Growth of amorphous, anatase and rutile phase TiO2 thin films on Pt/TiO2/SiO2/Si (SSTOP) substrate for resistive random access memory (ReRAM) device application

Memory structures play a basic role in providing integrated circuits of powerful processing capabilities. Even most powerful processors have nothing to offer without an accompanying memory and importantly, the development of mobile devices is dependent on the continual improvement of memory technolo...

Full description

Saved in:
Bibliographic Details
Published inCeramics international Vol. 46; no. 10; pp. 16310 - 16320
Main Authors Alsaiari, Mabkhoot A., Alhemiary, Nabil A., Umar, Ahmad, Hayden, Brian E.
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.07.2020
Subjects
Online AccessGet full text
ISSN0272-8842
1873-3956
DOI10.1016/j.ceramint.2020.03.188

Cover

Abstract Memory structures play a basic role in providing integrated circuits of powerful processing capabilities. Even most powerful processors have nothing to offer without an accompanying memory and importantly, the development of mobile devices is dependent on the continual improvement of memory technology. Herein, we report the synthesis of TiO2 thin films on SSTOP (Pt/TiO2/SiO2/Si) substrate via physical vapour deposition process for the first time. The layers consisted of Si, SiO2, TiO2 and Pt, hence the SSTOP shorthand is used throughout the text. Three different phases of TiO2 thin films were obtained, i.e. amorphous, anatase and rutile phases, by controlling the reaction parameters which were examined by x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), atomic force microscopy (AFM) and Raman-scattering spectroscopy in order to understand the crystallographic, morphological, compositional and scattering properties. The detailed studies confirmed the formation of various crystal phases of titania. The grown thin films on SSTOP substrates were further utilized to fabricate resistive random access memory (ReRAM) devices and the initial electrical screening was performed on capacitor-like structures which were prepared using platinum top electrodes (diameter = 250 μm) on a 14 × 14 array metal contact mask. Current-Voltage (I–V) measurements were implemented employing a range of current compliances (IC). The detailed electrical characterizations revealed that the forming field for a switchable unipolar device was found to be greatest on rutile titania and lowest on the amorphous titania phase. Similarity, the resistive contrast was greatest on the rutile titania phase and lowest on the anatase titania phase. Design for ReRAM device based on Pt/TiO2/SiO2/Si (SSTOP) substrate. [Display omitted]
AbstractList Memory structures play a basic role in providing integrated circuits of powerful processing capabilities. Even most powerful processors have nothing to offer without an accompanying memory and importantly, the development of mobile devices is dependent on the continual improvement of memory technology. Herein, we report the synthesis of TiO2 thin films on SSTOP (Pt/TiO2/SiO2/Si) substrate via physical vapour deposition process for the first time. The layers consisted of Si, SiO2, TiO2 and Pt, hence the SSTOP shorthand is used throughout the text. Three different phases of TiO2 thin films were obtained, i.e. amorphous, anatase and rutile phases, by controlling the reaction parameters which were examined by x-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), atomic force microscopy (AFM) and Raman-scattering spectroscopy in order to understand the crystallographic, morphological, compositional and scattering properties. The detailed studies confirmed the formation of various crystal phases of titania. The grown thin films on SSTOP substrates were further utilized to fabricate resistive random access memory (ReRAM) devices and the initial electrical screening was performed on capacitor-like structures which were prepared using platinum top electrodes (diameter = 250 μm) on a 14 × 14 array metal contact mask. Current-Voltage (I–V) measurements were implemented employing a range of current compliances (IC). The detailed electrical characterizations revealed that the forming field for a switchable unipolar device was found to be greatest on rutile titania and lowest on the amorphous titania phase. Similarity, the resistive contrast was greatest on the rutile titania phase and lowest on the anatase titania phase. Design for ReRAM device based on Pt/TiO2/SiO2/Si (SSTOP) substrate. [Display omitted]
Author Hayden, Brian E.
Umar, Ahmad
Alsaiari, Mabkhoot A.
Alhemiary, Nabil A.
Author_xml – sequence: 1
  givenname: Mabkhoot A.
  surname: Alsaiari
  fullname: Alsaiari, Mabkhoot A.
  email: mamalsaiari@nu.edu.sa
  organization: Department of Chemistry, Faculty of Science and Arts, Sharurah Branch, Najran University, Najran, Saudi Arabia
– sequence: 2
  givenname: Nabil A.
  surname: Alhemiary
  fullname: Alhemiary, Nabil A.
  organization: Department of Chemistry, Faculty of Science and Arts, Sharurah Branch, Najran University, Najran, Saudi Arabia
– sequence: 3
  givenname: Ahmad
  surname: Umar
  fullname: Umar, Ahmad
  email: ahmadumar786@gmail.com
  organization: Promising Centre for Sensors and Electronic Devices (PCSED), Najran University, Najran, 11001, Saudi Arabia
– sequence: 4
  givenname: Brian E.
  surname: Hayden
  fullname: Hayden, Brian E.
  organization: Department of Chemistry, University of Southampton, Highfield, Southampton, United Kingdom
BookMark eNqFkE9r4zAQxUVpYdNuv8IyxxbWjmzZlgw9bCnbP9CS0qRnIctjomBbRlKy9NvsR11l01566WUeDPzezHun5Hi0IxLyI6NpRrNqvkk1OjWYMaQ5zWlKWZoJcURmmeAsYXVZHZMZzXmeCFHk38ip9xsawbqgM_L3ztk_YQ22AzVYN63t1v8ENaqgPEZtwW2D6RGm9X6xMoscwtqM0Jl-8GBHeA7z_Xa-PAy4WC5Xi-dL8NvGB6cCQmcdOPTGB7NDcNHUDqC0Ru9hwHj1DS5e8OX66RJa3Bkd705Tb7QKxo7fyUmneo_n73pGXm9_r27uk8fF3cPN9WOiGRchqThveKMo06piecuE4rxUBad1zN8xgVmLmjZlybq84VhzVrRVWbe6Fqh5odgZuTr4ame9d9hJbcL_D2II08uMyn3bciM_2pb7tiVlMrYd8eoTPjkzKPf2NfjrAGIMtzPopNcGR42tcaiDbK35yuIfekOhrg
CitedBy_id crossref_primary_10_1016_j_tsf_2022_139375
crossref_primary_10_1021_acsanm_0c01648
crossref_primary_10_2139_ssrn_3967534
crossref_primary_10_3390_ma14195863
crossref_primary_10_1021_acsnano_1c01340
crossref_primary_10_1007_s13204_021_01709_7
crossref_primary_10_1016_j_molstruc_2021_132014
crossref_primary_10_1016_j_apsusc_2023_158240
crossref_primary_10_1016_j_porgcoat_2024_108659
crossref_primary_10_1007_s10971_023_06206_7
crossref_primary_10_1038_s41598_022_27371_9
crossref_primary_10_1021_acsomega_2c07701
crossref_primary_10_1088_2632_959X_ab9024
crossref_primary_10_1103_PhysRevB_106_035126
crossref_primary_10_3390_nano13071141
crossref_primary_10_3390_antiox13101209
crossref_primary_10_1007_s10904_023_02917_0
crossref_primary_10_1002_slct_202402362
crossref_primary_10_1016_j_jsamd_2024_100813
Cites_doi 10.1088/0957-4484/21/30/305203
10.1166/jno.2019.2204
10.1016/j.mee.2009.05.023
10.1007/s00339-011-6265-8
10.1063/1.2339032
10.1166/jno.2019.2554
10.1016/j.mee.2017.04.039
10.1016/j.ssi.2018.11.004
10.1103/PhysRevB.79.195317
10.1088/0957-4484/23/18/185202
10.1016/j.ceramint.2018.03.198
10.1080/10584587.2011.573726
10.1016/S0167-5729(02)00100-0
10.1016/j.cap.2017.10.005
10.1109/LED.2009.2021001
10.1016/0022-3697(81)90043-3
10.1109/TED.2009.2032597
10.1063/1.126902
10.1166/jno.2018.2145
10.1016/j.microrel.2013.11.013
10.3390/ma7032155
10.1016/j.mee.2015.04.044
10.1063/1.3224179
10.1016/S1369-7021(08)70119-6
10.1002/adma.200900375
10.1016/j.ijhydene.2012.06.089
10.1103/PhysRevB.75.045416
10.1063/1.2966141
10.1016/j.mee.2017.04.033
10.1166/jno.2018.2217
10.1016/j.jcis.2017.10.113
10.1016/j.apsusc.2015.01.133
10.1166/sam.2019.3451
10.1063/1.1968416
10.1063/1.2818691
10.1021/cc050117p
ContentType Journal Article
Copyright 2020 Elsevier Ltd and Techna Group S.r.l.
Copyright_xml – notice: 2020 Elsevier Ltd and Techna Group S.r.l.
DBID AAYXX
CITATION
DOI 10.1016/j.ceramint.2020.03.188
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1873-3956
EndPage 16320
ExternalDocumentID 10_1016_j_ceramint_2020_03_188
S0272884220308099
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1~.
1~5
29B
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JN
AABNK
AABXZ
AACTN
AAEDT
AAEDW
AAEPC
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
ABFNM
ABJNI
ABMAC
ABXDB
ABXRA
ABYKQ
ACDAQ
ACGFS
ACNNM
ACRLP
ADBBV
ADEZE
ADMUD
AEBSH
AEKER
AENEX
AEZYN
AFFNX
AFKWA
AFRZQ
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HVGLF
HZ~
IHE
J1W
KOM
M24
M41
MAGPM
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SDF
SDG
SES
SEW
SMS
SPC
SPCBC
SSM
SSZ
T5K
WUQ
XPP
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACLOT
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
CITATION
EFKBS
~HD
ID FETCH-LOGICAL-c378t-677b7ba03ca632d38a775a4709956f38e1dec0b553f2b7e9734d659dc98ec74a3
IEDL.DBID .~1
ISSN 0272-8842
IngestDate Wed Oct 01 04:16:43 EDT 2025
Thu Apr 24 22:56:10 EDT 2025
Fri Feb 23 02:47:06 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords Combinatorial synthesis
Resistive switching (RS)
TiO2
Non-volatile ReRAM
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-677b7ba03ca632d38a775a4709956f38e1dec0b553f2b7e9734d659dc98ec74a3
PageCount 11
ParticipantIDs crossref_citationtrail_10_1016_j_ceramint_2020_03_188
crossref_primary_10_1016_j_ceramint_2020_03_188
elsevier_sciencedirect_doi_10_1016_j_ceramint_2020_03_188
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2020
2020-07-00
PublicationDateYYYYMMDD 2020-07-01
PublicationDate_xml – month: 07
  year: 2020
  text: July 2020
PublicationDecade 2020
PublicationTitle Ceramics international
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Magyari, Tendulkar, Park, Lee, Nishi (bib24) 2011; 20
Rodriguez-Fernandez, Cagli, Perniola, Sune, Miranda (bib3) 2017; 178
Kim, Kim, Song, Seok, Lee, Yoon, Hwang (bib40) 2010; 21
Lelmini, Bruchhaus, Waser (bib50) 2011; 84
Rohde, Choi, Jeong, Choi, Zhao, Hwang (bib56) 2005; 86
Hossein Moaiyeri, Akbari, Moghaddam (bib22) 2018; 13
Marucco, Lemasson, Gautron (bib42) 1981; 42
Akinaga, Shima (bib53) 2010
Yang, Strachan, Miao, Zhang, Pickett, Ti, Ohlberg, Riberiro, Williams (bib44) 2011; 102
Marlasca, Ghenzi, Rozenberg, Levy (bib38) 2011; 98
Akinaga (bib55) 2011
Yoshida, Tsunoda, Noshiro, Sugiyama (bib17) 2007; 91
Mehonic, Munde, Ng, Buckwell, Montesi, Bosman, Shluger, Kenyon (bib27) 2017; 178
Do, Kwak, Bae, Jung, Im, Hong (bib23) 2009; 95
Wang, Wu, Gao, Zhang, Yang, Qiang (bib4) 2018; 187–188
Yang, Miao, Pickett, Ohlberg, Stewart, Lau, Williams (bib52) 2009; 20
Yoon, Lee, Kim, Song, Seok, Han, Yoon, Kim, Hwang (bib59) 2012; 23
Vidyut, Imran H, Higuchi, Huertas, Pham, Wang (bib1) 2014
Wang, Itoh, Tsuruoka, Aono, He, Hasegawa (bib13) 2018; 328
Barothiya, Dabhi, Patil (bib19) 2019; 14
Lanza (bib20) 2014; 7
Castrejon, Camacho (bib34) 2014; 27
Acharyya, Hazra, Bhattacharyya (bib46) 2014; 54
Jeong, Thomas, Katiyar, Scott (bib51) 2011; 124
