Self-supervised contrastive learning for EEG-based cross-subject motor imagery recognition
Objective . The extensive application of electroencephalography (EEG) in brain-computer interfaces (BCIs) can be attributed to its non-invasive nature and capability to offer high-resolution data. The acquisition of EEG signals is a straightforward process, but the datasets associated with these sig...
Saved in:
| Published in | Journal of neural engineering Vol. 21; no. 2; pp. 26038 - 26052 |
|---|---|
| Main Authors | , , , , , , |
| Format | Journal Article |
| Language | English |
| Published |
England
IOP Publishing
01.04.2024
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1741-2560 1741-2552 1741-2552 |
| DOI | 10.1088/1741-2552/ad3986 |
Cover
| Abstract | Objective . The extensive application of electroencephalography (EEG) in brain-computer interfaces (BCIs) can be attributed to its non-invasive nature and capability to offer high-resolution data. The acquisition of EEG signals is a straightforward process, but the datasets associated with these signals frequently exhibit data scarcity and require substantial resources for proper labeling. Furthermore, there is a significant limitation in the generalization performance of EEG models due to the substantial inter-individual variability observed in EEG signals. Approach . To address these issues, we propose a novel self-supervised contrastive learning framework for decoding motor imagery (MI) signals in cross-subject scenarios. Specifically, we design an encoder combining convolutional neural network and attention mechanism. In the contrastive learning training stage, the network undergoes training with the pretext task of data augmentation to minimize the distance between pairs of homologous transformations while simultaneously maximizing the distance between pairs of heterologous transformations. It enhances the amount of data utilized for training and improves the network’s ability to extract deep features from original signals without relying on the true labels of the data. Main results . To evaluate our framework’s efficacy, we conduct extensive experiments on three public MI datasets: BCI IV IIa, BCI IV IIb, and HGD datasets. The proposed method achieves cross-subject classification accuracies of 67.32 % , 82.34 % , and 81.13 % on the three datasets, demonstrating superior performance compared to existing methods. Significance . Therefore, this method has great promise for improving the performance of cross-subject transfer learning in MI-based BCI systems. |
|---|---|
| AbstractList | Objective . The extensive application of electroencephalography (EEG) in brain-computer interfaces (BCIs) can be attributed to its non-invasive nature and capability to offer high-resolution data. The acquisition of EEG signals is a straightforward process, but the datasets associated with these signals frequently exhibit data scarcity and require substantial resources for proper labeling. Furthermore, there is a significant limitation in the generalization performance of EEG models due to the substantial inter-individual variability observed in EEG signals. Approach . To address these issues, we propose a novel self-supervised contrastive learning framework for decoding motor imagery (MI) signals in cross-subject scenarios. Specifically, we design an encoder combining convolutional neural network and attention mechanism. In the contrastive learning training stage, the network undergoes training with the pretext task of data augmentation to minimize the distance between pairs of homologous transformations while simultaneously maximizing the distance between pairs of heterologous transformations. It enhances the amount of data utilized for training and improves the network’s ability to extract deep features from original signals without relying on the true labels of the data. Main results . To evaluate our framework’s efficacy, we conduct extensive experiments on three public MI datasets: BCI IV IIa, BCI IV IIb, and HGD datasets. The proposed method achieves cross-subject classification accuracies of 67.32 % , 82.34 % , and 81.13 % on the three datasets, demonstrating superior performance compared to existing methods. Significance . Therefore, this method has great promise for improving the performance of cross-subject transfer learning in MI-based BCI systems. . The extensive application of electroencephalography (EEG) in brain-computer interfaces (BCIs) can be attributed to its non-invasive nature and capability to offer high-resolution data. The acquisition of EEG signals is a straightforward process, but the datasets associated with these signals frequently exhibit data scarcity and require substantial resources for proper labeling. Furthermore, there is a significant limitation in the generalization performance of EEG models due to the substantial inter-individual variability observed in EEG signals. . To address these issues, we propose a novel self-supervised contrastive learning framework for decoding motor imagery (MI) signals in cross-subject scenarios. Specifically, we design an encoder combining convolutional neural network and attention mechanism. In the contrastive learning training stage, the network undergoes training with the pretext task of data augmentation to minimize the distance between pairs of homologous transformations while simultaneously maximizing the distance between pairs of heterologous transformations. It enhances the amount of data utilized for training and improves the network's ability to extract deep features from original signals without relying on the true labels of the data. . To evaluate our framework's efficacy, we conduct extensive experiments on three public MI datasets: BCI IV IIa, BCI IV IIb, and HGD datasets. The proposed method achieves cross-subject classification accuracies of 67.32%, 82.34%, and 81.13%on the three datasets, demonstrating superior performance compared to existing methods. . Therefore, this method has great promise for improving the performance of cross-subject transfer learning in MI-based BCI systems. Objective. The extensive application of electroencephalography (EEG) in brain-computer interfaces (BCIs) can be attributed to its non-invasive nature and capability to offer high-resolution data. The acquisition of EEG signals is a straightforward process, but the datasets associated with these signals frequently exhibit data scarcity and require substantial resources for proper labeling. Furthermore, there is a significant limitation in the generalization performance of EEG models due to the substantial inter-individual variability observed in EEG signals.Approach. To address these issues, we propose a novel self-supervised contrastive learning framework for decoding motor imagery (MI) signals in cross-subject scenarios. Specifically, we design an encoder combining convolutional neural network and attention mechanism. In the contrastive learning training stage, the network undergoes training with the pretext task of data augmentation to minimize the distance between pairs of homologous transformations while simultaneously maximizing the distance between pairs of heterologous transformations. It enhances the amount of data utilized for training and improves the network's ability to extract deep features from original signals without relying on the true labels of the data.Main results. To evaluate our framework's efficacy, we conduct extensive experiments on three public MI datasets: BCI IV IIa, BCI IV IIb, and HGD datasets. The proposed method achieves cross-subject classification accuracies of 67.32%, 82.34%, and 81.13%on the three datasets, demonstrating superior performance compared to existing methods.Significance. Therefore, this method has great promise for improving the performance of cross-subject transfer learning in MI-based BCI systems.Objective. The extensive application of electroencephalography (EEG) in brain-computer interfaces (BCIs) can be attributed to its non-invasive nature and capability to offer high-resolution data. The acquisition of EEG signals is a straightforward process, but the datasets associated with these signals frequently exhibit data scarcity and require substantial resources for proper labeling. Furthermore, there is a significant limitation in the generalization performance of EEG models due to the substantial inter-individual variability observed in EEG signals.Approach. To address these issues, we propose a novel self-supervised contrastive learning framework for decoding motor imagery (MI) signals in cross-subject scenarios. Specifically, we design an encoder combining convolutional neural network and attention mechanism. In the contrastive learning training stage, the network undergoes training with the pretext task of data augmentation to minimize the distance between pairs of homologous transformations while simultaneously maximizing the distance between pairs of heterologous transformations. It enhances the amount of data utilized for training and improves the network's ability to extract deep features from original signals without relying on the true labels of the data.Main results. To evaluate our framework's efficacy, we conduct extensive experiments on three public MI datasets: BCI IV IIa, BCI IV IIb, and HGD datasets. The proposed method achieves cross-subject classification accuracies of 67.32%, 82.34%, and 81.13%on the three datasets, demonstrating superior performance compared to existing methods.Significance. Therefore, this method has great promise for improving the performance of cross-subject transfer learning in MI-based BCI systems. |
| Author | Kang, Huicong Li, Wenjie Wang, Guoxin An, Shan Sun, Xinlin Gao, Zhongke Li, Haoyu |
| Author_xml | – sequence: 1 givenname: Wenjie surname: Li fullname: Li, Wenjie organization: Tianjin International Engineering Institute, Tianjin University , Tianjin 300072, People’s Republic of China – sequence: 2 givenname: Haoyu surname: Li fullname: Li, Haoyu organization: School of Electrical and Information Engineering, Tianjin University , Tianjin 300072, People’s Republic of China – sequence: 3 givenname: Xinlin surname: Sun fullname: Sun, Xinlin organization: School of Electrical and Information Engineering, Tianjin University , Tianjin 300072, People’s Republic of China – sequence: 4 givenname: Huicong surname: Kang fullname: Kang, Huicong organization: Huazhong University of Science and Technology Department of Neurology, Tongji Hospital, Tongji Medical College, Wuhan 430000, People’s Republic of China – sequence: 5 givenname: Shan surname: An fullname: An, Shan organization: JD Health International Inc. , Beijing 100176, People’s Republic of China – sequence: 6 givenname: Guoxin surname: Wang fullname: Wang, Guoxin organization: JD Health International Inc. , Beijing 100176, People’s Republic of China – sequence: 7 givenname: Zhongke orcidid: 0000-0002-9551-202X surname: Gao fullname: Gao, Zhongke organization: School of Electrical and Information Engineering, Tianjin University , Tianjin 300072, People’s Republic of China |
| BackLink | https://www.ncbi.nlm.nih.gov/pubmed/38565100$$D View this record in MEDLINE/PubMed |
| BookMark | eNqNkMFLwzAUh4Mo6tS7J-nRg9WkWdL2KGNOQfCgXryEJH0dGV1Sk3ay_97Mzh0ExdMLL9_v8eMboX3rLCB0TvA1wUVxQ_IxSTPGshtZ0bLge-h4t9rfvTk-QqMQFhhTkpf4EB3RgnFGMD5Gb8_Q1GnoW_ArE6BKtLOdl6EzK0gakN4aO09q55PpdJYq-YV4F0LMqAXoLlm6Lv6apZyDXycetJtb0xlnT9FBLZsAZ9t5gl7vpi-T-_TxafYwuX1MNc2LLs1ZxVSpgVDNFdRlTrTSDAMeM1VlNMsyVRTZmJZc8SqvNeVMV5IVjMiKj6WiJ4gMd3vbyvWHbBrR-tjHrwXBYuNJbESIjRQxeIqZyyHTevfeQ-jE0gQNTSMtuD4IGlVxnpWMRfRii_ZqCdXu9rfDCPAB-PLioRbadHJjIIo0zV8l8I_gP3pfDRHjWrFwvbfR7O_4Jxjoou0 |
| CODEN | JNEOBH |
| CitedBy_id | crossref_primary_10_1109_TCYB_2024_3410844 crossref_primary_10_1016_j_bspc_2025_107552 crossref_primary_10_1016_j_inffus_2025_102982 crossref_primary_10_1109_TCYB_2024_3415369 crossref_primary_10_1109_ACCESS_2025_3545094 |
| Cites_doi | 10.1016/j.bspc.2022.104456 10.1109/TSMC.2021.3051136 10.1007/s11571-021-09672-3 10.1109/TAFFC.2019.2901456 10.3389/fnhum.2020.00103 10.1109/JSEN.2022.3202209 10.1109/TCDS.2020.3007453 10.1088/1741-2552/acee1f 10.1016/j.jneumeth.2015.01.010 10.1109/TNNLS.2021.3083710 10.1088/1741-2552/aca1e2 10.1109/TSMC.2021.3114145 10.1109/JBHI.2023.3264521 10.1088/1741-2552/abecf0 10.1109/TNNLS.2020.3048385 10.3389/fnins.2012.00039 10.1109/ACCESS.2021.3053621 10.1109/TNSRE.2022.3211881 10.1109/TKDE.2021.3090866 10.1109/TNSRE.2022.3150007 10.1109/TIM.2021.3051996 10.1109/TAFFC.2022.3164516 10.1109/JSEN.2022.3171808 10.1109/TII.2022.3167470 10.1109/JBHI.2022.3213171 10.1109/TBME.2019.2913914 10.1016/j.future.2019.06.027 10.1002/hbm.23730 10.1088/1741-2552/acf7f4 10.1109/TSMC.2019.2956022 10.1109/TNSRE.2019.2923315 10.1109/TNSRE.2022.3199363 10.1088/1741-2552/abca18 10.1088/1741-2552/acacca 10.1109/TNSRE.2021.3059166 10.1088/1741-2552/aba162 10.1109/TNSRE.2020.3037326 10.1088/1741-2552/aace8c 10.1088/1741-2552/ac9c94 10.1109/ACCESS.2019.2952613 10.1109/TNSRE.2022.3154369 10.1109/JSEN.2020.2976519 10.1109/TNSRE.2020.2974056 10.1016/j.neucom.2020.09.017 |
| ContentType | Journal Article |
| Copyright | 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. 2024 IOP Publishing Ltd. |
| Copyright_xml | – notice: 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved. – notice: 2024 IOP Publishing Ltd. |
| DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 ADTOC UNPAY |
| DOI | 10.1088/1741-2552/ad3986 |
| DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Unpaywall for CDI: Periodical Content Unpaywall |
| DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
| DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
| Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Anatomy & Physiology |
| EISSN | 1741-2552 |
| ExternalDocumentID | 10.1088/1741-2552/ad3986 38565100 10_1088_1741_2552_ad3986 jnead3986 |
| Genre | Research Support, Non-U.S. Gov't Journal Article |
| GrantInformation_xml | – fundername: Taishan Industrial Experts Program – fundername: Natural Science Foundation of Tianjin Municipality grantid: 21JCJQJC00130 funderid: http://dx.doi.org/10.13039/501100006606 – fundername: National Natural Science Foundation of China grantid: 62373278 funderid: http://dx.doi.org/10.13039/501100001809 |
| GroupedDBID | --- 1JI 4.4 53G 5B3 5GY 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFS ACHIP ADEQX AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P IHE IJHAN IOP IZVLO KOT LAP N5L N9A P2P PJBAE RIN RO9 ROL RPA SY9 W28 XPP AAYXX AEINN CITATION CGR CUY CVF ECM EIF NPM 7X8 02O 1WK AALHV ACARI ADTOC AERVB AGQPQ AHSEE ARNYC BBWZM EJD FEDTE HVGLF JCGBZ M45 NT- NT. Q02 RNS S3P UNPAY |
| ID | FETCH-LOGICAL-c378t-75d5b9ce13c6bef971cbc50e045bd23222b8824396b6d7fc365cda5851ad64ab3 |
| IEDL.DBID | IOP |
| ISSN | 1741-2560 1741-2552 |
| IngestDate | Sun Sep 07 11:27:36 EDT 2025 Thu Oct 02 06:46:42 EDT 2025 Sun Jun 15 01:31:12 EDT 2025 Thu Apr 24 22:50:05 EDT 2025 Wed Oct 01 06:00:19 EDT 2025 Tue Jun 17 22:16:45 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 2 |
| Keywords | contrastive learning self-supervised learning (SSL) motor imagery (MI) brain-computer interface (BCI) electroencephalogram (EEG) |
| Language | English |
| License | This article is available under the terms of the IOP-Standard License. 2024 IOP Publishing Ltd. cc-by-nc-nd |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c378t-75d5b9ce13c6bef971cbc50e045bd23222b8824396b6d7fc365cda5851ad64ab3 |
| Notes | JNE-106994.R2 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
| ORCID | 0000-0002-9551-202X |
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://doi.org/10.1088/1741-2552/ad3986 |
| PMID | 38565100 |
| PQID | 3031662955 |
| PQPubID | 23479 |
| PageCount | 15 |
| ParticipantIDs | crossref_citationtrail_10_1088_1741_2552_ad3986 crossref_primary_10_1088_1741_2552_ad3986 pubmed_primary_38565100 iop_journals_10_1088_1741_2552_ad3986 unpaywall_primary_10_1088_1741_2552_ad3986 proquest_miscellaneous_3031662955 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2024-04-01 |
| PublicationDateYYYYMMDD | 2024-04-01 |
| PublicationDate_xml | – month: 04 year: 2024 text: 2024-04-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationPlace | England |
| PublicationPlace_xml | – name: England |
| PublicationTitle | Journal of neural engineering |
| PublicationTitleAbbrev | JNE |
| PublicationTitleAlternate | J. Neural Eng |
| PublicationYear | 2024 |
| Publisher | IOP Publishing |
| Publisher_xml | – name: IOP Publishing |
| References | Grill (jnead3986bib39) 2020; vol 33 Chen (jnead3986bib56) 2021; 52 Huang (jnead3986bib3) 2019; 12 Liu (jnead3986bib24) 2023; 81 Mahmud (jnead3986bib18) 2021; 18 Chen (jnead3986bib38) 2020 Romero-Laiseca (jnead3986bib11) 2020; 28 Ni (jnead3986bib28) 2022; 30 Shen (jnead3986bib45) 2022; 14 Lawhern (jnead3986bib21) 2018; 15 Gaur (jnead3986bib10) 2021; 70 Ingolfsson (jnead3986bib22) 2020 Dongrui (jnead3986bib30) 2020; 14 Long (jnead3986bib31) 2013 Chen (jnead3986bib34) 2022; 30 Donahue (jnead3986bib59) 2014 Park (jnead3986bib7) 2019; 7 Liu (jnead3986bib40) 2021; 35 Ang (jnead3986bib14) 2012; 6 Brunner (jnead3986bib54) 2008; vol 16 Wan (jnead3986bib36) 2021; 421 Jiang (jnead3986bib41) 2021 He (jnead3986bib49) 2022; 30 de la O Serna (jnead3986bib15) 2020; 20 Hong (jnead3986bib33) 2021; 29 Donglin (jnead3986bib47) 2020; 28 Wan (jnead3986bib6) 2021; 9 Liu (jnead3986bib25) 2023; 20 Liu (jnead3986bib35) 2022; 19 Azab (jnead3986bib27) 2019; 27 He (jnead3986bib50) 2019; 67 van den Oord (jnead3986bib52) 2018 Guney (jnead3986bib9) 2023; 20 Yamei (jnead3986bib46) 2022; 27 Bang (jnead3986bib23) 2021; 33 Xuelin (jnead3986bib48) 2022; 30 Liang (jnead3986bib26) 2023; 20 Combrisson (jnead3986bib58) 2015; 250 Zheng (jnead3986bib16) 2022; 22 Amin (jnead3986bib12) 2019; 101 Zhang (jnead3986bib19) 2021; 33 Banville (jnead3986bib42) 2021; 18 Schirrmeister (jnead3986bib20) 2017; 38 Lichao (jnead3986bib29) 2020; 14 Wang (jnead3986bib43) 2023; 27 Xie (jnead3986bib2) 2021; 15 Wilcoxon (jnead3986bib57) 1992 Ang (jnead3986bib13) 2008 Ganin (jnead3986bib32) 2016; 17 Wang (jnead3986bib60) 2021 Kaiming (jnead3986bib37) 2020 Jie (jnead3986bib53) 2018 Yang (jnead3986bib4) 2019; 51 Chang (jnead3986bib44) 2022; 22 Chen (jnead3986bib5) 2022; 19 Zhirong (jnead3986bib51) 2018 Subasi (jnead3986bib17) 2022; 18 Mane (jnead3986bib1) 2020; 17 Leeb (jnead3986bib55) 2008; vol 16 Abibullaev (jnead3986bib8) 2021; 52 |
| References_xml | – volume: 81 year: 2023 ident: jnead3986bib24 article-title: A compact multi-branch 1D convolutional neural network for EEG-based motor imagery classification publication-title: Biomed. Signal Process. Control doi: 10.1016/j.bspc.2022.104456 – volume: vol 16 start-page: pp 1 year: 2008 ident: jnead3986bib55 – volume: 52 start-page: 2744 year: 2021 ident: jnead3986bib8 article-title: A systematic deep learning model selection for P300-based brain–computer interfaces publication-title: IEEE Trans. Syst. Man. Cybern. Syst. doi: 10.1109/TSMC.2021.3051136 – volume: 15 start-page: 939 year: 2021 ident: jnead3986bib2 article-title: Rehabilitation of motor function in children with cerebral palsy based on motor imagery publication-title: Cogn. Neurodyn. doi: 10.1007/s11571-021-09672-3 – volume: 12 start-page: 832 year: 2019 ident: jnead3986bib3 article-title: An EEG-based brain computer interface for emotion recognition and its application in patients with disorder of consciousness publication-title: IEEE Trans. Affect. Comput. doi: 10.1109/TAFFC.2019.2901456 – volume: 14 start-page: 103 year: 2020 ident: jnead3986bib29 article-title: Cross-dataset variability problem in EEG decoding with deep learning publication-title: Front. Hum. Neurosci. doi: 10.3389/fnhum.2020.00103 – start-page: pp 1 year: 2021 ident: jnead3986bib41 article-title: Self-supervised contrastive learning for EEG-based sleep staging – volume: 22 start-page: 19608 year: 2022 ident: jnead3986bib44 article-title: EEG-based emotion recognition via efficient convolutional neural network and contrastive learning publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2022.3202209 – volume: 14 start-page: 4 year: 2020 ident: jnead3986bib30 article-title: Transfer learning for EEG-based brain–computer interfaces: a review of progress made since 2016 publication-title: IEEE Trans. Cogn. Dev. Syst. doi: 10.1109/TCDS.2020.3007453 – volume: 20 year: 2023 ident: jnead3986bib26 article-title: EEG-CDILNet: a lightweight and accurate CNN network using circular dilated convolution for motor imagery classification publication-title: J. Neural Eng. doi: 10.1088/1741-2552/acee1f – start-page: pp 1597 year: 2020 ident: jnead3986bib38 article-title: A simple framework for contrastive learning of visual representations – volume: 250 start-page: 126 year: 2015 ident: jnead3986bib58 article-title: Exceeding chance level by chance: the caveat of theoretical chance levels in brain signal classification and statistical assessment of decoding accuracy publication-title: J. Neurosci. Methods doi: 10.1016/j.jneumeth.2015.01.010 – volume: 33 start-page: 6856 year: 2021 ident: jnead3986bib19 article-title: Ensemble support vector recurrent neural network for brain signal detection publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2021.3083710 – volume: 19 year: 2022 ident: jnead3986bib5 article-title: EEG-based mental fatigue detection using linear prediction cepstral coefficients and riemann spatial covariance matrix publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aca1e2 – volume: 52 start-page: 5127 year: 2021 ident: jnead3986bib56 article-title: Multiattention adaptation network for motor imagery recognition publication-title: IEEE Trans. Syst. Man. Cybern. Syst. doi: 10.1109/TSMC.2021.3114145 – volume: vol 33 start-page: pp 21271 year: 2020 ident: jnead3986bib39 article-title: Bootstrap your own latent-a new approach to self-supervised learning – start-page: pp 196 year: 1992 ident: jnead3986bib57 article-title: Individual comparisons by ranking methods – volume: 27 start-page: 3187 year: 2023 ident: jnead3986bib43 article-title: Cross-subject tinnitus diagnosis based on multi-band EEG contrastive representation learning publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2023.3264521 – volume: 18 year: 2021 ident: jnead3986bib18 article-title: Data-driven machine learning models for decoding speech categorization from evoked brain responses publication-title: J. Neural Eng. doi: 10.1088/1741-2552/abecf0 – volume: 33 start-page: 3038 year: 2021 ident: jnead3986bib23 article-title: Spatio-spectral feature representation for motor imagery classification using convolutional neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2020.3048385 – volume: 6 start-page: 39 year: 2012 ident: jnead3986bib14 article-title: Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b publication-title: Front. Neurosci. doi: 10.3389/fnins.2012.00039 – volume: 9 start-page: 18326 year: 2021 ident: jnead3986bib6 article-title: Measuring the impacts of virtual reality games on cognitive ability using EEG signals and game performance data publication-title: IEEE Access doi: 10.1109/ACCESS.2021.3053621 – volume: 30 start-page: 2866 year: 2022 ident: jnead3986bib34 article-title: Transfer learning with optimal transportation and frequency mixup for EEG-based motor imagery recognition publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2022.3211881 – volume: 35 start-page: 857 year: 2021 ident: jnead3986bib40 article-title: Self-supervised learning: generative or contrastive publication-title: IEEE Trans. Knowl. Data Eng. doi: 10.1109/TKDE.2021.3090866 – volume: 30 start-page: 369 year: 2022 ident: jnead3986bib28 article-title: Improving cross-state and cross-subject visual ERP-based BCI with temporal modeling and adversarial training publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2022.3150007 – start-page: pp 9729 year: 2020 ident: jnead3986bib37 article-title: Momentum contrast for unsupervised visual representation learning – volume: 70 start-page: 1 year: 2021 ident: jnead3986bib10 article-title: A sliding window common spatial pattern for enhancing motor imagery classification in EEG-BCI publication-title: IEEE Trans. Instrum. Meas. doi: 10.1109/TIM.2021.3051996 – volume: 14 start-page: 2496 year: 2022 ident: jnead3986bib45 article-title: Contrastive learning of subject-invariant EEG representations for cross-subject emotion recognition publication-title: IEEE Trans. Affective Comput. doi: 10.1109/TAFFC.2022.3164516 – start-page: pp 2390 year: 2008 ident: jnead3986bib13 article-title: Filter bank common spatial pattern (FBCSP) in brain-computer interface – volume: 22 start-page: 11928 year: 2022 ident: jnead3986bib16 article-title: A power spectrum pattern difference-based time-frequency sub-band selection method for MI-EEG classification publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2022.3171808 – volume: 18 start-page: 6602 year: 2022 ident: jnead3986bib17 article-title: EEG-based driver fatigue detection using FAWT and multiboosting approaches publication-title: IEEE Trans. Ind. Inf. doi: 10.1109/TII.2022.3167470 – start-page: pp 2495 year: 2021 ident: jnead3986bib60 article-title: Understanding the behaviour of contrastive loss – volume: 27 start-page: 2647 year: 2022 ident: jnead3986bib46 article-title: MtCLSS: multi-task contrastive learning for semi-supervised pediatric sleep staging publication-title: IEEE J. Biomed. Health Inf. doi: 10.1109/JBHI.2022.3213171 – volume: 67 start-page: 399 year: 2019 ident: jnead3986bib50 article-title: Transfer learning for brain–computer interfaces: a euclidean space data alignment approach publication-title: IEEE Trans. Biomed. Eng. doi: 10.1109/TBME.2019.2913914 – volume: 101 start-page: 542 year: 2019 ident: jnead3986bib12 article-title: Deep learning for EEG motor imagery classification based on multi-layer CNNS feature fusion publication-title: Future Gener. Comput. Syst. doi: 10.1016/j.future.2019.06.027 – volume: 38 start-page: 5391 year: 2017 ident: jnead3986bib20 article-title: Deep learning with convolutional neural networks for EEG decoding and visualization publication-title: Hum. Brain Mapp. doi: 10.1002/hbm.23730 – volume: 17 start-page: 1 year: 2016 ident: jnead3986bib32 article-title: Domain-adversarial training of neural networks publication-title: J. Mach. Learn. Res. – start-page: pp 2958 year: 2020 ident: jnead3986bib22 article-title: EEG-TCNet: an accurate temporal convolutional network for embedded motor-imagery brain–machine interfaces – year: 2018 ident: jnead3986bib52 article-title: Representation learning with contrastive predictive coding – volume: 20 year: 2023 ident: jnead3986bib25 article-title: SincMSNet: a Sinc filter convolutional neural network for EEG motor imagery classification publication-title: J. Neural Eng. doi: 10.1088/1741-2552/acf7f4 – volume: 51 start-page: 5800 year: 2019 ident: jnead3986bib4 article-title: A complex network-based broad learning system for detecting driver fatigue from EEG signals publication-title: IEEE Trans. Syst. Man. Cybern. Syst. doi: 10.1109/TSMC.2019.2956022 – start-page: pp 3733 year: 2018 ident: jnead3986bib51 article-title: Unsupervised feature learning via non-parametric instance discrimination – volume: 27 start-page: 1352 year: 2019 ident: jnead3986bib27 article-title: Weighted transfer learning for improving motor imagery-based brain–computer interface publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2019.2923315 – volume: vol 16 start-page: pp 1 year: 2008 ident: jnead3986bib54 – volume: 30 start-page: 2406 year: 2022 ident: jnead3986bib49 article-title: A self-supervised learning based channel attention MLP-mixer network for motor imagery decoding publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2022.3199363 – volume: 18 year: 2021 ident: jnead3986bib42 article-title: Uncovering the structure of clinical EEG signals with self-supervised learning publication-title: J. Neural Eng. doi: 10.1088/1741-2552/abca18 – start-page: pp 2200 year: 2013 ident: jnead3986bib31 article-title: Transfer feature learning with joint distribution adaptation – start-page: pp 647 year: 2014 ident: jnead3986bib59 article-title: Decaf: a deep convolutional activation feature for generic visual recognition – volume: 20 year: 2023 ident: jnead3986bib9 article-title: Transfer learning of an ensemble of DNNs for SSVEP BCI spellers without user-specific training publication-title: J. Neural Eng. doi: 10.1088/1741-2552/acacca – volume: 29 start-page: 556 year: 2021 ident: jnead3986bib33 article-title: Dynamic joint domain adaptation network for motor imagery classification publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2021.3059166 – volume: 17 year: 2020 ident: jnead3986bib1 article-title: BCI for stroke rehabilitation: motor and beyond publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aba162 – volume: 28 start-page: 2615 year: 2020 ident: jnead3986bib47 article-title: A multi-scale fusion convolutional neural network based on attention mechanism for the visualization analysis of EEG signals decoding publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2020.3037326 – volume: 15 year: 2018 ident: jnead3986bib21 article-title: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces publication-title: J. Neural Eng. doi: 10.1088/1741-2552/aace8c – volume: 19 year: 2022 ident: jnead3986bib35 article-title: Subject adaptation convolutional neural network for EEG-based motor imagery classification publication-title: J. Neural Eng. doi: 10.1088/1741-2552/ac9c94 – start-page: pp 7132 year: 2018 ident: jnead3986bib53 article-title: Squeeze-and-excitation networks – volume: 7 start-page: 163604 year: 2019 ident: jnead3986bib7 article-title: Development of an online home appliance control system using augmented reality and an SSVEP-based brain-computer interface publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2952613 – volume: 30 start-page: 496 year: 2022 ident: jnead3986bib48 article-title: Time-distributed attention network for EEG-based motor imagery decoding from the same limb publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2022.3154369 – volume: 20 start-page: 6542 year: 2020 ident: jnead3986bib15 article-title: EEG-rhythm specific Taylor–Fourier filter bank implemented with O-splines for the detection of epilepsy using EEG signals publication-title: IEEE Sens. J. doi: 10.1109/JSEN.2020.2976519 – volume: 28 start-page: 988 year: 2020 ident: jnead3986bib11 article-title: A low-cost lower-limb brain-machine interface triggered by pedaling motor imagery for post-stroke patients rehabilitation publication-title: IEEE Trans. Neural Syst. Rehabil. Eng. doi: 10.1109/TNSRE.2020.2974056 – volume: 421 start-page: 1 year: 2021 ident: jnead3986bib36 article-title: A review on transfer learning in EEG signal analysis publication-title: Neurocomputing doi: 10.1016/j.neucom.2020.09.017 |
| SSID | ssj0031790 |
| Score | 2.469192 |
| Snippet | Objective . The extensive application of electroencephalography (EEG) in brain-computer interfaces (BCIs) can be attributed to its non-invasive nature and... . The extensive application of electroencephalography (EEG) in brain-computer interfaces (BCIs) can be attributed to its non-invasive nature and capability to... Objective. The extensive application of electroencephalography (EEG) in brain-computer interfaces (BCIs) can be attributed to its non-invasive nature and... |
| SourceID | unpaywall proquest pubmed crossref iop |
| SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
| StartPage | 26038 |
| SubjectTerms | Algorithms brain-computer interface (BCI) Brain-Computer Interfaces contrastive learning electroencephalogram (EEG) Electroencephalography Imagery, Psychotherapy Learning motor imagery (MI) Neural Networks, Computer self-supervised learning (SSL) |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB5BOQAHdoF9lGWRkWAlVjLkUTv2sUIFxAEhQSXYS-RXVmhLWpFGq_LrGSehPIR43CJl7MT22PONZ_wZYCuKMhuYmNGQG3RQYqeojDJFBZMdJ6VFrarYPk_4Ub9zfMEumv0OfxbmSfwenTMEzCFF2BvtKRtLwWdhjjNE3S2Y65-cdi_r8461yMMzD5qI5EtVPLFAs1fD0UvgchHmy3ykJv_VYPDI4Bx8qtmPioqn0OeZ_Nstx3rX3D5jcXxPWz7DUoM6SbdWk2WYcfkKrHZz9LivJ-QXqfJAqw32Vfhz5gYZLcqRX0UKZ0mVza4Kvy6S5pKJvwSxLun1Dqm3gijiW4pltN_VITj6-Pbq2tNjTMg0RWmYf4H-Qe98_4g2NzBQEydiTBNmmZbGhbHh2mUyCY02LHCIA7WNfJBGI0JHTMM1t0lmYs6MVT7SqCzvKB1_hVY-zN13INJkUglllM5UJ8gCnaD3xwMrBE8iJXgb9u5HJTUNPbm_JWOQVmFyIVLffanvvrTuvjbsTEuMamqOV2S3caDTZn4Wr8ht3qtCivPMB09U7oZlkaKpDzmPJGNt-FbryPSrsUBYHAZBG35PlebNX1r7iPAPWIgQTdUpQ-vQGt-U7ieiobHeaCbCHW0x_SQ priority: 102 providerName: Unpaywall |
| Title | Self-supervised contrastive learning for EEG-based cross-subject motor imagery recognition |
| URI | https://iopscience.iop.org/article/10.1088/1741-2552/ad3986 https://www.ncbi.nlm.nih.gov/pubmed/38565100 https://www.proquest.com/docview/3031662955 https://doi.org/10.1088/1741-2552/ad3986 |
| UnpaywallVersion | publishedVersion |
| Volume | 21 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVIOP databaseName: AUTh Library subscriptions: IOP Publishing customDbUrl: eissn: 1741-2552 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0031790 issn: 1741-2560 databaseCode: IOP dateStart: 20040101 isFulltext: true titleUrlDefault: https://iopscience.iop.org/ providerName: IOP Publishing |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB_u40F9OD_O0_XjiKCCQnbbZpMm-LTInocP54EunCKUfFXEve5y3SLrX--k6RaV4xTfCp20yWQy-SUz-QXgaZaVLrGM01RYXKAwr6nKSk0lV2OvlEOratk-T8TxbPz2jJ9twav-LMxi2bn-IT5GouCowi4hTo4QQ6cUkXA20o4pKbZhl0kExuH03rvTjRtmgXoqnoYM0iLpYpSXfeG3OWkb_3sZ3LwB15pqqdff9Xz-yxR0dBM-byofM0--DZuVGdoff_A6_mfrbsFeB03JJIrehi1f3YH9SYXL8vM1eU7aZNF2F34fPr3385LWzTK4mto70qa86zo4T9LdRPGFICAm0-kbGqZKFAmNxzImbP0QNBF8-_U8cGisSZ_HtKjuwuxo-uH1Me2uaaCW5XJFc-64UdanzArjS5Wn1lieeASLxmUhkmMQxiPwEUa4vLRMcOt0CEdqJ8basAPYqRaVvw9E2VJpqa02pR4nZWJyXCKKxEkp8kxLMYDRpqMK23GYh6s05kUbS5eyCOorgvqKqL4BvOhLLCN_xxWyz7BXim4Q11fIPdlYR4GDMURYdOUXTV0gHkiFyBTnA7gXzab_K9qoQAeYDOBlb0d_rdKDf6zSQ7ieIdqKKUWPYGd10fjHiJZW5rAdFYewOzs5nXz8CYjLC1k |
| linkProvider | IOP Publishing |
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3raxQxEB9sBR8ffFXt1VcEFRT2bh-XbPKx6J31QS1oofhlzVOk173FvaWcf72TTe5QKVXw28Imm81kMvklM_kNwJM8dybVBU0ypnGDUliZiNzJhFMxtkIY1Kqe7XOf7R2O3x7Ro5jntL8LM2-i6R_iYyAKDiKMAXF8hBg6SxAJ5yNpCsHZqDFuAy72PCX-Bt-Hg5UpLjz9VLgR6WuwNPopz_rKb-vSBrZ9FuS8Cpe7upHLUzmb_bIMTa_Dl1UHQvTJ8bBbqKH-8Qe343_08AZcixCV7IbiN-GCrW_B1m6N2_OTJXlG-qDR_jR-Cz5_tDOXtF3jTU5rDelD32XrjSiJGSm-EgTGZDJ5nfglE4t4AWAd5Y-ACKoKvv124rk0lmQdzzSvb8PhdPLp5V4S0zUkuij5IimpoUpomxWaKetEmWmlaWoRNCqTe4-OQjiPAIgpZkqnC0a1kd4tKQ0bS1Xcgc16XtttIEI7IbnUUjk5Tl2qStwqstRwzspccjaA0WqwKh25zH1KjVnV-9Q5r7wIKy_CKohwAM_XNZrA43FO2ac4MlWczO055R6vNKTCSek9LbK2866tEBdkjOWC0gHcDaqzbrXgiKGzNB3Ai7Uu_fWXdv7xlx7BpYNX0-r9m_139-BKjgAsRBndh83F984-QAC1UA_7SfITZ4oPCg |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB5BOQAHdoF9lGWRkWAlVjLkUTv2sUIFxAEhQSXYS-RXVmhLWpFGq_LrGSehPIR43CJl7MT22PONZ_wZYCuKMhuYmNGQG3RQYqeojDJFBZMdJ6VFrarYPk_4Ub9zfMEumv0OfxbmSfwenTMEzCFF2BvtKRtLwWdhjjNE3S2Y65-cdi_r8461yMMzD5qI5EtVPLFAs1fD0UvgchHmy3ykJv_VYPDI4Bx8qtmPioqn0OeZ_Nstx3rX3D5jcXxPWz7DUoM6SbdWk2WYcfkKrHZz9LivJ-QXqfJAqw32Vfhz5gYZLcqRX0UKZ0mVza4Kvy6S5pKJvwSxLun1Dqm3gijiW4pltN_VITj6-Pbq2tNjTMg0RWmYf4H-Qe98_4g2NzBQEydiTBNmmZbGhbHh2mUyCY02LHCIA7WNfJBGI0JHTMM1t0lmYs6MVT7SqCzvKB1_hVY-zN13INJkUglllM5UJ8gCnaD3xwMrBE8iJXgb9u5HJTUNPbm_JWOQVmFyIVLffanvvrTuvjbsTEuMamqOV2S3caDTZn4Wr8ht3qtCivPMB09U7oZlkaKpDzmPJGNt-FbryPSrsUBYHAZBG35PlebNX1r7iPAPWIgQTdUpQ-vQGt-U7ieiobHeaCbCHW0x_SQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-supervised+contrastive+learning+for+EEG-based+cross-subject+motor+imagery+recognition&rft.jtitle=Journal+of+neural+engineering&rft.au=Li%2C+Wenjie&rft.au=Li%2C+Haoyu&rft.au=Sun%2C+Xinlin&rft.au=Kang%2C+Huicong&rft.date=2024-04-01&rft.pub=IOP+Publishing&rft.issn=1741-2560&rft.eissn=1741-2552&rft.volume=21&rft.issue=2&rft_id=info:doi/10.1088%2F1741-2552%2Fad3986&rft.externalDocID=jnead3986 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon |