Adaptive neural network-based backstepping fault tolerant control for underwater vehicles with thruster fault
A thruster fault tolerant control (FTC) method is developed for underwater vehicles in the presence of modelling uncertainty, external disturbance and unknown thruster fault. The developed method incorporates the sliding mode algorithm and backstepping scheme to improve its robustness to modelling u...
Saved in:
Published in | Ocean engineering Vol. 110; pp. 15 - 24 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Ltd
01.12.2015
|
Subjects | |
Online Access | Get full text |
ISSN | 0029-8018 1873-5258 |
DOI | 10.1016/j.oceaneng.2015.09.035 |
Cover
Abstract | A thruster fault tolerant control (FTC) method is developed for underwater vehicles in the presence of modelling uncertainty, external disturbance and unknown thruster fault. The developed method incorporates the sliding mode algorithm and backstepping scheme to improve its robustness to modelling uncertainty and external disturbance. In order to be independent of the fault detection and diagnosis (FDD) unit, thruster fault is treated as a part of the general uncertainty along with the modelling uncertainty and external disturbance, and radial basis function neural network (RBFNN) is adopted to approximate the general uncertainty. According to the Lyapunov theory, control law and adaptive law of RBFNN are derived to ensure the tracking errors asymptotically converge to zero. Trajectory tracking simulations of underwater vehicle subject to modelling uncertainty, ocean currents, tether force and thruster faults are carried out to demonstrate the effectiveness and feasibility of the proposed method.
•FTC method is developed by integrating backstepping and sliding mode.•Thruster fault is treated as a part of the general uncertainty.•RBFNN is adopted to approximate the general uncertainty.•Simulations are performed to validate the effectiveness of the developed method. |
---|---|
AbstractList | A thruster fault tolerant control (FTC) method is developed for underwater vehicles in the presence of modelling uncertainty, external disturbance and unknown thruster fault. The developed method incorporates the sliding mode algorithm and backstepping scheme to improve its robustness to modelling uncertainty and external disturbance. In order to be independent of the fault detection and diagnosis (FDD) unit, thruster fault is treated as a part of the general uncertainty along with the modelling uncertainty and external disturbance, and radial basis function neural network (RBFNN) is adopted to approximate the general uncertainty. According to the Lyapunov theory, control law and adaptive law of RBFNN are derived to ensure the tracking errors asymptotically converge to zero. Trajectory tracking simulations of underwater vehicle subject to modelling uncertainty, ocean currents, tether force and thruster faults are carried out to demonstrate the effectiveness and feasibility of the proposed method. A thruster fault tolerant control (FTC) method is developed for underwater vehicles in the presence of modelling uncertainty, external disturbance and unknown thruster fault. The developed method incorporates the sliding mode algorithm and backstepping scheme to improve its robustness to modelling uncertainty and external disturbance. In order to be independent of the fault detection and diagnosis (FDD) unit, thruster fault is treated as a part of the general uncertainty along with the modelling uncertainty and external disturbance, and radial basis function neural network (RBFNN) is adopted to approximate the general uncertainty. According to the Lyapunov theory, control law and adaptive law of RBFNN are derived to ensure the tracking errors asymptotically converge to zero. Trajectory tracking simulations of underwater vehicle subject to modelling uncertainty, ocean currents, tether force and thruster faults are carried out to demonstrate the effectiveness and feasibility of the proposed method. •FTC method is developed by integrating backstepping and sliding mode.•Thruster fault is treated as a part of the general uncertainty.•RBFNN is adopted to approximate the general uncertainty.•Simulations are performed to validate the effectiveness of the developed method. |
Author | Wang, Yujia Liu, Xing Wilson, Philip A. Zhang, Mingjun |
Author_xml | – sequence: 1 givenname: Yujia orcidid: 0000-0003-2978-4390 surname: Wang fullname: Wang, Yujia email: wangyujia@hrbeu.edu.cn organization: College of Mechanical and Electrical Engineering, Harbin Engineering University, No.145 Nantong Street, Harbin, Heilongjiang 150001, China – sequence: 2 givenname: Mingjun‘ surname: Zhang fullname: Zhang, Mingjun‘ email: zhangmingjun@hrbeu.edu.cn organization: College of Mechanical and Electrical Engineering, Harbin Engineering University, No.145 Nantong Street, Harbin, Heilongjiang 150001, China – sequence: 3 givenname: Philip A. surname: Wilson fullname: Wilson, Philip A. email: philip.wilson@soton.ac.uk organization: Fluid Structure Interactions Group, Engineering and the Environment, University of Southampton, Southampton SO16 7QF, United Kingdom – sequence: 4 givenname: Xing surname: Liu fullname: Liu, Xing email: liuxing0724@hrbeu.edu.cn organization: College of Mechanical and Electrical Engineering, Harbin Engineering University, No.145 Nantong Street, Harbin, Heilongjiang 150001, China |
BookMark | eNqNkTtvFDEUhS0UJDaBv4Bc0szgR2yPJQqiiJcUiQZqy487WW9m7cH27Ip_n1mWNDShutLV-U5xvkt0kXIChN5S0lNC5ftdnz3YBOm-Z4SKnuiecPECbeigeCeYGC7QhhCmu4HQ4RW6rHVHCJGS8A3a3wQ7t3gAnGApdlpPO-by0DlbIWBn_UNtMM8x3ePRLlPDLU9QbGrY59RKnvCYC15SgHK0DQo-wDb6CSo-xrbFbVuWenr_gV-jl6OdKrz5e6_Qz8-fftx-7e6-f_l2e3PXea6G1glHuKRuFOpaj476wANlXDurBaNWanA8KOUkVUxzrbge5TWXUjgaLJEM-BV6d-6dS_61QG1mH6uHaVpnyks1VKmBsIEJ_R9RQRnRnA1rVJ6jvuRaC4xmLnFvy29DiTmpMDvzpMKcVBiizapiBT_8A_rYbIunAW2cnsc_nnFYJztEKKb6CMlDiAV8MyHH5yoeAV08rZY |
CitedBy_id | crossref_primary_10_1177_14750902231209359 crossref_primary_10_1109_TRO_2021_3082017 crossref_primary_10_1016_j_oceaneng_2019_02_043 crossref_primary_10_3390_s23010239 crossref_primary_10_1109_ACCESS_2022_3213059 crossref_primary_10_1016_j_oceaneng_2022_110845 crossref_primary_10_3390_jmse9091000 crossref_primary_10_1016_j_oceaneng_2021_110063 crossref_primary_10_1016_j_oceaneng_2023_116204 crossref_primary_10_1016_j_jfranklin_2023_08_043 crossref_primary_10_1016_j_oceaneng_2023_115471 crossref_primary_10_1016_j_oceaneng_2018_03_078 crossref_primary_10_1016_j_apor_2021_102686 crossref_primary_10_1002_acs_2959 crossref_primary_10_1016_j_ijhydene_2019_12_224 crossref_primary_10_1109_TVT_2019_2948153 crossref_primary_10_1016_j_oceaneng_2023_115327 crossref_primary_10_1109_ACCESS_2018_2883081 crossref_primary_10_1016_j_ejcon_2024_101006 crossref_primary_10_1109_ACCESS_2019_2953530 crossref_primary_10_3233_JIFS_190294 crossref_primary_10_1007_s40815_018_0592_2 crossref_primary_10_1016_j_oceaneng_2022_110666 crossref_primary_10_3390_app10051728 crossref_primary_10_1016_j_oceaneng_2023_114109 crossref_primary_10_1016_j_sna_2021_112668 crossref_primary_10_1016_j_oceaneng_2023_114628 crossref_primary_10_3390_app14135376 crossref_primary_10_1016_j_amc_2019_04_069 crossref_primary_10_1016_j_oceaneng_2018_12_069 crossref_primary_10_1016_j_neucom_2021_03_137 crossref_primary_10_1016_j_ifacol_2019_12_379 crossref_primary_10_1016_j_oceaneng_2023_113949 crossref_primary_10_3390_jmse13040657 crossref_primary_10_1177_1729881419841943 crossref_primary_10_5194_os_15_349_2019 crossref_primary_10_1016_j_oceaneng_2017_02_006 crossref_primary_10_1016_j_oceaneng_2017_10_001 crossref_primary_10_1007_s11071_022_08222_8 crossref_primary_10_1016_j_oceaneng_2017_02_007 crossref_primary_10_1016_j_oceaneng_2018_02_007 crossref_primary_10_1016_j_oceaneng_2022_111500 crossref_primary_10_1049_iet_cta_2018_6356 crossref_primary_10_1109_JOE_2018_2809018 crossref_primary_10_1016_j_oceaneng_2017_06_020 crossref_primary_10_1016_j_oceaneng_2025_120613 crossref_primary_10_1016_j_oceaneng_2023_115540 crossref_primary_10_3390_jmse10111614 crossref_primary_10_1177_0142331219854865 crossref_primary_10_1007_s11071_017_4011_2 crossref_primary_10_1016_j_apor_2021_102597 crossref_primary_10_1109_TII_2019_2930471 crossref_primary_10_1109_ACCESS_2021_3068164 crossref_primary_10_1080_00207179_2020_1825818 crossref_primary_10_3390_e22060598 crossref_primary_10_1016_j_oceaneng_2022_111737 crossref_primary_10_1016_j_oceaneng_2022_113232 crossref_primary_10_1049_iet_cta_2017_0016 crossref_primary_10_1016_j_oceaneng_2023_115312 crossref_primary_10_1007_s00521_017_3085_6 crossref_primary_10_3390_s16081335 crossref_primary_10_3390_jmse10111624 crossref_primary_10_1177_16878132231160729 crossref_primary_10_1016_j_oceaneng_2019_01_025 crossref_primary_10_1109_TNNLS_2021_3082407 crossref_primary_10_1109_JOE_2019_2899689 crossref_primary_10_1080_00207179_2019_1566637 crossref_primary_10_1177_1729881420930942 crossref_primary_10_1007_s12555_017_0462_y crossref_primary_10_1016_j_oceaneng_2018_07_055 crossref_primary_10_1007_s11771_020_4405_z crossref_primary_10_1016_j_oceaneng_2017_12_070 crossref_primary_10_1016_j_measurement_2019_04_083 crossref_primary_10_1109_ACCESS_2020_2966639 crossref_primary_10_1002_acs_3502 crossref_primary_10_3390_drones8110672 crossref_primary_10_1109_TSMC_2017_2717850 crossref_primary_10_1109_ACCESS_2019_2919346 crossref_primary_10_3390_s20071816 crossref_primary_10_1016_j_apor_2020_102051 crossref_primary_10_1016_j_compeleceng_2021_107473 crossref_primary_10_1051_jnwpu_20234150871 crossref_primary_10_1007_s40996_018_0131_2 crossref_primary_10_1109_TVT_2019_2957529 crossref_primary_10_1002_rnc_4659 crossref_primary_10_1016_j_oceaneng_2022_113299 crossref_primary_10_1016_j_oceaneng_2023_114723 crossref_primary_10_1186_s10033_018_0307_5 crossref_primary_10_1016_j_oceaneng_2023_114687 crossref_primary_10_3390_drones8120745 crossref_primary_10_1016_j_oceaneng_2023_115379 crossref_primary_10_1109_TCST_2018_2870829 crossref_primary_10_1016_j_isatra_2019_11_032 crossref_primary_10_1007_s40815_017_0401_3 crossref_primary_10_1016_j_asoc_2020_106194 crossref_primary_10_3390_jmse11112170 crossref_primary_10_1016_j_oceaneng_2022_112239 crossref_primary_10_1016_j_oceaneng_2022_112519 crossref_primary_10_1016_j_oceaneng_2019_106121 |
Cites_doi | 10.1109/VSS.1996.578620 10.1016/j.ijmachtools.2012.07.004 10.1016/j.ast.2013.05.005 10.1016/j.oceaneng.2008.07.013 10.1016/j.oceaneng.2012.02.004 10.1109/JOE.2012.2227540 10.1002/rnc.1333 10.1109/TIE.2013.2267698 10.1016/j.robot.2005.04.004 10.1109/TFUZZ.2013.2254493 10.1109/TFUZZ.2013.2241770 10.1016/j.ins.2014.06.042 10.1109/9.867041 10.1080/00207179.2011.626458 10.1016/j.automatica.2005.10.008 10.1109/TRA.2002.999650 10.1109/72.485674 10.1016/j.conengprac.2014.08.012 10.1080/00207170701441877 10.1016/j.jfranklin.2012.12.019 10.1109/OCEANS.2010.5664372 10.1016/j.isatra.2014.10.001 10.1016/S0921-8890(00)00100-7 10.1109/TCST.2010.2060199 10.1049/iet-cta.2013.0404 10.1016/j.conengprac.2003.12.014 10.1109/UUST.1985.1158537 10.1016/j.asoc.2009.10.008 10.1016/j.arcontrol.2008.03.008 |
ContentType | Journal Article |
Copyright | 2015 Elsevier Ltd |
Copyright_xml | – notice: 2015 Elsevier Ltd |
DBID | AAYXX CITATION 7QO 7TN 8FD F1W FR3 H96 L.G P64 H8D KR7 L7M |
DOI | 10.1016/j.oceaneng.2015.09.035 |
DatabaseName | CrossRef Biotechnology Research Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aquatic Science & Fisheries Abstracts (ASFA) Professional Aquatic Science & Fisheries Abstracts (ASFA) 2: Ocean Technology, Policy & Non-Living Resources Biotechnology Research Abstracts Oceanic Abstracts Technology Research Database ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Biotechnology and BioEngineering Abstracts Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database Aquatic Science & Fisheries Abstracts (ASFA) Professional |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Oceanography |
EISSN | 1873-5258 |
EndPage | 24 |
ExternalDocumentID | 10_1016_j_oceaneng_2015_09_035 S0029801815005077 |
GroupedDBID | --K --M -~X .DC .~1 0R~ 123 1B1 1~. 1~5 4.4 457 4G. 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAXUO ABFYP ABJNI ABLST ABMAC ABYKQ ACDAQ ACGFS ACRLP ADBBV ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGYEJ AHEUO AHHHB AHJVU AIEXJ AIKHN AITUG AJBFU AJOXV AKIFW ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BJAXD BKOJK BLECG BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 FDB FIRID FNPLU FYGXN G-Q GBLVA IHE J1W JJJVA KCYFY KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SES SPC SPCBC SSJ SST SSZ T5K TAE TN5 XPP ZMT ~02 ~G- 29N 6TJ AAQXK AATTM AAXKI AAYWO AAYXX ABFNM ABWVN ABXDB ACKIV ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFFNX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HVGLF HZ~ R2- SAC SET SEW SSH WUQ 7QO 7TN 8FD ACLOT EFKBS F1W FR3 H96 L.G P64 ~HD H8D KR7 L7M |
ID | FETCH-LOGICAL-c378t-5b0361bf5749fb1cd3d1239ba9521a69eb3d77b6172939739f643665b1da062e3 |
IEDL.DBID | .~1 |
ISSN | 0029-8018 |
IngestDate | Sat Sep 27 18:02:28 EDT 2025 Sun Sep 28 11:18:18 EDT 2025 Thu Jul 03 08:27:05 EDT 2025 Thu Apr 24 23:04:35 EDT 2025 Fri Feb 23 02:26:19 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Adaptive sliding mode Neural network Underwater vehicles Backstepping method Fault tolerant control |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-5b0361bf5749fb1cd3d1239ba9521a69eb3d77b6172939739f643665b1da062e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-2978-4390 |
PQID | 1751209328 |
PQPubID | 23462 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_1778028259 proquest_miscellaneous_1751209328 crossref_primary_10_1016_j_oceaneng_2015_09_035 crossref_citationtrail_10_1016_j_oceaneng_2015_09_035 elsevier_sciencedirect_doi_10_1016_j_oceaneng_2015_09_035 |
PublicationCentury | 2000 |
PublicationDate | 2015-12-01 2015-12-00 20151201 |
PublicationDateYYYYMMDD | 2015-12-01 |
PublicationDate_xml | – month: 12 year: 2015 text: 2015-12-01 day: 01 |
PublicationDecade | 2010 |
PublicationTitle | Ocean engineering |
PublicationYear | 2015 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Morishita, Souza (bib19) 2014; 33 Dearden, Ernits (bib12) 2013; 38 Tong, Sui, Li (bib27) 2014; 289 Cong, Liu, Chen (bib9) 2013; 30 Zhu, Liu, Hu (bib31) 2011; 84 Zhu, Kong (bib32) 2007; 80 Yoerger, D.R., Slotine, J.J.E., Newman, J., Schempf , H., 1985. Robust trajectory control of underwater vehicles. In: Proceedings of the 4th International Symposium on Unmanned Untethered Submersible Technology, pp. 184–197. Fossen (bib13) 2011 Zhang, Jiang (bib30) 2008; 32 Sarkar, Podder, Antonelli (bib24) 2002; 18 Khebbache, Tadjine, Labiod, Boulkroune (bib16) 2015; 55 Corradini, Monteriu, Orlando (bib10) 2011; 19 Corradini, Orlando (bib11) 2014; 136 Nasiri, Nguang, Swain (bib20) 2014; 351 Bagheri, Karimi, Amanifard (bib1) 2010; 10 Lewis, Yesildirek, Kai (bib17) 1996; 7 Bin, Dezhi, Peng, Cheng Chew (bib5) 2014; 8 Bartolini, Ferrara, Giacomini, Usai (bib3) 2000; 45 Huang, Wan, Chang, Pang, Jiang (bib14) 2014; 11 Zhang, Chu (bib29) 2012; 45 Podder, Sarkar (bib22) 2001; 34 Shaocheng, Baoyu, Yongming (bib25) 2014; 22 Bing, Daqi, Yang (bib6) 2014; 61 Omerdic, Roberts (bib21) 2004; 12 Khalick, Uchiyama, Sano (bib15) 2013; 65 Chen (bib8) 2006; 42 Li, Lee (bib18) 2005; 52 Bartolini, G., Ferrara, A., Giacomini, L., Usai, E., 1996. A combined backstepping/second order sliding mode approach to control a class of nonlinear systems. In: Proceedings of the IEEE International Workshop on Variable Structure Systems (VSS׳96), pp. 205–210. Soylu, Buckham, Podhorodeski (bib26) 2008; 35 Qikun, Bin, Cocquempot (bib23) 2014; 22 Bateman, Hull, Lin (bib4) 2009; 19 Carreno, S., Wilson, P., Ridao, P., Petillot, Y., 2010. A Survey on Terrain Based Navigation for AUVS. IEEE OCEANS, pp. 1–7. Khebbache (10.1016/j.oceaneng.2015.09.035_bib16) 2015; 55 Huang (10.1016/j.oceaneng.2015.09.035_bib14) 2014; 11 Zhu (10.1016/j.oceaneng.2015.09.035_bib32) 2007; 80 Podder (10.1016/j.oceaneng.2015.09.035_bib22) 2001; 34 10.1016/j.oceaneng.2015.09.035_bib7 Dearden (10.1016/j.oceaneng.2015.09.035_bib12) 2013; 38 10.1016/j.oceaneng.2015.09.035_bib2 Li (10.1016/j.oceaneng.2015.09.035_bib18) 2005; 52 Shaocheng (10.1016/j.oceaneng.2015.09.035_bib25) 2014; 22 Cong (10.1016/j.oceaneng.2015.09.035_bib9) 2013; 30 Corradini (10.1016/j.oceaneng.2015.09.035_bib11) 2014; 136 Soylu (10.1016/j.oceaneng.2015.09.035_bib26) 2008; 35 Zhang (10.1016/j.oceaneng.2015.09.035_bib29) 2012; 45 Corradini (10.1016/j.oceaneng.2015.09.035_bib10) 2011; 19 Bing (10.1016/j.oceaneng.2015.09.035_bib6) 2014; 61 Bin (10.1016/j.oceaneng.2015.09.035_bib5) 2014; 8 Lewis (10.1016/j.oceaneng.2015.09.035_bib17) 1996; 7 Sarkar (10.1016/j.oceaneng.2015.09.035_bib24) 2002; 18 Omerdic (10.1016/j.oceaneng.2015.09.035_bib21) 2004; 12 Nasiri (10.1016/j.oceaneng.2015.09.035_bib20) 2014; 351 Zhu (10.1016/j.oceaneng.2015.09.035_bib31) 2011; 84 Tong (10.1016/j.oceaneng.2015.09.035_bib27) 2014; 289 Morishita (10.1016/j.oceaneng.2015.09.035_bib19) 2014; 33 Zhang (10.1016/j.oceaneng.2015.09.035_bib30) 2008; 32 Khalick (10.1016/j.oceaneng.2015.09.035_bib15) 2013; 65 Qikun (10.1016/j.oceaneng.2015.09.035_bib23) 2014; 22 Bagheri (10.1016/j.oceaneng.2015.09.035_bib1) 2010; 10 Bartolini (10.1016/j.oceaneng.2015.09.035_bib3) 2000; 45 Bateman (10.1016/j.oceaneng.2015.09.035_bib4) 2009; 19 Fossen (10.1016/j.oceaneng.2015.09.035_bib13) 2011 Chen (10.1016/j.oceaneng.2015.09.035_bib8) 2006; 42 10.1016/j.oceaneng.2015.09.035_bib28 |
