, Gibson, Francis (bib0015) 1980; 49
Burkes, Prabhakaran, Hartmann, Jue, Rice (bib0025) 2010; 240
Waldron, M.B., Burnett, R.C., Pugh, S.F., 1958. The mechanical properties of uranium–molybdenum alloys. UK Atomic Energy Authority Technical Report AERE-M/B-2554.
Burkes, Papesch, Maddison, Hartmann, Rice (bib0020) 2010; 403
Soundararajan, Zekovic, Kovacevic (bib0100) 2005; 45
Mihalczo, J.T., 1962. Reactivity calibrations and fission-rate distributions in an unmoderated, unreflected U–Mo alloy research reactor. Oak Ridge National Laboratory Report ORNL-TM-189.
Churchman, Barnes, Cottrell (bib0030) 1958; 7
Miller, Ozaltun (bib0060) 2012
ABAQUS Inc. (bib0005) 2010
Snyder, Bathe (bib0095) 1981; 64
Ozaltun, Shen, Medvedev (bib0070) 2011
Rice, Wachs, Robinson, Keiser, Jue, Perez, Finlay (bib0090) 2010
Burkes (10.1016/j.nucengdes.2012.09.008_bib0020) 2010; 403
10.1016/j.nucengdes.2012.09.008_bib0105
Ozaltun (10.1016/j.nucengdes.2012.09.008_bib0065) 2011; 419
Kaufman (10.1016/j.nucengdes.2012.09.008_bib0035) 2006
10.1016/j.nucengdes.2012.09.008_bib0045
Snyder (10.1016/j.nucengdes.2012.09.008_bib0095) 1981; 64
Zhang (10.1016/j.nucengdes.2012.09.008_bib0110) 2007; 35
Soundararajan (10.1016/j.nucengdes.2012.09.008_bib0100) 2005; 45
Miller (10.1016/j.nucengdes.2012.09.008_bib0055) 2007; 129
ABAQUS Inc. (10.1016/j.nucengdes.2012.09.008_bib0005) 2010
Burkes (10.1016/j.nucengdes.2012.09.008_bib0025) 2010; 240
Mackerle (10.1016/j.nucengdes.2012.09.008_bib0040) 2002; 19
Miller (10.1016/j.nucengdes.2012.09.008_bib0060) 2012
Churchman (10.1016/j.nucengdes.2012.09.008_bib0030) 1958; 7
Ozaltun (10.1016/j.nucengdes.2012.09.008_bib0075) 2012
10.1016/j.nucengdes.2012.09.008_bib0085
10.1016/j.nucengdes.2012.09.008_bib0050
Becker (10.1016/j.nucengdes.2012.09.008_bib0010) 1994; 29
Beeston (10.1016/j.nucengdes.2012.09.008_bib0015) 1980; 49
Rice (10.1016/j.nucengdes.2012.09.008_bib0090) 2010
Ozaltun (10.1016/j.nucengdes.2012.09.008_bib0070) 2011
10.1016/j.nucengdes.2012.09.008_bib0080
References_xml – year: 2010
  ident: bib0005
  article-title: Rate-dependent plasticity: creep and swelling
  publication-title: ABAQUS/CAE Theory Manual V6.10, Section 20.2.4
– reference: Waldron, M.B., Burnett, R.C., Pugh, S.F., 1958. The mechanical properties of uranium–molybdenum alloys. UK Atomic Energy Authority Technical Report AERE-M/B-2554.
– reference: Meyer, M.K., Moore, G.A., Jue, J.F., 2012. Investigation of the cause of low blister threshold temperatures in the RERTR-12 and AFIP-4 experiments. Idaho National Laboratory Technical Report INL/EXT-12-26500.
– year: 2012
  ident: bib0060
  article-title: Evaluation of U10Mo fuel plate irradiation behavior via numerical and experimental benchmarking
  publication-title: IMECE2012-89588, ASME 2012, International Mechanical Engineering Congress & Exposition
– volume: 45
  start-page: 1577
  year: 2005
  end-page: 1587
  ident: bib0100
  article-title: Thermo-mechanical model with adaptive boundary conditions for friction stir welding of AL6061
  publication-title: Int. J. Mach. Tool. Manuf.
– volume: 29
  start-page: 185
  year: 1994
  end-page: 192
  ident: bib0010
  article-title: Numerical analysis of creep on components
  publication-title: J. Strain Anal. Eng. Des.
