Percolative proton transport in hexagonal boron nitride membranes with edge-functionalization

Two-dimensional layered materials have been used as matrices to study the structure and dynamics of trapped water and ions. Here, we demonstrate unique features of proton transport in layered hexagonal boron nitride membranes with edge-functionalization subject to hydration. The hydration-independen...

Full description

Saved in:
Bibliographic Details
Published inNanoscale advances Vol. 5; no. 18; p. 491
Main Authors Das, Anjan, Yadav, Vikas, Krishnamurthy, C. V, Jaiswal, Manu
Format Journal Article
LanguageEnglish
Published RSC 12.09.2023
Subjects
Online AccessGet full text
ISSN2516-0230
2516-0230
DOI10.1039/d3na00524k

Cover

Abstract Two-dimensional layered materials have been used as matrices to study the structure and dynamics of trapped water and ions. Here, we demonstrate unique features of proton transport in layered hexagonal boron nitride membranes with edge-functionalization subject to hydration. The hydration-independent interlayer spacing indicates the absence of water intercalation between the h-BN sheets. An 18-fold increase in water sorption is observed upon amine functionalization of h-BN sheet edges. A 7-orders of magnitude increase in proton conductivity is observed with less than 5% water loading attributable to edge-conduction channels. The extremely low percolation threshold and non-universal critical exponents (2.90 ≤ α ≤ 4.43), are clear signatures of transport along the functionalized edges. Anomalous thickness dependence of conductivity is observed and its plausible origin is discussed. An extremely low percolation threshold and non-universal critical exponents are unique aspects of proton transport along the amine-functionalized edges of hexagonal boron nitrides.
AbstractList Two-dimensional layered materials have been used as matrices to study the structure and dynamics of trapped water and ions. Here, we demonstrate unique features of proton transport in layered hexagonal boron nitride membranes with edge-functionalization subject to hydration. The hydration-independent interlayer spacing indicates the absence of water intercalation between the h-BN sheets. An 18-fold increase in water sorption is observed upon amine functionalization of h-BN sheet edges. A 7-orders of magnitude increase in proton conductivity is observed with less than 5% water loading attributable to edge-conduction channels. The extremely low percolation threshold and non-universal critical exponents (2.90 ≤ α ≤ 4.43), are clear signatures of transport along the functionalized edges. Anomalous thickness dependence of conductivity is observed and its plausible origin is discussed.
Two-dimensional layered materials have been used as matrices to study the structure and dynamics of trapped water and ions. Here, we demonstrate unique features of proton transport in layered hexagonal boron nitride membranes with edge-functionalization subject to hydration. The hydration-independent interlayer spacing indicates the absence of water intercalation between the h-BN sheets. An 18-fold increase in water sorption is observed upon amine functionalization of h-BN sheet edges. A 7-orders of magnitude increase in proton conductivity is observed with less than 5% water loading attributable to edge-conduction channels. The extremely low percolation threshold and non-universal critical exponents (2.90 ≤ α ≤ 4.43), are clear signatures of transport along the functionalized edges. Anomalous thickness dependence of conductivity is observed and its plausible origin is discussed. An extremely low percolation threshold and non-universal critical exponents are unique aspects of proton transport along the amine-functionalized edges of hexagonal boron nitrides.
Two-dimensional layered materials have been used as matrices to study the structure and dynamics of trapped water and ions. Here, we demonstrate unique features of proton transport in layered hexagonal boron nitride membranes with edge-functionalization subject to hydration. The hydration-independent interlayer spacing indicates the absence of water intercalation between the h-BN sheets. An 18-fold increase in water sorption is observed upon amine functionalization of h-BN sheet edges. A 7-orders of magnitude increase in proton conductivity is observed with less than 5% water loading attributable to edge-conduction channels. The extremely low percolation threshold and non-universal critical exponents (2.90 ≤ α ≤ 4.43), are clear signatures of transport along the functionalized edges. Anomalous thickness dependence of conductivity is observed and its plausible origin is discussed. An extremely low percolation threshold and non-universal critical exponents are unique aspects of proton transport along the amine-functionalized edges of hexagonal boron nitrides.
Two-dimensional layered materials have been used as matrices to study the structure and dynamics of trapped water and ions. Here, we demonstrate unique features of proton transport in layered hexagonal boron nitride membranes with edge-functionalization subject to hydration. The hydration-independent interlayer spacing indicates the absence of water intercalation between the h-BN sheets. An 18-fold increase in water sorption is observed upon amine functionalization of h-BN sheet edges. A 7-orders of magnitude increase in proton conductivity is observed with less than 5% water loading attributable to edge-conduction channels. The extremely low percolation threshold and non-universal critical exponents (2.90 ≤ α ≤ 4.43), are clear signatures of transport along the functionalized edges. Anomalous thickness dependence of conductivity is observed and its plausible origin is discussed.Two-dimensional layered materials have been used as matrices to study the structure and dynamics of trapped water and ions. Here, we demonstrate unique features of proton transport in layered hexagonal boron nitride membranes with edge-functionalization subject to hydration. The hydration-independent interlayer spacing indicates the absence of water intercalation between the h-BN sheets. An 18-fold increase in water sorption is observed upon amine functionalization of h-BN sheet edges. A 7-orders of magnitude increase in proton conductivity is observed with less than 5% water loading attributable to edge-conduction channels. The extremely low percolation threshold and non-universal critical exponents (2.90 ≤ α ≤ 4.43), are clear signatures of transport along the functionalized edges. Anomalous thickness dependence of conductivity is observed and its plausible origin is discussed.
Author Yadav, Vikas
Jaiswal, Manu
Das, Anjan
Krishnamurthy, C. V
AuthorAffiliation Indian Institute of Technology Madras
Department of Physics
AuthorAffiliation_xml – sequence: 0
  name: Department of Physics
– sequence: 0
  name: Indian Institute of Technology Madras
Author_xml – sequence: 1
  givenname: Anjan
  surname: Das
  fullname: Das, Anjan
– sequence: 2
  givenname: Vikas
  surname: Yadav
  fullname: Yadav, Vikas
– sequence: 3
  givenname: C. V
  surname: Krishnamurthy
  fullname: Krishnamurthy, C. V
– sequence: 4
  givenname: Manu
  surname: Jaiswal
  fullname: Jaiswal, Manu
BookMark eNptkM1LxDAQxYMoqKsX70KPolSTptu0J5H1E0U96FFKmkx3o21Sk1Rd_3qzrvh9moH5vce8t4oWtdGA0AbBuwTTYk9SzTEeJunDAlpJhiSLcULx4rd9Ga07d48xTkiapqxYQXfXYIVpuFdPEHXWeKMjb7l2nbE-UjqawAsfG82bqDI2HLXyVkmIWmirwIGLnpWfRCDHENe9Fl7NYPXKZ8saWqp542D9Yw7Q7fHRzeg0vrg6ORsdXMSCstzHGeYkTSRLGM1lJSkT9VBywmoiKpbnQ4kJkRlUrKAhCqOMQc1kUlCgmagZpQO0M_ftdcenz7xpys6qlttpSXA5K6f8KifQ-3O666sWpAAdEn8pDFflz4tWk3JsnoJRWmQFKYLD1oeDNY89OF-2yglomlCI6V2Z5FmaFyzPSEC356iwxjkL9Z_PDunlwftn5wHGv2Ch_HuT4Q_V_C_ZnEusE5_W38K-AdnSp88
CitedBy_id crossref_primary_10_1016_j_surfrep_2024_100637
crossref_primary_10_1021_acsnano_4c12051
Cites_doi 10.1039/D2CP03095K
10.1039/C6CP08923B
10.1021/jp110985w
10.1038/s41565-020-0695-4
10.1016/0005-2736(73)90437-9
10.1021/nn5014808
10.1016/S0378-4371(02)01367-5
10.1038/nature14015
10.1021/nn501661p
10.1021/acsomega.9b02866
10.1021/ja401060q
10.1201/9781315274386
10.1126/science.1245711
