Growth of amorphous, anatase and rutile phase TiO2 thin films on Pt/TiO2/SiO2/Si (SSTOP) substrate for resistive random access memory (ReRAM) device application
Memory structures play a basic role in providing integrated circuits of powerful processing capabilities. Even most powerful processors have nothing to offer without an accompanying memory and importantly, the development of mobile devices is dependent on the continual improvement of memory technolo...
Saved in:
Published in | Ceramics international Vol. 46; no. 10; pp. 16310 - 16320 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.07.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0272-8842 1873-3956 |
DOI | 10.1016/j.ceramint.2020.03.188 |
Cover
Abstract | Memory structures play a basic role in providing integrated circuits of powerful processing capabilities. Even most powerful processors have nothing to offer without an accompanying memory and importantly, the development of mobile devices is dependent on the continual improvement of memory technology. Herein, we report the synthesis of TiO2 thin films on SSTOP (Pt/TiO2/SiO2/Si) substrate via physical vapour deposition process for the first time. The layers consisted of Si, SiO2, TiO2 and Pt, hence the SSTOP shorthand is used throughout the text. Three different phases of TiO2 thin films were obtained, i.e. amorphous, anatase and rutile phases, by controlling the reaction parameters which were examined by x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), atomic force microscopy (AFM) and Raman-scattering spectroscopy in order to understand the crystallographic, morphological, compositional and scattering properties. The detailed studies confirmed the formation of various crystal phases of titania. The grown thin films on SSTOP substrates were further utilized to fabricate resistive random access memory (ReRAM) devices and the initial electrical screening was performed on capacitor-like structures which were prepared using platinum top electrodes (diameter = 250 μm) on a 14 × 14 array metal contact mask. Current-Voltage (I–V) measurements were implemented employing a range of current compliances (IC). The detailed electrical characterizations revealed that the forming field for a switchable unipolar device was found to be greatest on rutile titania and lowest on the amorphous titania phase. Similarity, the resistive contrast was greatest on the rutile titania phase and lowest on the anatase titania phase.
Design for ReRAM device based on Pt/TiO2/SiO2/Si (SSTOP) substrate. [Display omitted] |
---|---|
AbstractList | Memory structures play a basic role in providing integrated circuits of powerful processing capabilities. Even most powerful processors have nothing to offer without an accompanying memory and importantly, the development of mobile devices is dependent on the continual improvement of memory technology. Herein, we report the synthesis of TiO2 thin films on SSTOP (Pt/TiO2/SiO2/Si) substrate via physical vapour deposition process for the first time. The layers consisted of Si, SiO2, TiO2 and Pt, hence the SSTOP shorthand is used throughout the text. Three different phases of TiO2 thin films were obtained, i.e. amorphous, anatase and rutile phases, by controlling the reaction parameters which were examined by x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), atomic force microscopy (AFM) and Raman-scattering spectroscopy in order to understand the crystallographic, morphological, compositional and scattering properties. The detailed studies confirmed the formation of various crystal phases of titania. The grown thin films on SSTOP substrates were further utilized to fabricate resistive random access memory (ReRAM) devices and the initial electrical screening was performed on capacitor-like structures which were prepared using platinum top electrodes (diameter = 250 μm) on a 14 × 14 array metal contact mask. Current-Voltage (I–V) measurements were implemented employing a range of current compliances (IC). The detailed electrical characterizations revealed that the forming field for a switchable unipolar device was found to be greatest on rutile titania and lowest on the amorphous titania phase. Similarity, the resistive contrast was greatest on the rutile titania phase and lowest on the anatase titania phase.
Design for ReRAM device based on Pt/TiO2/SiO2/Si (SSTOP) substrate. [Display omitted] |
Author | Hayden, Brian E. Umar, Ahmad Alsaiari, Mabkhoot A. Alhemiary, Nabil A. |
Author_xml | – sequence: 1 givenname: Mabkhoot A. surname: Alsaiari fullname: Alsaiari, Mabkhoot A. email: mamalsaiari@nu.edu.sa organization: Department of Chemistry, Faculty of Science and Arts, Sharurah Branch, Najran University, Najran, Saudi Arabia – sequence: 2 givenname: Nabil A. surname: Alhemiary fullname: Alhemiary, Nabil A. organization: Department of Chemistry, Faculty of Science and Arts, Sharurah Branch, Najran University, Najran, Saudi Arabia – sequence: 3 givenname: Ahmad surname: Umar fullname: Umar, Ahmad email: ahmadumar786@gmail.com organization: Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Saudi Arabia – sequence: 4 givenname: Brian E. surname: Hayden fullname: Hayden, Brian E. organization: Department of Chemistry, University of Southampton, Highfield, Southampton, United Kingdom |
BookMark | eNqFkE9r4zAQxUVpYdNuv8IyxxbWjmzZlgw9bCnbP9CS0qRnIctjomBbRlKy9NvsR11l01566WUeDPzezHun5Hi0IxLyI6NpRrNqvkk1OjWYMaQ5zWlKWZoJcURmmeAsYXVZHZMZzXmeCFHk38ip9xsawbqgM_L3ztk_YQ22AzVYN63t1v8ENaqgPEZtwW2D6RGm9X6xMoscwtqM0Jl-8GBHeA7z_Xa-PAy4WC5Xi-dL8NvGB6cCQmcdOPTGB7NDcNHUDqC0Ru9hwHj1DS5e8OX66RJa3Bkd705Tb7QKxo7fyUmneo_n73pGXm9_r27uk8fF3cPN9WOiGRchqThveKMo06piecuE4rxUBad1zN8xgVmLmjZlybq84VhzVrRVWbe6Fqh5odgZuTr4ame9d9hJbcL_D2II08uMyn3bciM_2pb7tiVlMrYd8eoTPjkzKPf2NfjrAGIMtzPopNcGR42tcaiDbK35yuIfekOhrg |
CitedBy_id | crossref_primary_10_1016_j_tsf_2022_139375 crossref_primary_10_1021_acsanm_0c01648 crossref_primary_10_2139_ssrn_3967534 crossref_primary_10_3390_ma14195863 crossref_primary_10_1021_acsnano_1c01340 crossref_primary_10_1007_s13204_021_01709_7 crossref_primary_10_1016_j_molstruc_2021_132014 crossref_primary_10_1016_j_apsusc_2023_158240 crossref_primary_10_1016_j_porgcoat_2024_108659 crossref_primary_10_1007_s10971_023_06206_7 crossref_primary_10_1038_s41598_022_27371_9 crossref_primary_10_1021_acsomega_2c07701 crossref_primary_10_1088_2632_959X_ab9024 crossref_primary_10_1103_PhysRevB_106_035126 crossref_primary_10_3390_nano13071141 crossref_primary_10_3390_antiox13101209 crossref_primary_10_1007_s10904_023_02917_0 crossref_primary_10_1002_slct_202402362 crossref_primary_10_1016_j_jsamd_2024_100813 |
Cites_doi | 10.1088/0957-4484/21/30/305203 10.1166/jno.2019.2204 10.1016/j.mee.2009.05.023 10.1007/s00339-011-6265-8 10.1063/1.2339032 10.1166/jno.2019.2554 10.1016/j.mee.2017.04.039 10.1016/j.ssi.2018.11.004 10.1103/PhysRevB.79.195317 10.1088/0957-4484/23/18/185202 10.1016/j.ceramint.2018.03.198 10.1080/10584587.2011.573726 10.1016/S0167-5729(02)00100-0 10.1016/j.cap.2017.10.005 10.1109/LED.2009.2021001 10.1016/0022-3697(81)90043-3 10.1109/TED.2009.2032597 10.1063/1.126902 10.1166/jno.2018.2145 10.1016/j.microrel.2013.11.013 10.3390/ma7032155 10.1016/j.mee.2015.04.044 10.1063/1.3224179 10.1016/S1369-7021(08)70119-6 10.1002/adma.200900375 10.1016/j.ijhydene.2012.06.089 10.1103/PhysRevB.75.045416 10.1063/1.2966141 10.1016/j.mee.2017.04.033 10.1166/jno.2018.2217 10.1016/j.jcis.2017.10.113 10.1016/j.apsusc.2015.01.133 10.1166/sam.2019.3451 10.1063/1.1968416 10.1063/1.2818691 10.1021/cc050117p |
ContentType | Journal Article |
Copyright | 2020 Elsevier Ltd and Techna Group S.r.l. |
Copyright_xml | – notice: 2020 Elsevier Ltd and Techna Group S.r.l. |
DBID | AAYXX CITATION |
DOI | 10.1016/j.ceramint.2020.03.188 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1873-3956 |
EndPage | 16320 |
ExternalDocumentID | 10_1016_j_ceramint_2020_03_188 S0272884220308099 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1~. 1~5 29B 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JN AABNK AABXZ AACTN AAEDT AAEDW AAEPC AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO ABFNM ABJNI ABMAC ABXDB ABXRA ABYKQ ACDAQ ACGFS ACNNM ACRLP ADBBV ADEZE ADMUD AEBSH AEKER AENEX AEZYN AFFNX AFKWA AFRZQ AFTJW AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA HVGLF HZ~ IHE J1W KOM M24 M41 MAGPM MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SDF SDG SES SEW SMS SPC SPCBC SSM SSZ T5K WUQ XPP ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACLOT ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP CITATION EFKBS ~HD |
ID | FETCH-LOGICAL-c378t-677b7ba03ca632d38a775a4709956f38e1dec0b553f2b7e9734d659dc98ec74a3 |
IEDL.DBID | .~1 |
ISSN | 0272-8842 |
IngestDate | Wed Oct 01 04:16:43 EDT 2025 Thu Apr 24 22:56:10 EDT 2025 Fri Feb 23 02:47:06 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | Combinatorial synthesis Resistive switching (RS) TiO2 Non-volatile ReRAM |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-677b7ba03ca632d38a775a4709956f38e1dec0b553f2b7e9734d659dc98ec74a3 |
PageCount | 11 |
ParticipantIDs | crossref_citationtrail_10_1016_j_ceramint_2020_03_188 crossref_primary_10_1016_j_ceramint_2020_03_188 elsevier_sciencedirect_doi_10_1016_j_ceramint_2020_03_188 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2020 2020-07-00 |
PublicationDateYYYYMMDD | 2020-07-01 |
PublicationDate_xml | – month: 07 year: 2020 text: July 2020 |
PublicationDecade | 2020 |
PublicationTitle | Ceramics international |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Magyari, Tendulkar, Park, Lee, Nishi (bib24) 2011; 20 Rodriguez-Fernandez, Cagli, Perniola, Sune, Miranda (bib3) 2017; 178 Kim, Kim, Song, Seok, Lee, Yoon, Hwang (bib40) 2010; 21 Lelmini, Bruchhaus, Waser (bib50) 2011; 84 Rohde, Choi, Jeong, Choi, Zhao, Hwang (bib56) 2005; 86 Hossein Moaiyeri, Akbari, Moghaddam (bib22) 2018; 13 Marucco, Lemasson, Gautron (bib42) 1981; 42 Akinaga, Shima (bib53) 2010 Yang, Strachan, Miao, Zhang, Pickett, Ti, Ohlberg, Riberiro, Williams (bib44) 2011; 102 Marlasca, Ghenzi, Rozenberg, Levy (bib38) 2011; 98 Akinaga (bib55) 2011 Yoshida, Tsunoda, Noshiro, Sugiyama (bib17) 2007; 91 Mehonic, Munde, Ng, Buckwell, Montesi, Bosman, Shluger, Kenyon (bib27) 2017; 178 Do, Kwak, Bae, Jung, Im, Hong (bib23) 2009; 95 Wang, Wu, Gao, Zhang, Yang, Qiang (bib4) 2018; 187–188 Yang, Miao, Pickett, Ohlberg, Stewart, Lau, Williams (bib52) 2009; 20 Yoon, Lee, Kim, Song, Seok, Han, Yoon, Kim, Hwang (bib59) 2012; 23 Vidyut, Imran H, Higuchi, Huertas, Pham, Wang (bib1) 2014 Wang, Itoh, Tsuruoka, Aono, He, Hasegawa (bib13) 2018; 328 Barothiya, Dabhi, Patil (bib19) 2019; 14 Lanza (bib20) 2014; 7 Castrejon, Camacho (bib34) 2014; 27 Acharyya, Hazra, Bhattacharyya (bib46) 2014; 54 Jeong, Thomas, Katiyar, Scott (bib51) 2011; 124 Diebold (bib45) 2003; 48 Li, Wan, Qu, Du, Lin, Lin, Wang, Cazorla, Liu, Chu (bib9) 2018; 512 Hayden, Pletcher, Suchsland, Williams (bib31) 2009; 11 Hamzah, Ahmad, Tan, Ezaila Alias, Johari, Ismail (bib16) 2019; 14 Rohde, Choi, Jeong, Choi, Zhao, Hwang (bib28) 2005; 86 Stoneham, Hayes (bib43) 1985 Hisashiand, Hiroyuki (bib54) 2010 Robert, Samuel, Brian, Graeme (bib5) 2005 Wypych, Bobowska, Tracz, Opasinska, Kadlubowski, Kaliszewska, Grobelny, Wojciechowski (bib36) 2014; 9 Strachan, Yang, Montoro, Ospina, Ramirez, Kilcoyne, Ribeiro, Williams, S (bib39) 2013; 4 Siddik, Jung, Lee, Shin, Park, Lee, Kim, Hwang (bib47) 2011; 99 Kelly, Polak, Tomkiewicz (bib49) 1997; 101 Kim, Choi, Shin, Choi, Hwang (bib61) 2007; 91 Kim, Rhee (bib63) 2010; 87 Kim, Song, Seok, Lee, Yoon, Hwang (bib37) 2010; 21 Rainer, Georgi, Kristof (bib6) 2009; 21 Gul (bib11) 2018; 44 Singh Rathore, Prakash, Kaur (bib14) 2018; 18 Yoshida, Kinoshita, Yamasaki, Sugiyama (bib18) 2008; 93 Mazza, Barborini, Piseri, Milani, Cattaneo, Li Bassi, Bottani, Ducati (bib35) 2007; 75 Pan, Cheng, Chen, Li, Zhou, Xie (bib26) 2019; 11 Samual, Brian (bib33) 2006; 8 Cerri, Nagami, Davies, Mormiche, Vecoven, Hayden (bib12) 2013; 38 Wei, Simon W (bib7) 2009; 30 Schiavello (bib30) 1997 Sharma, Kundu, Rahaman, Sarkar (bib25) 2018; 13 Jeong (bib58) 2008 Jeong, Schroeder, Waser (bib60) 2009; 79 Kinoshita, Tamura, Aoki, Sugiyama, Tanaka (bib62) 2006; 89 Jeong, Thomas, Katiyar, Scott (bib8) 2011; 124 Suchsland, Hayden (bib32) 2007 Wang, Fujita, Wong (bib57) 2009; 30 Sawa (bib48) 2008; 11 Chikako Yoshida, Noshiro, Sugiyama (bib41) 2007; 91 Calderoni, Sills, Cardon, Faraoni, Ramaswamy (bib2) 2015; 147 Blanka, Seong, Hyung, Yoshio (bib10) 2011; 22 Bousoulas, Giannopoulos, Giannakopoulos, Dimitrakis, Tsoukalas (bib21) 2015; 332 Beck, Bednorz, Gerber, Rossel, Widme (bib15) 2000; 77 Kim, Choi (bib29) 2009; 56 Hisashiand (10.1016/j.ceramint.2020.03.188_bib54) 2010 Magyari (10.1016/j.ceramint.2020.03.188_bib24) 2011; 20 Chikako Yoshida (10.1016/j.ceramint.2020.03.188_bib41) 2007; 91 Wang (10.1016/j.ceramint.2020.03.188_bib57) 2009; 30 Rodriguez-Fernandez (10.1016/j.ceramint.2020.03.188_bib3) 2017; 178 Suchsland (10.1016/j.ceramint.2020.03.188_bib32) 2007 Mehonic (10.1016/j.ceramint.2020.03.188_bib27) 2017; 178 Strachan (10.1016/j.ceramint.2020.03.188_bib39) 2013; 4 Yoshida (10.1016/j.ceramint.2020.03.188_bib18) 2008; 93 Diebold (10.1016/j.ceramint.2020.03.188_bib45) 2003; 48 Calderoni (10.1016/j.ceramint.2020.03.188_bib2) 2015; 147 Hamzah (10.1016/j.ceramint.2020.03.188_bib16) 2019; 14 Kim (10.1016/j.ceramint.2020.03.188_bib63) 2010; 87 Jeong (10.1016/j.ceramint.2020.03.188_bib51) 2011; 124 Yang (10.1016/j.ceramint.2020.03.188_bib44) 2011; 102 Wang (10.1016/j.ceramint.2020.03.188_bib13) 2018; 328 Akinaga (10.1016/j.ceramint.2020.03.188_bib55) 2011 Hayden (10.1016/j.ceramint.2020.03.188_bib31) 2009; 11 Li (10.1016/j.ceramint.2020.03.188_bib9) 2018; 512 Gul (10.1016/j.ceramint.2020.03.188_bib11) 2018; 44 Hossein Moaiyeri (10.1016/j.ceramint.2020.03.188_bib22) 2018; 13 Wei (10.1016/j.ceramint.2020.03.188_bib7) 2009; 30 Pan (10.1016/j.ceramint.2020.03.188_bib26) 2019; 11 Robert (10.1016/j.ceramint.2020.03.188_bib5) 2005 Bousoulas (10.1016/j.ceramint.2020.03.188_bib21) 2015; 332 Marlasca (10.1016/j.ceramint.2020.03.188_bib38) 2011; 98 Kelly (10.1016/j.ceramint.2020.03.188_bib49) 1997; 101 Barothiya (10.1016/j.ceramint.2020.03.188_bib19) 2019; 14 Singh Rathore (10.1016/j.ceramint.2020.03.188_bib14) 2018; 18 Siddik (10.1016/j.ceramint.2020.03.188_bib47) 2011; 99 Yoshida (10.1016/j.ceramint.2020.03.188_bib17) 2007; 91 Kim (10.1016/j.ceramint.2020.03.188_bib37) 2010; 21 Cerri (10.1016/j.ceramint.2020.03.188_bib12) 2013; 38 Sharma (10.1016/j.ceramint.2020.03.188_bib25) 2018; 13 Schiavello (10.1016/j.ceramint.2020.03.188_bib30) 1997 Marucco (10.1016/j.ceramint.2020.03.188_bib42) 1981; 42 Rohde (10.1016/j.ceramint.2020.03.188_bib28) 2005; 86 Jeong (10.1016/j.ceramint.2020.03.188_bib8) 2011; 124 Castrejon (10.1016/j.ceramint.2020.03.188_bib34) 2014; 27 Kim (10.1016/j.ceramint.2020.03.188_bib40) 2010; 21 Wypych (10.1016/j.ceramint.2020.03.188_bib36) 2014; 9 Acharyya (10.1016/j.ceramint.2020.03.188_bib46) 2014; 54 Rainer (10.1016/j.ceramint.2020.03.188_bib6) 2009; 21 Jeong (10.1016/j.ceramint.2020.03.188_bib60) 2009; 79 Stoneham (10.1016/j.ceramint.2020.03.188_bib43) 1985 Wang (10.1016/j.ceramint.2020.03.188_bib4) 2018; 187–188 Jeong (10.1016/j.ceramint.2020.03.188_bib58) 2008 Beck (10.1016/j.ceramint.2020.03.188_bib15) 2000; 77 Samual (10.1016/j.ceramint.2020.03.188_bib33) 2006; 8 Lanza (10.1016/j.ceramint.2020.03.188_bib20) 2014; 7 Kinoshita (10.1016/j.ceramint.2020.03.188_bib62) 2006; 89 Yang (10.1016/j.ceramint.2020.03.188_bib52) 2009; 20 Mazza (10.1016/j.ceramint.2020.03.188_bib35) 2007; 75 Lelmini (10.1016/j.ceramint.2020.03.188_bib50) 2011; 84 Do (10.1016/j.ceramint.2020.03.188_bib23) 2009; 95 Blanka (10.1016/j.ceramint.2020.03.188_bib10) 2011; 22 Yoon (10.1016/j.ceramint.2020.03.188_bib59) 2012; 23 Kim (10.1016/j.ceramint.2020.03.188_bib29) 2009; 56 Rohde (10.1016/j.ceramint.2020.03.188_bib56) 2005; 86 Akinaga (10.1016/j.ceramint.2020.03.188_bib53) 2010 Sawa (10.1016/j.ceramint.2020.03.188_bib48) 2008; 11 Vidyut (10.1016/j.ceramint.2020.03.188_bib1) 2014 Kim (10.1016/j.ceramint.2020.03.188_bib61) 2007; 91 |
References_xml | – volume: 86 year: 2005 ident: bib56 article-title: Identification of a determining parameter for resistive switching of TiO2 thin films publication-title: Appl. Phys. Lett. – year: 2007 ident: bib32 article-title: Partical Size and Substrate Effect in Electrocatalysis – volume: 27 start-page: 88 year: 2014 end-page: 92 ident: bib34 article-title: Quantification of phase content in TiO2 thin films by Raman spectroscopy publication-title: Sociedad Mexicana de Ciencia y Tecnología de Superficies y Materiales – volume: 102 year: 2011 ident: bib44 article-title: Metal/TiO publication-title: Appl. Phys. – volume: 56 start-page: 3049 year: 2009 end-page: 3053 ident: bib29 article-title: A comprehensive study of the resistive switching mechanism in Al/TiO publication-title: IEEE Trans. Electron. Dev. – volume: 48 start-page: 53 year: 2003 end-page: 229 ident: bib45 article-title: The surface science of titanium dioxide publication-title: Surf. Sci. Rep. – year: 2011 ident: bib55 article-title: Recent Advance and Prospects in ReRAM Technology – volume: 89 year: 2006 ident: bib62 article-title: Bias polarity dependent data retention of resistive random access memory consisting of binary transition metal oxide publication-title: Appl. Phys. Lett. – volume: 95 year: 2009 ident: bib23 article-title: Hysteretic bipolar resistive switching characteristics in TiO publication-title: Appl. Phys. Lett. – volume: 20 year: 2011 ident: bib24 article-title: Resistive switching mechanisms in random access memory devices incorporating transition metal oxides: TiO publication-title: Nanotechnology – year: 2005 ident: bib5 article-title: High throughput synthesis and screening of chalcogenide materials for data storage publication-title: International Chemistry Conference Singapore – volume: 22 year: 2011 ident: bib10 article-title: Resistive switching mechanisms in random access memory devices incorporating transition metal oxides: TiO publication-title: Nanotechnology – volume: 21 year: 2010 ident: bib37 article-title: Electrically configurable electroforming and bipolar resistive switching in Pt/TiO2/Pt structures publication-title: Nanotechnology – volume: 91 year: 2007 ident: bib17 article-title: High speed resistive switching in Pt/TiO publication-title: Appl. Phys. Lett. – volume: 21 start-page: 2632 year: 2009 end-page: 2663 ident: bib6 article-title: Redox-based resistive switching memories nanoionic mechanisms, prospects, and challenges publication-title: Adv. Mater. – volume: 42 start-page: 363 year: 1981 end-page: 367 ident: bib42 article-title: Thermogravimetric and electrical study of nonstoichiometric titanium dioxide TiO2−x, between 800 and 1100°C publication-title: J. Phys. Chem. Solid. – volume: 101 start-page: 2730 year: 1997 end-page: 2734 ident: bib49 article-title: Raman spectroscopy as a morphological probe for TiO2 aerogels publication-title: Phys. Chem. – volume: 124 start-page: 87 year: 2011 end-page: 96 ident: bib51 article-title: Overview on the Resistive switching in TiO2 solid electrolyte publication-title: Korea Inst. Sci. Technol. – year: 2008 ident: bib58 article-title: Resistive Switching in Pt/TiO2/Pt – volume: 328 start-page: 30 year: 2018 end-page: 34 ident: bib13 article-title: Oxygen vacancy drift controlled three-terminal ReRAM with a reduction in operating gate bias and gate leakage current publication-title: Solid State Ionics – volume: 21 year: 2010 ident: bib40 article-title: Electrically configurable electroforming and bipolar resistive switching in Pt/TiO2/Pt structures publication-title: Nanotechnology – volume: 4 start-page: 467 year: 2013 end-page: 473 ident: bib39 article-title: Characterization of electroforming-free titanium dioxide memristors publication-title: Nanotechnology – volume: 38 start-page: 640 year: 2013 end-page: 645 ident: bib12 article-title: Innovative catalyst supports to address fuel cell stack durability publication-title: Int. J. Hydrogen Energy – volume: 44 start-page: 11417 year: 2018 end-page: 11423 ident: bib11 article-title: Carrier transport mechanism and bipolar resistive switching behavior of a nano-scale thin film TiO2 memristor publication-title: Ceram. Int. – volume: 9 year: 2014 ident: bib36 article-title: Dielectric properties and characterisation of titanium dioxide obtained by different chemistry methods publication-title: J. Nanomater. – volume: 23 year: 2012 ident: bib59 article-title: Memristive Tri-stable resistive switching at ruptured conducting filaments of a Pt/TiO2/Pt cell publication-title: Nanotechnology – volume: 30 start-page: 733 year: 2009 end-page: 735 ident: bib57 article-title: RESET mechanism of TiOx resistance-change memory device publication-title: IEEE Electron. Device Lett. – volume: 13 start-page: 245 year: 2018 end-page: 250 ident: bib25 article-title: Study of TMR with different ferromagnetic material and variations in spin-split, thicknessand oxide barrier height of a MTJ memory device publication-title: J. Nanoelectron. Optoelectron. – volume: 11 start-page: 392 year: 2019 end-page: 395 ident: bib26 article-title: A wire-like UV detector based on TiO publication-title: Sci. Adv. Mater. – volume: 11 start-page: 9141 year: 2009 end-page: 9148 ident: bib31 article-title: The influence of support and particle size on the platinum catalysed oxygen reduction reaction publication-title: Phys. Chem. – volume: 20 year: 2009 ident: bib52 article-title: The Mechanism of electroforming of metal oxide memristive switches publication-title: Nanotechnology – volume: 13 start-page: 617 year: 2018 end-page: 627 ident: bib22 article-title: An ultra-low-power and robust ternary static random access memory cell based on carbon nanotube FETs publication-title: J. Nanoelectron. Optoelectron. – volume: 98 year: 2011 ident: bib38 article-title: Understanding electroforming in bipolar resistive switching oxides publication-title: Appl. Phys. Lett. – volume: 84 start-page: 570 year: 2011 end-page: 602 ident: bib50 article-title: Thermochemical resistive switching: materials, mechanisms, and scaling projections", Phase publication-title: Transitions – volume: 178 start-page: 61 year: 2017 end-page: 65 ident: bib3 article-title: Effect of the voltage ramp rate on the set and reset voltages of ReRAM devices publication-title: Microelectron. Eng. – volume: 91 year: 2007 ident: bib41 article-title: High speed resistive switching in Pt TiO publication-title: Appl. Phys. Lett. – volume: 18 start-page: 102 year: 2018 end-page: 106 ident: bib14 article-title: Effect of AlN layer on the resistive switching properties of TiO2 based ReRAM memory devices publication-title: Curr. Appl. Phys. – volume: 11 start-page: 28 year: 2008 end-page: 36 ident: bib48 article-title: Resistive switching in transition metal oxides publication-title: Mater. Today Off. – year: 2010 ident: bib53 article-title: Resistive random access memory (ReRAM) Based on metal oxides publication-title: Proceedings of Nanodevice Innovation Conference – year: 1997 ident: bib30 article-title: Heterogeneous Photocatalysis – volume: 332 start-page: 55 year: 2015 end-page: 61 ident: bib21 article-title: Memory programming of TiO publication-title: Appl. Surf. Sci. – volume: 93 year: 2008 ident: bib18 article-title: Direct observation of oxygen movement during resistance switching in NiO/Pt film publication-title: Appl. Phys. Lett. – volume: 147 start-page: 145 year: 2015 end-page: 150 ident: bib2 article-title: Engineering ReRAM for high-density applications publication-title: Microelectron. Eng. – year: 1985 ident: bib43 article-title: Defect and Defect Process in Nonmetallic Solids – volume: 8 start-page: 66 year: 2006 end-page: 73 ident: bib33 article-title: Physical vapor deposition method for the high-throughput synthesis of solid-state material libraries publication-title: Combin. Chem. – year: 2014 ident: bib1 article-title: Less Methods and Vehicles for High Productivity Combinatorial Testing of Materials for Resistive Random Access Memory Cells – volume: 14 start-page: 1195 year: 2019 end-page: 1214 ident: bib16 article-title: Scaling challenges of floating gate non-volatile memory and graphene as the future flash memory device: a review publication-title: J. Nanoelectron. Optoelectron. – volume: 512 start-page: 767 year: 2018 end-page: 774 ident: bib9 article-title: Digital to analog resistive switching transition induced by graphene buffer layer in strontium titanate based devices publication-title: J. Colloid Interface Sci – volume: 79 year: 2009 ident: bib60 article-title: Mechanism for bipolar Switching in a Pt/TiO2/Pt resistive switching cell publication-title: Phys. Rev. – volume: 14 start-page: 606 year: 2019 end-page: 613 ident: bib19 article-title: A novel channel engineered continuous floating gate MOSFET for memory applications publication-title: J. Nanoelectron. Optoelectron. – volume: 77 start-page: 139 year: 2000 end-page: 141 ident: bib15 article-title: Reproducible switching effect in thin oxide films for memory applications publication-title: Appl. Phys. Lett. – year: 2010 ident: bib54 article-title: Basics of RRAM based on transition metal oxides; nanodevice innovation research center publication-title: International Symposium on Advanced Gate Stack Technology – volume: 178 start-page: 98 year: 2017 end-page: 103 ident: bib27 article-title: Intrinsic resistance switching in amorphous silicon oxide for high performance SiOx ReRAM devices publication-title: Microelectron. Eng. – volume: 75 year: 2007 ident: bib35 article-title: Raman spectroscopy characterization of TiO2 rutile nanocrystals publication-title: . B – volume: 54 start-page: 541 year: 2014 end-page: 560 ident: bib46 article-title: A journey towards reliability improvement of TiO publication-title: Rev. Microelec – volume: 91 year: 2007 ident: bib61 article-title: Anode-interface localized filamentary mechanism in resistive switching of TiO publication-title: Appl. Phys. Lett. – volume: 7 start-page: 2155 year: 2014 end-page: 2182 ident: bib20 article-title: A review on resistive switching in high-k dielectrics: a nanoscale point of view using conductive atomic force microscope publication-title: Materials – volume: 30 start-page: 333 year: 2009 end-page: 337 ident: bib7 article-title: RESET mechanism of TiOx resistance-change memory device publication-title: IEEE Electron. Device Lett. – volume: 87 start-page: 98 year: 2010 end-page: 103 ident: bib63 article-title: Effect of the top electrode material on the resistive switching of TiO publication-title: Microelectron. Eng. – volume: 86 year: 2005 ident: bib28 article-title: Identification of a determining parameter for resistive switching of TiO publication-title: Appl. Phys. Lett. – volume: 187–188 start-page: 121 year: 2018 end-page: 133 ident: bib4 article-title: Conduction mechanisms, dynamics and stability in ReRAMs publication-title: Microelectron. Eng. – volume: 99 year: 2011 ident: bib47 article-title: Thermally assisted resistive switching in Pr0.7Ca0.3MnO publication-title: Appl. Phys. – volume: 124 start-page: 87 year: 2011 end-page: 96 ident: bib8 article-title: Overview on the resistive switching in TiO2 solid electrolyte publication-title: J. Integrated. Ferroelectrics – year: 2007 ident: 10.1016/j.ceramint.2020.03.188_bib32 – volume: 21 year: 2010 ident: 10.1016/j.ceramint.2020.03.188_bib37 article-title: Electrically configurable electroforming and bipolar resistive switching in Pt/TiO2/Pt structures publication-title: Nanotechnology doi: 10.1088/0957-4484/21/30/305203 – volume: 14 start-page: 1195 year: 2019 ident: 10.1016/j.ceramint.2020.03.188_bib16 article-title: Scaling challenges of floating gate non-volatile memory and graphene as the future flash memory device: a review publication-title: J. Nanoelectron. Optoelectron. doi: 10.1166/jno.2019.2204 – volume: 9 year: 2014 ident: 10.1016/j.ceramint.2020.03.188_bib36 article-title: Dielectric properties and characterisation of titanium dioxide obtained by different chemistry methods publication-title: J. Nanomater. – volume: 87 start-page: 98 issue: 2 year: 2010 ident: 10.1016/j.ceramint.2020.03.188_bib63 article-title: Effect of the top electrode material on the resistive switching of TiO2 thin film publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2009.05.023 – volume: 102 year: 2011 ident: 10.1016/j.ceramint.2020.03.188_bib44 article-title: Metal/TiO2 interfaces for memristive switches publication-title: Appl. Phys. doi: 10.1007/s00339-011-6265-8 – volume: 89 year: 2006 ident: 10.1016/j.ceramint.2020.03.188_bib62 article-title: Bias polarity dependent data retention of resistive random access memory consisting of binary transition metal oxide publication-title: Appl. Phys. Lett. doi: 10.1063/1.2339032 – volume: 30 start-page: 333 year: 2009 ident: 10.1016/j.ceramint.2020.03.188_bib7 article-title: RESET mechanism of TiOx resistance-change memory device publication-title: IEEE Electron. Device Lett. – volume: 21 year: 2010 ident: 10.1016/j.ceramint.2020.03.188_bib40 article-title: Electrically configurable electroforming and bipolar resistive switching in Pt/TiO2/Pt structures publication-title: Nanotechnology doi: 10.1088/0957-4484/21/30/305203 – volume: 14 start-page: 606 year: 2019 ident: 10.1016/j.ceramint.2020.03.188_bib19 article-title: A novel channel engineered continuous floating gate MOSFET for memory applications publication-title: J. Nanoelectron. Optoelectron. doi: 10.1166/jno.2019.2554 – volume: 178 start-page: 61 year: 2017 ident: 10.1016/j.ceramint.2020.03.188_bib3 article-title: Effect of the voltage ramp rate on the set and reset voltages of ReRAM devices publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2017.04.039 – volume: 328 start-page: 30 year: 2018 ident: 10.1016/j.ceramint.2020.03.188_bib13 article-title: Oxygen vacancy drift controlled three-terminal ReRAM with a reduction in operating gate bias and gate leakage current publication-title: Solid State Ionics doi: 10.1016/j.ssi.2018.11.004 – volume: 11 start-page: 9141 year: 2009 ident: 10.1016/j.ceramint.2020.03.188_bib31 article-title: The influence of support and particle size on the platinum catalysed oxygen reduction reaction publication-title: Phys. Chem. – year: 2008 ident: 10.1016/j.ceramint.2020.03.188_bib58 – volume: 124 start-page: 87 year: 2011 ident: 10.1016/j.ceramint.2020.03.188_bib51 article-title: Overview on the Resistive switching in TiO2 solid electrolyte publication-title: Korea Inst. Sci. Technol. – volume: 79 year: 2009 ident: 10.1016/j.ceramint.2020.03.188_bib60 article-title: Mechanism for bipolar Switching in a Pt/TiO2/Pt resistive switching cell publication-title: Phys. Rev. doi: 10.1103/PhysRevB.79.195317 – volume: 23 year: 2012 ident: 10.1016/j.ceramint.2020.03.188_bib59 article-title: Memristive Tri-stable resistive switching at ruptured conducting filaments of a Pt/TiO2/Pt cell publication-title: Nanotechnology doi: 10.1088/0957-4484/23/18/185202 – volume: 101 start-page: 2730 year: 1997 ident: 10.1016/j.ceramint.2020.03.188_bib49 article-title: Raman spectroscopy as a morphological probe for TiO2 aerogels publication-title: Phys. Chem. – volume: 44 start-page: 11417 year: 2018 ident: 10.1016/j.ceramint.2020.03.188_bib11 article-title: Carrier transport mechanism and bipolar resistive switching behavior of a nano-scale thin film TiO2 memristor publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.03.198 – year: 2005 ident: 10.1016/j.ceramint.2020.03.188_bib5 article-title: High throughput synthesis and screening of chalcogenide materials for data storage – volume: 124 start-page: 87 year: 2011 ident: 10.1016/j.ceramint.2020.03.188_bib8 article-title: Overview on the resistive switching in TiO2 solid electrolyte publication-title: J. Integrated. Ferroelectrics doi: 10.1080/10584587.2011.573726 – volume: 4 start-page: 467 year: 2013 ident: 10.1016/j.ceramint.2020.03.188_bib39 article-title: Characterization of electroforming-free titanium dioxide memristors publication-title: Nanotechnology – year: 2010 ident: 10.1016/j.ceramint.2020.03.188_bib53 article-title: Resistive random access memory (ReRAM) Based on metal oxides – volume: 48 start-page: 53 year: 2003 ident: 10.1016/j.ceramint.2020.03.188_bib45 article-title: The surface science of titanium dioxide publication-title: Surf. Sci. Rep. doi: 10.1016/S0167-5729(02)00100-0 – volume: 18 start-page: 102 year: 2018 ident: 10.1016/j.ceramint.2020.03.188_bib14 article-title: Effect of AlN layer on the resistive switching properties of TiO2 based ReRAM memory devices publication-title: Curr. Appl. Phys. doi: 10.1016/j.cap.2017.10.005 – volume: 30 start-page: 733 year: 2009 ident: 10.1016/j.ceramint.2020.03.188_bib57 article-title: RESET mechanism of TiOx resistance-change memory device publication-title: IEEE Electron. Device Lett. doi: 10.1109/LED.2009.2021001 – volume: 98 year: 2011 ident: 10.1016/j.ceramint.2020.03.188_bib38 article-title: Understanding electroforming in bipolar resistive switching oxides publication-title: Appl. Phys. Lett. – volume: 91 year: 2007 ident: 10.1016/j.ceramint.2020.03.188_bib61 article-title: Anode-interface localized filamentary mechanism in resistive switching of TiO2 thin films publication-title: Appl. Phys. Lett. – volume: 42 start-page: 363 issue: 5 year: 1981 ident: 10.1016/j.ceramint.2020.03.188_bib42 article-title: Thermogravimetric and electrical study of nonstoichiometric titanium dioxide TiO2−x, between 800 and 1100°C publication-title: J. Phys. Chem. Solid. doi: 10.1016/0022-3697(81)90043-3 – volume: 56 start-page: 3049 year: 2009 ident: 10.1016/j.ceramint.2020.03.188_bib29 article-title: A comprehensive study of the resistive switching mechanism in Al/TiOx/TiO2/Al-structured RRAM publication-title: IEEE Trans. Electron. Dev. doi: 10.1109/TED.2009.2032597 – volume: 91 issue: 22 year: 2007 ident: 10.1016/j.ceramint.2020.03.188_bib41 article-title: High speed resistive switching in Pt TiO2 Ti N film for nonvolatile memory application publication-title: Appl. Phys. Lett. – volume: 77 start-page: 139 year: 2000 ident: 10.1016/j.ceramint.2020.03.188_bib15 article-title: Reproducible switching effect in thin oxide films for memory applications publication-title: Appl. Phys. Lett. doi: 10.1063/1.126902 – volume: 13 start-page: 617 year: 2018 ident: 10.1016/j.ceramint.2020.03.188_bib22 article-title: An ultra-low-power and robust ternary static random access memory cell based on carbon nanotube FETs publication-title: J. Nanoelectron. Optoelectron. doi: 10.1166/jno.2018.2145 – volume: 54 start-page: 541 year: 2014 ident: 10.1016/j.ceramint.2020.03.188_bib46 article-title: A journey towards reliability improvement of TiO2 based resistive random access memory publication-title: Rev. Microelec doi: 10.1016/j.microrel.2013.11.013 – year: 1997 ident: 10.1016/j.ceramint.2020.03.188_bib30 – volume: 7 start-page: 2155 year: 2014 ident: 10.1016/j.ceramint.2020.03.188_bib20 article-title: A review on resistive switching in high-k dielectrics: a nanoscale point of view using conductive atomic force microscope publication-title: Materials doi: 10.3390/ma7032155 – volume: 27 start-page: 88 year: 2014 ident: 10.1016/j.ceramint.2020.03.188_bib34 article-title: Quantification of phase content in TiO2 thin films by Raman spectroscopy publication-title: Sociedad Mexicana de Ciencia y Tecnología de Superficies y Materiales – year: 1985 ident: 10.1016/j.ceramint.2020.03.188_bib43 – volume: 147 start-page: 145 year: 2015 ident: 10.1016/j.ceramint.2020.03.188_bib2 article-title: Engineering ReRAM for high-density applications publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2015.04.044 – volume: 95 year: 2009 ident: 10.1016/j.ceramint.2020.03.188_bib23 article-title: Hysteretic bipolar resistive switching characteristics in TiO2/TiO2−x multilayer homojunctions publication-title: Appl. Phys. Lett. doi: 10.1063/1.3224179 – volume: 84 start-page: 570 issue: 7 year: 2011 ident: 10.1016/j.ceramint.2020.03.188_bib50 article-title: Thermochemical resistive switching: materials, mechanisms, and scaling projections", Phase publication-title: Transitions – volume: 11 start-page: 28 issue: 6 year: 2008 ident: 10.1016/j.ceramint.2020.03.188_bib48 article-title: Resistive switching in transition metal oxides publication-title: Mater. Today Off. doi: 10.1016/S1369-7021(08)70119-6 – volume: 21 start-page: 2632 year: 2009 ident: 10.1016/j.ceramint.2020.03.188_bib6 article-title: Redox-based resistive switching memories nanoionic mechanisms, prospects, and challenges publication-title: Adv. Mater. doi: 10.1002/adma.200900375 – volume: 20 year: 2011 ident: 10.1016/j.ceramint.2020.03.188_bib24 article-title: Resistive switching mechanisms in random access memory devices incorporating transition metal oxides: TiO2, NiO and Pr0.7Ca0.3MnO3 publication-title: Nanotechnology – volume: 20 year: 2009 ident: 10.1016/j.ceramint.2020.03.188_bib52 article-title: The Mechanism of electroforming of metal oxide memristive switches publication-title: Nanotechnology – year: 2010 ident: 10.1016/j.ceramint.2020.03.188_bib54 article-title: Basics of RRAM based on transition metal oxides; nanodevice innovation research center – volume: 38 start-page: 640 year: 2013 ident: 10.1016/j.ceramint.2020.03.188_bib12 article-title: Innovative catalyst supports to address fuel cell stack durability publication-title: Int. J. Hydrogen Energy doi: 10.1016/j.ijhydene.2012.06.089 – year: 2014 ident: 10.1016/j.ceramint.2020.03.188_bib1 – year: 2011 ident: 10.1016/j.ceramint.2020.03.188_bib55 – volume: 75 year: 2007 ident: 10.1016/j.ceramint.2020.03.188_bib35 article-title: Raman spectroscopy characterization of TiO2 rutile nanocrystals publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.045416 – volume: 93 year: 2008 ident: 10.1016/j.ceramint.2020.03.188_bib18 article-title: Direct observation of oxygen movement during resistance switching in NiO/Pt film publication-title: Appl. Phys. Lett. doi: 10.1063/1.2966141 – volume: 99 year: 2011 ident: 10.1016/j.ceramint.2020.03.188_bib47 article-title: Thermally assisted resistive switching in Pr0.7Ca0.3MnO3/Ti/Ge2Sb2Te5 stack for nonvolatile memory applications publication-title: Appl. Phys. – volume: 178 start-page: 98 year: 2017 ident: 10.1016/j.ceramint.2020.03.188_bib27 article-title: Intrinsic resistance switching in amorphous silicon oxide for high performance SiOx ReRAM devices publication-title: Microelectron. Eng. doi: 10.1016/j.mee.2017.04.033 – volume: 13 start-page: 245 year: 2018 ident: 10.1016/j.ceramint.2020.03.188_bib25 article-title: Study of TMR with different ferromagnetic material and variations in spin-split, thicknessand oxide barrier height of a MTJ memory device publication-title: J. Nanoelectron. Optoelectron. doi: 10.1166/jno.2018.2217 – volume: 187–188 start-page: 121 year: 2018 ident: 10.1016/j.ceramint.2020.03.188_bib4 article-title: Conduction mechanisms, dynamics and stability in ReRAMs publication-title: Microelectron. Eng. – volume: 512 start-page: 767 year: 2018 ident: 10.1016/j.ceramint.2020.03.188_bib9 article-title: Digital to analog resistive switching transition induced by graphene buffer layer in strontium titanate based devices publication-title: J. Colloid Interface Sci doi: 10.1016/j.jcis.2017.10.113 – volume: 332 start-page: 55 year: 2015 ident: 10.1016/j.ceramint.2020.03.188_bib21 article-title: Memory programming of TiO2−x films by conductive atomic force microscopy evidencing filamentary resistive switching publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2015.01.133 – volume: 22 issue: 25 year: 2011 ident: 10.1016/j.ceramint.2020.03.188_bib10 article-title: Resistive switching mechanisms in random access memory devices incorporating transition metal oxides: TiO2, NiO and Pr0.7Ca0.3MnO3 publication-title: Nanotechnology – volume: 11 start-page: 392 year: 2019 ident: 10.1016/j.ceramint.2020.03.188_bib26 article-title: A wire-like UV detector based on TiO2-coated ZnO nanotube Arrays publication-title: Sci. Adv. Mater. doi: 10.1166/sam.2019.3451 – volume: 86 year: 2005 ident: 10.1016/j.ceramint.2020.03.188_bib56 article-title: Identification of a determining parameter for resistive switching of TiO2 thin films publication-title: Appl. Phys. Lett. doi: 10.1063/1.1968416 – volume: 91 year: 2007 ident: 10.1016/j.ceramint.2020.03.188_bib17 article-title: High speed resistive switching in Pt/TiO2/TiN film for nonvolatile memory application publication-title: Appl. Phys. Lett. doi: 10.1063/1.2818691 – volume: 8 start-page: 66 year: 2006 ident: 10.1016/j.ceramint.2020.03.188_bib33 article-title: Physical vapor deposition method for the high-throughput synthesis of solid-state material libraries publication-title: Combin. Chem. doi: 10.1021/cc050117p – volume: 86 year: 2005 ident: 10.1016/j.ceramint.2020.03.188_bib28 article-title: Identification of a determining parameter for resistive switching of TiO2 thin films publication-title: Appl. Phys. Lett. doi: 10.1063/1.1968416 |
SSID | ssj0016940 |
Score | 2.3950548 |
Snippet | Memory structures play a basic role in providing integrated circuits of powerful processing capabilities. Even most powerful processors have nothing to offer... |
SourceID | crossref elsevier |
SourceType | Enrichment Source Index Database Publisher |
StartPage | 16310 |
SubjectTerms | Combinatorial synthesis Non-volatile ReRAM Resistive switching (RS) TiO2 |
Title | Growth of amorphous, anatase and rutile phase TiO2 thin films on Pt/TiO2/SiO2/Si (SSTOP) substrate for resistive random access memory (ReRAM) device application |
URI | https://dx.doi.org/10.1016/j.ceramint.2020.03.188 |
Volume | 46 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1873-3956 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016940 issn: 0272-8842 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1873-3956 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016940 issn: 0272-8842 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-3956 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016940 issn: 0272-8842 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection customDbUrl: eissn: 1873-3956 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016940 issn: 0272-8842 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1873-3956 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0016940 issn: 0272-8842 databaseCode: AKRWK dateStart: 19950101 isFulltext: true providerName: Library Specific Holdings |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhvbSH0idN2oY55JBAHduSJdnHJTTdtORBdgO5GVmWWYe1vWzcQi_5LfmpnfEjbKGQQy82Fh5sNPL3zVjzYGyfx8gCyNReaFzg0dYa4WDhhUJlaF0rEXJKcD47V9Pr6PuNvNlix2MuDIVVDtjfY3qH1sOIP8ymvypLf4YOFT4p4pxKrqChQxnskaKwvqP7xzCPUCVR_59F45ePd29kCd8eWbc2VVlTTCUPqNhp2HVg-QdBbZDOySv2crAWYdK_0Gu25eo37MVGDcG37OEbOtLtApoCTNXgrKEr_wVMbVrkJzznsMa1tXSwWtDAvLzg0C7KGopyWd1BU8Nl69OoP-sPcDCbzS8uD-EOMaWrXQto2AK65QQHvxwgu-VNBaZrtQgVher-hoMrdzU5O4TcEfTAxr74O3Z98nV-PPWGtgueFTpuPaV1pjMTCGuU4LmIjdbSRDqgJNhCxC7MnQ0yKUXBM-0SLaJcySS3Seysjox4z7brpnYfGD7TFSIzNomUIEshC6R1kttYF7qwudxhcpzr1A41yak1xjIdg89u01FHKekoDUSKOtph_qPcqq_K8aREMqoy_Wt9pUgdT8ju_ofsR_acrvoA309su13_dJ_RjGmzvW6d7rFnk9Mf0_M_Cz_yyA |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFLagHAYHxIAJxsbeYQeQyJLYcZwcKwQrgxZEi8TNchxHDWqSqmST9t_sT91zk6BOQuKwSyI5enLk53zfe_H7QchXGiELIFM7vjKeY4_WLA5mjs_CBK3rkPnUJjgPR-HgIfjxyB_XyHmXC2PDKlvsbzB9idbtiNuupjvPc3eMDhXOFFBqS66gobNONgKOmNwjG_2r68Ho5TAhjIPmV4vAjx8FVhKFn75ps1BFXtqwSurZeqf-sgnLKxy1wjuXO2S7NRih37zTe7Jmyl2ytVJGcI_8-Y6-dD2FKgNVVLhw6M2fgSpVjRSF9xQWuL1mBuZTOzDJbynU07yELJ8Vz1CVcFe7dtQdNxc4GY8nt3en8IywsixfC2jbAnrmFhF-GUCCS6sC1LLbIhQ2Wvc3nNyb-_7wFFJj0QdWjsb3ycPlxeR84LSdFxzNRFQ7oRCJSJTHtAoZTVmkhOAqEJ7Ng81YZPzUaC_hnGU0ESYWLEhDHqc6jowWgWIfSK-sSnNAcE6TsUTpOAiZNRYSj2vDqY5EJjKd8kPCu7WWui1LbrtjzGQXf_YkOx1JqyPpMYk6OiTui9y8KczxpkTcqVL-s8Uksscbsh__Q_YLeTeYDG_kzdXo-ohs2idNvO8n0qsXP81ntGrq5LjdtX8BR231cw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Growth+of+amorphous%2C+anatase+and+rutile+phase+TiO2+thin+films+on+Pt%2FTiO2%2FSiO2%2FSi+%28SSTOP%29+substrate+for+resistive+random+access+memory+%28ReRAM%29+device+application&rft.jtitle=Ceramics+international&rft.au=Alsaiari%2C+Mabkhoot+A.&rft.au=Alhemiary%2C+Nabil+A.&rft.au=Umar%2C+Ahmad&rft.au=Hayden%2C+Brian+E.&rft.date=2020-07-01&rft.pub=Elsevier+Ltd&rft.issn=0272-8842&rft.eissn=1873-3956&rft.volume=46&rft.issue=10&rft.spage=16310&rft.epage=16320&rft_id=info:doi/10.1016%2Fj.ceramint.2020.03.188&rft.externalDocID=S0272884220308099 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-8842&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-8842&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-8842&client=summon |