Percolative proton transport in hexagonal boron nitride membranes with edge-functionalization
Two-dimensional layered materials have been used as matrices to study the structure and dynamics of trapped water and ions. Here, we demonstrate unique features of proton transport in layered hexagonal boron nitride membranes with edge-functionalization subject to hydration. The hydration-independen...
Saved in:
Published in | Nanoscale advances Vol. 5; no. 18; p. 491 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
RSC
12.09.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2516-0230 2516-0230 |
DOI | 10.1039/d3na00524k |
Cover
Abstract | Two-dimensional layered materials have been used as matrices to study the structure and dynamics of trapped water and ions. Here, we demonstrate unique features of proton transport in layered hexagonal boron nitride membranes with edge-functionalization subject to hydration. The hydration-independent interlayer spacing indicates the absence of water intercalation between the h-BN sheets. An 18-fold increase in water sorption is observed upon amine functionalization of h-BN sheet edges. A 7-orders of magnitude increase in proton conductivity is observed with less than 5% water loading attributable to edge-conduction channels. The extremely low percolation threshold and non-universal critical exponents (2.90 ≤
α
≤ 4.43), are clear signatures of transport along the functionalized edges. Anomalous thickness dependence of conductivity is observed and its plausible origin is discussed.
An extremely low percolation threshold and non-universal critical exponents are unique aspects of proton transport along the amine-functionalized edges of hexagonal boron nitrides. |
---|---|
AbstractList | Two-dimensional layered materials have been used as matrices to study the structure and dynamics of trapped water and ions. Here, we demonstrate unique features of proton transport in layered hexagonal boron nitride membranes with edge-functionalization subject to hydration. The hydration-independent interlayer spacing indicates the absence of water intercalation between the h-BN sheets. An 18-fold increase in water sorption is observed upon amine functionalization of h-BN sheet edges. A 7-orders of magnitude increase in proton conductivity is observed with less than 5% water loading attributable to edge-conduction channels. The extremely low percolation threshold and non-universal critical exponents (2.90 ≤
α
≤ 4.43), are clear signatures of transport along the functionalized edges. Anomalous thickness dependence of conductivity is observed and its plausible origin is discussed. Two-dimensional layered materials have been used as matrices to study the structure and dynamics of trapped water and ions. Here, we demonstrate unique features of proton transport in layered hexagonal boron nitride membranes with edge-functionalization subject to hydration. The hydration-independent interlayer spacing indicates the absence of water intercalation between the h-BN sheets. An 18-fold increase in water sorption is observed upon amine functionalization of h-BN sheet edges. A 7-orders of magnitude increase in proton conductivity is observed with less than 5% water loading attributable to edge-conduction channels. The extremely low percolation threshold and non-universal critical exponents (2.90 ≤ α ≤ 4.43), are clear signatures of transport along the functionalized edges. Anomalous thickness dependence of conductivity is observed and its plausible origin is discussed. An extremely low percolation threshold and non-universal critical exponents are unique aspects of proton transport along the amine-functionalized edges of hexagonal boron nitrides. Two-dimensional layered materials have been used as matrices to study the structure and dynamics of trapped water and ions. Here, we demonstrate unique features of proton transport in layered hexagonal boron nitride membranes with edge-functionalization subject to hydration. The hydration-independent interlayer spacing indicates the absence of water intercalation between the h-BN sheets. An 18-fold increase in water sorption is observed upon amine functionalization of h-BN sheet edges. A 7-orders of magnitude increase in proton conductivity is observed with less than 5% water loading attributable to edge-conduction channels. The extremely low percolation threshold and non-universal critical exponents (2.90 ≤ α ≤ 4.43), are clear signatures of transport along the functionalized edges. Anomalous thickness dependence of conductivity is observed and its plausible origin is discussed. An extremely low percolation threshold and non-universal critical exponents are unique aspects of proton transport along the amine-functionalized edges of hexagonal boron nitrides. Two-dimensional layered materials have been used as matrices to study the structure and dynamics of trapped water and ions. Here, we demonstrate unique features of proton transport in layered hexagonal boron nitride membranes with edge-functionalization subject to hydration. The hydration-independent interlayer spacing indicates the absence of water intercalation between the h-BN sheets. An 18-fold increase in water sorption is observed upon amine functionalization of h-BN sheet edges. A 7-orders of magnitude increase in proton conductivity is observed with less than 5% water loading attributable to edge-conduction channels. The extremely low percolation threshold and non-universal critical exponents (2.90 ≤ α ≤ 4.43), are clear signatures of transport along the functionalized edges. Anomalous thickness dependence of conductivity is observed and its plausible origin is discussed.Two-dimensional layered materials have been used as matrices to study the structure and dynamics of trapped water and ions. Here, we demonstrate unique features of proton transport in layered hexagonal boron nitride membranes with edge-functionalization subject to hydration. The hydration-independent interlayer spacing indicates the absence of water intercalation between the h-BN sheets. An 18-fold increase in water sorption is observed upon amine functionalization of h-BN sheet edges. A 7-orders of magnitude increase in proton conductivity is observed with less than 5% water loading attributable to edge-conduction channels. The extremely low percolation threshold and non-universal critical exponents (2.90 ≤ α ≤ 4.43), are clear signatures of transport along the functionalized edges. Anomalous thickness dependence of conductivity is observed and its plausible origin is discussed. |
Author | Yadav, Vikas Jaiswal, Manu Das, Anjan Krishnamurthy, C. V |
AuthorAffiliation | Indian Institute of Technology Madras Department of Physics |
AuthorAffiliation_xml | – sequence: 0 name: Department of Physics – sequence: 0 name: Indian Institute of Technology Madras |
Author_xml | – sequence: 1 givenname: Anjan surname: Das fullname: Das, Anjan – sequence: 2 givenname: Vikas surname: Yadav fullname: Yadav, Vikas – sequence: 3 givenname: C. V surname: Krishnamurthy fullname: Krishnamurthy, C. V – sequence: 4 givenname: Manu surname: Jaiswal fullname: Jaiswal, Manu |
BookMark | eNptkM1LxDAQxYMoqKsX70KPolSTptu0J5H1E0U96FFKmkx3o21Sk1Rd_3qzrvh9moH5vce8t4oWtdGA0AbBuwTTYk9SzTEeJunDAlpJhiSLcULx4rd9Ga07d48xTkiapqxYQXfXYIVpuFdPEHXWeKMjb7l2nbE-UjqawAsfG82bqDI2HLXyVkmIWmirwIGLnpWfRCDHENe9Fl7NYPXKZ8saWqp542D9Yw7Q7fHRzeg0vrg6ORsdXMSCstzHGeYkTSRLGM1lJSkT9VBywmoiKpbnQ4kJkRlUrKAhCqOMQc1kUlCgmagZpQO0M_ftdcenz7xpys6qlttpSXA5K6f8KifQ-3O666sWpAAdEn8pDFflz4tWk3JsnoJRWmQFKYLD1oeDNY89OF-2yglomlCI6V2Z5FmaFyzPSEC356iwxjkL9Z_PDunlwftn5wHGv2Ch_HuT4Q_V_C_ZnEusE5_W38K-AdnSp88 |
CitedBy_id | crossref_primary_10_1016_j_surfrep_2024_100637 crossref_primary_10_1021_acsnano_4c12051 |
Cites_doi | 10.1039/D2CP03095K 10.1039/C6CP08923B 10.1021/jp110985w 10.1038/s41565-020-0695-4 10.1016/0005-2736(73)90437-9 10.1021/nn5014808 10.1016/S0378-4371(02)01367-5 10.1038/nature14015 10.1021/nn501661p 10.1021/acsomega.9b02866 10.1021/ja401060q 10.1201/9781315274386 10.1126/science.1245711 10.5006/1.3280607 10.1021/ja402727d 10.1103/PhysRevB.76.024205 10.1021/ja3080665 10.1149/1.2976305 10.1103/PhysRevApplied.5.054017 10.1039/C5CP02410B 10.1039/D1CP03962H 10.1038/ncomms8602 10.1021/acs.accounts.6b00617 10.1002/adma.202207374 10.1039/C9TA12293A 10.1007/BF02376083 10.1021/ja308167f 10.1021/acsanm.9b02427 10.1038/s41467-018-04294-6 10.1115/1.4024177 10.1021/jp907979v 10.1039/D0NA00190B 10.1021/acs.jpclett.5b01895 10.1126/science.aan5275 10.1039/D2NR00262K 10.1021/jacs.7b12784 10.1007/BF00617828 10.1007/s10853-020-05513-6 10.1021/ja200838c 10.1126/science.aat4191 10.1038/nnano.2017.21 10.1021/jp072958n 10.1021/jacs.6b11100 10.1038/ncomms9849 10.1016/j.matchemphys.2022.125845 10.1063/1.4922731 10.1016/S0921-4526(99)00670-5 10.1073/pnas.0801448105 10.5006/1.3293628 10.1103/PhysRevB.56.1236 10.1038/s41467-019-12314-2 10.1063/1.5078665 10.1039/C9NR03094H |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry. This journal is © The Royal Society of Chemistry 2023 RSC |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: This journal is © The Royal Society of Chemistry 2023 RSC |
DBID | AAYXX CITATION 7X8 5PM ADTOC UNPAY |
DOI | 10.1039/d3na00524k |
DatabaseName | CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) Unpaywall for CDI: Periodical Content Unpaywall |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2516-0230 |
EndPage | 491 |
ExternalDocumentID | 10.1039/d3na00524k PMC10496919 10_1039_D3NA00524K d3na00524k |
GrantInformation_xml | – fundername: ; grantid: SB-2021-0793-PH-MHRD-008657; SB-2223-1263-PHETWO-008657 – fundername: ; grantid: SP-2122-1194-PH-ISRO-008508 – fundername: ; grantid: RF-2021-0669-PH-RFER-008508 |
GroupedDBID | AAFWJ ADBBV ALMA_UNASSIGNED_HOLDINGS ANUXI BCNDV C6K EBS GROUPED_DOAJ H13 M~E OK1 RPM SMJ AAYXX AFPKN CITATION 7X8 5PM ADTOC EJD UNPAY |
ID | FETCH-LOGICAL-c378t-60a142d72738dbd37cf5da17f1cb7885d011d6eb7932517377ef7d293e36cf733 |
IEDL.DBID | UNPAY |
ISSN | 2516-0230 |
IngestDate | Wed Aug 20 00:17:44 EDT 2025 Tue Sep 30 17:23:42 EDT 2025 Fri Jul 11 04:26:23 EDT 2025 Thu Apr 24 22:51:22 EDT 2025 Tue Jul 01 04:28:20 EDT 2025 Tue Dec 17 20:58:43 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 18 |
Language | English |
License | cc-by-nc |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-60a142d72738dbd37cf5da17f1cb7885d011d6eb7932517377ef7d293e36cf733 |
Notes | https://doi.org/10.1039/d3na00524k Electronic supplementary information (ESI) available. See DOI ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-8997-4092 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://pubs.rsc.org/en/content/articlepdf/2023/na/d3na00524k |
PQID | 2864897861 |
PQPubID | 23479 |
PageCount | 1 |
ParticipantIDs | crossref_citationtrail_10_1039_D3NA00524K unpaywall_primary_10_1039_d3na00524k pubmedcentral_primary_oai_pubmedcentral_nih_gov_10496919 crossref_primary_10_1039_D3NA00524K rsc_primary_d3na00524k proquest_miscellaneous_2864897861 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-12 |
PublicationDateYYYYMMDD | 2023-09-12 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-12 day: 12 |
PublicationDecade | 2020 |
PublicationTitle | Nanoscale advances |
PublicationYear | 2023 |
Publisher | RSC |
Publisher_xml | – name: RSC |
References | Zhanshayeva (D3NA00524K/cit41/1) 2019; 4 Ren (D3NA00524K/cit26/1) 2021; 56 Chiteme (D3NA00524K/cit55/1) 2000; 279 Shao (D3NA00524K/cit11/1) 2015; 6 Lei (D3NA00524K/cit28/1) 2015; 6 Raidongia (D3NA00524K/cit20/1) 2012; 134 Huggins (D3NA00524K/cit42/1) 2002; 8 Chen (D3NA00524K/cit29/1) 2018; 9 Aoki (D3NA00524K/cit50/1) 2008; 11 Yadav (D3NA00524K/cit4/1) 2022; 24 Ren (D3NA00524K/cit14/1) 2015; 6 Wood (D3NA00524K/cit33/1) 2013; 80 Karim (D3NA00524K/cit31/1) 2013; 135 Cerveny (D3NA00524K/cit6/1) 2010; 114 Park (D3NA00524K/cit48/1) 2018; 140 Hu (D3NA00524K/cit22/1) 2014; 516 Naclerio (D3NA00524K/cit15/1) 2023; 35 Israelachvili (D3NA00524K/cit32/1) 2011 Celzard (D3NA00524K/cit53/1) 2003; 317 Sainsbury (D3NA00524K/cit35/1) 2007; 111 Köfinger (D3NA00524K/cit2/1) 2008; 105 Shi (D3NA00524K/cit18/1) 2022; 14 Yoon (D3NA00524K/cit23/1) 2020; 8 Hsu (D3NA00524K/cit43/1) 2001; 57 Kreuer (D3NA00524K/cit46/1) 1983; 32 Lei (D3NA00524K/cit37/1) 2011; 133 Wang (D3NA00524K/cit16/1) 2020; 2 Sun (D3NA00524K/cit47/1) 2022; 280 Qin (D3NA00524K/cit12/1) 2017; 139 Sainsbury (D3NA00524K/cit39/1) 2012; 134 Pranav (D3NA00524K/cit40/1) 2019; 125 Chakraborty (D3NA00524K/cit1/1) 2017; 50 Xu (D3NA00524K/cit49/1) 2013; 135 Shi (D3NA00524K/cit27/1) 2020; 3 Stauffer (D3NA00524K/cit45/1) 2018 Wahab (D3NA00524K/cit17/1) 2023 Kim (D3NA00524K/cit36/1) 2014; 8 Raghav (D3NA00524K/cit3/1) 2015; 17 Taylor (D3NA00524K/cit44/1) 1995; 51 Ghosh (D3NA00524K/cit13/1) 2015; 106 Fumagalli (D3NA00524K/cit5/1) 2018; 360 Esfandiar (D3NA00524K/cit8/1) 2017; 358 Abraham (D3NA00524K/cit9/1) 2017; 12 Joshi (D3NA00524K/cit7/1) 2014; 343 Yadav (D3NA00524K/cit21/1) 2019; 11 Kroes (D3NA00524K/cit19/1) 2017; 19 Tredgold (D3NA00524K/cit10/1) 1973; 323 Lin (D3NA00524K/cit34/1) 2011; 115 Berkemeier (D3NA00524K/cit51/1) 2007; 76 Comtet (D3NA00524K/cit25/1) 2020; 15 Wu (D3NA00524K/cit54/1) 1997; 56 Rajasekaran (D3NA00524K/cit30/1) 2022; 24 Mogg (D3NA00524K/cit24/1) 2019; 10 Aigner (D3NA00524K/cit52/1) 2016; 5 Weng (D3NA00524K/cit38/1) 2014; 8 |
References_xml | – issn: 2018 publication-title: Introduction to Percolation Theory doi: Stauffer Aharony – issn: 2023 publication-title: Proton Transport through Nanoscale Corrugations in Two-Dimensional Crystals doi: Wahab Daviddi Xin Sun Griffin Colburn Barry Yagmurcukardes Peeters Geim Lozada-Hidalgo Unwin – issn: 2011 end-page: p 291-340 publication-title: Intermolecular and Surface Forces doi: Israelachvili – volume: 24 start-page: 26438 year: 2022 ident: D3NA00524K/cit4/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D2CP03095K – volume: 19 start-page: 5813 year: 2017 ident: D3NA00524K/cit19/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C6CP08923B – volume-title: Proton Transport through Nanoscale Corrugations in Two-Dimensional Crystals year: 2023 ident: D3NA00524K/cit17/1 – volume: 115 start-page: 2679 year: 2011 ident: D3NA00524K/cit34/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp110985w – volume: 15 start-page: 598 year: 2020 ident: D3NA00524K/cit25/1 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-020-0695-4 – volume: 323 start-page: 143 year: 1973 ident: D3NA00524K/cit10/1 publication-title: Biochim. Biophys. Acta doi: 10.1016/0005-2736(73)90437-9 – volume: 8 start-page: 6123 year: 2014 ident: D3NA00524K/cit38/1 publication-title: ACS Nano doi: 10.1021/nn5014808 – volume: 317 start-page: 305 year: 2003 ident: D3NA00524K/cit53/1 publication-title: Phys. A doi: 10.1016/S0378-4371(02)01367-5 – volume: 516 start-page: 227 year: 2014 ident: D3NA00524K/cit22/1 publication-title: Nature doi: 10.1038/nature14015 – volume: 8 start-page: 6211 year: 2014 ident: D3NA00524K/cit36/1 publication-title: ACS Nano doi: 10.1021/nn501661p – start-page: 291 volume-title: Intermolecular and Surface Forces year: 2011 ident: D3NA00524K/cit32/1 – volume: 4 start-page: 21883 year: 2019 ident: D3NA00524K/cit41/1 publication-title: ACS Omega doi: 10.1021/acsomega.9b02866 – volume: 135 start-page: 8097 year: 2013 ident: D3NA00524K/cit31/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja401060q – volume-title: Introduction to Percolation Theory year: 2018 ident: D3NA00524K/cit45/1 doi: 10.1201/9781315274386 – volume: 343 start-page: 752 year: 2014 ident: D3NA00524K/cit7/1 publication-title: science doi: 10.1126/science.1245711 – volume: 57 start-page: 747 year: 2001 ident: D3NA00524K/cit43/1 publication-title: Corrosion doi: 10.5006/1.3280607 – volume: 135 start-page: 7438 year: 2013 ident: D3NA00524K/cit49/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja402727d – volume: 76 start-page: 024205 year: 2007 ident: D3NA00524K/cit51/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.76.024205 – volume: 134 start-page: 18758 year: 2012 ident: D3NA00524K/cit39/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3080665 – volume: 11 start-page: P13 year: 2008 ident: D3NA00524K/cit50/1 publication-title: Electrochem. Solid-State Lett. doi: 10.1149/1.2976305 – volume: 5 start-page: 054017 year: 2016 ident: D3NA00524K/cit52/1 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.5.054017 – volume: 17 start-page: 20557 year: 2015 ident: D3NA00524K/cit3/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP02410B – volume: 24 start-page: 14909 year: 2022 ident: D3NA00524K/cit30/1 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D1CP03962H – volume: 6 start-page: 7602 year: 2015 ident: D3NA00524K/cit11/1 publication-title: Nat. Commun. doi: 10.1038/ncomms8602 – volume: 50 start-page: 2139 year: 2017 ident: D3NA00524K/cit1/1 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00617 – volume: 35 start-page: 2207374 year: 2023 ident: D3NA00524K/cit15/1 publication-title: Adv. Mater. doi: 10.1002/adma.202207374 – volume: 8 start-page: 2898 year: 2020 ident: D3NA00524K/cit23/1 publication-title: J. Mater. Chem. A doi: 10.1039/C9TA12293A – volume: 8 start-page: 300 year: 2002 ident: D3NA00524K/cit42/1 publication-title: Ionics doi: 10.1007/BF02376083 – volume: 134 start-page: 16528 year: 2012 ident: D3NA00524K/cit20/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja308167f – volume: 3 start-page: 2310 year: 2020 ident: D3NA00524K/cit27/1 publication-title: ACS Appl. Nano Mater. doi: 10.1021/acsanm.9b02427 – volume: 9 start-page: 1902 year: 2018 ident: D3NA00524K/cit29/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04294-6 – volume: 80 start-page: 040913 year: 2013 ident: D3NA00524K/cit33/1 publication-title: J. Appl. Mech. doi: 10.1115/1.4024177 – volume: 114 start-page: 2604 year: 2010 ident: D3NA00524K/cit6/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp907979v – volume: 2 start-page: 2507 year: 2020 ident: D3NA00524K/cit16/1 publication-title: Nanoscale Adv. doi: 10.1039/D0NA00190B – volume: 6 start-page: 4026 year: 2015 ident: D3NA00524K/cit14/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.5b01895 – volume: 358 start-page: 511 year: 2017 ident: D3NA00524K/cit8/1 publication-title: Science doi: 10.1126/science.aan5275 – volume: 14 start-page: 6518 year: 2022 ident: D3NA00524K/cit18/1 publication-title: Nanoscale doi: 10.1039/D2NR00262K – volume: 140 start-page: 2016 year: 2018 ident: D3NA00524K/cit48/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b12784 – volume: 32 start-page: 45 year: 1983 ident: D3NA00524K/cit46/1 publication-title: Appl. Phys. A: Solids Surf. doi: 10.1007/BF00617828 – volume: 56 start-page: 4053 year: 2021 ident: D3NA00524K/cit26/1 publication-title: J. Mater. Sci. doi: 10.1007/s10853-020-05513-6 – volume: 133 start-page: 7121 year: 2011 ident: D3NA00524K/cit37/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja200838c – volume: 360 start-page: 1339 year: 2018 ident: D3NA00524K/cit5/1 publication-title: Science doi: 10.1126/science.aat4191 – volume: 12 start-page: 546 year: 2017 ident: D3NA00524K/cit9/1 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.21 – volume: 111 start-page: 12992 year: 2007 ident: D3NA00524K/cit35/1 publication-title: J. Phys. Chem. C doi: 10.1021/jp072958n – volume: 139 start-page: 6314 year: 2017 ident: D3NA00524K/cit12/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b11100 – volume: 6 start-page: 8849 year: 2015 ident: D3NA00524K/cit28/1 publication-title: Nat. Commun. doi: 10.1038/ncomms9849 – volume: 280 start-page: 125845 year: 2022 ident: D3NA00524K/cit47/1 publication-title: Mater. Chem. Phys. doi: 10.1016/j.matchemphys.2022.125845 – volume: 106 start-page: 241902 year: 2015 ident: D3NA00524K/cit13/1 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4922731 – volume: 279 start-page: 69 year: 2000 ident: D3NA00524K/cit55/1 publication-title: Phys. B doi: 10.1016/S0921-4526(99)00670-5 – volume: 105 start-page: 13218 year: 2008 ident: D3NA00524K/cit2/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0801448105 – volume: 51 start-page: 664 year: 1995 ident: D3NA00524K/cit44/1 publication-title: Corrosion doi: 10.5006/1.3293628 – volume: 56 start-page: 1236 year: 1997 ident: D3NA00524K/cit54/1 publication-title: Phys. Rev. B: Condens. Matter Mater. Phys. doi: 10.1103/PhysRevB.56.1236 – volume: 10 start-page: 4243 year: 2019 ident: D3NA00524K/cit24/1 publication-title: Nat. Commun. doi: 10.1038/s41467-019-12314-2 – volume: 125 start-page: 024303 year: 2019 ident: D3NA00524K/cit40/1 publication-title: J. Appl. Phys. doi: 10.1063/1.5078665 – volume: 11 start-page: 12755 year: 2019 ident: D3NA00524K/cit21/1 publication-title: Nanoscale doi: 10.1039/C9NR03094H |
SSID | ssj0002144479 |
Score | 2.256283 |
Snippet | Two-dimensional layered materials have been used as matrices to study the structure and dynamics of trapped water and ions. Here, we demonstrate unique... |
SourceID | unpaywall pubmedcentral proquest crossref rsc |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 491 |
SubjectTerms | Chemistry |
Title | Percolative proton transport in hexagonal boron nitride membranes with edge-functionalization |
URI | https://www.proquest.com/docview/2864897861 https://pubmed.ncbi.nlm.nih.gov/PMC10496919 https://pubs.rsc.org/en/content/articlepdf/2023/na/d3na00524k |
UnpaywallVersion | publishedVersion |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2516-0230 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002144479 issn: 2516-0230 databaseCode: DOA dateStart: 20180101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2516-0230 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002144479 issn: 2516-0230 databaseCode: M~E dateStart: 20180101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 2516-0230 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002144479 issn: 2516-0230 databaseCode: RPM dateStart: 20190101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwEB6x3QNw4CFYER6VEXvhkLauEzs5VsBqBaLaA5WWA4riR3ar7bpVm4rHr2fGSdvtwgFxzjgae_yYb8b-BuDYDB068orHFmdMnBiJa65Mk5gycunQGTkIZDqfx_J0knw8T8_buzn0FgaVWPWWq4Yi2CF8J44mX_fbcVzYiuC66Puyb4UvKaqZXB3AoaT8UgcOJ-Oz0VcqKJdyulwrBhtKUpHfaLB_CO08y9v3Ig9Qk_twd-0X5c_v5Wx24-g5edjUVw1KhxsnV711rXvm1y0-x__u1SN40DqlbNTIPYY7zj-Bb2duibMkEIMzonOYe1ZvqNDZ1LNL96O8IEeeaaJBYLg5LKfWsWt3jRAct1BGQV5GAbuYjs8m6ti--3wKk5MPX96dxm0xhtgIldWxHJQ8GVpydzKrrVCmSm3JVcWNRhidWtworHQa1zuxoAmlXKUsOhNOSFMpIY6g4-fePQPGNW4zlUWoh93kAURVidBcaXIX7SCCtxvrFKZlKqeCGbMiZMxFXrwX41EYpE8RvNnKLhp-jr9Kvd4YucDlQzkRHIb5elUMM5lkiKQljyDbs_72d0TAvf_FTy8DETdC2VzmPI_gCI27bbAzYQTH27nzh3o7sef_JvYC7tEsiUMBi5fQqZdr9wpdolp3QyihG2JV3XYR_AZPrA_g |
linkProvider | Unpaywall |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED-x7gF4YCCYCGPIiL3wkLauEzt5rIBpAlHtgUrjAUXxR1i1zq3aVDD-eu6ctF0HD4jnnKOz73y-851_B3BiBg4decVjixoTJ0binivTJKaMXDpwRvYDmM7nkTwbJx8v0ou2NofewiATy-5i2UAEOwzfCaPJ1712Hee2onBd9HzZs8KXdKuZXO3BvqT8Ugf2x6Pz4VdqKJdyKq4V_TUkqchvDdg9hLae5d26yD3k5CHcX_l5efOjnE5vHT2nB01_1cB0qDi56q5q3TW_7uA5_vesHsOj1illw4buCdxz_il8O3cL1JIADM4IzmHmWb2GQmcTzy7dz_I7OfJMEwwCQ-OwmFjHrt01huBoQhld8jK6sIvp-GxuHdt3n89gfPrhy7uzuG3GEBuhsjqW_ZInA0vuTma1FcpUqS25qrjRGEanFg2FlU7jficUNKGUq5RFZ8IJaSolxCF0_My758C4RjNTWQz1cJo8BFFVIjRXmtxF24_g7Vo6hWmRyqlhxrQIGXORF-_FaBgW6VMEbza08waf469Ur9dCLnD7UE4El2G2WhaDTCYZRtKSR5DtSH_zOwLg3v3iJ5cBiBtD2VzmPI_gEIW7GbAVYQQnG935g70t2Yt_IzuCB6QlcWhg8RI69WLljtElqvWrVvF_A6KlDds |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Percolative+proton+transport+in+hexagonal+boron+nitride+membranes+with+edge-functionalization&rft.jtitle=Nanoscale+advances&rft.au=Das%2C+Anjan&rft.au=Yadav%2C+Vikas&rft.au=Krishnamurthy%2C+C.+V.&rft.au=Jaiswal%2C+Manu&rft.date=2023-09-12&rft.issn=2516-0230&rft.eissn=2516-0230&rft.volume=5&rft.issue=18&rft.spage=4901&rft.epage=4910&rft_id=info:doi/10.1039%2FD3NA00524K&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D3NA00524K |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2516-0230&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2516-0230&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2516-0230&client=summon |