10.5006/1.3280607
10.1021/ja402727d
10.1103/PhysRevB.76.024205
10.1021/ja3080665
10.1149/1.2976305
10.1103/PhysRevApplied.5.054017
10.1039/C5CP02410B
10.1039/D1CP03962H
10.1038/ncomms8602
10.1021/acs.accounts.6b00617
10.1002/adma.202207374
10.1039/C9TA12293A
10.1007/BF02376083
10.1021/ja308167f
10.1021/acsanm.9b02427
10.1038/s41467-018-04294-6
10.1115/1.4024177
10.1021/jp907979v
10.1039/D0NA00190B
10.1021/acs.jpclett.5b01895
10.1126/science.aan5275
10.1039/D2NR00262K
10.1021/jacs.7b12784
10.1007/BF00617828
10.1007/s10853-020-05513-6
10.1021/ja200838c
10.1126/science.aat4191
10.1038/nnano.2017.21
10.1021/jp072958n
10.1021/jacs.6b11100
10.1038/ncomms9849
10.1016/j.matchemphys.2022.125845
10.1063/1.4922731
10.1016/S0921-4526(99)00670-5
10.1073/pnas.0801448105
10.5006/1.3293628
10.1103/PhysRevB.56.1236
10.1038/s41467-019-12314-2
10.1063/1.5078665
10.1039/C9NR03094H
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
This journal is © The Royal Society of Chemistry 2023 RSC
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: This journal is © The Royal Society of Chemistry 2023 RSC
DBID AAYXX
CITATION
7X8
5PM
ADTOC
UNPAY
DOI 10.1039/d3na00524k
DatabaseName CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList CrossRef


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2516-0230
EndPage 491
ExternalDocumentID 10.1039/d3na00524k
PMC10496919
10_1039_D3NA00524K
d3na00524k
GrantInformation_xml – fundername: ;
  grantid: SB-2021-0793-PH-MHRD-008657; SB-2223-1263-PHETWO-008657
– fundername: ;
  grantid: SP-2122-1194-PH-ISRO-008508
– fundername: ;
  grantid: RF-2021-0669-PH-RFER-008508
GroupedDBID AAFWJ
ADBBV
ALMA_UNASSIGNED_HOLDINGS
ANUXI
BCNDV
C6K
EBS
GROUPED_DOAJ
H13
M~E
OK1
RPM
SMJ
AAYXX
AFPKN
CITATION
7X8
5PM
ADTOC
EJD
UNPAY
ID FETCH-LOGICAL-c378t-60a142d72738dbd37cf5da17f1cb7885d011d6eb7932517377ef7d293e36cf733
IEDL.DBID UNPAY
ISSN 2516-0230
IngestDate Wed Aug 20 00:17:44 EDT 2025
Tue Sep 30 17:23:42 EDT 2025
Fri Jul 11 04:26:23 EDT 2025
Thu Apr 24 22:51:22 EDT 2025
Tue Jul 01 04:28:20 EDT 2025
Tue Dec 17 20:58:43 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 18
Language English
License cc-by-nc
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-60a142d72738dbd37cf5da17f1cb7885d011d6eb7932517377ef7d293e36cf733
Notes https://doi.org/10.1039/d3na00524k
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-8997-4092
OpenAccessLink https://proxy.k.utb.cz/login?url=https://pubs.rsc.org/en/content/articlepdf/2023/na/d3na00524k
PQID 2864897861
PQPubID 23479
PageCount 1
ParticipantIDs crossref_citationtrail_10_1039_D3NA00524K
unpaywall_primary_10_1039_d3na00524k
pubmedcentral_primary_oai_pubmedcentral_nih_gov_10496919
crossref_primary_10_1039_D3NA00524K
rsc_primary_d3na00524k
proquest_miscellaneous_2864897861
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-12
PublicationDateYYYYMMDD 2023-09-12
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-12
  day: 12
PublicationDecade 2020
PublicationTitle Nanoscale advances
PublicationYear 2023
Publisher RSC
Publisher_xml – name: RSC
References Zhanshayeva (D3NA00524K/cit41/1) 2019; 4
Ren (D3NA00524K/cit26/1) 2021; 56
Chiteme (D3NA00524K/cit55/1) 2000; 279
Shao (D3NA00524K/cit11/1) 2015; 6
Lei (D3NA00524K/cit28/1) 2015; 6
Raidongia (D3NA00524K/cit20/1) 2012; 134
Huggins (D3NA00524K/cit42/1) 2002; 8
Chen (D3NA00524K/cit29/1) 2018; 9
Aoki (D3NA00524K/cit50/1) 2008; 11
Yadav (D3NA00524K/cit4/1) 2022; 24
Ren (D3NA00524K/cit14/1) 2015; 6
Wood (D3NA00524K/cit33/1) 2013; 80
Karim (D3NA00524K/cit31/1) 2013; 135
Cerveny (D3NA00524K/cit6/1) 2010; 114
Park (D3NA00524K/cit48/1) 2018; 140
Hu (D3NA00524K/cit22/1) 2014; 516
Naclerio (D3NA00524K/cit15/1) 2023; 35
Israelachvili (D3NA00524K/cit32/1) 2011
Celzard (D3NA00524K/cit53/1) 2003; 317
Sainsbury (D3NA00524K/cit35/1) 2007; 111
Köfinger (D3NA00524K/cit2/1) 2008; 105
Shi (D3NA00524K/cit18/1) 2022; 14
Yoon (D3NA00524K/cit23/1) 2020; 8
Hsu (D3NA00524K/cit43/1) 2001; 57
Kreuer (D3NA00524K/cit46/1) 1983; 32
Lei (D3NA00524K/cit37/1) 2011; 133
Wang (D3NA00524K/cit16/1) 2020; 2
Sun (D3NA00524K/cit47/1) 2022; 280
Qin (D3NA00524K/cit12/1) 2017; 139
Sainsbury (D3NA00524K/cit39/1) 2012; 134
Pranav (D3NA00524K/cit40/1) 2019; 125
Chakraborty (D3NA00524K/cit1/1) 2017; 50
Xu (D3NA00524K/cit49/1) 2013; 135
Shi (D3NA00524K/cit27/1) 2020; 3
Stauffer (D3NA00524K/cit45/1) 2018
Wahab (D3NA00524K/cit17/1) 2023
Kim (D3NA00524K/cit36/1) 2014; 8
Raghav (D3NA00524K/cit3/1) 2015; 17
Taylor (D3NA00524K/cit44/1) 1995; 51
Ghosh (D3NA00524K/cit13/1) 2015; 106
Fumagalli (D3NA00524K/cit5/1) 2018; 360
Esfandiar (D3NA00524K/cit8/1) 2017; 358
Abraham (D3NA00524K/cit9/1) 2017; 12
Joshi (D3NA00524K/cit7/1) 2014; 343
Yadav (D3NA00524K/cit21/1) 2019; 11
Kroes (D3NA00524K/cit19/1) 2017; 19
Tredgold (D3NA00524K/cit10/1) 1973; 323
Lin (D3NA00524K/cit34/1) 2011; 115
Berkemeier (D3NA00524K/cit51/1) 2007; 76
Comtet (D3NA00524K/cit25/1) 2020; 15
Wu (D3NA00524K/cit54/1) 1997; 56
Rajasekaran (D3NA00524K/cit30/1) 2022; 24
Mogg (D3NA00524K/cit24/1) 2019; 10
Aigner (D3NA00524K/cit52/1) 2016; 5
Weng (D3NA00524K/cit38/1) 2014; 8
References_xml – issn: 2018
  publication-title: Introduction to Percolation Theory
  doi: Stauffer Aharony
– issn: 2023
  publication-title: Proton Transport through Nanoscale Corrugations in Two-Dimensional Crystals
  doi: Wahab Daviddi Xin Sun Griffin Colburn Barry Yagmurcukardes Peeters Geim Lozada-Hidalgo Unwin
– issn: 2011
  end-page: p 291-340
  publication-title: Intermolecular and Surface Forces
  doi: Israelachvili
– volume: 24
  start-page: 26438
  year: 2022
  ident: D3NA00524K/cit4/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D2CP03095K
– volume: 19
  start-page: 5813
  year: 2017
  ident: D3NA00524K/cit19/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C6CP08923B
– volume-title: Proton Transport through Nanoscale Corrugations in Two-Dimensional Crystals
  year: 2023
  ident: D3NA00524K/cit17/1
– volume: 115
  start-page: 2679
  year: 2011
  ident: D3NA00524K/cit34/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp110985w
– volume: 15
  start-page: 598
  year: 2020
  ident: D3NA00524K/cit25/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/s41565-020-0695-4
– volume: 323
  start-page: 143
  year: 1973
  ident: D3NA00524K/cit10/1
  publication-title: Biochim. Biophys. Acta
  doi: 10.1016/0005-2736(73)90437-9
– volume: 8
  start-page: 6123
  year: 2014
  ident: D3NA00524K/cit38/1
  publication-title: ACS Nano
  doi: 10.1021/nn5014808
– volume: 317
  start-page: 305
  year: 2003
  ident: D3NA00524K/cit53/1
  publication-title: Phys. A
  doi: 10.1016/S0378-4371(02)01367-5
– volume: 516
  start-page: 227
  year: 2014
  ident: D3NA00524K/cit22/1
  publication-title: Nature
  doi: 10.1038/nature14015
– volume: 8
  start-page: 6211
  year: 2014
  ident: D3NA00524K/cit36/1
  publication-title: ACS Nano
  doi: 10.1021/nn501661p
– start-page: 291
  volume-title: Intermolecular and Surface Forces
  year: 2011
  ident: D3NA00524K/cit32/1
– volume: 4
  start-page: 21883
  year: 2019
  ident: D3NA00524K/cit41/1
  publication-title: ACS Omega
  doi: 10.1021/acsomega.9b02866
– volume: 135
  start-page: 8097
  year: 2013
  ident: D3NA00524K/cit31/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja401060q
– volume-title: Introduction to Percolation Theory
  year: 2018
  ident: D3NA00524K/cit45/1
  doi: 10.1201/9781315274386
– volume: 343
  start-page: 752
  year: 2014
  ident: D3NA00524K/cit7/1
  publication-title: science
  doi: 10.1126/science.1245711
– volume: 57
  start-page: 747
  year: 2001
  ident: D3NA00524K/cit43/1
  publication-title: Corrosion
  doi: 10.5006/1.3280607
– volume: 135
  start-page: 7438
  year: 2013
  ident: D3NA00524K/cit49/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja402727d
– volume: 76
  start-page: 024205
  year: 2007
  ident: D3NA00524K/cit51/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.76.024205
– volume: 134
  start-page: 18758
  year: 2012
  ident: D3NA00524K/cit39/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3080665
– volume: 11
  start-page: P13
  year: 2008
  ident: D3NA00524K/cit50/1
  publication-title: Electrochem. Solid-State Lett.
  doi: 10.1149/1.2976305
– volume: 5
  start-page: 054017
  year: 2016
  ident: D3NA00524K/cit52/1
  publication-title: Phys. Rev. Appl.
  doi: 10.1103/PhysRevApplied.5.054017
– volume: 17
  start-page: 20557
  year: 2015
  ident: D3NA00524K/cit3/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP02410B
– volume: 24
  start-page: 14909
  year: 2022
  ident: D3NA00524K/cit30/1
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D1CP03962H
– volume: 6
  start-page: 7602
  year: 2015
  ident: D3NA00524K/cit11/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8602
– volume: 50
  start-page: 2139
  year: 2017
  ident: D3NA00524K/cit1/1
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00617
– volume: 35
  start-page: 2207374
  year: 2023
  ident: D3NA00524K/cit15/1
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202207374
– volume: 8
  start-page: 2898
  year: 2020
  ident: D3NA00524K/cit23/1
  publication-title: J. Mater. Chem. A
  doi: 10.1039/C9TA12293A
– volume: 8
  start-page: 300
  year: 2002
  ident: D3NA00524K/cit42/1
  publication-title: Ionics
  doi: 10.1007/BF02376083
– volume: 134
  start-page: 16528
  year: 2012
  ident: D3NA00524K/cit20/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja308167f
– volume: 3
  start-page: 2310
  year: 2020
  ident: D3NA00524K/cit27/1
  publication-title: ACS Appl. Nano Mater.
  doi: 10.1021/acsanm.9b02427
– volume: 9
  start-page: 1902
  year: 2018
  ident: D3NA00524K/cit29/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04294-6
– volume: 80
  start-page: 040913
  year: 2013
  ident: D3NA00524K/cit33/1
  publication-title: J. Appl. Mech.
  doi: 10.1115/1.4024177
– volume: 114
  start-page: 2604
  year: 2010
  ident: D3NA00524K/cit6/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp907979v
– volume: 2
  start-page: 2507
  year: 2020
  ident: D3NA00524K/cit16/1
  publication-title: Nanoscale Adv.
  doi: 10.1039/D0NA00190B
– volume: 6
  start-page: 4026
  year: 2015
  ident: D3NA00524K/cit14/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.5b01895
– volume: 358
  start-page: 511
  year: 2017
  ident: D3NA00524K/cit8/1
  publication-title: Science
  doi: 10.1126/science.aan5275
– volume: 14
  start-page: 6518
  year: 2022
  ident: D3NA00524K/cit18/1
  publication-title: Nanoscale
  doi: 10.1039/D2NR00262K
– volume: 140
  start-page: 2016
  year: 2018
  ident: D3NA00524K/cit48/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b12784
– volume: 32
  start-page: 45
  year: 1983
  ident: D3NA00524K/cit46/1
  publication-title: Appl. Phys. A: Solids Surf.
  doi: 10.1007/BF00617828
– volume: 56
  start-page: 4053
  year: 2021
  ident: D3NA00524K/cit26/1
  publication-title: J. Mater. Sci.
  doi: 10.1007/s10853-020-05513-6
– volume: 133
  start-page: 7121
  year: 2011
  ident: D3NA00524K/cit37/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja200838c
– volume: 360
  start-page: 1339
  year: 2018
  ident: D3NA00524K/cit5/1
  publication-title: Science
  doi: 10.1126/science.aat4191
– volume: 12
  start-page: 546
  year: 2017
  ident: D3NA00524K/cit9/1
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2017.21
– volume: 111
  start-page: 12992
  year: 2007
  ident: D3NA00524K/cit35/1
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp072958n
– volume: 139
  start-page: 6314
  year: 2017
  ident: D3NA00524K/cit12/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b11100
– volume: 6
  start-page: 8849
  year: 2015
  ident: D3NA00524K/cit28/1
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms9849
– volume: 280
  start-page: 125845
  year: 2022
  ident: D3NA00524K/cit47/1
  publication-title: Mater. Chem. Phys.
  doi: 10.1016/j.matchemphys.2022.125845
– volume: 106
  start-page: 241902
  year: 2015
  ident: D3NA00524K/cit13/1
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4922731
– volume: 279
  start-page: 69
  year: 2000
  ident: D3NA00524K/cit55/1
  publication-title: Phys. B
  doi: 10.1016/S0921-4526(99)00670-5
– volume: 105
  start-page: 13218
  year: 2008
  ident: D3NA00524K/cit2/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0801448105
– volume: 51
  start-page: 664
  year: 1995
  ident: D3NA00524K/cit44/1
  publication-title: Corrosion
  doi: 10.5006/1.3293628
– volume: 56
  start-page: 1236
  year: 1997
  ident: D3NA00524K/cit54/1
  publication-title: Phys. Rev. B: Condens. Matter Mater. Phys.
  doi: 10.1103/PhysRevB.56.1236
– volume: 10
  start-page: 4243
  year: 2019
  ident: D3NA00524K/cit24/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-019-12314-2
– volume: 125
  start-page: 024303
  year: 2019
  ident: D3NA00524K/cit40/1
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.5078665
– volume: 11
  start-page: 12755
  year: 2019
  ident: D3NA00524K/cit21/1
  publication-title: Nanoscale
  doi: 10.1039/C9NR03094H
SSID ssj0002144479
Score 2.256283
Snippet Two-dimensional layered materials have been used as matrices to study the structure and dynamics of trapped water and ions. Here, we demonstrate unique...
SourceID unpaywall
pubmedcentral
proquest
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 491
SubjectTerms Chemistry
Title Percolative proton transport in hexagonal boron nitride membranes with edge-functionalization
URI https://www.proquest.com/docview/2864897861
https://pubmed.ncbi.nlm.nih.gov/PMC10496919
https://pubs.rsc.org/en/content/articlepdf/2023/na/d3na00524k
UnpaywallVersion publishedVersion
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2516-0230
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002144479
  issn: 2516-0230
  databaseCode: DOA
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2516-0230
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002144479
  issn: 2516-0230
  databaseCode: M~E
  dateStart: 20180101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 2516-0230
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002144479
  issn: 2516-0230
  databaseCode: RPM
  dateStart: 20190101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6x3QNw4CFYER6VEXvhkLauEzs5VsBqBaLaA5WWA4riR3ar7bpVm4rHr2fGSdvtwgFxzjgae_yYb8b-BuDYDB068orHFmdMnBiJa65Mk5gycunQGTkIZDqfx_J0knw8T8_buzn0FgaVWPWWq4Yi2CF8J44mX_fbcVzYiuC66Puyb4UvKaqZXB3AoaT8UgcOJ-Oz0VcqKJdyulwrBhtKUpHfaLB_CO08y9v3Ig9Qk_twd-0X5c_v5Wx24-g5edjUVw1KhxsnV711rXvm1y0-x__u1SN40DqlbNTIPYY7zj-Bb2duibMkEIMzonOYe1ZvqNDZ1LNL96O8IEeeaaJBYLg5LKfWsWt3jRAct1BGQV5GAbuYjs8m6ti--3wKk5MPX96dxm0xhtgIldWxHJQ8GVpydzKrrVCmSm3JVcWNRhidWtworHQa1zuxoAmlXKUsOhNOSFMpIY6g4-fePQPGNW4zlUWoh93kAURVidBcaXIX7SCCtxvrFKZlKqeCGbMiZMxFXrwX41EYpE8RvNnKLhp-jr9Kvd4YucDlQzkRHIb5elUMM5lkiKQljyDbs_72d0TAvf_FTy8DETdC2VzmPI_gCI27bbAzYQTH27nzh3o7sef_JvYC7tEsiUMBi5fQqZdr9wpdolp3QyihG2JV3XYR_AZPrA_g
linkProvider Unpaywall
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-x7gF4YCCYCGPIiL3wkLauEzt5rIBpAlHtgUrjAUXxR1i1zq3aVDD-eu6ctF0HD4jnnKOz73y-851_B3BiBg4decVjixoTJ0binivTJKaMXDpwRvYDmM7nkTwbJx8v0ou2NofewiATy-5i2UAEOwzfCaPJ1712Hee2onBd9HzZs8KXdKuZXO3BvqT8Ugf2x6Pz4VdqKJdyKq4V_TUkqchvDdg9hLae5d26yD3k5CHcX_l5efOjnE5vHT2nB01_1cB0qDi56q5q3TW_7uA5_vesHsOj1illw4buCdxz_il8O3cL1JIADM4IzmHmWb2GQmcTzy7dz_I7OfJMEwwCQ-OwmFjHrt01huBoQhld8jK6sIvp-GxuHdt3n89gfPrhy7uzuG3GEBuhsjqW_ZInA0vuTma1FcpUqS25qrjRGEanFg2FlU7jficUNKGUq5RFZ8IJaSolxCF0_My758C4RjNTWQz1cJo8BFFVIjRXmtxF24_g7Vo6hWmRyqlhxrQIGXORF-_FaBgW6VMEbza08waf469Ur9dCLnD7UE4El2G2WhaDTCYZRtKSR5DtSH_zOwLg3v3iJ5cBiBtD2VzmPI_gEIW7GbAVYQQnG935g70t2Yt_IzuCB6QlcWhg8RI69WLljtElqvWrVvF_A6KlDds
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Percolative+proton+transport+in+hexagonal+boron+nitride+membranes+with+edge-functionalization&rft.jtitle=Nanoscale+advances&rft.au=Das%2C+Anjan&rft.au=Yadav%2C+Vikas&rft.au=Krishnamurthy%2C+C.+V.&rft.au=Jaiswal%2C+Manu&rft.date=2023-09-12&rft.issn=2516-0230&rft.eissn=2516-0230&rft.volume=5&rft.issue=18&rft.spage=4901&rft.epage=4910&rft_id=info:doi/10.1039%2FD3NA00524K&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D3NA00524K
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2516-0230&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2516-0230&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2516-0230&client=summon