Adaptive neural network-based backstepping fault tolerant control for underwater vehicles with thruster fault

A thruster fault tolerant control (FTC) method is developed for underwater vehicles in the presence of modelling uncertainty, external disturbance and unknown thruster fault. The developed method incorporates the sliding mode algorithm and backstepping scheme to improve its robustness to modelling u...

Full description

Saved in:
Bibliographic Details
Published inOcean engineering Vol. 110; pp. 15 - 24
Main Authors Wang, Yujia, Zhang, Mingjun‘, Wilson, Philip A., Liu, Xing
Format Journal Article
LanguageEnglish
Published Elsevier Ltd 01.12.2015
Subjects
Online AccessGet full text
ISSN0029-8018
1873-5258
DOI10.1016/j.oceaneng.2015.09.035

Cover

Abstract A thruster fault tolerant control (FTC) method is developed for underwater vehicles in the presence of modelling uncertainty, external disturbance and unknown thruster fault. The developed method incorporates the sliding mode algorithm and backstepping scheme to improve its robustness to modelling uncertainty and external disturbance. In order to be independent of the fault detection and diagnosis (FDD) unit, thruster fault is treated as a part of the general uncertainty along with the modelling uncertainty and external disturbance, and radial basis function neural network (RBFNN) is adopted to approximate the general uncertainty. According to the Lyapunov theory, control law and adaptive law of RBFNN are derived to ensure the tracking errors asymptotically converge to zero. Trajectory tracking simulations of underwater vehicle subject to modelling uncertainty, ocean currents, tether force and thruster faults are carried out to demonstrate the effectiveness and feasibility of the proposed method. •FTC method is developed by integrating backstepping and sliding mode.•Thruster fault is treated as a part of the general uncertainty.•RBFNN is adopted to approximate the general uncertainty.•Simulations are performed to validate the effectiveness of the developed method.
AbstractList A thruster fault tolerant control (FTC) method is developed for underwater vehicles in the presence of modelling uncertainty, external disturbance and unknown thruster fault. The developed method incorporates the sliding mode algorithm and backstepping scheme to improve its robustness to modelling uncertainty and external disturbance. In order to be independent of the fault detection and diagnosis (FDD) unit, thruster fault is treated as a part of the general uncertainty along with the modelling uncertainty and external disturbance, and radial basis function neural network (RBFNN) is adopted to approximate the general uncertainty. According to the Lyapunov theory, control law and adaptive law of RBFNN are derived to ensure the tracking errors asymptotically converge to zero. Trajectory tracking simulations of underwater vehicle subject to modelling uncertainty, ocean currents, tether force and thruster faults are carried out to demonstrate the effectiveness and feasibility of the proposed method.
A thruster fault tolerant control (FTC) method is developed for underwater vehicles in the presence of modelling uncertainty, external disturbance and unknown thruster fault. The developed method incorporates the sliding mode algorithm and backstepping scheme to improve its robustness to modelling uncertainty and external disturbance. In order to be independent of the fault detection and diagnosis (FDD) unit, thruster fault is treated as a part of the general uncertainty along with the modelling uncertainty and external disturbance, and radial basis function neural network (RBFNN) is adopted to approximate the general uncertainty. According to the Lyapunov theory, control law and adaptive law of RBFNN are derived to ensure the tracking errors asymptotically converge to zero. Trajectory tracking simulations of underwater vehicle subject to modelling uncertainty, ocean currents, tether force and thruster faults are carried out to demonstrate the effectiveness and feasibility of the proposed method. •FTC method is developed by integrating backstepping and sliding mode.•Thruster fault is treated as a part of the general uncertainty.•RBFNN is adopted to approximate the general uncertainty.•Simulations are performed to validate the effectiveness of the developed method.
Author Wang, Yujia
Liu, Xing
Wilson, Philip A.
Zhang, Mingjun
Author_xml – sequence: 1
  givenname: Yujia
  orcidid: 0000-0003-2978-4390
  surname: Wang
  fullname: Wang, Yujia
  email: wangyujia@hrbeu.edu.cn
  organization: College of Mechanical and Electrical Engineering, Harbin Engineering University, No.145 Nantong Street, Harbin, Heilongjiang 150001, China
– sequence: 2
  givenname: Mingjun‘
  surname: Zhang
  fullname: Zhang, Mingjun‘
  email: zhangmingjun@hrbeu.edu.cn
  organization: College of Mechanical and Electrical Engineering, Harbin Engineering University, No.145 Nantong Street, Harbin, Heilongjiang 150001, China
– sequence: 3
  givenname: Philip A.
  surname: Wilson
  fullname: Wilson, Philip A.