References_xml | – volume: 351 start-page: 2048 year: 2014 end-page: 2061 ident: bib20 article-title: Adaptive sliding mode control for a class of MIMO nonlinear systems with uncertainties publication-title: J. Franklin Inst.-Eng. Appl. Math. – volume: 84 start-page: 1817 year: 2011 end-page: 1829 ident: bib31 article-title: Fault-tolerant control algorithm of the manned submarine with multi-thruster based on quantum-behaved particle swarm optimisation publication-title: Int. J. Control – reference: Carreno, S., Wilson, P., Ridao, P., Petillot, Y., 2010. A Survey on Terrain Based Navigation for AUVS. IEEE OCEANS, pp. 1–7. – year: 2011 ident: bib13 article-title: Handbook of Marine Craft Hydrodynamics and Motion Control – volume: 45 start-page: 1334 year: 2000 end-page: 1341 ident: bib3 article-title: Properties of a combined adaptive/second-order sliding mode control algorithm for some classes of uncertain nonlinear systems publication-title: IEEE Trans. Autom. Control – volume: 22 start-page: 1 year: 2014 end-page: 15 ident: bib25 article-title: Observer-based adaptive decentralized fuzzy fault-tolerant control of nonlinear large-scale systems with actuator failures publication-title: IEEE Trans. Fuzzy Syst. – volume: 61 start-page: 3682 year: 2014 end-page: 3693 ident: bib6 article-title: A bioinspired filtered backstepping tracking control of 7000-m manned submarine vehicle publication-title: IEEE Trans. Ind. Electron. – volume: 8 start-page: 658 year: 2014 end-page: 666 ident: bib5 article-title: Adaptive neural observer-based backstepping fault tolerant control for near space vehicle under control effector damage publication-title: Control Theory Appl. IET – volume: 32 start-page: 229 year: 2008 end-page: 252 ident: bib30 article-title: Bibliographical review on reconfigurable fault-tolerant control systems publication-title: Annu. Rev. Control – volume: 34 start-page: 39 year: 2001 end-page: 52 ident: bib22 article-title: Fault-tolerant control of an autonomous underwater vehicle under thruster redundancy publication-title: Robot. Autonom. Syst. – volume: 11 start-page: 1 year: 2014 end-page: 12 ident: bib14 article-title: A Fault-tolerable control scheme for an open-frame underwater vehicle publication-title: Int. J. Adv. Robot. Syst. – volume: 42 start-page: 427 year: 2006 end-page: 435 ident: bib8 article-title: Adaptive sliding mode control for discrete-time multi-input multi-output systems publication-title: Automatica – reference: Yoerger, D.R., Slotine, J.J.E., Newman, J., Schempf , H., 1985. Robust trajectory control of underwater vehicles. In: Proceedings of the 4th International Symposium on Unmanned Untethered Submersible Technology, pp. 184–197. – reference: Bartolini, G., Ferrara, A., Giacomini, L., Usai, E., 1996. A combined backstepping/second order sliding mode approach to control a class of nonlinear systems. In: Proceedings of the IEEE International Workshop on Variable Structure Systems (VSS׳96), pp. 205–210. – volume: 7 start-page: 388 year: 1996 end-page: 399 ident: bib17 article-title: Multilayer neural-net robot controller with guaranteed tracking performance publication-title: IEEE Trans. Neural Netw. – volume: 136 start-page: 1 year: 2014 end-page: 11 ident: bib11 article-title: A robust observer-based fault tolerant control scheme for underwater vehicles publication-title: J. Dyn. Syst. Meas. Control-Trans. ASME – volume: 52 start-page: 132 year: 2005 end-page: 147 ident: bib18 article-title: A neural network adaptive controller design for free-pitch-angle diving behavior of an autonomous underwater vehicle publication-title: Robot. Autonom. Syst. – volume: 289 start-page: 225 year: 2014 end-page: 240 ident: bib27 article-title: Adaptive fuzzy decentralized tracking fault-tolerant control for stochastic nonlinear large-scale systems with unmodeled dynamics publication-title: Inf. Sci. – volume: 19 start-page: 480 year: 2009 end-page: 493 ident: bib4 article-title: A backstepping-based low-and-high gain design for marine vehicles publication-title: Int. J. Robust Nonlin. Control – volume: 45 start-page: 56 year: 2012 end-page: 62 ident: bib29 article-title: Adaptive sliding mode control based on local recurrent neural networks for underwater robot publication-title: Ocean Eng. – volume: 19 start-page: 1036 year: 2011 end-page: 1046 ident: bib10 article-title: An actuator failure tolerant control scheme for an underwater remotely operated vehicle publication-title: IEEE Trans. Control Syst. Technol. – volume: 10 start-page: 908 year: 2010 end-page: 918 ident: bib1 article-title: Tracking performance control of a cable communicated underwater vehicle using adaptive neural network controllers publication-title: Appl. Soft Comput. – volume: 33 start-page: 105 year: 2014 end-page: 114 ident: bib19 article-title: Modified observer backstepping controller for a dynamic positioning system publication-title: Control Eng. Pract. – volume: 30 start-page: 1 year: 2013 end-page: 7 ident: bib9 article-title: Backstepping based adaptive sliding mode control for spacecraft attitude maneuvers publication-title: Aerosp. Sci. Technol. – volume: 55 start-page: 100 year: 2015 end-page: 115 ident: bib16 article-title: Adaptive sensor-fault tolerant control for a class of multivariable uncertain nonlinear systems publication-title: ISA Trans. – volume: 22 start-page: 338 year: 2014 end-page: 349 ident: bib23 article-title: Adaptive fuzzy observer-based active fault-tolerant dynamic surface control for a class of nonlinear systems with actuator faults publication-title: IEEE Trans. Fuzzy Syst. – volume: 18 start-page: 223 year: 2002 end-page: 233 ident: bib24 article-title: Fault-accommodating thruster force allocation of an AUV considering thruster redundancy and saturation publication-title: IEEE Trans. Robot. Autom. – volume: 80 start-page: 1576 year: 2007 end-page: 1594 ident: bib32 article-title: Adaptive fault-tolerant control of non-linear systems: an improved CMAC-based fault learning approach publication-title: Int. J. Control – volume: 35 start-page: 1647 year: 2008 end-page: 1659 ident: bib26 article-title: A chattering-free sliding-mode controller for underwater vehicles with fault-tolerant infinity-norm thrust allocation publication-title: Ocean Eng. – volume: 65 start-page: 8 year: 2013 end-page: 14 ident: bib15 article-title: Sliding mode contouring control design using nonlinear sliding surface for three-dimensional machining publication-title: Int. J. Mach. Tools Manuf. – volume: 12 start-page: 1575 year: 2004 end-page: 1598 ident: bib21 article-title: Thruster fault diagnosis and accommodation for open-frame underwater vehicles publication-title: Control Eng. Pract. – volume: 38 start-page: 484 year: 2013 end-page: 499 ident: bib12 article-title: Automated fault diagnosis for an autonomous underwater vehicle publication-title: IEEE J. Oceanic Eng. – ident: 10.1016/j.oceaneng.2015.09.035_bib2 doi: 10.1109/VSS.1996.578620 – volume: 65 start-page: 8 year: 2013 ident: 10.1016/j.oceaneng.2015.09.035_bib15 article-title: Sliding mode contouring control design using nonlinear sliding surface for three-dimensional machining publication-title: Int. J. Mach. Tools Manuf. doi: 10.1016/j.ijmachtools.2012.07.004 – volume: 30 start-page: 1 issue: 1 year: 2013 ident: 10.1016/j.oceaneng.2015.09.035_bib9 article-title: Backstepping based adaptive sliding mode control for spacecraft attitude maneuvers publication-title: Aerosp. Sci. Technol. doi: 10.1016/j.ast.2013.05.005 – volume: 35 start-page: 1647 issue: 16 year: 2008 ident: 10.1016/j.oceaneng.2015.09.035_bib26 article-title: A chattering-free sliding-mode controller for underwater vehicles with fault-tolerant infinity-norm thrust allocation publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2008.07.013 – volume: 45 start-page: 56 year: 2012 ident: 10.1016/j.oceaneng.2015.09.035_bib29 article-title: Adaptive sliding mode control based on local recurrent neural networks for underwater robot publication-title: Ocean Eng. doi: 10.1016/j.oceaneng.2012.02.004 – volume: 38 start-page: 484 issue: 3 year: 2013 ident: 10.1016/j.oceaneng.2015.09.035_bib12 article-title: Automated fault diagnosis for an autonomous underwater vehicle publication-title: IEEE J. Oceanic Eng. doi: 10.1109/JOE.2012.2227540 – volume: 11 start-page: 1 year: 2014 ident: 10.1016/j.oceaneng.2015.09.035_bib14 article-title: A Fault-tolerable control scheme for an open-frame underwater vehicle publication-title: Int. J. Adv. Robot. Syst. – volume: 19 start-page: 480 issue: 4 year: 2009 ident: 10.1016/j.oceaneng.2015.09.035_bib4 article-title: A backstepping-based low-and-high gain design for marine vehicles publication-title: Int. J. Robust Nonlin. Control doi: 10.1002/rnc.1333 – volume: 61 start-page: 3682 issue: 7 year: 2014 ident: 10.1016/j.oceaneng.2015.09.035_bib6 article-title: A bioinspired filtered backstepping tracking control of 7000-m manned submarine vehicle publication-title: IEEE Trans. Ind. Electron. doi: 10.1109/TIE.2013.2267698 – volume: 52 start-page: 132 issue: 2–3 year: 2005 ident: 10.1016/j.oceaneng.2015.09.035_bib18 article-title: A neural network adaptive controller design for free-pitch-angle diving behavior of an autonomous underwater vehicle publication-title: Robot. Autonom. Syst. doi: 10.1016/j.robot.2005.04.004 – volume: 22 start-page: 338 issue: 2 year: 2014 ident: 10.1016/j.oceaneng.2015.09.035_bib23 article-title: Adaptive fuzzy observer-based active fault-tolerant dynamic surface control for a class of nonlinear systems with actuator faults publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2013.2254493 – volume: 136 start-page: 1 issue: 3 year: 2014 ident: 10.1016/j.oceaneng.2015.09.035_bib11 article-title: A robust observer-based fault tolerant control scheme for underwater vehicles publication-title: J. Dyn. Syst. Meas. Control-Trans. ASME – volume: 22 start-page: 1 issue: 1 year: 2014 ident: 10.1016/j.oceaneng.2015.09.035_bib25 article-title: Observer-based adaptive decentralized fuzzy fault-tolerant control of nonlinear large-scale systems with actuator failures publication-title: IEEE Trans. Fuzzy Syst. doi: 10.1109/TFUZZ.2013.2241770 – volume: 289 start-page: 225 year: 2014 ident: 10.1016/j.oceaneng.2015.09.035_bib27 article-title: Adaptive fuzzy decentralized tracking fault-tolerant control for stochastic nonlinear large-scale systems with unmodeled dynamics publication-title: Inf. Sci. doi: 10.1016/j.ins.2014.06.042 – volume: 45 start-page: 1334 issue: 7 year: 2000 ident: 10.1016/j.oceaneng.2015.09.035_bib3 article-title: Properties of a combined adaptive/second-order sliding mode control algorithm for some classes of uncertain nonlinear systems publication-title: IEEE Trans. Autom. Control doi: 10.1109/9.867041 – year: 2011 ident: 10.1016/j.oceaneng.2015.09.035_bib13 – volume: 84 start-page: 1817 issue: 11 year: 2011 ident: 10.1016/j.oceaneng.2015.09.035_bib31 article-title: Fault-tolerant control algorithm of the manned submarine with multi-thruster based on quantum-behaved particle swarm optimisation publication-title: Int. J. Control doi: 10.1080/00207179.2011.626458 – volume: 42 start-page: 427 issue: 3 year: 2006 ident: 10.1016/j.oceaneng.2015.09.035_bib8 article-title: Adaptive sliding mode control for discrete-time multi-input multi-output systems publication-title: Automatica doi: 10.1016/j.automatica.2005.10.008 – volume: 18 start-page: 223 issue: 2 year: 2002 ident: 10.1016/j.oceaneng.2015.09.035_bib24 article-title: Fault-accommodating thruster force allocation of an AUV considering thruster redundancy and saturation publication-title: IEEE Trans. Robot. Autom. doi: 10.1109/TRA.2002.999650 – volume: 7 start-page: 388 issue: 2 year: 1996 ident: 10.1016/j.oceaneng.2015.09.035_bib17 article-title: Multilayer neural-net robot controller with guaranteed tracking performance publication-title: IEEE Trans. Neural Netw. doi: 10.1109/72.485674 – volume: 33 start-page: 105 year: 2014 ident: 10.1016/j.oceaneng.2015.09.035_bib19 article-title: Modified observer backstepping controller for a dynamic positioning system publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2014.08.012 – volume: 80 start-page: 1576 issue: 10 year: 2007 ident: 10.1016/j.oceaneng.2015.09.035_bib32 article-title: Adaptive fault-tolerant control of non-linear systems: an improved CMAC-based fault learning approach publication-title: Int. J. Control doi: 10.1080/00207170701441877 – volume: 351 start-page: 2048 issue: 4 year: 2014 ident: 10.1016/j.oceaneng.2015.09.035_bib20 article-title: Adaptive sliding mode control for a class of MIMO nonlinear systems with uncertainties publication-title: J. Franklin Inst.-Eng. Appl. Math. doi: 10.1016/j.jfranklin.2012.12.019 – ident: 10.1016/j.oceaneng.2015.09.035_bib7 doi: 10.1109/OCEANS.2010.5664372 – volume: 55 start-page: 100 year: 2015 ident: 10.1016/j.oceaneng.2015.09.035_bib16 article-title: Adaptive sensor-fault tolerant control for a class of multivariable uncertain nonlinear systems publication-title: ISA Trans. doi: 10.1016/j.isatra.2014.10.001 – volume: 34 start-page: 39 issue: 1 year: 2001 ident: 10.1016/j.oceaneng.2015.09.035_bib22 article-title: Fault-tolerant control of an autonomous underwater vehicle under thruster redundancy publication-title: Robot. Autonom. Syst. doi: 10.1016/S0921-8890(00)00100-7 – volume: 19 start-page: 1036 issue: 5 year: 2011 ident: 10.1016/j.oceaneng.2015.09.035_bib10 article-title: An actuator failure tolerant control scheme for an underwater remotely operated vehicle publication-title: IEEE Trans. Control Syst. Technol. doi: 10.1109/TCST.2010.2060199 – volume: 8 start-page: 658 issue: 9 year: 2014 ident: 10.1016/j.oceaneng.2015.09.035_bib5 article-title: Adaptive neural observer-based backstepping fault tolerant control for near space vehicle under control effector damage publication-title: Control Theory Appl. IET doi: 10.1049/iet-cta.2013.0404 – volume: 12 start-page: 1575 issue: 12 year: 2004 ident: 10.1016/j.oceaneng.2015.09.035_bib21 article-title: Thruster fault diagnosis and accommodation for open-frame underwater vehicles publication-title: Control Eng. Pract. doi: 10.1016/j.conengprac.2003.12.014 – ident: 10.1016/j.oceaneng.2015.09.035_bib28 doi: 10.1109/UUST.1985.1158537 – volume: 10 start-page: 908 issue: 3 year: 2010 ident: 10.1016/j.oceaneng.2015.09.035_bib1 article-title: Tracking performance control of a cable communicated underwater vehicle using adaptive neural network controllers publication-title: Appl. Soft Comput. doi: 10.1016/j.asoc.2009.10.008 – volume: 32 start-page: 229 issue: 2 year: 2008 ident: 10.1016/j.oceaneng.2015.09.035_bib30 article-title: Bibliographical review on reconfigurable fault-tolerant control systems publication-title: Annu. Rev. Control doi: 10.1016/j.arcontrol.2008.03.008 |
SSID | ssj0006603 |
Score | 2.4593499 |
Snippet | A thruster fault tolerant control (FTC) method is developed for underwater vehicles in the presence of modelling uncertainty, external disturbance and unknown... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 15 |
SubjectTerms | Adaptive sliding mode Backstepping method Disturbances Fault tolerance Fault tolerant control Faults Marine Modelling Neural network Thrusters Uncertainty Underwater vehicles |
Title | Adaptive neural network-based backstepping fault tolerant control for underwater vehicles with thruster fault |
URI | https://dx.doi.org/10.1016/j.oceaneng.2015.09.035 https://www.proquest.com/docview/1751209328 https://www.proquest.com/docview/1778028259 |
Volume | 110 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dS8MwFA2iLyqITsXPEcHXblmbpM3jEGUqzhcHewtJm-rG7Mbs9M3f7r398AvUBx8bcmnpTe85ae85JeQUQMcoE0deZKTzuDSpZwQLPC4CdJuzTDAUON_0ZW_Ar4ZiuETOai0MtlVWtb-s6UW1rkba1d1sz0Yj1Pj6KkK_KYEmJiEqyjkPca23Xj_aPKRkQd3mgbM_qYTHLYAIk7nsHlu8ROl3Kn4CqG-lusCfi02yURFH2i2vbYssuaxB1j7ZCTbI-i2eqPKg3iaP3cTMsJpRNK2E2Kxs-fYQuRJqUV2fO_RnuKepWUxymk8nDrArp1UDOwVGS1FlNn8BSjqnz-6h6KKj-PaW5g-o14DhIniHDC7O7856XvV3BS8Owij3hAXw6thUhFylthMnQQIopqxRgOhGKthlJ2FokeEoIC2BSoG8SClsJzFM-i7YJcvZNHN7hMKujXPfCu47x4GBRCxWPouM5QnswBK2T0R9S3VcWY_jHzAmuu4xG-s6FRpToZnSkIp90n6Pm5XmG39GqDpj-ssy0oAQf8ae1CnW8IzhhxOYM108aaBYKDEO_Oi3OWFUCIHVwT-u4ZCs4lHZL3NElvP5wh0D68lts1jWTbLSvbzu9d8Az98DTg |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT9wwEB4BPfCQqvJSgba4Uq9hvYntxMfVCrRteVxA4mbZicPuaptdLVm48duZyaMFJODQa-JRoowz3-fkm88APxB0rLZpEiRW-UAomwdW8igQMiK3Occlpwbns3M1uBK_ruX1EvTbXhiSVTa1v67pVbVujnSap9mZjUbU4xvqhPymJJmYxPEyfKAr0P4NRw__dB5K8ajVedDwJ23C4yPECFv44oY0XrI2PJWvIdSLWl0B0Mkn-NgwR9arb24TlnyxBetP_AS3YOOCLtSYUG_Dn15mZ1TOGLlWYmxRa74Dgq6MOWqvLz0ZNNyw3C4mJSunE4_gVbJGwc6Q0jJqM5vfIyedszs_rGR0jD7fsnJIDRt4uAregauT48v-IGi2VwjSKE7KQDpEr67LZSx07rppFmUIY9pZjZBulcZldhbHjiiORtYS6RzZi1LSdTPLVeijXVgppoX_DAyXbUKETorQe4EUJOGpDnlinchwCZbxPZDtIzVp4z1OW2BMTCsyG5s2FYZSYbg2mIo96PyNm9XuG-9G6DZj5tk8MggR78Z-b1Ns8CWjPyc4Zrq4NcixqMc4CpO3xsRJ1Qms9__jHg5hdXB5dmpOf57_PoA1OlOLZ77ASjlf-K9IgUr3rZrij5lqBNc |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Adaptive+neural+network-based+backstepping+fault+tolerant+control+for+underwater+vehicles+with+thruster+fault&rft.jtitle=Ocean+engineering&rft.au=Wang%2C+Yujia&rft.au=Zhang%2C+Mingjun%E2%80%98&rft.au=Wilson%2C+Philip+A.&rft.au=Liu%2C+Xing&rft.date=2015-12-01&rft.issn=0029-8018&rft.volume=110&rft.spage=15&rft.epage=24&rft_id=info:doi/10.1016%2Fj.oceaneng.2015.09.035&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_oceaneng_2015_09_035 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0029-8018&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0029-8018&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0029-8018&client=summon |