Positive ground state solutions for asymptotically periodic generalized quasilinear Schrödinger equations
In this paper, we study the existence of a positive ground state solution for a class of generalized quasilinear Schrödinger equations with asymptotically periodic potential. By the variational method, a positive ground state solution is obtained. Compared with the existing results, our results impr...
Saved in:
Published in | AIMS mathematics Vol. 7; no. 1; pp. 1015 - 1034 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
AIMS Press
01.01.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 2473-6988 2473-6988 |
DOI | 10.3934/math.2022061 |
Cover
Abstract | In this paper, we study the existence of a positive ground state solution for a class of generalized quasilinear Schrödinger equations with asymptotically periodic potential. By the variational method, a positive ground state solution is obtained. Compared with the existing results, our results improve and generalize some existing related results. |
---|---|
AbstractList | In this paper, we study the existence of a positive ground state solution for a class of generalized quasilinear Schrödinger equations with asymptotically periodic potential. By the variational method, a positive ground state solution is obtained. Compared with the existing results, our results improve and generalize some existing related results. |
Author | Zhang, Shulin |
Author_xml | – sequence: 1 givenname: Shulin surname: Zhang fullname: Zhang, Shulin |
BookMark | eNqFkNtKJDEQhoMoOKve-QB5gG1NJ-kkfSniYUBQUK-bHCozGXo6s0lmZfbB9gV8MdsZkUWEvaqi6q8P6vuB9oc4AEKnNTljLePnS13mZ5RQSkS9hyaUS1aJVqn9f_pDdJLzghBCa8qp5BO0eIg5lPAb8CzF9eBwLroAzrFflxCHjH1MWOfNclViCVb3_QavIIXogsUzGCDpPvwBh3-tdQ59GEAn_Gjn6fWvC8MMEoZxs0UdowOv-wwnH_UIPV9fPV3eVnf3N9PLi7vKMqlK1djaceatM4ZJ7x0TytSiAW84WOEVNcpIx62QQngC1HPeEMVa7YQGZhQ7QtMd10W96FYpLHXadFGHbjuIadbpNP7SQ-dsY1te-4ZAwwUlLTHSGlvblshGNXJkVTvWeljpzcv4_iewJt279-7de_fhfcz_3OVtijkn8P-L0y9xG8rWVkk69N8fvQGCzpwR |
CitedBy_id | crossref_primary_10_1007_s13324_021_00645_7 crossref_primary_10_1186_s13661_023_01755_w crossref_primary_10_3934_math_2023998 crossref_primary_10_3934_math_2022543 |
Cites_doi | 10.1016/j.nonrwa.2018.04.007 10.1063/1.4811394 10.1002/mma.4050 10.1063/1.4965442 10.1090/S0002-9939-2012-11293-6 10.1080/17476933.2020.1731736 10.1016/j.na.2003.09.008 10.1080/03605309908821469 10.1016/j.camwa.2016.01.004 10.1103/PhysRevE.50.R687 10.3934/cpaa.2016.15.1309 10.1016/j.camwa.2017.05.033 10.1016/S0022-0396(02)00064-5 10.1007/BF01449041 10.1007/s00009-017-0990-y 10.1016/S0294-1449(16)30428-0 10.3934/cpaa.2019104 10.1016/j.jmaa.2016.05.005 10.1007/s002200050191 10.1016/j.camwa.2017.04.028 10.1016/j.aml.2016.06.004 10.1007/s00526-009-0299-1 10.3934/cpaa.2018054 10.1016/j.jde.2014.09.006 10.1016/j.jmaa.2009.09.016 10.1063/1.525675 10.1016/j.aml.2017.04.032 10.1016/j.na.2012.10.005 10.1016/j.jde.2015.09.021 10.1103/PhysRevLett.70.2082 10.1016/j.camwa.2016.08.010 10.1016/j.na.2009.11.037 10.1016/j.aml.2018.09.015 10.1143/JPSJ.50.3262 10.1016/j.jde.2006.07.001 10.3934/dcds.2017179 10.1007/s005260100105 10.1002/mma.4131 10.1080/00036811.2020.1836356 |
ContentType | Journal Article |
CorporateAuthor | Department of Mathematics, Xuzhou Vocational Technology Academy of Finance and Economics, Xuzhou 221008, China Department of Mathematics, China University of Mining and Technology, Xuzhou 221116, China |
CorporateAuthor_xml | – name: Department of Mathematics, China University of Mining and Technology, Xuzhou 221116, China – name: Department of Mathematics, Xuzhou Vocational Technology Academy of Finance and Economics, Xuzhou 221008, China |
DBID | AAYXX CITATION ADTOC UNPAY DOA |
DOI | 10.3934/math.2022061 |
DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Mathematics |
EISSN | 2473-6988 |
EndPage | 1034 |
ExternalDocumentID | oai_doaj_org_article_dc5c941f50e5462090b7cbc1c9075857 10.3934/math.2022061 10_3934_math_2022061 |
GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN ADTOC UNPAY |
ID | FETCH-LOGICAL-c378t-5c1d43fcdbb37ffd368b165efb4ec6f82b8b7d4c6766f0e2f4450839ad6ae3b83 |
IEDL.DBID | DOA |
ISSN | 2473-6988 |
IngestDate | Wed Aug 27 01:32:12 EDT 2025 Mon Sep 15 08:06:54 EDT 2025 Thu Apr 24 23:07:41 EDT 2025 Tue Jul 01 03:56:51 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
License | cc-by |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-5c1d43fcdbb37ffd368b165efb4ec6f82b8b7d4c6766f0e2f4450839ad6ae3b83 |
OpenAccessLink | https://doaj.org/article/dc5c941f50e5462090b7cbc1c9075857 |
PageCount | 20 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_dc5c941f50e5462090b7cbc1c9075857 unpaywall_primary_10_3934_math_2022061 crossref_primary_10_3934_math_2022061 crossref_citationtrail_10_3934_math_2022061 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-01-01 |
PublicationDateYYYYMMDD | 2022-01-01 |
PublicationDate_xml | – month: 01 year: 2022 text: 2022-01-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | AIMS mathematics |
PublicationYear | 2022 |
Publisher | AIMS Press |
Publisher_xml | – name: AIMS Press |
References | key-10.3934/math.2022061-20 key-10.3934/math.2022061-22 key-10.3934/math.2022061-21 key-10.3934/math.2022061-40 key-10.3934/math.2022061-17 key-10.3934/math.2022061-39 key-10.3934/math.2022061-16 key-10.3934/math.2022061-38 key-10.3934/math.2022061-19 key-10.3934/math.2022061-18 key-10.3934/math.2022061-13 key-10.3934/math.2022061-35 key-10.3934/math.2022061-12 key-10.3934/math.2022061-34 key-10.3934/math.2022061-15 key-10.3934/math.2022061-37 key-10.3934/math.2022061-14 key-10.3934/math.2022061-36 key-10.3934/math.2022061-31 key-10.3934/math.2022061-30 key-10.3934/math.2022061-11 key-10.3934/math.2022061-33 key-10.3934/math.2022061-10 key-10.3934/math.2022061-32 key-10.3934/math.2022061-8 key-10.3934/math.2022061-7 key-10.3934/math.2022061-9 key-10.3934/math.2022061-4 key-10.3934/math.2022061-28 key-10.3934/math.2022061-3 key-10.3934/math.2022061-27 key-10.3934/math.2022061-6 key-10.3934/math.2022061-5 key-10.3934/math.2022061-29 key-10.3934/math.2022061-24 key-10.3934/math.2022061-23 key-10.3934/math.2022061-2 key-10.3934/math.2022061-26 key-10.3934/math.2022061-1 key-10.3934/math.2022061-25 |
References_xml | – ident: key-10.3934/math.2022061-4 doi: 10.1016/j.nonrwa.2018.04.007 – ident: key-10.3934/math.2022061-39 doi: 10.1063/1.4811394 – ident: key-10.3934/math.2022061-24 doi: 10.1002/mma.4050 – ident: key-10.3934/math.2022061-40 doi: 10.1063/1.4965442 – ident: key-10.3934/math.2022061-19 doi: 10.1090/S0002-9939-2012-11293-6 – ident: key-10.3934/math.2022061-32 doi: 10.1080/17476933.2020.1731736 – ident: key-10.3934/math.2022061-3 doi: 10.1016/j.na.2003.09.008 – ident: key-10.3934/math.2022061-20 doi: 10.1080/03605309908821469 – ident: key-10.3934/math.2022061-17 doi: 10.1016/j.camwa.2016.01.004 – ident: key-10.3934/math.2022061-30 doi: 10.1103/PhysRevE.50.R687 – ident: key-10.3934/math.2022061-12 doi: 10.3934/cpaa.2016.15.1309 – ident: key-10.3934/math.2022061-37 doi: 10.1016/j.camwa.2017.05.033 – ident: key-10.3934/math.2022061-23 doi: 10.1016/S0022-0396(02)00064-5 – ident: key-10.3934/math.2022061-36 doi: 10.1007/BF01449041 – ident: key-10.3934/math.2022061-1 – ident: key-10.3934/math.2022061-7 doi: 10.1007/s00009-017-0990-y – ident: key-10.3934/math.2022061-14 doi: 10.1016/S0294-1449(16)30428-0 – ident: key-10.3934/math.2022061-25 doi: 10.3934/cpaa.2019104 – ident: key-10.3934/math.2022061-26 doi: 10.1016/j.jmaa.2016.05.005 – ident: key-10.3934/math.2022061-2 doi: 10.1007/s002200050191 – ident: key-10.3934/math.2022061-8 doi: 10.1016/j.camwa.2017.04.028 – ident: key-10.3934/math.2022061-31 doi: 10.1016/j.aml.2016.06.004 – ident: key-10.3934/math.2022061-33 doi: 10.1007/s00526-009-0299-1 – ident: key-10.3934/math.2022061-38 doi: 10.3934/cpaa.2018054 – ident: key-10.3934/math.2022061-10 doi: 10.1016/j.jde.2014.09.006 – ident: key-10.3934/math.2022061-15 doi: 10.1016/j.jmaa.2009.09.016 – ident: key-10.3934/math.2022061-21 doi: 10.1063/1.525675 – ident: key-10.3934/math.2022061-6 doi: 10.1016/j.aml.2017.04.032 – ident: key-10.3934/math.2022061-35 doi: 10.1016/j.na.2012.10.005 – ident: key-10.3934/math.2022061-11 doi: 10.1016/j.jde.2015.09.021 – ident: key-10.3934/math.2022061-5 doi: 10.1103/PhysRevLett.70.2082 – ident: key-10.3934/math.2022061-18 doi: 10.1016/j.camwa.2016.08.010 – ident: key-10.3934/math.2022061-34 doi: 10.1016/j.na.2009.11.037 – ident: key-10.3934/math.2022061-16 doi: 10.1016/j.aml.2018.09.015 – ident: key-10.3934/math.2022061-13 doi: 10.1143/JPSJ.50.3262 – ident: key-10.3934/math.2022061-27 doi: 10.1016/j.jde.2006.07.001 – ident: key-10.3934/math.2022061-9 doi: 10.3934/dcds.2017179 – ident: key-10.3934/math.2022061-29 doi: 10.1007/s005260100105 – ident: key-10.3934/math.2022061-22 doi: 10.1002/mma.4131 – ident: key-10.3934/math.2022061-28 doi: 10.1080/00036811.2020.1836356 |
SSID | ssj0002124274 |
Score | 2.2077672 |
Snippet | In this paper, we study the existence of a positive ground state solution for a class of generalized quasilinear Schrödinger equations with asymptotically... |
SourceID | doaj unpaywall crossref |
SourceType | Open Website Open Access Repository Enrichment Source Index Database |
StartPage | 1015 |
SubjectTerms | asymptotically periodic generalized quasilinear schrödinger equations nehari manifold method positive ground state solution |
SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTtwwEB6h5UA5lNIfdQutfKC9VKFx7Dj2kVYghARCaleip8ge22XbbXbZzbZaHowX4MWIk2xEQaW9WdZYsWYm8vx-A7CTeSetVWlE0fjKQWE60paGEihNrY2pkTQ0Ch-fiMMBPzpLz1ZgZ9kLcyt_zxTjHyqzLaQMkiQOPs6qCGmkHqwOTk73voa5cTxjkVBSNjXt94788drUoPzrsDYvJnrxW49Gt16Sgw3YX96hKSD5sTsvzS5e3oFn_Ncln8Dj1pQke43sN2HFFU9h_bjDYZ09g--ndU3WL0dC90ZhSd0_RDp9I5XJSvRs8XNSjuug9mhBAvTx2A6RfGsQqYeXzpKLuZ4Ng0Wqp-Qznk-vr2wdDyTuosEKnz2HwcH-l0-HUTtdIUKWyTJKkVrOPFpjWOa9ZUIaKlLnDXcovEyMNJnlKDIhfOwSz3mAjlfaCu2YkewF9Ipx4V4CMRRT4RyrqCp300glDDJqpVDoPJesD--XUsixhR4PEzBGeeWCBA7mgYN5y8E-vO2oJw3kxl_oPgaBdjQBKLveqESTt_9dbjFFxalPY5dykcQqNhkapKji4CllfXjXqcODX3v1v4Rb8CismjDNNvTK6dy9rgyX0rxp9fYGRxzvXw priority: 102 providerName: Unpaywall |
Title | Positive ground state solutions for asymptotically periodic generalized quasilinear Schrödinger equations |
URI | https://doi.org/10.3934/math.2022061 https://doaj.org/article/dc5c941f50e5462090b7cbc1c9075857 |
UnpaywallVersion | publishedVersion |
Volume | 7 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA6iB_UgPnF9kYN6kWLTpGl6VFFEUARd0FNJJomurN23sv4w_4B_zKStZT2oF69laMpkyHzfdOYLQruJNULrNA4IKOsICpWB1MS3QEmidUiUIH5Q-PKKnzfZxV18N3HVl-8JK-WBS8cdaoghZcTGoYkZj8I0VAkoIOBYnYO6xRy5S2MTZMqfwe5AZo5vlZ3uNKXs0OE__-8hikJOvuWgQqp_Hs2O8q4cv8p2eyK_nC2ihQoY4qPyg5bQlMmX0fxlrao6WEFP10WH1YvBfhYj17iYBsJ19GAHQLEcjJ-7w05Rom6PsRcy7ugW4IdSX7r1ZjTujeSg5fGl7OMbeOx_vOuiuodNr1T-Hqyi5tnp7cl5UN2VEABNxDCIgWhGLWilaGKtplwowmNjFTPArYiUUIlmwBPObWgiy5gXgk-l5tJQJegams47uVlHWBGIuTHUWTnyqETKFVCiBU_BWCZoAx18eS-DSkjc32fRzhyh8L7OvK-zytcNtFdbd0sBjR_sjv1G1DZe9rp44IIhq4Ih-ysYGmi_3sZfV9v4j9U20Zx_XVmQ2ULTw_7IbDuIMlQ7RTTuoJnm1fXR_Sdne-pd |
linkProvider | Directory of Open Access Journals |
linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NTtwwEB6h5UA5lNIfdQutfKC9VKFx7Dj2kVYghARCaleip8ge22XbbXbZzbZaHowX4MWIk2xEQaW9WdZYsWYm8vx-A7CTeSetVWlE0fjKQWE60paGEihNrY2pkTQ0Ch-fiMMBPzpLz1ZgZ9kLcyt_zxTjHyqzLaQMkiQOPs6qCGmkHqwOTk73voa5cTxjkVBSNjXt94788drUoPzrsDYvJnrxW49Gt16Sgw3YX96hKSD5sTsvzS5e3oFn_Ncln8Dj1pQke43sN2HFFU9h_bjDYZ09g--ndU3WL0dC90ZhSd0_RDp9I5XJSvRs8XNSjuug9mhBAvTx2A6RfGsQqYeXzpKLuZ4Ng0Wqp-Qznk-vr2wdDyTuosEKnz2HwcH-l0-HUTtdIUKWyTJKkVrOPFpjWOa9ZUIaKlLnDXcovEyMNJnlKDIhfOwSz3mAjlfaCu2YkewF9Ipx4V4CMRRT4RyrqCp300glDDJqpVDoPJesD--XUsixhR4PEzBGeeWCBA7mgYN5y8E-vO2oJw3kxl_oPgaBdjQBKLveqESTt_9dbjFFxalPY5dykcQqNhkapKji4CllfXjXqcODX3v1v4Rb8CismjDNNvTK6dy9rgyX0rxp9fYGRxzvXw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Positive+ground+state+solutions+for+asymptotically+periodic+generalized+quasilinear+Schr%C3%B6dinger+equations&rft.jtitle=AIMS+mathematics&rft.au=Shulin+Zhang&rft.date=2022-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=7&rft.issue=1&rft.spage=1015&rft.epage=1034&rft_id=info:doi/10.3934%2Fmath.2022061&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_dc5c941f50e5462090b7cbc1c9075857 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |