Self-supervised contrastive learning for EEG-based cross-subject motor imagery recognition

Objective . The extensive application of electroencephalography (EEG) in brain-computer interfaces (BCIs) can be attributed to its non-invasive nature and capability to offer high-resolution data. The acquisition of EEG signals is a straightforward process, but the datasets associated with these sig...

Full description

Saved in:
Bibliographic Details
Published inJournal of neural engineering Vol. 21; no. 2; pp. 26038 - 26052
Main Authors Li, Wenjie, Li, Haoyu, Sun, Xinlin, Kang, Huicong, An, Shan, Wang, Guoxin, Gao, Zhongke
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.04.2024
Subjects
Online AccessGet full text
ISSN1741-2560
1741-2552
1741-2552
DOI10.1088/1741-2552/ad3986

Cover

Abstract Objective . The extensive application of electroencephalography (EEG) in brain-computer interfaces (BCIs) can be attributed to its non-invasive nature and capability to offer high-resolution data. The acquisition of EEG signals is a straightforward process, but the datasets associated with these signals frequently exhibit data scarcity and require substantial resources for proper labeling. Furthermore, there is a significant limitation in the generalization performance of EEG models due to the substantial inter-individual variability observed in EEG signals. Approach . To address these issues, we propose a novel self-supervised contrastive learning framework for decoding motor imagery (MI) signals in cross-subject scenarios. Specifically, we design an encoder combining convolutional neural network and attention mechanism. In the contrastive learning training stage, the network undergoes training with the pretext task of data augmentation to minimize the distance between pairs of homologous transformations while simultaneously maximizing the distance between pairs of heterologous transformations. It enhances the amount of data utilized for training and improves the network’s ability to extract deep features from original signals without relying on the true labels of the data. Main results . To evaluate our framework’s efficacy, we conduct extensive experiments on three public MI datasets: BCI IV IIa, BCI IV IIb, and HGD datasets. The proposed method achieves cross-subject classification accuracies of 67.32 % , 82.34 % , and 81.13 % on the three datasets, demonstrating superior performance compared to existing methods. Significance . Therefore, this method has great promise for improving the performance of cross-subject transfer learning in MI-based BCI systems.
AbstractList Objective . The extensive application of electroencephalography (EEG) in brain-computer interfaces (BCIs) can be attributed to its non-invasive nature and capability to offer high-resolution data. The acquisition of EEG signals is a straightforward process, but the datasets associated with these signals frequently exhibit data scarcity and require substantial resources for proper labeling. Furthermore, there is a significant limitation in the generalization performance of EEG models due to the substantial inter-individual variability observed in EEG signals. Approach . To address these issues, we propose a novel self-supervised contrastive learning framework for decoding motor imagery (MI) signals in cross-subject scenarios. Specifically, we design an encoder combining convolutional neural network and attention mechanism. In the contrastive learning training stage, the network undergoes training with the pretext task of data augmentation to minimize the distance between pairs of homologous transformations while simultaneously maximizing the distance between pairs of heterologous transformations. It enhances the amount of data utilized for training and improves the network’s ability to extract deep features from original signals without relying on the true labels of the data. Main results . To evaluate our framework’s efficacy, we conduct extensive experiments on three public MI datasets: BCI IV IIa, BCI IV IIb, and HGD datasets. The proposed method achieves cross-subject classification accuracies of 67.32 % , 82.34 % , and 81.13 % on the three datasets, demonstrating superior performance compared to existing methods. Significance . Therefore, this method has great promise for improving the performance of cross-subject transfer learning in MI-based BCI systems.
. The extensive application of electroencephalography (EEG) in brain-computer interfaces (BCIs) can be attributed to its non-invasive nature and capability to offer high-resolution data. The acquisition of EEG signals is a straightforward process, but the datasets associated with these signals frequently exhibit data scarcity and require substantial resources for proper labeling. Furthermore, there is a significant limitation in the generalization performance of EEG models due to the substantial inter-individual variability observed in EEG signals. . To address these issues, we propose a novel self-supervised contrastive learning framework for decoding motor imagery (MI) signals in cross-subject scenarios. Specifically, we design an encoder combining convolutional neural network and attention mechanism. In the contrastive learning training stage, the network undergoes training with the pretext task of data augmentation to minimize the distance between pairs of homologous transformations while simultaneously maximizing the distance between pairs of heterologous transformations. It enhances the amount of data utilized for training and improves the network's ability to extract deep features from original signals without relying on the true labels of the data. . To evaluate our framework's efficacy, we conduct extensive experiments on three public MI datasets: BCI IV IIa, BCI IV IIb, and HGD datasets. The proposed method achieves cross-subject classification accuracies of 67.32%, 82.34%, and 81.13%on the three datasets, demonstrating superior performance compared to existing methods. . Therefore, this method has great promise for improving the performance of cross-subject transfer learning in MI-based BCI systems.
Objective. The extensive application of electroencephalography (EEG) in brain-computer interfaces (BCIs) can be attributed to its non-invasive nature and capability to offer high-resolution data. The acquisition of EEG signals is a straightforward process, but the datasets associated with these signals frequently exhibit data scarcity and require substantial resources for proper labeling. Furthermore, there is a significant limitation in the generalization performance of EEG models due to the substantial inter-individual variability observed in EEG signals.Approach. To address these issues, we propose a novel self-supervised contrastive learning framework for decoding motor imagery (MI) signals in cross-subject scenarios. Specifically, we design an encoder combining convolutional neural network and attention mechanism. In the contrastive learning training stage, the network undergoes training with the pretext task of data augmentation to minimize the distance between pairs of homologous transformations while simultaneously maximizing the distance between pairs of heterologous transformations. It enhances the amount of data utilized for training and improves the network's ability to extract deep features from original signals without relying on the true labels of the data.Main results. To evaluate our framework's efficacy, we conduct extensive experiments on three public MI datasets: BCI IV IIa, BCI IV IIb, and HGD datasets. The proposed method achieves cross-subject classification accuracies of 67.32%, 82.34%, and 81.13%on the three datasets, demonstrating superior performance compared to existing methods.Significance. Therefore, this method has great promise for improving the performance of cross-subject transfer learning in MI-based BCI systems.Objective. The extensive application of electroencephalography (EEG) in brain-computer interfaces (BCIs) can be attributed to its non-invasive nature and capability to offer high-resolution data. The acquisition of EEG signals is a straightforward process, but the datasets associated with these signals frequently exhibit data scarcity and require substantial resources for proper labeling. Furthermore, there is a significant limitation in the generalization performance of EEG models due to the substantial inter-individual variability observed in EEG signals.Approach. To address these issues, we propose a novel self-supervised contrastive learning framework for decoding motor imagery (MI) signals in cross-subject scenarios. Specifically, we design an encoder combining convolutional neural network and attention mechanism. In the contrastive learning training stage, the network undergoes training with the pretext task of data augmentation to minimize the distance between pairs of homologous transformations while simultaneously maximizing the distance between pairs of heterologous transformations. It enhances the amount of data utilized for training and improves the network's ability to extract deep features from original signals without relying on the true labels of the data.Main results. To evaluate our framework's efficacy, we conduct extensive experiments on three public MI datasets: BCI IV IIa, BCI IV IIb, and HGD datasets. The proposed method achieves cross-subject classification accuracies of 67.32%, 82.34%, and 81.13%on the three datasets, demonstrating superior performance compared to existing methods.Significance. Therefore, this method has great promise for improving the performance of cross-subject transfer learning in MI-based BCI systems.
Author Kang, Huicong
Li, Wenjie
Wang, Guoxin
An, Shan
Sun, Xinlin
Gao, Zhongke
Li, Haoyu
Author_xml – sequence: 1
  givenname: Wenjie
  surname: Li
  fullname: Li, Wenjie
  organization: Tianjin International Engineering Institute, Tianjin University , Tianjin 300072, People’s Republic of China
– sequence: 2
  givenname: Haoyu
  surname: Li
  fullname: Li, Haoyu
  organization: School of Electrical and Information Engineering, Tianjin University , Tianjin 300072, People’s Republic of China
– sequence: 3
  givenname: Xinlin
  surname: Sun
  fullname: Sun, Xinlin
  organization: School of Electrical and Information Engineering, Tianjin University , Tianjin 300072, People’s Republic of China
– sequence: 4
  givenname: Huicong
  surname: Kang
  fullname: Kang, Huicong
  organization: Huazhong University of Science and Technology Department of Neurology, Tongji Hospital, Tongji Medical College, Wuhan 430000, People’s Republic of China
– sequence: 5
  givenname: Shan
  surname: An
  fullname: An, Shan
  organization: JD Health International Inc. , Beijing 100176, People’s Republic of China
– sequence: 6
  givenname: Guoxin
  surname: Wang
  fullname: Wang, Guoxin
  organization: JD Health International Inc. , Beijing 100176, People’s Republic of China
– sequence: 7
  givenname: Zhongke
  orcidid: 0000-0002-9551-202X
  surname: Gao
  fullname: Gao, Zhongke
  organization: School of Electrical and Information Engineering, Tianjin University , Tianjin 300072, People’s Republic of China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/38565100$$D View this record in MEDLINE/PubMed
BookMark eNqNkMFLwzAUh4Mo6tS7J-nRg9WkWdL2KGNOQfCgXryEJH0dGV1Sk3ay_97Mzh0ExdMLL9_v8eMboX3rLCB0TvA1wUVxQ_IxSTPGshtZ0bLge-h4t9rfvTk-QqMQFhhTkpf4EB3RgnFGMD5Gb8_Q1GnoW_ArE6BKtLOdl6EzK0gakN4aO09q55PpdJYq-YV4F0LMqAXoLlm6Lv6apZyDXycetJtb0xlnT9FBLZsAZ9t5gl7vpi-T-_TxafYwuX1MNc2LLs1ZxVSpgVDNFdRlTrTSDAMeM1VlNMsyVRTZmJZc8SqvNeVMV5IVjMiKj6WiJ4gMd3vbyvWHbBrR-tjHrwXBYuNJbESIjRQxeIqZyyHTevfeQ-jE0gQNTSMtuD4IGlVxnpWMRfRii_ZqCdXu9rfDCPAB-PLioRbadHJjIIo0zV8l8I_gP3pfDRHjWrFwvbfR7O_4Jxjoou0
CODEN JNEOBH
CitedBy_id crossref_primary_10_1109_TCYB_2024_3410844
crossref_primary_10_1016_j_bspc_2025_107552
crossref_primary_10_1016_j_inffus_2025_102982
crossref_primary_10_1109_TCYB_2024_3415369
crossref_primary_10_1109_ACCESS_2025_3545094
Cites_doi 10.1016/j.bspc.2022.104456
10.1109/TSMC.2021.3051136
10.1007/s11571-021-09672-3
10.1109/TAFFC.2019.2901456
10.3389/fnhum.2020.00103
10.1109/JSEN.2022.3202209
10.1109/TCDS.2020.3007453
10.1088/1741-2552/acee1f
10.1016/j.jneumeth.2015.01.010
10.1109/TNNLS.2021.3083710
10.1088/1741-2552/aca1e2
10.1109/TSMC.2021.3114145
10.1109/JBHI.2023.3264521
10.1088/1741-2552/abecf0
10.1109/TNNLS.2020.3048385
10.3389/fnins.2012.00039
10.1109/ACCESS.2021.3053621
10.1109/TNSRE.2022.3211881
10.1109/TKDE.2021.3090866
10.1109/TNSRE.2022.3150007
10.1109/TIM.2021.3051996
10.1109/TAFFC.2022.3164516
10.1109/JSEN.2022.3171808
10.1109/TII.2022.3167470
10.1109/JBHI.2022.3213171
10.1109/TBME.2019.2913914
10.1016/j.future.2019.06.027
10.1002/hbm.23730
10.1088/1741-2552/acf7f4
10.1109/TSMC.2019.2956022
10.1109/TNSRE.2019.2923315
10.1109/TNSRE.2022.3199363
10.1088/1741-2552/abca18
10.1088/1741-2552/acacca
10.1109/TNSRE.2021.3059166
10.1088/1741-2552/aba162
10.1109/TNSRE.2020.3037326
10.1088/1741-2552/aace8c
10.1088/1741-2552/ac9c94
10.1109/ACCESS.2019.2952613
10.1109/TNSRE.2022.3154369
10.1109/JSEN.2020.2976519
10.1109/TNSRE.2020.2974056
10.1016/j.neucom.2020.09.017
ContentType Journal Article
Copyright 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
2024 IOP Publishing Ltd.
Copyright_xml – notice: 2024 IOP Publishing Ltd. All rights, including for text and data mining, AI training, and similar technologies, are reserved.
– notice: 2024 IOP Publishing Ltd.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ADTOC
UNPAY
DOI 10.1088/1741-2552/ad3986
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 1741-2552
ExternalDocumentID 10.1088/1741-2552/ad3986
38565100
10_1088_1741_2552_ad3986
jnead3986
Genre Research Support, Non-U.S. Gov't
Journal Article
GrantInformation_xml – fundername: Taishan Industrial Experts Program
– fundername: Natural Science Foundation of Tianjin Municipality
  grantid: 21JCJQJC00130
  funderid: http://dx.doi.org/10.13039/501100006606
– fundername: National Natural Science Foundation of China
  grantid: 62373278
  funderid: http://dx.doi.org/10.13039/501100001809
GroupedDBID ---
1JI
4.4
53G
5B3
5GY
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFS
ACHIP
ADEQX
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
IHE
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
P2P
PJBAE
RIN
RO9
ROL
RPA
SY9
W28
XPP
AAYXX
AEINN
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
02O
1WK
AALHV
ACARI
ADTOC
AERVB
AGQPQ
AHSEE
ARNYC
BBWZM
EJD
FEDTE
HVGLF
JCGBZ
M45
NT-
NT.
Q02
RNS
S3P
UNPAY
ID FETCH-LOGICAL-c378t-75d5b9ce13c6bef971cbc50e045bd23222b8824396b6d7fc365cda5851ad64ab3
IEDL.DBID IOP
ISSN 1741-2560
1741-2552
IngestDate Sun Sep 07 11:27:36 EDT 2025
Thu Oct 02 06:46:42 EDT 2025
Sun Jun 15 01:31:12 EDT 2025
Thu Apr 24 22:50:05 EDT 2025
Wed Oct 01 06:00:19 EDT 2025
Tue Jun 17 22:16:45 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords contrastive learning
self-supervised learning (SSL)
motor imagery (MI)
brain-computer interface (BCI)
electroencephalogram (EEG)
Language English
License This article is available under the terms of the IOP-Standard License.
2024 IOP Publishing Ltd.
cc-by-nc-nd
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-75d5b9ce13c6bef971cbc50e045bd23222b8824396b6d7fc365cda5851ad64ab3
Notes JNE-106994.R2
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9551-202X
OpenAccessLink https://proxy.k.utb.cz/login?url=https://doi.org/10.1088/1741-2552/ad3986
PMID 38565100
PQID 3031662955
PQPubID 23479
PageCount 15
ParticipantIDs crossref_citationtrail_10_1088_1741_2552_ad3986
crossref_primary_10_1088_1741_2552_ad3986
pubmed_primary_38565100
iop_journals_10_1088_1741_2552_ad3986
unpaywall_primary_10_1088_1741_2552_ad3986
proquest_miscellaneous_3031662955
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2024-04-01
PublicationDateYYYYMMDD 2024-04-01
PublicationDate_xml – month: 04
  year: 2024
  text: 2024-04-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Journal of neural engineering
PublicationTitleAbbrev JNE
PublicationTitleAlternate J. Neural Eng
PublicationYear 2024
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Grill (jnead3986bib39) 2020; vol 33
Chen (jnead3986bib56) 2021; 52
Huang (jnead3986bib3) 2019; 12
Liu (jnead3986bib24) 2023; 81
Mahmud (jnead3986bib18) 2021; 18
Chen (jnead3986bib38) 2020
Romero-Laiseca (jnead3986bib11) 2020; 28
Ni (jnead3986bib28) 2022; 30
Shen (jnead3986bib45) 2022; 14
Lawhern (jnead3986bib21) 2018; 15
Gaur (jnead3986bib10) 2021; 70
Ingolfsson (jnead3986bib22) 2020
Dongrui (jnead3986bib30) 2020; 14
Long (jnead3986bib31) 2013
Chen (jnead3986bib34) 2022; 30
Donahue (jnead3986bib59) 2014
Park (jnead3986bib7) 2019; 7
Liu (jnead3986bib40) 2021; 35
Ang (jnead3986bib14) 2012; 6
Brunner (jnead3986bib54) 2008; vol 16
Wan (jnead3986bib36) 2021; 421
Jiang (jnead3986bib41) 2021
He (jnead3986bib49) 2022; 30
de la O Serna (jnead3986bib15) 2020; 20
Hong (jnead3986bib33) 2021; 29
Donglin (jnead3986bib47) 2020; 28
Wan (jnead3986bib6) 2021; 9
Liu (jnead3986bib25) 2023; 20
Liu (jnead3986bib35) 2022; 19
Azab (jnead3986bib27) 2019; 27
He (jnead3986bib50) 2019; 67
van den Oord (jnead3986bib52) 2018
Guney (jnead3986bib9) 2023; 20
Yamei (jnead3986bib46) 2022; 27
Bang (jnead3986bib23) 2021; 33
Xuelin (jnead3986bib48) 2022; 30
Liang (jnead3986bib26) 2023; 20
Combrisson (jnead3986bib58) 2015; 250
Zheng (jnead3986bib16) 2022; 22
Amin (jnead3986bib12) 2019; 101
Zhang (jnead3986bib19) 2021; 33
Banville (jnead3986bib42) 2021; 18
Schirrmeister (jnead3986bib20) 2017; 38
Lichao (jnead3986bib29) 2020; 14
Wang (jnead3986bib43) 2023; 27
Xie (jnead3986bib2) 2021; 15
Wilcoxon (jnead3986bib57) 1992
Ang (jnead3986bib13) 2008
Ganin (jnead3986bib32) 2016; 17
Wang (jnead3986bib60) 2021
Kaiming (jnead3986bib37) 2020
Jie (jnead3986bib53) 2018
Yang (jnead3986bib4) 2019; 51
Chang (jnead3986bib44) 2022; 22
Chen (jnead3986bib5) 2022; 19
Zhirong (jnead3986bib51) 2018
Subasi (jnead3986bib17) 2022; 18
Mane (jnead3986bib1) 2020; 17
Leeb (jnead3986bib55) 2008; vol 16
Abibullaev (jnead3986bib8) 2021; 52
References_xml – volume: 81
  year: 2023
  ident: jnead3986bib24
  article-title: A compact multi-branch 1D convolutional neural network for EEG-based motor imagery classification
  publication-title: Biomed. Signal Process. Control
  doi: 10.1016/j.bspc.2022.104456
– volume: vol 16
  start-page: pp 1
  year: 2008
  ident: jnead3986bib55
– volume: 52
  start-page: 2744
  year: 2021
  ident: jnead3986bib8
  article-title: A systematic deep learning model selection for P300-based brain–computer interfaces
  publication-title: IEEE Trans. Syst. Man. Cybern. Syst.
  doi: 10.1109/TSMC.2021.3051136
– volume: 15
  start-page: 939
  year: 2021
  ident: jnead3986bib2
  article-title: Rehabilitation of motor function in children with cerebral palsy based on motor imagery
  publication-title: Cogn. Neurodyn.
  doi: 10.1007/s11571-021-09672-3
– volume: 12
  start-page: 832
  year: 2019
  ident: jnead3986bib3
  article-title: An EEG-based brain computer interface for emotion recognition and its application in patients with disorder of consciousness
  publication-title: IEEE Trans. Affect. Comput.
  doi: 10.1109/TAFFC.2019.2901456
– volume: 14
  start-page: 103
  year: 2020
  ident: jnead3986bib29
  article-title: Cross-dataset variability problem in EEG decoding with deep learning
  publication-title: Front. Hum. Neurosci.
  doi: 10.3389/fnhum.2020.00103
– start-page: pp 1
  year: 2021
  ident: jnead3986bib41
  article-title: Self-supervised contrastive learning for EEG-based sleep staging
– volume: 22
  start-page: 19608
  year: 2022
  ident: jnead3986bib44
  article-title: EEG-based emotion recognition via efficient convolutional neural network and contrastive learning
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3202209
– volume: 14
  start-page: 4
  year: 2020
  ident: jnead3986bib30
  article-title: Transfer learning for EEG-based brain–computer interfaces: a review of progress made since 2016
  publication-title: IEEE Trans. Cogn. Dev. Syst.
  doi: 10.1109/TCDS.2020.3007453
– volume: 20
  year: 2023
  ident: jnead3986bib26
  article-title: EEG-CDILNet: a lightweight and accurate CNN network using circular dilated convolution for motor imagery classification
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/acee1f
– start-page: pp 1597
  year: 2020
  ident: jnead3986bib38
  article-title: A simple framework for contrastive learning of visual representations
– volume: 250
  start-page: 126
  year: 2015
  ident: jnead3986bib58
  article-title: Exceeding chance level by chance: the caveat of theoretical chance levels in brain signal classification and statistical assessment of decoding accuracy
  publication-title: J. Neurosci. Methods
  doi: 10.1016/j.jneumeth.2015.01.010
– volume: 33
  start-page: 6856
  year: 2021
  ident: jnead3986bib19
  article-title: Ensemble support vector recurrent neural network for brain signal detection
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2021.3083710
– volume: 19
  year: 2022
  ident: jnead3986bib5
  article-title: EEG-based mental fatigue detection using linear prediction cepstral coefficients and riemann spatial covariance matrix
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aca1e2
– volume: 52
  start-page: 5127
  year: 2021
  ident: jnead3986bib56
  article-title: Multiattention adaptation network for motor imagery recognition
  publication-title: IEEE Trans. Syst. Man. Cybern. Syst.
  doi: 10.1109/TSMC.2021.3114145
– volume: vol 33
  start-page: pp 21271
  year: 2020
  ident: jnead3986bib39
  article-title: Bootstrap your own latent-a new approach to self-supervised learning
– start-page: pp 196
  year: 1992
  ident: jnead3986bib57
  article-title: Individual comparisons by ranking methods
– volume: 27
  start-page: 3187
  year: 2023
  ident: jnead3986bib43
  article-title: Cross-subject tinnitus diagnosis based on multi-band EEG contrastive representation learning
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2023.3264521
– volume: 18
  year: 2021
  ident: jnead3986bib18
  article-title: Data-driven machine learning models for decoding speech categorization from evoked brain responses
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/abecf0
– volume: 33
  start-page: 3038
  year: 2021
  ident: jnead3986bib23
  article-title: Spatio-spectral feature representation for motor imagery classification using convolutional neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2020.3048385
– volume: 6
  start-page: 39
  year: 2012
  ident: jnead3986bib14
  article-title: Filter bank common spatial pattern algorithm on BCI competition IV datasets 2a and 2b
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2012.00039
– volume: 9
  start-page: 18326
  year: 2021
  ident: jnead3986bib6
  article-title: Measuring the impacts of virtual reality games on cognitive ability using EEG signals and game performance data
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2021.3053621
– volume: 30
  start-page: 2866
  year: 2022
  ident: jnead3986bib34
  article-title: Transfer learning with optimal transportation and frequency mixup for EEG-based motor imagery recognition
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2022.3211881
– volume: 35
  start-page: 857
  year: 2021
  ident: jnead3986bib40
  article-title: Self-supervised learning: generative or contrastive
  publication-title: IEEE Trans. Knowl. Data Eng.
  doi: 10.1109/TKDE.2021.3090866
– volume: 30
  start-page: 369
  year: 2022
  ident: jnead3986bib28
  article-title: Improving cross-state and cross-subject visual ERP-based BCI with temporal modeling and adversarial training
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2022.3150007
– start-page: pp 9729
  year: 2020
  ident: jnead3986bib37
  article-title: Momentum contrast for unsupervised visual representation learning
– volume: 70
  start-page: 1
  year: 2021
  ident: jnead3986bib10
  article-title: A sliding window common spatial pattern for enhancing motor imagery classification in EEG-BCI
  publication-title: IEEE Trans. Instrum. Meas.
  doi: 10.1109/TIM.2021.3051996
– volume: 14
  start-page: 2496
  year: 2022
  ident: jnead3986bib45
  article-title: Contrastive learning of subject-invariant EEG representations for cross-subject emotion recognition
  publication-title: IEEE Trans. Affective Comput.
  doi: 10.1109/TAFFC.2022.3164516
– start-page: pp 2390
  year: 2008
  ident: jnead3986bib13
  article-title: Filter bank common spatial pattern (FBCSP) in brain-computer interface
– volume: 22
  start-page: 11928
  year: 2022
  ident: jnead3986bib16
  article-title: A power spectrum pattern difference-based time-frequency sub-band selection method for MI-EEG classification
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2022.3171808
– volume: 18
  start-page: 6602
  year: 2022
  ident: jnead3986bib17
  article-title: EEG-based driver fatigue detection using FAWT and multiboosting approaches
  publication-title: IEEE Trans. Ind. Inf.
  doi: 10.1109/TII.2022.3167470
– start-page: pp 2495
  year: 2021
  ident: jnead3986bib60
  article-title: Understanding the behaviour of contrastive loss
– volume: 27
  start-page: 2647
  year: 2022
  ident: jnead3986bib46
  article-title: MtCLSS: multi-task contrastive learning for semi-supervised pediatric sleep staging
  publication-title: IEEE J. Biomed. Health Inf.
  doi: 10.1109/JBHI.2022.3213171
– volume: 67
  start-page: 399
  year: 2019
  ident: jnead3986bib50
  article-title: Transfer learning for brain–computer interfaces: a euclidean space data alignment approach
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2019.2913914
– volume: 101
  start-page: 542
  year: 2019
  ident: jnead3986bib12
  article-title: Deep learning for EEG motor imagery classification based on multi-layer CNNS feature fusion
  publication-title: Future Gener. Comput. Syst.
  doi: 10.1016/j.future.2019.06.027
– volume: 38
  start-page: 5391
  year: 2017
  ident: jnead3986bib20
  article-title: Deep learning with convolutional neural networks for EEG decoding and visualization
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23730
– volume: 17
  start-page: 1
  year: 2016
  ident: jnead3986bib32
  article-title: Domain-adversarial training of neural networks
  publication-title: J. Mach. Learn. Res.
– start-page: pp 2958
  year: 2020
  ident: jnead3986bib22
  article-title: EEG-TCNet: an accurate temporal convolutional network for embedded motor-imagery brain–machine interfaces
– year: 2018
  ident: jnead3986bib52
  article-title: Representation learning with contrastive predictive coding
– volume: 20
  year: 2023
  ident: jnead3986bib25
  article-title: SincMSNet: a Sinc filter convolutional neural network for EEG motor imagery classification
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/acf7f4
– volume: 51
  start-page: 5800
  year: 2019
  ident: jnead3986bib4
  article-title: A complex network-based broad learning system for detecting driver fatigue from EEG signals
  publication-title: IEEE Trans. Syst. Man. Cybern. Syst.
  doi: 10.1109/TSMC.2019.2956022
– start-page: pp 3733
  year: 2018
  ident: jnead3986bib51
  article-title: Unsupervised feature learning via non-parametric instance discrimination
– volume: 27
  start-page: 1352
  year: 2019
  ident: jnead3986bib27
  article-title: Weighted transfer learning for improving motor imagery-based brain–computer interface
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2019.2923315
– volume: vol 16
  start-page: pp 1
  year: 2008
  ident: jnead3986bib54
– volume: 30
  start-page: 2406
  year: 2022
  ident: jnead3986bib49
  article-title: A self-supervised learning based channel attention MLP-mixer network for motor imagery decoding
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2022.3199363
– volume: 18
  year: 2021
  ident: jnead3986bib42
  article-title: Uncovering the structure of clinical EEG signals with self-supervised learning
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/abca18
– start-page: pp 2200
  year: 2013
  ident: jnead3986bib31
  article-title: Transfer feature learning with joint distribution adaptation
– start-page: pp 647
  year: 2014
  ident: jnead3986bib59
  article-title: Decaf: a deep convolutional activation feature for generic visual recognition
– volume: 20
  year: 2023
  ident: jnead3986bib9
  article-title: Transfer learning of an ensemble of DNNs for SSVEP BCI spellers without user-specific training
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/acacca
– volume: 29
  start-page: 556
  year: 2021
  ident: jnead3986bib33
  article-title: Dynamic joint domain adaptation network for motor imagery classification
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2021.3059166
– volume: 17
  year: 2020
  ident: jnead3986bib1
  article-title: BCI for stroke rehabilitation: motor and beyond
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aba162
– volume: 28
  start-page: 2615
  year: 2020
  ident: jnead3986bib47
  article-title: A multi-scale fusion convolutional neural network based on attention mechanism for the visualization analysis of EEG signals decoding
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2020.3037326
– volume: 15
  year: 2018
  ident: jnead3986bib21
  article-title: EEGNet: a compact convolutional neural network for EEG-based brain–computer interfaces
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/aace8c
– volume: 19
  year: 2022
  ident: jnead3986bib35
  article-title: Subject adaptation convolutional neural network for EEG-based motor imagery classification
  publication-title: J. Neural Eng.
  doi: 10.1088/1741-2552/ac9c94
– start-page: pp 7132
  year: 2018
  ident: jnead3986bib53
  article-title: Squeeze-and-excitation networks
– volume: 7
  start-page: 163604
  year: 2019
  ident: jnead3986bib7
  article-title: Development of an online home appliance control system using augmented reality and an SSVEP-based brain-computer interface
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2952613
– volume: 30
  start-page: 496
  year: 2022
  ident: jnead3986bib48
  article-title: Time-distributed attention network for EEG-based motor imagery decoding from the same limb
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2022.3154369
– volume: 20
  start-page: 6542
  year: 2020
  ident: jnead3986bib15
  article-title: EEG-rhythm specific Taylor–Fourier filter bank implemented with O-splines for the detection of epilepsy using EEG signals
  publication-title: IEEE Sens. J.
  doi: 10.1109/JSEN.2020.2976519
– volume: 28
  start-page: 988
  year: 2020
  ident: jnead3986bib11
  article-title: A low-cost lower-limb brain-machine interface triggered by pedaling motor imagery for post-stroke patients rehabilitation
  publication-title: IEEE Trans. Neural Syst. Rehabil. Eng.
  doi: 10.1109/TNSRE.2020.2974056
– volume: 421
  start-page: 1
  year: 2021
  ident: jnead3986bib36
  article-title: A review on transfer learning in EEG signal analysis
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2020.09.017
SSID ssj0031790
Score 2.469192
Snippet Objective . The extensive application of electroencephalography (EEG) in brain-computer interfaces (BCIs) can be attributed to its non-invasive nature and...
. The extensive application of electroencephalography (EEG) in brain-computer interfaces (BCIs) can be attributed to its non-invasive nature and capability to...
Objective. The extensive application of electroencephalography (EEG) in brain-computer interfaces (BCIs) can be attributed to its non-invasive nature and...
SourceID unpaywall
proquest
pubmed
crossref
iop
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 26038
SubjectTerms Algorithms
brain-computer interface (BCI)
Brain-Computer Interfaces
contrastive learning
electroencephalogram (EEG)
Electroencephalography
Imagery, Psychotherapy
Learning
motor imagery (MI)
Neural Networks, Computer
self-supervised learning (SSL)
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB5BOQAHdoF9lGWRkWAlVjLkUTv2sUIFxAEhQSXYS-RXVmhLWpFGq_LrGSehPIR43CJl7MT22PONZ_wZYCuKMhuYmNGQG3RQYqeojDJFBZMdJ6VFrarYPk_4Ub9zfMEumv0OfxbmSfwenTMEzCFF2BvtKRtLwWdhjjNE3S2Y65-cdi_r8461yMMzD5qI5EtVPLFAs1fD0UvgchHmy3ykJv_VYPDI4Bx8qtmPioqn0OeZ_Nstx3rX3D5jcXxPWz7DUoM6SbdWk2WYcfkKrHZz9LivJ-QXqfJAqw32Vfhz5gYZLcqRX0UKZ0mVza4Kvy6S5pKJvwSxLun1Dqm3gijiW4pltN_VITj6-Pbq2tNjTMg0RWmYf4H-Qe98_4g2NzBQEydiTBNmmZbGhbHh2mUyCY02LHCIA7WNfJBGI0JHTMM1t0lmYs6MVT7SqCzvKB1_hVY-zN13INJkUglllM5UJ8gCnaD3xwMrBE8iJXgb9u5HJTUNPbm_JWOQVmFyIVLffanvvrTuvjbsTEuMamqOV2S3caDTZn4Wr8ht3qtCivPMB09U7oZlkaKpDzmPJGNt-FbryPSrsUBYHAZBG35PlebNX1r7iPAPWIgQTdUpQ-vQGt-U7ieiobHeaCbCHW0x_SQ
  priority: 102
  providerName: Unpaywall
Title Self-supervised contrastive learning for EEG-based cross-subject motor imagery recognition
URI https://iopscience.iop.org/article/10.1088/1741-2552/ad3986
https://www.ncbi.nlm.nih.gov/pubmed/38565100
https://www.proquest.com/docview/3031662955
https://doi.org/10.1088/1741-2552/ad3986
UnpaywallVersion publishedVersion
Volume 21
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVIOP
  databaseName: AUTh Library subscriptions: IOP Publishing
  customDbUrl:
  eissn: 1741-2552
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0031790
  issn: 1741-2560
  databaseCode: IOP
  dateStart: 20040101
  isFulltext: true
  titleUrlDefault: https://iopscience.iop.org/
  providerName: IOP Publishing
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9QwEB_u40F9OD_O0_XjiKCCQnbbZpMm-LTInocP54EunCKUfFXEve5y3SLrX--k6RaV4xTfCp20yWQy-SUz-QXgaZaVLrGM01RYXKAwr6nKSk0lV2OvlEOratk-T8TxbPz2jJ9twav-LMxi2bn-IT5GouCowi4hTo4QQ6cUkXA20o4pKbZhl0kExuH03rvTjRtmgXoqnoYM0iLpYpSXfeG3OWkb_3sZ3LwB15pqqdff9Xz-yxR0dBM-byofM0--DZuVGdoff_A6_mfrbsFeB03JJIrehi1f3YH9SYXL8vM1eU7aZNF2F34fPr3385LWzTK4mto70qa86zo4T9LdRPGFICAm0-kbGqZKFAmNxzImbP0QNBF8-_U8cGisSZ_HtKjuwuxo-uH1Me2uaaCW5XJFc-64UdanzArjS5Wn1lieeASLxmUhkmMQxiPwEUa4vLRMcOt0CEdqJ8basAPYqRaVvw9E2VJpqa02pR4nZWJyXCKKxEkp8kxLMYDRpqMK23GYh6s05kUbS5eyCOorgvqKqL4BvOhLLCN_xxWyz7BXim4Q11fIPdlYR4GDMURYdOUXTV0gHkiFyBTnA7gXzab_K9qoQAeYDOBlb0d_rdKDf6zSQ7ieIdqKKUWPYGd10fjHiJZW5rAdFYewOzs5nXz8CYjLC1k
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3raxQxEB9sBR8ffFXt1VcEFRT2bh-XbPKx6J31QS1oofhlzVOk173FvaWcf72TTe5QKVXw28Imm81kMvklM_kNwJM8dybVBU0ypnGDUliZiNzJhFMxtkIY1Kqe7XOf7R2O3x7Ro5jntL8LM2-i6R_iYyAKDiKMAXF8hBg6SxAJ5yNpCsHZqDFuAy72PCX-Bt-Hg5UpLjz9VLgR6WuwNPopz_rKb-vSBrZ9FuS8Cpe7upHLUzmb_bIMTa_Dl1UHQvTJ8bBbqKH-8Qe343_08AZcixCV7IbiN-GCrW_B1m6N2_OTJXlG-qDR_jR-Cz5_tDOXtF3jTU5rDelD32XrjSiJGSm-EgTGZDJ5nfglE4t4AWAd5Y-ACKoKvv124rk0lmQdzzSvb8PhdPLp5V4S0zUkuij5IimpoUpomxWaKetEmWmlaWoRNCqTe4-OQjiPAIgpZkqnC0a1kd4tKQ0bS1Xcgc16XtttIEI7IbnUUjk5Tl2qStwqstRwzspccjaA0WqwKh25zH1KjVnV-9Q5r7wIKy_CKohwAM_XNZrA43FO2ac4MlWczO055R6vNKTCSek9LbK2866tEBdkjOWC0gHcDaqzbrXgiKGzNB3Ai7Uu_fWXdv7xlx7BpYNX0-r9m_139-BKjgAsRBndh83F984-QAC1UA_7SfITZ4oPCg
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwEB5BOQAHdoF9lGWRkWAlVjLkUTv2sUIFxAEhQSXYS-RXVmhLWpFGq_LrGSehPIR43CJl7MT22PONZ_wZYCuKMhuYmNGQG3RQYqeojDJFBZMdJ6VFrarYPk_4Ub9zfMEumv0OfxbmSfwenTMEzCFF2BvtKRtLwWdhjjNE3S2Y65-cdi_r8461yMMzD5qI5EtVPLFAs1fD0UvgchHmy3ykJv_VYPDI4Bx8qtmPioqn0OeZ_Nstx3rX3D5jcXxPWz7DUoM6SbdWk2WYcfkKrHZz9LivJ-QXqfJAqw32Vfhz5gYZLcqRX0UKZ0mVza4Kvy6S5pKJvwSxLun1Dqm3gijiW4pltN_VITj6-Pbq2tNjTMg0RWmYf4H-Qe98_4g2NzBQEydiTBNmmZbGhbHh2mUyCY02LHCIA7WNfJBGI0JHTMM1t0lmYs6MVT7SqCzvKB1_hVY-zN13INJkUglllM5UJ8gCnaD3xwMrBE8iJXgb9u5HJTUNPbm_JWOQVmFyIVLffanvvrTuvjbsTEuMamqOV2S3caDTZn4Wr8ht3qtCivPMB09U7oZlkaKpDzmPJGNt-FbryPSrsUBYHAZBG35PlebNX1r7iPAPWIgQTdUpQ-vQGt-U7ieiobHeaCbCHW0x_SQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-supervised+contrastive+learning+for+EEG-based+cross-subject+motor+imagery+recognition&rft.jtitle=Journal+of+neural+engineering&rft.au=Li%2C+Wenjie&rft.au=Li%2C+Haoyu&rft.au=Sun%2C+Xinlin&rft.au=Kang%2C+Huicong&rft.date=2024-04-01&rft.pub=IOP+Publishing&rft.issn=1741-2560&rft.eissn=1741-2552&rft.volume=21&rft.issue=2&rft_id=info:doi/10.1088%2F1741-2552%2Fad3986&rft.externalDocID=jnead3986
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-2560&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-2560&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-2560&client=summon