– reference: Rest, J., Kim, Y.S., Hofman, G.L., Meyer, M.K., Hayes, S.L., 2006. U–Mo fuels handbook, V.1.0. Argonne National Laboratory Internal Report, Idaho Falls, ID.
– volume: 49
  start-page: 136
  year: 1980
  end-page: 149
  ident: bib0015
  article-title: Development and irradiation performance of uranium aluminide fuels in test reactors
  publication-title: J. Nucl. Technol.
– volume: 240
  start-page: 1332
  year: 2010
  end-page: 1339
  ident: bib0025
  article-title: Properties of DU–10
  publication-title: J. Nucl. Eng. Des.
– volume: 7
  start-page: 88
  year: 1958
  end-page: 96
  ident: bib0030
  article-title: Effects of heat and pressure on the swelling of irradiated uranium
  publication-title: J. Nucl. Energy
– volume: 419
  start-page: 76
  year: 2011
  end-page: 84
  ident: bib0065
  article-title: Assessment of residual stresses on U10Mo alloy based monolithic mini-plates during hot isostatic pressing
  publication-title: J. Nucl. Mater.
– year: 2006
  ident: bib0035
  article-title: Properties of Aluminum Alloys – Tensile, Creep and Fatigue Data at High and Low Temperatures
– volume: 35
  start-page: 86
  year: 2007
  end-page: 100
  ident: bib0110
  article-title: Material behaviors and mechanical features in friction stir welding process
  publication-title: Int. J. Adv. Manuf. Technol.
– volume: 64
  start-page: 49
  year: 1981
  end-page: 80
  ident: bib0095
  article-title: A solution procedure for thermo-elastic-plastic and creep problems
  publication-title: J. Nucl. Eng. Des.
– volume: 19
  start-page: 206
  year: 2002
  end-page: 245
  ident: bib0040
  article-title: Finite element analyses of sandwich structures: a bibliography
  publication-title: J. Eng. Comput.
– year: 2012
  ident: bib0075
  article-title: Finite element simulations of monolithic plates for the conversion of high performance research reactors: NBSR, MITR, MURR and AFIP
  publication-title: IMECE2012-89011, ASME 2012, International Mechanical Engineering Congress & Exposition
– volume: 129
  start-page: 531
  year: 2007
  end-page: 539
  ident: bib0055
  article-title: Thermo mechanical finite element modeling of the friction drilling process
  publication-title: J. Manuf. Sci. Eng.
– reference: Polkinghorne, S.T., Lacy, J.M., 1991. Thermo-physical and mechanical properties of ATR core materials. EG&G Idaho Inc. Technical Report PG-T-91-031.
– volume: 403
  start-page: 160
  year: 2010
  end-page: 166
  ident: bib0020
  article-title: Thermo-physical properties of DU–10
  publication-title: J. Nucl. Mater.
– reference: Mihalczo, J.T., 1962. Reactivity calibrations and fission-rate distributions in an unmoderated, unreflected U–Mo alloy research reactor. Oak Ridge National Laboratory Report ORNL-TM-189.
– year: 2010
  ident: bib0090
  article-title: U–Mo Plate Blister Anneal Interim Report
  publication-title: RERTR 2010 – International Meeting on Reduced Enrichment for Research and Test Reactors
– year: 2011
  ident: bib0070
  article-title: Numerical simulation for mechanical behavior of U10Mo monolithic mini-plates for research and test reactors
  publication-title: IMECE2011-62114, ASME 2011 International Mechanical Engineering Congress & Exposition
– volume: 29
  start-page: 185
  issue: 3
  year: 1994
  ident: 10.1016/j.nucengdes.2012.09.008_bib0010
  article-title: Numerical analysis of creep on components
  publication-title: J. Strain Anal. Eng. Des.
  doi: 10.1243/03093247V293185
– ident: 10.1016/j.nucengdes.2012.09.008_bib0080
– volume: 19
  start-page: 206
  issue: 2
  year: 2002
  ident: 10.1016/j.nucengdes.2012.09.008_bib0040
  article-title: Finite element analyses of sandwich structures: a bibliography
  publication-title: J. Eng. Comput.
  doi: 10.1108/02644400210419067
– year: 2010
  ident: 10.1016/j.nucengdes.2012.09.008_bib0090
  article-title: U–Mo Plate Blister Anneal Interim Report
– volume: 49
  start-page: 136
  year: 1980
  ident: 10.1016/j.nucengdes.2012.09.008_bib0015
  article-title: Development and irradiation performance of uranium aluminide fuels in test reactors
  publication-title: J. Nucl. Technol.
  doi: 10.13182/NT80-A32515
– volume: 64
  start-page: 49
  year: 1981
  ident: 10.1016/j.nucengdes.2012.09.008_bib0095
  article-title: A solution procedure for thermo-elastic-plastic and creep problems
  publication-title: J. Nucl. Eng. Des.
  doi: 10.1016/0029-5493(81)90032-7
– year: 2012
  ident: 10.1016/j.nucengdes.2012.09.008_bib0060
  article-title: Evaluation of U10Mo fuel plate irradiation behavior via numerical and experimental benchmarking
– volume: 419
  start-page: 76
  issue: 1-3
  year: 2011
  ident: 10.1016/j.nucengdes.2012.09.008_bib0065
  article-title: Assessment of residual stresses on U10Mo alloy based monolithic mini-plates during hot isostatic pressing
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2011.08.029
– ident: 10.1016/j.nucengdes.2012.09.008_bib0105
– volume: 240
  start-page: 1332
  issue: 6
  year: 2010
  ident: 10.1016/j.nucengdes.2012.09.008_bib0025
  article-title: Properties of DU–10wt% Mo alloys subjected to various post-rolling heat treatments
  publication-title: J. Nucl. Eng. Des.
  doi: 10.1016/j.nucengdes.2010.02.008
– year: 2012
  ident: 10.1016/j.nucengdes.2012.09.008_bib0075
  article-title: Finite element simulations of monolithic plates for the conversion of high performance research reactors: NBSR, MITR, MURR and AFIP
– volume: 129
  start-page: 531
  issue: 3
  year: 2007
  ident: 10.1016/j.nucengdes.2012.09.008_bib0055
  article-title: Thermo mechanical finite element modeling of the friction drilling process
  publication-title: J. Manuf. Sci. Eng.
  doi: 10.1115/1.2716719
– year: 2011
  ident: 10.1016/j.nucengdes.2012.09.008_bib0070
  article-title: Numerical simulation for mechanical behavior of U10Mo monolithic mini-plates for research and test reactors
– ident: 10.1016/j.nucengdes.2012.09.008_bib0050
  doi: 10.2172/4819260
– volume: 35
  start-page: 86
  year: 2007
  ident: 10.1016/j.nucengdes.2012.09.008_bib0110
  article-title: Material behaviors and mechanical features in friction stir welding process
  publication-title: Int. J. Adv. Manuf. Technol.
  doi: 10.1007/s00170-006-0707-z
– year: 2010
  ident: 10.1016/j.nucengdes.2012.09.008_bib0005
  article-title: Rate-dependent plasticity: creep and swelling
– volume: 45
  start-page: 1577
  year: 2005
  ident: 10.1016/j.nucengdes.2012.09.008_bib0100
  article-title: Thermo-mechanical model with adaptive boundary conditions for friction stir welding of AL6061
  publication-title: Int. J. Mach. Tool. Manuf.
  doi: 10.1016/j.ijmachtools.2005.02.008
– volume: 403
  start-page: 160
  year: 2010
  ident: 10.1016/j.nucengdes.2012.09.008_bib0020
  article-title: Thermo-physical properties of DU–10wt% Mo alloys
  publication-title: J. Nucl. Mater.
  doi: 10.1016/j.jnucmat.2010.06.018
– volume: 7
  start-page: 88
  issue: 1–2
  year: 1958
  ident: 10.1016/j.nucengdes.2012.09.008_bib0030
  article-title: Effects of heat and pressure on the swelling of irradiated uranium
  publication-title: J. Nucl. Energy
– ident: 10.1016/j.nucengdes.2012.09.008_bib0045
– ident: 10.1016/j.nucengdes.2012.09.008_bib0085
  doi: 10.2172/1335129
– year: 2006
  ident: 10.1016/j.nucengdes.2012.09.008_bib0035
SSID ssj0000092
Score 2.0832663
Snippet ► The foil has a specific stress reversal temperature. ► A tensile state in the foil is a contributing factor for blister migrations. ► The presence of a...
Mechanical behavior of the monolithic mini-plates during a post-fabrication furnace annealing was investigated. Monolithic fuel is a proposed fuel form to...
SourceID proquest
pascalfrancis
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 165
SubjectTerms Applied sciences
Blistering
Compressive properties
Computer simulation
Controled nuclear fusion plants
Energy
Energy. Thermal use of fuels
Exact sciences and technology
Fission nuclear power plants
Foils
Fuels
Installations for energy generation and conversion: thermal and electrical energy
Nuclear fuels
Plates
Preparation and processing of nuclear fuels
Stresses
Thermal cycling
Title Computational evaluation for the mechanical behavior of U10Mo fuel mini plates subject to thermal cycling
URI https://dx.doi.org/10.1016/j.nucengdes.2012.09.008
https://www.proquest.com/docview/1349480809
Volume 254
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-759X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000092
  issn: 0029-5493
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-759X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000092
  issn: 0029-5493
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1872-759X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000092
  issn: 0029-5493
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-759X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000092
  issn: 0029-5493
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-759X
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000092
  issn: 0029-5493
  databaseCode: AKRWK
  dateStart: 19660101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8MwDI4muIAQ4inGYwoS10LTpWnCbZpAA7SdQNotStIEDY12YtuBC7-duI-xCaEduFZ1G_lLbdexPyN0xQSFFsbQW7_UBZTTOFCEJoF3LmFiqNDEQoNzf8B6L_RxGA8bqFv3wkBZZWX7S5teWOvqyk2lzZvJaAQ9vsUZVZsA0FwMoYOdMijru_4iSyGwiOoyD7h7pcYr8-rLXlMLvN2QFATuSv6Xh9qZqKnXmysHXvyy3YVDut9Du1UkiTvlYvdRw2YHaHuJX_AQjcqZDVW-D_8we2MfqmIf-uF3C52_ABSuG_Zx7vALCfs5dnM7xsA9gidjCEnxdK4hbYNnOQh7kz7G5hN6K1-P0PP93XO3F1SzFQLTTvgsSEyiE2p4KkjbWKZN4v97hGKKRY5pquNUcE208gEKiZ3HMCUsdCxOI86cNwPHaCPLM3uCMNOamdAS45SjxRNIpGLjeKIUD0XaRKxWpzQV7ziMvxjLusDsTS5wkICDDIX0ODRRuBCclNQb60Vua7zkyi6S3kGsF26tILx4acS49whR3ESXNeTSf4RwsqIym8-nEjgeKTB0itP_rOAMbUXFtA3I8JyjjdnH3F74mGemW8WmbqHNzsNTb_ANP4kDYA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Nb9swDCW69LANw7CvYtnWTgN2NWo5siztVhQr0rXJKQVyEyRZKjJkdtAkh_37kf7IGgxDD70aoC3wyY-0TD4CfJVaUAtjiuxXxkQokSeWiyLB4JIWXmjHAzU4T6ZyfCN-zPP5AZz3vTBUVtlxf8vpDVt3V047b56uFgvq8W3-UY04Aa30_Akcihw5eQCHZ5dX4-m9LFhnfaUHGeyVeVXoweq2DCTdTeeCJF-p_hekXqzsGl0X25kX_9B3E5MuXsHLLplkZ-16X8NBqN7A83sSg29h0Y5t6I782F9xb4bZKsPsj_0K1PxLWLG-Z5_Vkd3wdFKzuA1LRvIjbLWkrJStt45ObtimJmNk9SXzv6m98vYdzC6-z87HSTdeIfGjQm2SwheuEF6Vmo98kM4X-OmjrbQyi9IJl5daOe4s5ig8jwhjyWUaZV5mSkZkgiMYVHUV3gOTzkmfBu6jjaK5A89s7qMqrFWpLocge3ca30mP0wSMpelrzH6aHQ6GcDCpNojDENKd4apV33jY5FuPl9nbSAZjxMPGJ3sI7x6aSYVBIcuH8KWH3OB7SD9XbBXq7dqQzKMgkU794TEr-AxPx7PJtbm-nF59hGdZM3yDDnw-wWBztw3HmAJt3Em3xf8AAl0GCw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Computational+evaluation+for+the+mechanical+behavior+of+U10Mo+fuel+mini+plates+subject+to+thermal+cycling&rft.jtitle=Nuclear+engineering+and+design&rft.au=OZALTUN%2C+Hakan&rft.au=SHEN%2C+M.-H.+Herman&rft.au=MEDVEDEV%2C+Pavel&rft.au=MILLER%2C+Samuel+J&rft.date=2013&rft.pub=Elsevier&rft.issn=0029-5493&rft.volume=254&rft.spage=165&rft.epage=178&rft_id=info:doi/10.1016%2Fj.nucengdes.2012.09.008&rft.externalDBID=n%2Fa&rft.externalDocID=26811125
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-5493&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-5493&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-5493&client=summon