Diebold (bib45) 2003; 48
Li, Wan, Qu, Du, Lin, Lin, Wang, Cazorla, Liu, Chu (bib9) 2018; 512
Hayden, Pletcher, Suchsland, Williams (bib31) 2009; 11
Hamzah, Ahmad, Tan, Ezaila Alias, Johari, Ismail (bib16) 2019; 14
Rohde, Choi, Jeong, Choi, Zhao, Hwang (bib28) 2005; 86
Stoneham, Hayes (bib43) 1985
Hisashiand, Hiroyuki (bib54) 2010
Robert, Samuel, Brian, Graeme (bib5) 2005
Wypych, Bobowska, Tracz, Opasinska, Kadlubowski, Kaliszewska, Grobelny, Wojciechowski (bib36) 2014; 9
Strachan, Yang, Montoro, Ospina, Ramirez, Kilcoyne, Ribeiro, Williams, S (bib39) 2013; 4
Siddik, Jung, Lee, Shin, Park, Lee, Kim, Hwang (bib47) 2011; 99
Kelly, Polak, Tomkiewicz (bib49) 1997; 101
Kim, Choi, Shin, Choi, Hwang (bib61) 2007; 91
Kim, Rhee (bib63) 2010; 87
Kim, Song, Seok, Lee, Yoon, Hwang (bib37) 2010; 21
Rainer, Georgi, Kristof (bib6) 2009; 21
Gul (bib11) 2018; 44
Singh Rathore, Prakash, Kaur (bib14) 2018; 18
Yoshida, Kinoshita, Yamasaki, Sugiyama (bib18) 2008; 93
Mazza, Barborini, Piseri, Milani, Cattaneo, Li Bassi, Bottani, Ducati (bib35) 2007; 75
Pan, Cheng, Chen, Li, Zhou, Xie (bib26) 2019; 11
Samual, Brian (bib33) 2006; 8
Cerri, Nagami, Davies, Mormiche, Vecoven, Hayden (bib12) 2013; 38
Wei, Simon W (bib7) 2009; 30
Schiavello (bib30) 1997
Sharma, Kundu, Rahaman, Sarkar (bib25) 2018; 13
Jeong (bib58) 2008
Jeong, Schroeder, Waser (bib60) 2009; 79
Kinoshita, Tamura, Aoki, Sugiyama, Tanaka (bib62) 2006; 89
Jeong, Thomas, Katiyar, Scott (bib8) 2011; 124
Suchsland, Hayden (bib32) 2007
Wang, Fujita, Wong (bib57) 2009; 30
Sawa (bib48) 2008; 11
Chikako Yoshida, Noshiro, Sugiyama (bib41) 2007; 91
Calderoni, Sills, Cardon, Faraoni, Ramaswamy (bib2) 2015; 147
Blanka, Seong, Hyung, Yoshio (bib10) 2011; 22
Bousoulas, Giannopoulos, Giannakopoulos, Dimitrakis, Tsoukalas (bib21) 2015; 332
Beck, Bednorz, Gerber, Rossel, Widme (bib15) 2000; 77
Kim, Choi (bib29) 2009; 56
Hisashiand (10.1016/j.ceramint.2020.03.188_bib54) 2010
Magyari (10.1016/j.ceramint.2020.03.188_bib24) 2011; 20
Chikako Yoshida (10.1016/j.ceramint.2020.03.188_bib41) 2007; 91
Wang (10.1016/j.ceramint.2020.03.188_bib57) 2009; 30
Rodriguez-Fernandez (10.1016/j.ceramint.2020.03.188_bib3) 2017; 178
Suchsland (10.1016/j.ceramint.2020.03.188_bib32) 2007
Mehonic (10.1016/j.ceramint.2020.03.188_bib27) 2017; 178
Strachan (10.1016/j.ceramint.2020.03.188_bib39) 2013; 4
Yoshida (10.1016/j.ceramint.2020.03.188_bib18) 2008; 93
Diebold (10.1016/j.ceramint.2020.03.188_bib45) 2003; 48
Calderoni (10.1016/j.ceramint.2020.03.188_bib2) 2015; 147
Hamzah (10.1016/j.ceramint.2020.03.188_bib16) 2019; 14
Kim (10.1016/j.ceramint.2020.03.188_bib63) 2010; 87
Jeong (10.1016/j.ceramint.2020.03.188_bib51) 2011; 124
Yang (10.1016/j.ceramint.2020.03.188_bib44) 2011; 102
Wang (10.1016/j.ceramint.2020.03.188_bib13) 2018; 328
Akinaga (10.1016/j.ceramint.2020.03.188_bib55) 2011
Hayden (10.1016/j.ceramint.2020.03.188_bib31) 2009; 11
Li (10.1016/j.ceramint.2020.03.188_bib9) 2018; 512
Gul (10.1016/j.ceramint.2020.03.188_bib11) 2018; 44
Hossein Moaiyeri (10.1016/j.ceramint.2020.03.188_bib22) 2018; 13
Wei (10.1016/j.ceramint.2020.03.188_bib7) 2009; 30
Pan (10.1016/j.ceramint.2020.03.188_bib26) 2019; 11
Robert (10.1016/j.ceramint.2020.03.188_bib5) 2005
Bousoulas (10.1016/j.ceramint.2020.03.188_bib21) 2015; 332
Marlasca (10.1016/j.ceramint.2020.03.188_bib38) 2011; 98
Kelly (10.1016/j.ceramint.2020.03.188_bib49) 1997; 101
Barothiya (10.1016/j.ceramint.2020.03.188_bib19) 2019; 14
Singh Rathore (10.1016/j.ceramint.2020.03.188_bib14) 2018; 18
Siddik (10.1016/j.ceramint.2020.03.188_bib47) 2011; 99
Yoshida (10.1016/j.ceramint.2020.03.188_bib17) 2007; 91
Kim (10.1016/j.ceramint.2020.03.188_bib37) 2010; 21
Cerri (10.1016/j.ceramint.2020.03.188_bib12) 2013; 38
Sharma (10.1016/j.ceramint.2020.03.188_bib25) 2018; 13
Schiavello (10.1016/j.ceramint.2020.03.188_bib30) 1997
Marucco (10.1016/j.ceramint.2020.03.188_bib42) 1981; 42
Rohde (10.1016/j.ceramint.2020.03.188_bib28) 2005; 86
Jeong (10.1016/j.ceramint.2020.03.188_bib8) 2011; 124
Castrejon (10.1016/j.ceramint.2020.03.188_bib34) 2014; 27
Kim (10.1016/j.ceramint.2020.03.188_bib40) 2010; 21
Wypych (10.1016/j.ceramint.2020.03.188_bib36) 2014; 9
Acharyya (10.1016/j.ceramint.2020.03.188_bib46) 2014; 54
Rainer (10.1016/j.ceramint.2020.03.188_bib6) 2009; 21
Jeong (10.1016/j.ceramint.2020.03.188_bib60) 2009; 79
Stoneham (10.1016/j.ceramint.2020.03.188_bib43) 1985
Wang (10.1016/j.ceramint.2020.03.188_bib4) 2018; 187–188
Jeong (10.1016/j.ceramint.2020.03.188_bib58) 2008
Beck (10.1016/j.ceramint.2020.03.188_bib15) 2000; 77
Samual (10.1016/j.ceramint.2020.03.188_bib33) 2006; 8
Lanza (10.1016/j.ceramint.2020.03.188_bib20) 2014; 7
Kinoshita (10.1016/j.ceramint.2020.03.188_bib62) 2006; 89
Yang (10.1016/j.ceramint.2020.03.188_bib52) 2009; 20
Mazza (10.1016/j.ceramint.2020.03.188_bib35) 2007; 75
Lelmini (10.1016/j.ceramint.2020.03.188_bib50) 2011; 84
Do (10.1016/j.ceramint.2020.03.188_bib23) 2009; 95
Blanka (10.1016/j.ceramint.2020.03.188_bib10) 2011; 22
Yoon (10.1016/j.ceramint.2020.03.188_bib59) 2012; 23
Kim (10.1016/j.ceramint.2020.03.188_bib29) 2009; 56
Rohde (10.1016/j.ceramint.2020.03.188_bib56) 2005; 86
Akinaga (10.1016/j.ceramint.2020.03.188_bib53) 2010
Sawa (10.1016/j.ceramint.2020.03.188_bib48) 2008; 11
Vidyut (10.1016/j.ceramint.2020.03.188_bib1) 2014
Kim (10.1016/j.ceramint.2020.03.188_bib61) 2007; 91
References_xml – volume: 86
  year: 2005
  ident: bib56
  article-title: Identification of a determining parameter for resistive switching of TiO2 thin films
  publication-title: Appl. Phys. Lett.
– year: 2007
  ident: bib32
  article-title: Partical Size and Substrate Effect in Electrocatalysis
– volume: 27
  start-page: 88
  year: 2014
  end-page: 92
  ident: bib34
  article-title: Quantification of phase content in TiO2 thin films by Raman spectroscopy
  publication-title: Sociedad Mexicana de Ciencia y Tecnología de Superficies y Materiales
– volume: 102
  year: 2011
  ident: bib44
  article-title: Metal/TiO
  publication-title: Appl. Phys.
– volume: 56
  start-page: 3049
  year: 2009
  end-page: 3053
  ident: bib29
  article-title: A comprehensive study of the resistive switching mechanism in Al/TiO
  publication-title: IEEE Trans. Electron. Dev.
– volume: 48
  start-page: 53
  year: 2003
  end-page: 229
  ident: bib45
  article-title: The surface science of titanium dioxide
  publication-title: Surf. Sci. Rep.
– year: 2011
  ident: bib55
  article-title: Recent Advance and Prospects in ReRAM Technology
– volume: 89
  year: 2006
  ident: bib62
  article-title: Bias polarity dependent data retention of resistive random access memory consisting of binary transition metal oxide
  publication-title: Appl. Phys. Lett.
– volume: 95
  year: 2009
  ident: bib23
  article-title: Hysteretic bipolar resistive switching characteristics in TiO
  publication-title: Appl. Phys. Lett.
– volume: 20
  year: 2011
  ident: bib24
  article-title: Resistive switching mechanisms in random access memory devices incorporating transition metal oxides: TiO
  publication-title: Nanotechnology
– year: 2005
  ident: bib5
  article-title: High throughput synthesis and screening of chalcogenide materials for data storage
  publication-title: International Chemistry Conference Singapore
– volume: 22
  year: 2011
  ident: bib10
  article-title: Resistive switching mechanisms in random access memory devices incorporating transition metal oxides: TiO
  publication-title: Nanotechnology
– volume: 21
  year: 2010
  ident: bib37
  article-title: Electrically configurable electroforming and bipolar resistive switching in Pt/TiO2/Pt structures
  publication-title: Nanotechnology
– volume: 91
  year: 2007
  ident: bib17
  article-title: High speed resistive switching in Pt/TiO
  publication-title: Appl. Phys. Lett.
– volume: 21
  start-page: 2632
  year: 2009
  end-page: 2663
  ident: bib6
  article-title: Redox-based resistive switching memories nanoionic mechanisms, prospects, and challenges
  publication-title: Adv. Mater.
– volume: 42
  start-page: 363
  year: 1981
  end-page: 367
  ident: bib42
  article-title: Thermogravimetric and electrical study of nonstoichiometric titanium dioxide TiO2−x, between 800 and 1100°C
  publication-title: J. Phys. Chem. Solid.
– volume: 101
  start-page: 2730
  year: 1997
  end-page: 2734
  ident: bib49
  article-title: Raman spectroscopy as a morphological probe for TiO2 aerogels
  publication-title: Phys. Chem.
– volume: 124
  start-page: 87
  year: 2011
  end-page: 96
  ident: bib51
  article-title: Overview on the Resistive switching in TiO2 solid electrolyte
  publication-title: Korea Inst. Sci. Technol.
– year: 2008
  ident: bib58
  article-title: Resistive Switching in Pt/TiO2/Pt
– volume: 328
  start-page: 30
  year: 2018
  end-page: 34
  ident: bib13
  article-title: Oxygen vacancy drift controlled three-terminal ReRAM with a reduction in operating gate bias and gate leakage current
  publication-title: Solid State Ionics
– volume: 21
  year: 2010
  ident: bib40
  article-title: Electrically configurable electroforming and bipolar resistive switching in Pt/TiO2/Pt structures
  publication-title: Nanotechnology
– volume: 4
  start-page: 467
  year: 2013
  end-page: 473
  ident: bib39
  article-title: Characterization of electroforming-free titanium dioxide memristors
  publication-title: Nanotechnology
– volume: 38
  start-page: 640
  year: 2013
  end-page: 645
  ident: bib12
  article-title: Innovative catalyst supports to address fuel cell stack durability
  publication-title: Int. J. Hydrogen Energy
– volume: 44
  start-page: 11417
  year: 2018
  end-page: 11423
  ident: bib11
  article-title: Carrier transport mechanism and bipolar resistive switching behavior of a nano-scale thin film TiO2 memristor
  publication-title: Ceram. Int.
– volume: 9
  year: 2014
  ident: bib36
  article-title: Dielectric properties and characterisation of titanium dioxide obtained by different chemistry methods
  publication-title: J. Nanomater.
– volume: 23
  year: 2012
  ident: bib59
  article-title: Memristive Tri-stable resistive switching at ruptured conducting filaments of a Pt/TiO2/Pt cell
  publication-title: Nanotechnology
– volume: 30
  start-page: 733
  year: 2009
  end-page: 735
  ident: bib57
  article-title: RESET mechanism of TiOx resistance-change memory device
  publication-title: IEEE Electron. Device Lett.
– volume: 13
  start-page: 245
  year: 2018
  end-page: 250
  ident: bib25
  article-title: Study of TMR with different ferromagnetic material and variations in spin-split, thicknessand oxide barrier height of a MTJ memory device
  publication-title: J. Nanoelectron. Optoelectron.
– volume: 11
  start-page: 392
  year: 2019
  end-page: 395
  ident: bib26
  article-title: A wire-like UV detector based on TiO
  publication-title: Sci. Adv. Mater.
– volume: 11
  start-page: 9141
  year: 2009
  end-page: 9148
  ident: bib31
  article-title: The influence of support and particle size on the platinum catalysed oxygen reduction reaction
  publication-title: Phys. Chem.
– volume: 20
  year: 2009
  ident: bib52
  article-title: The Mechanism of electroforming of metal oxide memristive switches
  publication-title: Nanotechnology
– volume: 13
  start-page: 617
  year: 2018
  end-page: 627
  ident: bib22
  article-title: An ultra-low-power and robust ternary static random access memory cell based on carbon nanotube FETs
  publication-title: J. Nanoelectron. Optoelectron.
– volume: 98
  year: 2011
  ident: bib38
  article-title: Understanding electroforming in bipolar resistive switching oxides
  publication-title: Appl. Phys. Lett.
– volume: 84
  start-page: 570
  year: 2011
  end-page: 602
  ident: bib50
  article-title: Thermochemical resistive switching: materials, mechanisms, and scaling projections", Phase
  publication-title: Transitions
– volume: 178
  start-page: 61
  year: 2017
  end-page: 65
  ident: bib3
  article-title: Effect of the voltage ramp rate on the set and reset voltages of ReRAM devices
  publication-title: Microelectron. Eng.
– volume: 91
  year: 2007
  ident: bib41
  article-title: High speed resistive switching in Pt TiO
  publication-title: Appl. Phys. Lett.
– volume: 18
  start-page: 102
  year: 2018
  end-page: 106
  ident: bib14
  article-title: Effect of AlN layer on the resistive switching properties of TiO2 based ReRAM memory devices
  publication-title: Curr. Appl. Phys.
– volume: 11
  start-page: 28
  year: 2008
  end-page: 36
  ident: bib48
  article-title: Resistive switching in transition metal oxides
  publication-title: Mater. Today Off.
– year: 2010
  ident: bib53
  article-title: Resistive random access memory (ReRAM) Based on metal oxides
  publication-title: Proceedings of Nanodevice Innovation Conference
– year: 1997
  ident: bib30
  article-title: Heterogeneous Photocatalysis
– volume: 332
  start-page: 55
  year: 2015
  end-page: 61
  ident: bib21
  article-title: Memory programming of TiO
  publication-title: Appl. Surf. Sci.
– volume: 93
  year: 2008
  ident: bib18
  article-title: Direct observation of oxygen movement during resistance switching in NiO/Pt film
  publication-title: Appl. Phys. Lett.
– volume: 147
  start-page: 145
  year: 2015
  end-page: 150
  ident: bib2
  article-title: Engineering ReRAM for high-density applications
  publication-title: Microelectron. Eng.
– year: 1985
  ident: bib43
  article-title: Defect and Defect Process in Nonmetallic Solids
– volume: 8
  start-page: 66
  year: 2006
  end-page: 73
  ident: bib33
  article-title: Physical vapor deposition method for the high-throughput synthesis of solid-state material libraries
  publication-title: Combin. Chem.
– year: 2014
  ident: bib1
  article-title: Less Methods and Vehicles for High Productivity Combinatorial Testing of Materials for Resistive Random Access Memory Cells
– volume: 14
  start-page: 1195
  year: 2019
  end-page: 1214
  ident: bib16
  article-title: Scaling challenges of floating gate non-volatile memory and graphene as the future flash memory device: a review
  publication-title: J. Nanoelectron. Optoelectron.
– volume: 512
  start-page: 767
  year: 2018
  end-page: 774
  ident: bib9
  article-title: Digital to analog resistive switching transition induced by graphene buffer layer in strontium titanate based devices
  publication-title: J. Colloid Interface Sci
– volume: 79
  year: 2009
  ident: bib60
  article-title: Mechanism for bipolar Switching in a Pt/TiO2/Pt resistive switching cell
  publication-title: Phys. Rev.
– volume: 14
  start-page: 606
  year: 2019
  end-page: 613
  ident: bib19
  article-title: A novel channel engineered continuous floating gate MOSFET for memory applications
  publication-title: J. Nanoelectron. Optoelectron.
– volume: 77
  start-page: 139
  year: 2000
  end-page: 141
  ident: bib15
  article-title: Reproducible switching effect in thin oxide films for memory applications
  publication-title: Appl. Phys. Lett.
– year: 2010
  ident: bib54
  article-title: Basics of RRAM based on transition metal oxides; nanodevice innovation research center
  publication-title: International Symposium on Advanced Gate Stack Technology
– volume: 178
  start-page: 98
  year: 2017
  end-page: 103
  ident: bib27
  article-title: Intrinsic resistance switching in amorphous silicon oxide for high performance SiOx ReRAM devices
  publication-title: Microelectron. Eng.
– volume: 75
  year: 2007
  ident: bib35
  article-title: Raman spectroscopy characterization of TiO2 rutile nanocrystals
  publication-title: . B
– volume: 54
  start-page: 541
  year: 2014
  end-page: 560
  ident: bib46
  article-title: A journey towards reliability improvement of TiO
  publication-title: Rev. Microelec
– volume: 91
  year: 2007
  ident: bib61
  article-title: Anode-interface localized filamentary mechanism in resistive switching of TiO
  publication-title: Appl. Phys. Lett.
– volume: 7
  start-page: 2155
  year: 2014
  end-page: 2182
  ident: bib20
  article-title: A review on resistive switching in high-k dielectrics: a nanoscale point of view using conductive atomic force microscope
  publication-title: Materials
– volume: 30
  start-page: 333
  year: 2009
  end-page: 337
  ident: bib7
  article-title: RESET mechanism of TiOx resistance-change memory device
  publication-title: IEEE Electron. Device Lett.
– volume: 87
  start-page: 98
  year: 2010
  end-page: 103
  ident: bib63
  article-title: Effect of the top electrode material on the resistive switching of TiO
  publication-title: Microelectron. Eng.
– volume: 86
  year: 2005
  ident: bib28
  article-title: Identification of a determining parameter for resistive switching of TiO
  publication-title: Appl. Phys. Lett.
– volume: 187–188
  start-page: 121
  year: 2018
  end-page: 133
  ident: bib4
  article-title: Conduction mechanisms, dynamics and stability in ReRAMs
  publication-title: Microelectron. Eng.
– volume: 99
  year: 2011
  ident: bib47
  article-title: Thermally assisted resistive switching in Pr0.7Ca0.3MnO
  publication-title: Appl. Phys.
– volume: 124
  start-page: 87
  year: 2011
  end-page: 96
  ident: bib8
  article-title: Overview on the resistive switching in TiO2 solid electrolyte
  publication-title: J. Integrated. Ferroelectrics
– year: 2007
  ident: 10.1016/j.ceramint.2020.03.188_bib32
– volume: 21
  year: 2010
  ident: 10.1016/j.ceramint.2020.03.188_bib37
  article-title: Electrically configurable electroforming and bipolar resistive switching in Pt/TiO2/Pt structures
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/21/30/305203
– volume: 14
  start-page: 1195
  year: 2019
  ident: 10.1016/j.ceramint.2020.03.188_bib16
  article-title: Scaling challenges of floating gate non-volatile memory and graphene as the future flash memory device: a review
  publication-title: J. Nanoelectron. Optoelectron.
  doi: 10.1166/jno.2019.2204
– volume: 9
  year: 2014
  ident: 10.1016/j.ceramint.2020.03.188_bib36
  article-title: Dielectric properties and characterisation of titanium dioxide obtained by different chemistry methods
  publication-title: J. Nanomater.
– volume: 87
  start-page: 98
  issue: 2
  year: 2010
  ident: 10.1016/j.ceramint.2020.03.188_bib63
  article-title: Effect of the top electrode material on the resistive switching of TiO2 thin film
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2009.05.023
– volume: 102
  year: 2011
  ident: 10.1016/j.ceramint.2020.03.188_bib44
  article-title: Metal/TiO2 interfaces for memristive switches
  publication-title: Appl. Phys.
  doi: 10.1007/s00339-011-6265-8
– volume: 89
  year: 2006
  ident: 10.1016/j.ceramint.2020.03.188_bib62
  article-title: Bias polarity dependent data retention of resistive random access memory consisting of binary transition metal oxide
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2339032
– volume: 30
  start-page: 333
  year: 2009
  ident: 10.1016/j.ceramint.2020.03.188_bib7
  article-title: RESET mechanism of TiOx resistance-change memory device
  publication-title: IEEE Electron. Device Lett.
– volume: 21
  year: 2010
  ident: 10.1016/j.ceramint.2020.03.188_bib40
  article-title: Electrically configurable electroforming and bipolar resistive switching in Pt/TiO2/Pt structures
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/21/30/305203
– volume: 14
  start-page: 606
  year: 2019
  ident: 10.1016/j.ceramint.2020.03.188_bib19
  article-title: A novel channel engineered continuous floating gate MOSFET for memory applications
  publication-title: J. Nanoelectron. Optoelectron.
  doi: 10.1166/jno.2019.2554
– volume: 178
  start-page: 61
  year: 2017
  ident: 10.1016/j.ceramint.2020.03.188_bib3
  article-title: Effect of the voltage ramp rate on the set and reset voltages of ReRAM devices
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2017.04.039
– volume: 328
  start-page: 30
  year: 2018
  ident: 10.1016/j.ceramint.2020.03.188_bib13
  article-title: Oxygen vacancy drift controlled three-terminal ReRAM with a reduction in operating gate bias and gate leakage current
  publication-title: Solid State Ionics
  doi: 10.1016/j.ssi.2018.11.004
– volume: 11
  start-page: 9141
  year: 2009
  ident: 10.1016/j.ceramint.2020.03.188_bib31
  article-title: The influence of support and particle size on the platinum catalysed oxygen reduction reaction
  publication-title: Phys. Chem.
– year: 2008
  ident: 10.1016/j.ceramint.2020.03.188_bib58
– volume: 124
  start-page: 87
  year: 2011
  ident: 10.1016/j.ceramint.2020.03.188_bib51
  article-title: Overview on the Resistive switching in TiO2 solid electrolyte
  publication-title: Korea Inst. Sci. Technol.
– volume: 79
  year: 2009
  ident: 10.1016/j.ceramint.2020.03.188_bib60
  article-title: Mechanism for bipolar Switching in a Pt/TiO2/Pt resistive switching cell
  publication-title: Phys. Rev.
  doi: 10.1103/PhysRevB.79.195317
– volume: 23
  year: 2012
  ident: 10.1016/j.ceramint.2020.03.188_bib59
  article-title: Memristive Tri-stable resistive switching at ruptured conducting filaments of a Pt/TiO2/Pt cell
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/23/18/185202
– volume: 101
  start-page: 2730
  year: 1997
  ident: 10.1016/j.ceramint.2020.03.188_bib49
  article-title: Raman spectroscopy as a morphological probe for TiO2 aerogels
  publication-title: Phys. Chem.
– volume: 44
  start-page: 11417
  year: 2018
  ident: 10.1016/j.ceramint.2020.03.188_bib11
  article-title: Carrier transport mechanism and bipolar resistive switching behavior of a nano-scale thin film TiO2 memristor
  publication-title: Ceram. Int.
  doi: 10.1016/j.ceramint.2018.03.198
– year: 2005
  ident: 10.1016/j.ceramint.2020.03.188_bib5
  article-title: High throughput synthesis and screening of chalcogenide materials for data storage
– volume: 124
  start-page: 87
  year: 2011
  ident: 10.1016/j.ceramint.2020.03.188_bib8
  article-title: Overview on the resistive switching in TiO2 solid electrolyte
  publication-title: J. Integrated. Ferroelectrics
  doi: 10.1080/10584587.2011.573726
– volume: 4
  start-page: 467
  year: 2013
  ident: 10.1016/j.ceramint.2020.03.188_bib39
  article-title: Characterization of electroforming-free titanium dioxide memristors
  publication-title: Nanotechnology
– year: 2010
  ident: 10.1016/j.ceramint.2020.03.188_bib53
  article-title: Resistive random access memory (ReRAM) Based on metal oxides
– volume: 48
  start-page: 53
  year: 2003
  ident: 10.1016/j.ceramint.2020.03.188_bib45
  article-title: The surface science of titanium dioxide
  publication-title: Surf. Sci. Rep.
  doi: 10.1016/S0167-5729(02)00100-0
– volume: 18
  start-page: 102
  year: 2018
  ident: 10.1016/j.ceramint.2020.03.188_bib14
  article-title: Effect of AlN layer on the resistive switching properties of TiO2 based ReRAM memory devices
  publication-title: Curr. Appl. Phys.
  doi: 10.1016/j.cap.2017.10.005
– volume: 30
  start-page: 733
  year: 2009
  ident: 10.1016/j.ceramint.2020.03.188_bib57
  article-title: RESET mechanism of TiOx resistance-change memory device
  publication-title: IEEE Electron. Device Lett.
  doi: 10.1109/LED.2009.2021001
– volume: 98
  year: 2011
  ident: 10.1016/j.ceramint.2020.03.188_bib38
  article-title: Understanding electroforming in bipolar resistive switching oxides
  publication-title: Appl. Phys. Lett.
– volume: 91
  year: 2007
  ident: 10.1016/j.ceramint.2020.03.188_bib61
  article-title: Anode-interface localized filamentary mechanism in resistive switching of TiO2 thin films
  publication-title: Appl. Phys. Lett.
– volume: 42
  start-page: 363
  issue: 5
  year: 1981
  ident: 10.1016/j.ceramint.2020.03.188_bib42
  article-title: Thermogravimetric and electrical study of nonstoichiometric titanium dioxide TiO2−x, between 800 and 1100°C
  publication-title: J. Phys. Chem. Solid.
  doi: 10.1016/0022-3697(81)90043-3
– volume: 56
  start-page: 3049
  year: 2009
  ident: 10.1016/j.ceramint.2020.03.188_bib29
  article-title: A comprehensive study of the resistive switching mechanism in Al/TiOx/TiO2/Al-structured RRAM
  publication-title: IEEE Trans. Electron. Dev.
  doi: 10.1109/TED.2009.2032597
– volume: 91
  issue: 22
  year: 2007
  ident: 10.1016/j.ceramint.2020.03.188_bib41
  article-title: High speed resistive switching in Pt TiO2 Ti N film for nonvolatile memory application
  publication-title: Appl. Phys. Lett.
– volume: 77
  start-page: 139
  year: 2000
  ident: 10.1016/j.ceramint.2020.03.188_bib15
  article-title: Reproducible switching effect in thin oxide films for memory applications
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.126902
– volume: 13
  start-page: 617
  year: 2018
  ident: 10.1016/j.ceramint.2020.03.188_bib22
  article-title: An ultra-low-power and robust ternary static random access memory cell based on carbon nanotube FETs
  publication-title: J. Nanoelectron. Optoelectron.
  doi: 10.1166/jno.2018.2145
– volume: 54
  start-page: 541
  year: 2014
  ident: 10.1016/j.ceramint.2020.03.188_bib46
  article-title: A journey towards reliability improvement of TiO2 based resistive random access memory
  publication-title: Rev. Microelec
  doi: 10.1016/j.microrel.2013.11.013
– year: 1997
  ident: 10.1016/j.ceramint.2020.03.188_bib30
– volume: 7
  start-page: 2155
  year: 2014
  ident: 10.1016/j.ceramint.2020.03.188_bib20
  article-title: A review on resistive switching in high-k dielectrics: a nanoscale point of view using conductive atomic force microscope
  publication-title: Materials
  doi: 10.3390/ma7032155
– volume: 27
  start-page: 88
  year: 2014
  ident: 10.1016/j.ceramint.2020.03.188_bib34
  article-title: Quantification of phase content in TiO2 thin films by Raman spectroscopy
  publication-title: Sociedad Mexicana de Ciencia y Tecnología de Superficies y Materiales
– year: 1985
  ident: 10.1016/j.ceramint.2020.03.188_bib43
– volume: 147
  start-page: 145
  year: 2015
  ident: 10.1016/j.ceramint.2020.03.188_bib2
  article-title: Engineering ReRAM for high-density applications
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2015.04.044
– volume: 95
  year: 2009
  ident: 10.1016/j.ceramint.2020.03.188_bib23
  article-title: Hysteretic bipolar resistive switching characteristics in TiO2/TiO2−x multilayer homojunctions
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3224179
– volume: 84
  start-page: 570
  issue: 7
  year: 2011
  ident: 10.1016/j.ceramint.2020.03.188_bib50
  article-title: Thermochemical resistive switching: materials, mechanisms, and scaling projections", Phase
  publication-title: Transitions
– volume: 11
  start-page: 28
  issue: 6
  year: 2008
  ident: 10.1016/j.ceramint.2020.03.188_bib48
  article-title: Resistive switching in transition metal oxides
  publication-title: Mater. Today Off.
  doi: 10.1016/S1369-7021(08)70119-6
– volume: 21
  start-page: 2632
  year: 2009
  ident: 10.1016/j.ceramint.2020.03.188_bib6
  article-title: Redox-based resistive switching memories nanoionic mechanisms, prospects, and challenges
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200900375
– volume: 20
  year: 2011
  ident: 10.1016/j.ceramint.2020.03.188_bib24
  article-title: Resistive switching mechanisms in random access memory devices incorporating transition metal oxides: TiO2, NiO and Pr0.7Ca0.3MnO3
  publication-title: Nanotechnology
– volume: 20
  year: 2009
  ident: 10.1016/j.ceramint.2020.03.188_bib52
  article-title: The Mechanism of electroforming of metal oxide memristive switches
  publication-title: Nanotechnology
– year: 2010
  ident: 10.1016/j.ceramint.2020.03.188_bib54
  article-title: Basics of RRAM based on transition metal oxides; nanodevice innovation research center
– volume: 38
  start-page: 640
  year: 2013
  ident: 10.1016/j.ceramint.2020.03.188_bib12
  article-title: Innovative catalyst supports to address fuel cell stack durability
  publication-title: Int. J. Hydrogen Energy
  doi: 10.1016/j.ijhydene.2012.06.089
– year: 2014
  ident: 10.1016/j.ceramint.2020.03.188_bib1
– year: 2011
  ident: 10.1016/j.ceramint.2020.03.188_bib55
– volume: 75
  year: 2007
  ident: 10.1016/j.ceramint.2020.03.188_bib35
  article-title: Raman spectroscopy characterization of TiO2 rutile nanocrystals
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.75.045416
– volume: 93
  year: 2008
  ident: 10.1016/j.ceramint.2020.03.188_bib18
  article-title: Direct observation of oxygen movement during resistance switching in NiO/Pt film
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2966141
– volume: 99
  year: 2011
  ident: 10.1016/j.ceramint.2020.03.188_bib47
  article-title: Thermally assisted resistive switching in Pr0.7Ca0.3MnO3/Ti/Ge2Sb2Te5 stack for nonvolatile memory applications
  publication-title: Appl. Phys.
– volume: 178
  start-page: 98
  year: 2017
  ident: 10.1016/j.ceramint.2020.03.188_bib27
  article-title: Intrinsic resistance switching in amorphous silicon oxide for high performance SiOx ReRAM devices
  publication-title: Microelectron. Eng.
  doi: 10.1016/j.mee.2017.04.033
– volume: 13
  start-page: 245
  year: 2018
  ident: 10.1016/j.ceramint.2020.03.188_bib25
  article-title: Study of TMR with different ferromagnetic material and variations in spin-split, thicknessand oxide barrier height of a MTJ memory device
  publication-title: J. Nanoelectron. Optoelectron.
  doi: 10.1166/jno.2018.2217
– volume: 187–188
  start-page: 121
  year: 2018
  ident: 10.1016/j.ceramint.2020.03.188_bib4
  article-title: Conduction mechanisms, dynamics and stability in ReRAMs
  publication-title: Microelectron. Eng.
– volume: 512
  start-page: 767
  year: 2018
  ident: 10.1016/j.ceramint.2020.03.188_bib9
  article-title: Digital to analog resistive switching transition induced by graphene buffer layer in strontium titanate based devices
  publication-title: J. Colloid Interface Sci
  doi: 10.1016/j.jcis.2017.10.113
– volume: 332
  start-page: 55
  year: 2015
  ident: 10.1016/j.ceramint.2020.03.188_bib21
  article-title: Memory programming of TiO2−x films by conductive atomic force microscopy evidencing filamentary resistive switching
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2015.01.133
– volume: 22
  issue: 25
  year: 2011
  ident: 10.1016/j.ceramint.2020.03.188_bib10
  article-title: Resistive switching mechanisms in random access memory devices incorporating transition metal oxides: TiO2, NiO and Pr0.7Ca0.3MnO3
  publication-title: Nanotechnology
– volume: 11
  start-page: 392
  year: 2019
  ident: 10.1016/j.ceramint.2020.03.188_bib26
  article-title: A wire-like UV detector based on TiO2-coated ZnO nanotube Arrays
  publication-title: Sci. Adv. Mater.
  doi: 10.1166/sam.2019.3451
– volume: 86
  year: 2005
  ident: 10.1016/j.ceramint.2020.03.188_bib56
  article-title: Identification of a determining parameter for resistive switching of TiO2 thin films
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1968416
– volume: 91
  year: 2007
  ident: 10.1016/j.ceramint.2020.03.188_bib17
  article-title: High speed resistive switching in Pt/TiO2/TiN film for nonvolatile memory application
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.2818691
– volume: 8
  start-page: 66
  year: 2006
  ident: 10.1016/j.ceramint.2020.03.188_bib33
  article-title: Physical vapor deposition method for the high-throughput synthesis of solid-state material libraries
  publication-title: Combin. Chem.
  doi: 10.1021/cc050117p
– volume: 86
  year: 2005
  ident: 10.1016/j.ceramint.2020.03.188_bib28
  article-title: Identification of a determining parameter for resistive switching of TiO2 thin films
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.1968416
SSID ssj0016940
Score 2.3950548
Snippet Memory structures play a basic role in providing integrated circuits of powerful processing capabilities. Even most powerful processors have nothing to offer...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 16310
SubjectTerms Combinatorial synthesis
Non-volatile ReRAM
Resistive switching (RS)
TiO2
Title Growth of amorphous, anatase and rutile phase TiO2 thin films on Pt/TiO2/SiO2/Si (SSTOP) substrate for resistive random access memory (ReRAM) device application
URI https://dx.doi.org/10.1016/j.ceramint.2020.03.188
Volume 46
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1873-3956
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016940
  issn: 0272-8842
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1873-3956
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016940
  issn: 0272-8842
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-3956
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016940
  issn: 0272-8842
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection
  customDbUrl:
  eissn: 1873-3956
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016940
  issn: 0272-8842
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1873-3956
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0016940
  issn: 0272-8842
  databaseCode: AKRWK
  dateStart: 19950101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1La9wwEBYhvbSH0idN2oY55JBAHduSJdnHJTTdtORBdgO5GVmWWYe1vWzcQi_5LfmpnfEjbKGQQy82Fh5sNPL3zVjzYGyfx8gCyNReaFzg0dYa4WDhhUJlaF0rEXJKcD47V9Pr6PuNvNlix2MuDIVVDtjfY3qH1sOIP8ymvypLf4YOFT4p4pxKrqChQxnskaKwvqP7xzCPUCVR_59F45ePd29kCd8eWbc2VVlTTCUPqNhp2HVg-QdBbZDOySv2crAWYdK_0Gu25eo37MVGDcG37OEbOtLtApoCTNXgrKEr_wVMbVrkJzznsMa1tXSwWtDAvLzg0C7KGopyWd1BU8Nl69OoP-sPcDCbzS8uD-EOMaWrXQto2AK65QQHvxwgu-VNBaZrtQgVher-hoMrdzU5O4TcEfTAxr74O3Z98nV-PPWGtgueFTpuPaV1pjMTCGuU4LmIjdbSRDqgJNhCxC7MnQ0yKUXBM-0SLaJcySS3Seysjox4z7brpnYfGD7TFSIzNomUIEshC6R1kttYF7qwudxhcpzr1A41yak1xjIdg89u01FHKekoDUSKOtph_qPcqq_K8aREMqoy_Wt9pUgdT8ju_ofsR_acrvoA309su13_dJ_RjGmzvW6d7rFnk9Mf0_M_Cz_yyA
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3PT9swFLagHAYHxIAJxsbeYQeQyJLYcZwcKwQrgxZEi8TNchxHDWqSqmST9t_sT91zk6BOQuKwSyI5enLk53zfe_H7QchXGiELIFM7vjKeY4_WLA5mjs_CBK3rkPnUJjgPR-HgIfjxyB_XyHmXC2PDKlvsbzB9idbtiNuupjvPc3eMDhXOFFBqS66gobNONgKOmNwjG_2r68Ho5TAhjIPmV4vAjx8FVhKFn75ps1BFXtqwSurZeqf-sgnLKxy1wjuXO2S7NRih37zTe7Jmyl2ytVJGcI_8-Y6-dD2FKgNVVLhw6M2fgSpVjRSF9xQWuL1mBuZTOzDJbynU07yELJ8Vz1CVcFe7dtQdNxc4GY8nt3en8IywsixfC2jbAnrmFhF-GUCCS6sC1LLbIhQ2Wvc3nNyb-_7wFFJj0QdWjsb3ycPlxeR84LSdFxzNRFQ7oRCJSJTHtAoZTVmkhOAqEJ7Ng81YZPzUaC_hnGU0ESYWLEhDHqc6jowWgWIfSK-sSnNAcE6TsUTpOAiZNRYSj2vDqY5EJjKd8kPCu7WWui1LbrtjzGQXf_YkOx1JqyPpMYk6OiTui9y8KczxpkTcqVL-s8Uksscbsh__Q_YLeTeYDG_kzdXo-ohs2idNvO8n0qsXP81ntGrq5LjdtX8BR231cw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Growth+of+amorphous%2C+anatase+and+rutile+phase+TiO2+thin+films+on+Pt%2FTiO2%2FSiO2%2FSi+%28SSTOP%29+substrate+for+resistive+random+access+memory+%28ReRAM%29+device+application&rft.jtitle=Ceramics+international&rft.au=Alsaiari%2C+Mabkhoot+A.&rft.au=Alhemiary%2C+Nabil+A.&rft.au=Umar%2C+Ahmad&rft.au=Hayden%2C+Brian+E.&rft.date=2020-07-01&rft.pub=Elsevier+Ltd&rft.issn=0272-8842&rft.eissn=1873-3956&rft.volume=46&rft.issue=10&rft.spage=16310&rft.epage=16320&rft_id=info:doi/10.1016%2Fj.ceramint.2020.03.188&rft.externalDocID=S0272884220308099
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-8842&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-8842&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-8842&client=summon