  email: philip.wilson@soton.ac.uk
  organization: Fluid Structure Interactions Group, Engineering and the Environment, University of Southampton, Southampton SO16 7QF, United Kingdom
– sequence: 4
  givenname: Xing
  surname: Liu
  fullname: Liu, Xing
  email: liuxing0724@hrbeu.edu.cn
  organization: College of Mechanical and Electrical Engineering, Harbin Engineering University, No.145 Nantong Street, Harbin, Heilongjiang 150001, China
BookMark eNqNkTtvFDEUhS0UJDaBv4Bc0szgR2yPJQqiiJcUiQZqy487WW9m7cH27Ip_n1mWNDShutLV-U5xvkt0kXIChN5S0lNC5ftdnz3YBOm-Z4SKnuiecPECbeigeCeYGC7QhhCmu4HQ4RW6rHVHCJGS8A3a3wQ7t3gAnGApdlpPO-by0DlbIWBn_UNtMM8x3ePRLlPDLU9QbGrY59RKnvCYC15SgHK0DQo-wDb6CSo-xrbFbVuWenr_gV-jl6OdKrz5e6_Qz8-fftx-7e6-f_l2e3PXea6G1glHuKRuFOpaj476wANlXDurBaNWanA8KOUkVUxzrbge5TWXUjgaLJEM-BV6d-6dS_61QG1mH6uHaVpnyks1VKmBsIEJ_R9RQRnRnA1rVJ6jvuRaC4xmLnFvy29DiTmpMDvzpMKcVBiizapiBT_8A_rYbIunAW2cnsc_nnFYJztEKKb6CMlDiAV8MyHH5yoeAV08rZY
CitedBy_id crossref_primary_10_1177_14750902231209359
crossref_primary_10_1109_TRO_2021_3082017
crossref_primary_10_1016_j_oceaneng_2019_02_043
crossref_primary_10_3390_s23010239
crossref_primary_10_1109_ACCESS_2022_3213059
crossref_primary_10_1016_j_oceaneng_2022_110845
crossref_primary_10_3390_jmse9091000
crossref_primary_10_1016_j_oceaneng_2021_110063
crossref_primary_10_1016_j_oceaneng_2023_116204
crossref_primary_10_1016_j_jfranklin_2023_08_043
crossref_primary_10_1016_j_oceaneng_2023_115471
crossref_primary_10_1016_j_oceaneng_2018_03_078
crossref_primary_10_1016_j_apor_2021_102686
crossref_primary_10_1002_acs_2959
crossref_primary_10_1016_j_ijhydene_2019_12_224
crossref_primary_10_1109_TVT_2019_2948153
crossref_primary_10_1016_j_oceaneng_2023_115327
crossref_primary_10_1109_ACCESS_2018_2883081
crossref_primary_10_1016_j_ejcon_2024_101006
crossref_primary_10_1109_ACCESS_2019_2953530
crossref_primary_10_3233_JIFS_190294
crossref_primary_10_1007_s40815_018_0592_2
crossref_primary_10_1016_j_oceaneng_2022_110666
crossref_primary_10_3390_app10051728
crossref_primary_10_1016_j_oceaneng_2023_114109
crossref_primary_10_1016_j_sna_2021_112668
crossref_primary_10_1016_j_oceaneng_2023_114628
crossref_primary_10_3390_app14135376
crossref_primary_10_1016_j_amc_2019_04_069
crossref_primary_10_1016_j_oceaneng_2018_12_069
crossref_primary_10_1016_j_neucom_2021_03_137
crossref_primary_10_1016_j_ifacol_2019_12_379
crossref_primary_10_1016_j_oceaneng_2023_113949
crossref_primary_10_3390_jmse13040657
crossref_primary_10_1177_1729881419841943
crossref_primary_10_5194_os_15_349_2019
crossref_primary_10_1016_j_oceaneng_2017_02_006
crossref_primary_10_1016_j_oceaneng_2017_10_001
crossref_primary_10_1007_s11071_022_08222_8
crossref_primary_10_1016_j_oceaneng_2017_02_007
crossref_primary_10_1016_j_oceaneng_2018_02_007
crossref_primary_10_1016_j_oceaneng_2022_111500
crossref_primary_10_1049_iet_cta_2018_6356
crossref_primary_10_1109_JOE_2018_2809018
crossref_primary_10_1016_j_oceaneng_2017_06_020
crossref_primary_10_1016_j_oceaneng_2025_120613
crossref_primary_10_1016_j_oceaneng_2023_115540
crossref_primary_10_3390_jmse10111614
crossref_primary_10_1177_0142331219854865
crossref_primary_10_1007_s11071_017_4011_2
crossref_primary_10_1016_j_apor_2021_102597
crossref_primary_10_1109_TII_2019_2930471
crossref_primary_10_1109_ACCESS_2021_3068164
crossref_primary_10_1080_00207179_2020_1825818
crossref_primary_10_3390_e22060598
crossref_primary_10_1016_j_oceaneng_2022_111737
crossref_primary_10_1016_j_oceaneng_2022_113232
crossref_primary_10_1049_iet_cta_2017_0016
crossref_primary_10_1016_j_oceaneng_2023_115312
crossref_primary_10_1007_s00521_017_3085_6
crossref_primary_10_3390_s16081335
crossref_primary_10_3390_jmse10111624
crossref_primary_10_1177_16878132231160729
crossref_primary_10_1016_j_oceaneng_2019_01_025
crossref_primary_10_1109_TNNLS_2021_3082407
crossref_primary_10_1109_JOE_2019_2899689
crossref_primary_10_1080_00207179_2019_1566637
crossref_primary_10_1177_1729881420930942
crossref_primary_10_1007_s12555_017_0462_y
crossref_primary_10_1016_j_oceaneng_2018_07_055
crossref_primary_10_1007_s11771_020_4405_z
crossref_primary_10_1016_j_oceaneng_2017_12_070
crossref_primary_10_1016_j_measurement_2019_04_083
crossref_primary_10_1109_ACCESS_2020_2966639
crossref_primary_10_1002_acs_3502
crossref_primary_10_3390_drones8110672
crossref_primary_10_1109_TSMC_2017_2717850
crossref_primary_10_1109_ACCESS_2019_2919346
crossref_primary_10_3390_s20071816
crossref_primary_10_1016_j_apor_2020_102051
crossref_primary_10_1016_j_compeleceng_2021_107473
crossref_primary_10_1051_jnwpu_20234150871
crossref_primary_10_1007_s40996_018_0131_2
crossref_primary_10_1109_TVT_2019_2957529
crossref_primary_10_1002_rnc_4659
crossref_primary_10_1016_j_oceaneng_2022_113299
crossref_primary_10_1016_j_oceaneng_2023_114723
crossref_primary_10_1186_s10033_018_0307_5
crossref_primary_10_1016_j_oceaneng_2023_114687
crossref_primary_10_3390_drones8120745
crossref_primary_10_1016_j_oceaneng_2023_115379
crossref_primary_10_1109_TCST_2018_2870829
crossref_primary_10_1016_j_isatra_2019_11_032
crossref_primary_10_1007_s40815_017_0401_3
crossref_primary_10_1016_j_asoc_2020_106194
crossref_primary_10_3390_jmse11112170
crossref_primary_10_1016_j_oceaneng_2022_112239
crossref_primary_10_1016_j_oceaneng_2022_112519
crossref_primary_10_1016_j_oceaneng_2019_106121
Cites_doi 10.1109/VSS.1996.578620
10.1016/j.ijmachtools.2012.07.004
10.1016/j.ast.2013.05.005
10.1016/j.oceaneng.2008.07.013
10.1016/j.oceaneng.2012.02.004
10.1109/JOE.2012.2227540
10.1002/rnc.1333
10.1109/TIE.2013.2267698
10.1016/j.robot.2005.04.004
10.1109/TFUZZ.2013.2254493
10.1109/TFUZZ.2013.2241770
10.1016/j.ins.2014.06.042
10.1109/9.867041
10.1080/00207179.2011.626458
10.1016/j.automatica.2005.10.008
10.1109/TRA.2002.999650
10.1109/72.485674
10.1016/j.conengprac.2014.08.012
10.1080/00207170701441877
10.1016/j.jfranklin.2012.12.019
10.1109/OCEANS.2010.5664372
10.1016/j.isatra.2014.10.001
10.1016/S0921-8890(00)00100-7
10.1109/TCST.2010.2060199
10.1049/iet-cta.2013.0404
10.1016/j.conengprac.2003.12.014
10.1109/UUST.1985.1158537
10.1016/j.asoc.2009.10.008
10.1016/j.arcontrol.2008.03.008
ContentType Journal Article
Copyright 2015 Elsevier Ltd
Copyright_xml – notice: 2015 Elsevier Ltd
DBID AAYXX
CITATION
7QO
7TN
8FD
F1W
FR3
H96
L.G
P64
H8D
KR7
L7M
DOI 10.1016/j.oceaneng.2015.09.035
DatabaseName CrossRef
Biotechnology Research Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biotechnology and BioEngineering Abstracts
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources
Biotechnology Research Abstracts
Oceanic Abstracts
Technology Research Database
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Biotechnology and BioEngineering Abstracts
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList Aerospace Database

Aquatic Science & Fisheries Abstracts (ASFA) Professional
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Oceanography
EISSN 1873-5258
EndPage 24
ExternalDocumentID 10_1016_j_oceaneng_2015_09_035
S0029801815005077
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
123
1B1
1~.
1~5
4.4
457
4G.
5VS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAXUO
ABFYP
ABJNI
ABLST
ABMAC
ABYKQ
ACDAQ
ACGFS
ACRLP
ADBBV
ADEZE
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGYEJ
AHEUO
AHHHB
AHJVU
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
AKIFW
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BJAXD
BKOJK
BLECG
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
JJJVA
KCYFY
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSJ
SST
SSZ
T5K
TAE
TN5
XPP
ZMT
~02
~G-
29N
6TJ
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACKIV
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFFNX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HVGLF
HZ~
R2-
SAC
SET
SEW
SSH
WUQ
7QO
7TN
8FD
ACLOT
EFKBS
F1W
FR3
H96
L.G
P64
~HD
H8D
KR7
L7M
ID FETCH-LOGICAL-c378t-5b0361bf5749fb1cd3d1239ba9521a69eb3d77b6172939739f643665b1da062e3
IEDL.DBID .~1
ISSN 0029-8018
IngestDate Sat Sep 27 18:02:28 EDT 2025
Sun Sep 28 11:18:18 EDT 2025
Thu Jul 03 08:27:05 EDT 2025
Thu Apr 24 23:04:35 EDT 2025
Fri Feb 23 02:26:19 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Adaptive sliding mode
Neural network
Underwater vehicles
Backstepping method
Fault tolerant control
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-5b0361bf5749fb1cd3d1239ba9521a69eb3d77b6172939739f643665b1da062e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-2978-4390
PQID 1751209328
PQPubID 23462
PageCount 10
ParticipantIDs proquest_miscellaneous_1778028259
proquest_miscellaneous_1751209328
crossref_primary_10_1016_j_oceaneng_2015_09_035
crossref_citationtrail_10_1016_j_oceaneng_2015_09_035
elsevier_sciencedirect_doi_10_1016_j_oceaneng_2015_09_035
PublicationCentury 2000
PublicationDate 2015-12-01
2015-12-00
20151201
PublicationDateYYYYMMDD 2015-12-01
PublicationDate_xml – month: 12
  year: 2015
  text: 2015-12-01
  day: 01
PublicationDecade 2010
PublicationTitle Ocean engineering
PublicationYear 2015
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Morishita, Souza (bib19) 2014; 33
Dearden, Ernits (bib12) 2013; 38
Tong, Sui, Li (bib27) 2014; 289
Cong, Liu, Chen (bib9) 2013; 30
Zhu, Liu, Hu (bib31) 2011; 84
Zhu, Kong (bib32) 2007; 80
Yoerger, D.R., Slotine, J.J.E., Newman, J., Schempf , H., 1985. Robust trajectory control of underwater vehicles. In: Proceedings of the 4th International Symposium on Unmanned Untethered Submersible Technology, pp. 184–197.
Fossen (bib13) 2011
Zhang, Jiang (bib30) 2008; 32
Sarkar, Podder, Antonelli (bib24) 2002; 18
Khebbache, Tadjine, Labiod, Boulkroune (bib16) 2015; 55
Corradini, Monteriu, Orlando (bib10) 2011; 19
Corradini, Orlando (bib11) 2014; 136
Nasiri, Nguang, Swain (bib20) 2014; 351
Bagheri, Karimi, Amanifard (bib1) 2010; 10
Lewis, Yesildirek, Kai (bib17) 1996; 7
Bin, Dezhi, Peng, Cheng Chew (bib5) 2014; 8
Bartolini, Ferrara, Giacomini, Usai (bib3) 2000; 45
Huang, Wan, Chang, Pang, Jiang (bib14) 2014; 11
Zhang, Chu (bib29) 2012; 45
Podder, Sarkar (bib22) 2001; 34
Shaocheng, Baoyu, Yongming (bib25) 2014; 22
Bing, Daqi, Yang (bib6) 2014; 61
Omerdic, Roberts (bib21) 2004; 12
Khalick, Uchiyama, Sano (bib15) 2013; 65
Chen (bib8) 2006; 42
Li, Lee (bib18) 2005; 52
Bartolini, G., Ferrara, A., Giacomini, L., Usai, E., 1996. A combined backstepping/second order sliding mode approach to control a class of nonlinear systems. In: Proceedings of the IEEE International Workshop on Variable Structure Systems (VSS׳96), pp. 205–210.
Soylu, Buckham, Podhorodeski (bib26) 2008; 35
Qikun, Bin, Cocquempot (bib23) 2014; 22
Bateman, Hull, Lin (bib4) 2009; 19
Carreno, S., Wilson, P., Ridao, P., Petillot, Y., 2010. A Survey on Terrain Based Navigation for AUVS. IEEE OCEANS, pp. 1–7.
Khebbache (10.1016/j.oceaneng.2015.09.035_bib16) 2015; 55
Huang (10.1016/j.oceaneng.2015.09.035_bib14) 2014; 11
Zhu (10.1016/j.oceaneng.2015.09.035_bib32) 2007; 80
Podder (10.1016/j.oceaneng.2015.09.035_bib22) 2001; 34
10.1016/j.oceaneng.2015.09.035_bib7
Dearden (10.1016/j.oceaneng.2015.09.035_bib12) 2013; 38
10.1016/j.oceaneng.2015.09.035_bib2
Li (10.1016/j.oceaneng.2015.09.035_bib18) 2005; 52
Shaocheng (10.1016/j.oceaneng.2015.09.035_bib25) 2014; 22
Cong (10.1016/j.oceaneng.2015.09.035_bib9) 2013; 30
Corradini (10.1016/j.oceaneng.2015.09.035_bib11) 2014; 136
Soylu (10.1016/j.oceaneng.2015.09.035_bib26) 2008; 35
Zhang (10.1016/j.oceaneng.2015.09.035_bib29) 2012; 45
Corradini (10.1016/j.oceaneng.2015.09.035_bib10) 2011; 19
Bing (10.1016/j.oceaneng.2015.09.035_bib6) 2014; 61
Bin (10.1016/j.oceaneng.2015.09.035_bib5) 2014; 8
Lewis (10.1016/j.oceaneng.2015.09.035_bib17) 1996; 7
Sarkar (10.1016/j.oceaneng.2015.09.035_bib24) 2002; 18
Omerdic (10.1016/j.oceaneng.2015.09.035_bib21) 2004; 12
Nasiri (10.1016/j.oceaneng.2015.09.035_bib20) 2014; 351
Zhu (10.1016/j.oceaneng.2015.09.035_bib31) 2011; 84
Tong (10.1016/j.oceaneng.2015.09.035_bib27) 2014; 289
Morishita (10.1016/j.oceaneng.2015.09.035_bib19) 2014; 33
Zhang (10.1016/j.oceaneng.2015.09.035_bib30) 2008; 32
Khalick (10.1016/j.oceaneng.2015.09.035_bib15) 2013; 65
Qikun (10.1016/j.oceaneng.2015.09.035_bib23) 2014; 22
Bagheri (10.1016/j.oceaneng.2015.09.035_bib1) 2010; 10
Bartolini (10.1016/j.oceaneng.2015.09.035_bib3) 2000; 45
Bateman (10.1016/j.oceaneng.2015.09.035_bib4) 2009; 19
Fossen (10.1016/j.oceaneng.2015.09.035_bib13) 2011
Chen (10.1016/j.oceaneng.2015.09.035_bib8) 2006; 42
10.1016/j.oceaneng.2015.09.035_bib28
References_xml – volume: 351
  start-page: 2048
  year: 2014
  end-page: 2061
  ident: bib20
  article-title: Adaptive sliding mode control for a class of MIMO nonlinear systems with uncertainties
  publication-title: J. Franklin Inst.-Eng. Appl. Math.
– volume: 84
  start-page: 1817
  year: 2011
  end-page: 1829
  ident: bib31
  article-title: Fault-tolerant control algorithm of the manned submarine with multi-thruster based on quantum-behaved particle swarm optimisation
  publication-title: Int. J. Control
– reference: Carreno, S., Wilson, P., Ridao, P., Petillot, Y., 2010. A Survey on Terrain Based Navigation for AUVS. IEEE OCEANS, pp. 1–7.
– year: 2011
  ident: bib13
  article-title: Handbook of Marine Craft Hydrodynamics and Motion Control
– volume: 45
  start-page: 1334
  year: 2000
  end-page: 1341
  ident: bib3
  article-title: Properties of a combined adaptive/second-order sliding mode control algorithm for some classes of uncertain nonlinear systems
  publication-title: IEEE Trans. Autom. Control
– volume: 22
  start-page: 1
  year: 2014
  end-page: 15
  ident: bib25
  article-title: Observer-based adaptive decentralized fuzzy fault-tolerant control of nonlinear large-scale systems with actuator failures
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 61
  start-page: 3682
  year: 2014
  end-page: 3693
  ident: bib6
  article-title: A bioinspired filtered backstepping tracking control of 7000-m manned submarine vehicle
  publication-title: IEEE Trans. Ind. Electron.
– volume: 8
  start-page: 658
  year: 2014
  end-page: 666
  ident: bib5
  article-title: Adaptive neural observer-based backstepping fault tolerant control for near space vehicle under control effector damage
  publication-title: Control Theory Appl. IET
– volume: 32
  start-page: 229
  year: 2008
  end-page: 252
  ident: bib30
  article-title: Bibliographical review on reconfigurable fault-tolerant control systems
  publication-title: Annu. Rev. Control
– volume: 34
  start-page: 39
  year: 2001
  end-page: 52
  ident: bib22
  article-title: Fault-tolerant control of an autonomous underwater vehicle under thruster redundancy
  publication-title: Robot. Autonom. Syst.
– volume: 11
  start-page: 1
  year: 2014
  end-page: 12
  ident: bib14
  article-title: A Fault-tolerable control scheme for an open-frame underwater vehicle
  publication-title: Int. J. Adv. Robot. Syst.
– volume: 42
  start-page: 427
  year: 2006
  end-page: 435
  ident: bib8
  article-title: Adaptive sliding mode control for discrete-time multi-input multi-output systems
  publication-title: Automatica
– reference: Yoerger, D.R., Slotine, J.J.E., Newman, J., Schempf , H., 1985. Robust trajectory control of underwater vehicles. In: Proceedings of the 4th International Symposium on Unmanned Untethered Submersible Technology, pp. 184–197.
– reference: Bartolini, G., Ferrara, A., Giacomini, L., Usai, E., 1996. A combined backstepping/second order sliding mode approach to control a class of nonlinear systems. In: Proceedings of the IEEE International Workshop on Variable Structure Systems (VSS׳96), pp. 205–210.
– volume: 7
  start-page: 388
  year: 1996
  end-page: 399
  ident: bib17
  article-title: Multilayer neural-net robot controller with guaranteed tracking performance
  publication-title: IEEE Trans. Neural Netw.
– volume: 136
  start-page: 1
  year: 2014
  end-page: 11
  ident: bib11
  article-title: A robust observer-based fault tolerant control scheme for underwater vehicles
  publication-title: J. Dyn. Syst. Meas. Control-Trans. ASME
– volume: 52
  start-page: 132
  year: 2005
  end-page: 147
  ident: bib18
  article-title: A neural network adaptive controller design for free-pitch-angle diving behavior of an autonomous underwater vehicle
  publication-title: Robot. Autonom. Syst.
– volume: 289
  start-page: 225
  year: 2014
  end-page: 240
  ident: bib27
  article-title: Adaptive fuzzy decentralized tracking fault-tolerant control for stochastic nonlinear large-scale systems with unmodeled dynamics
  publication-title: Inf. Sci.
– volume: 19
  start-page: 480
  year: 2009
  end-page: 493
  ident: bib4
  article-title: A backstepping-based low-and-high gain design for marine vehicles
  publication-title: Int. J. Robust Nonlin. Control
– volume: 45
  start-page: 56
  year: 2012
  end-page: 62
  ident: bib29
  article-title: Adaptive sliding mode control based on local recurrent neural networks for underwater robot
  publication-title: Ocean Eng.
– volume: 19
  start-page: 1036
  year: 2011
  end-page: 1046
  ident: bib10
  article-title: An actuator failure tolerant control scheme for an underwater remotely operated vehicle
  publication-title: IEEE Trans. Control Syst. Technol.
– volume: 10
  start-page: 908
  year: 2010
  end-page: 918
  ident: bib1
  article-title: Tracking performance control of a cable communicated underwater vehicle using adaptive neural network controllers
  publication-title: Appl. Soft Comput.
– volume: 33
  start-page: 105
  year: 2014
  end-page: 114
  ident: bib19
  article-title: Modified observer backstepping controller for a dynamic positioning system
  publication-title: Control Eng. Pract.
– volume: 30
  start-page: 1
  year: 2013
  end-page: 7
  ident: bib9
  article-title: Backstepping based adaptive sliding mode control for spacecraft attitude maneuvers
  publication-title: Aerosp. Sci. Technol.
– volume: 55
  start-page: 100
  year: 2015
  end-page: 115
  ident: bib16
  article-title: Adaptive sensor-fault tolerant control for a class of multivariable uncertain nonlinear systems
  publication-title: ISA Trans.
– volume: 22
  start-page: 338
  year: 2014
  end-page: 349
  ident: bib23
  article-title: Adaptive fuzzy observer-based active fault-tolerant dynamic surface control for a class of nonlinear systems with actuator faults
  publication-title: IEEE Trans. Fuzzy Syst.
– volume: 18
  start-page: 223
  year: 2002
  end-page: 233
  ident: bib24
  article-title: Fault-accommodating thruster force allocation of an AUV considering thruster redundancy and saturation
  publication-title: IEEE Trans. Robot. Autom.
– volume: 80
  start-page: 1576
  year: 2007
  end-page: 1594
  ident: bib32
  article-title: Adaptive fault-tolerant control of non-linear systems: an improved CMAC-based fault learning approach
  publication-title: Int. J. Control
– volume: 35
  start-page: 1647
  year: 2008
  end-page: 1659
  ident: bib26
  article-title: A chattering-free sliding-mode controller for underwater vehicles with fault-tolerant infinity-norm thrust allocation
  publication-title: Ocean Eng.
– volume: 65
  start-page: 8
  year: 2013
  end-page: 14
  ident: bib15
  article-title: Sliding mode contouring control design using nonlinear sliding surface for three-dimensional machining
  publication-title: Int. J. Mach. Tools Manuf.
– volume: 12
  start-page: 1575
  year: 2004
  end-page: 1598
  ident: bib21
  article-title: Thruster fault diagnosis and accommodation for open-frame underwater vehicles
  publication-title: Control Eng. Pract.
– volume: 38
  start-page: 484
  year: 2013
  end-page: 499
  ident: bib12
  article-title: Automated fault diagnosis for an autonomous underwater vehicle
  publication-title: IEEE J. Oceanic Eng.
– ident: 10.1016/j.oceaneng.2015.09.035_bib2
  doi: 10.1109/VSS.1996.578620
– volume: 65
  start-page: 8
  year: 2013
  ident: 10.1016/j.oceaneng.2015.09.035_bib15
  article-title: Sliding mode contouring control design using nonlinear sliding surface for three-dimensional machining
  publication-title: Int. J. Mach. Tools Manuf.
  doi: 10.1016/j.ijmachtools.2012.07.004
– volume: 30
  start-page: 1
  issue: 1
  year: 2013
  ident: 10.1016/j.oceaneng.2015.09.035_bib9
  article-title: Backstepping based adaptive sliding mode control for spacecraft attitude maneuvers
  publication-title: Aerosp. Sci. Technol.
  doi: 10.1016/j.ast.2013.05.005
– volume: 35
  start-page: 1647
  issue: 16
  year: 2008
  ident: 10.1016/j.oceaneng.2015.09.035_bib26
  article-title: A chattering-free sliding-mode controller for underwater vehicles with fault-tolerant infinity-norm thrust allocation
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2008.07.013
– volume: 45
  start-page: 56
  year: 2012
  ident: 10.1016/j.oceaneng.2015.09.035_bib29
  article-title: Adaptive sliding mode control based on local recurrent neural networks for underwater robot
  publication-title: Ocean Eng.
  doi: 10.1016/j.oceaneng.2012.02.004
– volume: 38
  start-page: 484
  issue: 3
  year: 2013
  ident: 10.1016/j.oceaneng.2015.09.035_bib12
  article-title: Automated fault diagnosis for an autonomous underwater vehicle
  publication-title: IEEE J. Oceanic Eng.
  doi: 10.1109/JOE.2012.2227540
– volume: 11
  start-page: 1
  year: 2014
  ident: 10.1016/j.oceaneng.2015.09.035_bib14
  article-title: A Fault-tolerable control scheme for an open-frame underwater vehicle
  publication-title: Int. J. Adv. Robot. Syst.
– volume: 19
  start-page: 480
  issue: 4
  year: 2009
  ident: 10.1016/j.oceaneng.2015.09.035_bib4
  article-title: A backstepping-based low-and-high gain design for marine vehicles
  publication-title: Int. J. Robust Nonlin. Control
  doi: 10.1002/rnc.1333
– volume: 61
  start-page: 3682
  issue: 7
  year: 2014
  ident: 10.1016/j.oceaneng.2015.09.035_bib6
  article-title: A bioinspired filtered backstepping tracking control of 7000-m manned submarine vehicle
  publication-title: IEEE Trans. Ind. Electron.
  doi: 10.1109/TIE.2013.2267698
– volume: 52
  start-page: 132
  issue: 2–3
  year: 2005
  ident: 10.1016/j.oceaneng.2015.09.035_bib18
  article-title: A neural network adaptive controller design for free-pitch-angle diving behavior of an autonomous underwater vehicle
  publication-title: Robot. Autonom. Syst.
  doi: 10.1016/j.robot.2005.04.004
– volume: 22
  start-page: 338
  issue: 2
  year: 2014
  ident: 10.1016/j.oceaneng.2015.09.035_bib23
  article-title: Adaptive fuzzy observer-based active fault-tolerant dynamic surface control for a class of nonlinear systems with actuator faults
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2013.2254493
– volume: 136
  start-page: 1
  issue: 3
  year: 2014
  ident: 10.1016/j.oceaneng.2015.09.035_bib11
  article-title: A robust observer-based fault tolerant control scheme for underwater vehicles
  publication-title: J. Dyn. Syst. Meas. Control-Trans. ASME
– volume: 22
  start-page: 1
  issue: 1
  year: 2014
  ident: 10.1016/j.oceaneng.2015.09.035_bib25
  article-title: Observer-based adaptive decentralized fuzzy fault-tolerant control of nonlinear large-scale systems with actuator failures
  publication-title: IEEE Trans. Fuzzy Syst.
  doi: 10.1109/TFUZZ.2013.2241770
– volume: 289
  start-page: 225
  year: 2014
  ident: 10.1016/j.oceaneng.2015.09.035_bib27
  article-title: Adaptive fuzzy decentralized tracking fault-tolerant control for stochastic nonlinear large-scale systems with unmodeled dynamics
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2014.06.042
– volume: 45
  start-page: 1334
  issue: 7
  year: 2000
  ident: 10.1016/j.oceaneng.2015.09.035_bib3
  article-title: Properties of a combined adaptive/second-order sliding mode control algorithm for some classes of uncertain nonlinear systems
  publication-title: IEEE Trans. Autom. Control
  doi: 10.1109/9.867041
– year: 2011
  ident: 10.1016/j.oceaneng.2015.09.035_bib13
– volume: 84
  start-page: 1817
  issue: 11
  year: 2011
  ident: 10.1016/j.oceaneng.2015.09.035_bib31
  article-title: Fault-tolerant control algorithm of the manned submarine with multi-thruster based on quantum-behaved particle swarm optimisation
  publication-title: Int. J. Control
  doi: 10.1080/00207179.2011.626458
– volume: 42
  start-page: 427
  issue: 3
  year: 2006
  ident: 10.1016/j.oceaneng.2015.09.035_bib8
  article-title: Adaptive sliding mode control for discrete-time multi-input multi-output systems
  publication-title: Automatica
  doi: 10.1016/j.automatica.2005.10.008
– volume: 18
  start-page: 223
  issue: 2
  year: 2002
  ident: 10.1016/j.oceaneng.2015.09.035_bib24
  article-title: Fault-accommodating thruster force allocation of an AUV considering thruster redundancy and saturation
  publication-title: IEEE Trans. Robot. Autom.
  doi: 10.1109/TRA.2002.999650
– volume: 7
  start-page: 388
  issue: 2
  year: 1996
  ident: 10.1016/j.oceaneng.2015.09.035_bib17
  article-title: Multilayer neural-net robot controller with guaranteed tracking performance
  publication-title: IEEE Trans. Neural Netw.
  doi: 10.1109/72.485674
– volume: 33
  start-page: 105
  year: 2014
  ident: 10.1016/j.oceaneng.2015.09.035_bib19
  article-title: Modified observer backstepping controller for a dynamic positioning system
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2014.08.012
– volume: 80
  start-page: 1576
  issue: 10
  year: 2007
  ident: 10.1016/j.oceaneng.2015.09.035_bib32
  article-title: Adaptive fault-tolerant control of non-linear systems: an improved CMAC-based fault learning approach
  publication-title: Int. J. Control
  doi: 10.1080/00207170701441877
– volume: 351
  start-page: 2048
  issue: 4
  year: 2014
  ident: 10.1016/j.oceaneng.2015.09.035_bib20
  article-title: Adaptive sliding mode control for a class of MIMO nonlinear systems with uncertainties
  publication-title: J. Franklin Inst.-Eng. Appl. Math.
  doi: 10.1016/j.jfranklin.2012.12.019
– ident: 10.1016/j.oceaneng.2015.09.035_bib7
  doi: 10.1109/OCEANS.2010.5664372
– volume: 55
  start-page: 100
  year: 2015
  ident: 10.1016/j.oceaneng.2015.09.035_bib16
  article-title: Adaptive sensor-fault tolerant control for a class of multivariable uncertain nonlinear systems
  publication-title: ISA Trans.
  doi: 10.1016/j.isatra.2014.10.001
– volume: 34
  start-page: 39
  issue: 1
  year: 2001
  ident: 10.1016/j.oceaneng.2015.09.035_bib22
  article-title: Fault-tolerant control of an autonomous underwater vehicle under thruster redundancy
  publication-title: Robot. Autonom. Syst.
  doi: 10.1016/S0921-8890(00)00100-7
– volume: 19
  start-page: 1036
  issue: 5
  year: 2011
  ident: 10.1016/j.oceaneng.2015.09.035_bib10
  article-title: An actuator failure tolerant control scheme for an underwater remotely operated vehicle
  publication-title: IEEE Trans. Control Syst. Technol.
  doi: 10.1109/TCST.2010.2060199
– volume: 8
  start-page: 658
  issue: 9
  year: 2014
  ident: 10.1016/j.oceaneng.2015.09.035_bib5
  article-title: Adaptive neural observer-based backstepping fault tolerant control for near space vehicle under control effector damage
  publication-title: Control Theory Appl. IET
  doi: 10.1049/iet-cta.2013.0404
– volume: 12
  start-page: 1575
  issue: 12
  year: 2004
  ident: 10.1016/j.oceaneng.2015.09.035_bib21
  article-title: Thruster fault diagnosis and accommodation for open-frame underwater vehicles
  publication-title: Control Eng. Pract.
  doi: 10.1016/j.conengprac.2003.12.014
– ident: 10.1016/j.oceaneng.2015.09.035_bib28
  doi: 10.1109/UUST.1985.1158537
– volume: 10
  start-page: 908
  issue: 3
  year: 2010
  ident: 10.1016/j.oceaneng.2015.09.035_bib1
  article-title: Tracking performance control of a cable communicated underwater vehicle using adaptive neural network controllers
  publication-title: Appl. Soft Comput.
  doi: 10.1016/j.asoc.2009.10.008
– volume: 32
  start-page: 229
  issue: 2
  year: 2008
  ident: 10.1016/j.oceaneng.2015.09.035_bib30
  article-title: Bibliographical review on reconfigurable fault-tolerant control systems
  publication-title: Annu. Rev. Control
  doi: 10.1016/j.arcontrol.2008.03.008
SSID ssj0006603
Score 2.4593499
Snippet A thruster fault tolerant control (FTC) method is developed for underwater vehicles in the presence of modelling uncertainty, external disturbance and unknown...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 15
SubjectTerms Adaptive sliding mode
Backstepping method
Disturbances
Fault tolerance
Fault tolerant control
Faults
Marine
Modelling
Neural network
Thrusters
Uncertainty
Underwater vehicles
Title Adaptive neural network-based backstepping fault tolerant control for underwater vehicles with thruster fault
URI https://dx.doi.org/10.1016/j.oceaneng.2015.09.035
https://www.proquest.com/docview/1751209328
https://www.proquest.com/docview/1778028259
Volume 110
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFA2iLyqITsXPEcHXblmbpM3jEGUqzhcHewtJm-rG7Mbs9M3f7r398AvUBx8bcmnpTe85ae85JeQUQMcoE0deZKTzuDSpZwQLPC4CdJuzTDAUON_0ZW_Ar4ZiuETOai0MtlVWtb-s6UW1rkba1d1sz0Yj1Pj6KkK_KYEmJiEqyjkPca23Xj_aPKRkQd3mgbM_qYTHLYAIk7nsHlu8ROl3Kn4CqG-lusCfi02yURFH2i2vbYssuaxB1j7ZCTbI-i2eqPKg3iaP3cTMsJpRNK2E2Kxs-fYQuRJqUV2fO_RnuKepWUxymk8nDrArp1UDOwVGS1FlNn8BSjqnz-6h6KKj-PaW5g-o14DhIniHDC7O7856XvV3BS8Owij3hAXw6thUhFylthMnQQIopqxRgOhGKthlJ2FokeEoIC2BSoG8SClsJzFM-i7YJcvZNHN7hMKujXPfCu47x4GBRCxWPouM5QnswBK2T0R9S3VcWY_jHzAmuu4xG-s6FRpToZnSkIp90n6Pm5XmG39GqDpj-ssy0oAQf8ae1CnW8IzhhxOYM108aaBYKDEO_Oi3OWFUCIHVwT-u4ZCs4lHZL3NElvP5wh0D68lts1jWTbLSvbzu9d8Az98DTg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4BPfCQqvJSgba4Uq9hvYntxMfVCrRteVxA4mbZicPuaptdLVm48duZyaMFJODQa-JRoowz3-fkm88APxB0rLZpEiRW-UAomwdW8igQMiK3Occlpwbns3M1uBK_ruX1EvTbXhiSVTa1v67pVbVujnSap9mZjUbU4xvqhPymJJmYxPEyfKAr0P4NRw__dB5K8ajVedDwJ23C4yPECFv44oY0XrI2PJWvIdSLWl0B0Mkn-NgwR9arb24TlnyxBetP_AS3YOOCLtSYUG_Dn15mZ1TOGLlWYmxRa74Dgq6MOWqvLz0ZNNyw3C4mJSunE4_gVbJGwc6Q0jJqM5vfIyedszs_rGR0jD7fsnJIDRt4uAregauT48v-IGi2VwjSKE7KQDpEr67LZSx07rppFmUIY9pZjZBulcZldhbHjiiORtYS6RzZi1LSdTPLVeijXVgppoX_DAyXbUKETorQe4EUJOGpDnlinchwCZbxPZDtIzVp4z1OW2BMTCsyG5s2FYZSYbg2mIo96PyNm9XuG-9G6DZj5tk8MggR78Z-b1Ns8CWjPyc4Zrq4NcixqMc4CpO3xsRJ1Qms9__jHg5hdXB5dmpOf57_PoA1OlOLZ77ASjlf-K9IgUr3rZrij5lqBNc
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+neural+network-based+backstepping+fault+tolerant+control+for+underwater+vehicles+with+thruster+fault&rft.jtitle=Ocean+engineering&rft.au=Wang%2C+Yujia&rft.au=Zhang%2C+Mingjun%E2%80%98&rft.au=Wilson%2C+Philip+A.&rft.au=Liu%2C+Xing&rft.date=2015-12-01&rft.issn=0029-8018&rft.volume=110&rft.spage=15&rft.epage=24&rft_id=info:doi/10.1016%2Fj.oceaneng.2015.09.035&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_oceaneng_2015_09_035
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon