Recent Advances of Plasmonic Nanoparticles and their Applications

In the past half-century, surface plasmon resonance in noble metallic nanoparticles has been an important research subject. Recent advances in the synthesis, assembly, characterization, and theories of traditional and non-traditional metal nanostructures open a new pathway to the kaleidoscopic appli...

Full description

Saved in:
Bibliographic Details
Published inMaterials Vol. 11; no. 10; p. 1833
Main Authors Liu, Jianxun, He, Huilin, Xiao, Dong, Yin, Shengtao, Ji, Wei, Jiang, Shouzhen, Luo, Dan, Wang, Bing, Liu, Yanjun
Format Journal Article
LanguageEnglish
Published Switzerland MDPI 26.09.2018
Subjects
Online AccessGet full text
ISSN1996-1944
1996-1944
DOI10.3390/ma11101833

Cover

Abstract In the past half-century, surface plasmon resonance in noble metallic nanoparticles has been an important research subject. Recent advances in the synthesis, assembly, characterization, and theories of traditional and non-traditional metal nanostructures open a new pathway to the kaleidoscopic applications of plasmonics. However, accurate and precise models of plasmon resonance are still challenging, as its characteristics can be affected by multiple factors. We herein summarize the recent advances of plasmonic nanoparticles and their applications, particularly regarding the fundamentals and applications of surface plasmon resonance (SPR) in Au nanoparticles, plasmon-enhanced upconversion luminescence, and plasmonic chiral metasurfaces.
AbstractList In the past half-century, surface plasmon resonance in noble metallic nanoparticles has been an important research subject. Recent advances in the synthesis, assembly, characterization, and theories of traditional and non-traditional metal nanostructures open a new pathway to the kaleidoscopic applications of plasmonics. However, accurate and precise models of plasmon resonance are still challenging, as its characteristics can be affected by multiple factors. We herein summarize the recent advances of plasmonic nanoparticles and their applications, particularly regarding the fundamentals and applications of surface plasmon resonance (SPR) in Au nanoparticles, plasmon-enhanced upconversion luminescence, and plasmonic chiral metasurfaces.In the past half-century, surface plasmon resonance in noble metallic nanoparticles has been an important research subject. Recent advances in the synthesis, assembly, characterization, and theories of traditional and non-traditional metal nanostructures open a new pathway to the kaleidoscopic applications of plasmonics. However, accurate and precise models of plasmon resonance are still challenging, as its characteristics can be affected by multiple factors. We herein summarize the recent advances of plasmonic nanoparticles and their applications, particularly regarding the fundamentals and applications of surface plasmon resonance (SPR) in Au nanoparticles, plasmon-enhanced upconversion luminescence, and plasmonic chiral metasurfaces.
In the past half-century, surface plasmon resonance in noble metallic nanoparticles has been an important research subject. Recent advances in the synthesis, assembly, characterization, and theories of traditional and non-traditional metal nanostructures open a new pathway to the kaleidoscopic applications of plasmonics. However, accurate and precise models of plasmon resonance are still challenging, as its characteristics can be affected by multiple factors. We herein summarize the recent advances of plasmonic nanoparticles and their applications, particularly regarding the fundamentals and applications of surface plasmon resonance (SPR) in Au nanoparticles, plasmon-enhanced upconversion luminescence, and plasmonic chiral metasurfaces.
Author Luo, Dan
Liu, Jianxun
Yin, Shengtao
He, Huilin
Xiao, Dong
Wang, Bing
Liu, Yanjun
Jiang, Shouzhen
Ji, Wei
AuthorAffiliation 3 School of Information Science and Engineering, Shandong University, Jinan 250000, China; jiwww@sdu.edu.cn
1 Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China; liujianxun@hust.edu.cn (J.L.); hehl@mail.sustc.edu.cn (H.H.); d_xiao@outlook.com (D.X.); 13589831680@163.com (S.Y.); loud@sustc.edu.cn (D.L.)
2 Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
4 School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; jiang_sz@126.com
AuthorAffiliation_xml – name: 4 School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; jiang_sz@126.com
– name: 1 Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China; liujianxun@hust.edu.cn (J.L.); hehl@mail.sustc.edu.cn (H.H.); d_xiao@outlook.com (D.X.); 13589831680@163.com (S.Y.); loud@sustc.edu.cn (D.L.)
– name: 2 Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China
– name: 3 School of Information Science and Engineering, Shandong University, Jinan 250000, China; jiwww@sdu.edu.cn
Author_xml – sequence: 1
  givenname: Jianxun
  surname: Liu
  fullname: Liu, Jianxun
– sequence: 2
  givenname: Huilin
  surname: He
  fullname: He, Huilin
– sequence: 3
  givenname: Dong
  surname: Xiao
  fullname: Xiao, Dong
– sequence: 4
  givenname: Shengtao
  surname: Yin
  fullname: Yin, Shengtao
– sequence: 5
  givenname: Wei
  surname: Ji
  fullname: Ji, Wei
– sequence: 6
  givenname: Shouzhen
  surname: Jiang
  fullname: Jiang, Shouzhen
– sequence: 7
  givenname: Dan
  surname: Luo
  fullname: Luo, Dan
– sequence: 8
  givenname: Bing
  surname: Wang
  fullname: Wang, Bing
– sequence: 9
  givenname: Yanjun
  surname: Liu
  fullname: Liu, Yanjun
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30261657$$D View this record in MEDLINE/PubMed
BookMark eNptkdtKxDAQhoMoHta98QGklyKsZjLdtLkRFvEEi4rodZimqRtpk9p0Bd_eej7g3MzAfPP_w8wWW_XBW8Z2gB8gKn7YEABwyBFX2CYoJSeg0nT1R73BxjE-8CEQIRdqnW0gFxLkNNtksxtrrO-TWflE3tiYhCq5rik2wTuTXJIPLXW9M_XQIl8m_cK6Lpm1be0M9S74uM3WKqqjHX_kEbs7Pbk9Pp_Mr84ujmfzicEs7ydTspgrsBKKUhQpr1Jjc0kmK8jkgjhJxKLKQajSArdGoEFRyAERiiNlOGJH77rtsmhs-bp1R7VuO9dQ96wDOf27491C34cnLQWgwnwQ2PsQ6MLj0sZeNy4aW9fkbVhGLQBSqbJpCgO6-9Pry-TzbgPA3wHThRg7W2nj-rd7DNau1sD163f093eGkf0_I5-q_8AvEoePgg
CitedBy_id crossref_primary_10_1016_j_isci_2024_111225
crossref_primary_10_1002_slct_202405895
crossref_primary_10_1016_j_apsusc_2024_159547
crossref_primary_10_1021_acs_jpcc_1c02147
crossref_primary_10_3390_ma14040841
crossref_primary_10_1016_j_cej_2024_151788
crossref_primary_10_3390_ma16051801
crossref_primary_10_3390_coatings12091248
crossref_primary_10_1016_j_jmmm_2023_171616
crossref_primary_10_2351_7_0001412
crossref_primary_10_3390_jcs6080218
crossref_primary_10_3390_nano10040685
crossref_primary_10_3390_polym13101604
crossref_primary_10_3390_photonics9120890
crossref_primary_10_3390_toxins15010005
crossref_primary_10_3390_chemosensors11080427
crossref_primary_10_15251_JOR_2024_201_1
crossref_primary_10_2320_matertrans_MT_MN2019042
crossref_primary_10_1021_acsami_3c13921
crossref_primary_10_1021_acsanm_3c00853
crossref_primary_10_1021_acs_jafc_2c00089
crossref_primary_10_1016_j_jconrel_2019_08_032
crossref_primary_10_1016_j_rinp_2022_105742
crossref_primary_10_3390_ma14061380
crossref_primary_10_1016_j_physb_2019_411957
crossref_primary_10_1063_5_0183334
crossref_primary_10_1515_revic_2024_0043
crossref_primary_10_3390_mi13020247
crossref_primary_10_1021_acsami_9b16461
crossref_primary_10_3390_nano10040690
crossref_primary_10_1007_s11468_021_01574_8
crossref_primary_10_1039_D4RA05732E
crossref_primary_10_1088_1361_6528_abc035
crossref_primary_10_3390_s23020562
crossref_primary_10_1063_5_0231859
crossref_primary_10_3390_ijms24044142
crossref_primary_10_1016_j_rinp_2022_105519
crossref_primary_10_1088_1361_6528_acdc2b
crossref_primary_10_1016_j_nantod_2020_101014
crossref_primary_10_1007_s11468_023_01963_1
crossref_primary_10_3390_ma17133242
crossref_primary_10_3390_ma12010031
crossref_primary_10_1002_chem_201905217
crossref_primary_10_1007_s11468_024_02435_w
crossref_primary_10_1021_acsanm_0c01457
crossref_primary_10_3390_nano13091526
crossref_primary_10_1039_D3RA01078C
crossref_primary_10_3390_bios12110951
crossref_primary_10_1038_s41578_021_00402_z
crossref_primary_10_1016_j_ijbiomac_2021_08_073
crossref_primary_10_1016_j_inoche_2022_109979
crossref_primary_10_1088_2632_959X_ad9c9e
crossref_primary_10_1039_D2GC04591E
crossref_primary_10_1007_s00339_021_05253_7
crossref_primary_10_3390_ma15010189
crossref_primary_10_3390_molecules24132460
crossref_primary_10_1039_D5RA00458F
crossref_primary_10_1134_S1063783424600833
crossref_primary_10_1039_D1JA00149C
crossref_primary_10_3390_nano11092460
crossref_primary_10_1016_j_mtchem_2022_101220
crossref_primary_10_3390_app9122512
crossref_primary_10_1039_C9RA00115H
crossref_primary_10_3389_fchem_2022_836597
crossref_primary_10_3389_fbioe_2020_558375
crossref_primary_10_1016_j_molstruc_2024_140219
crossref_primary_10_1021_acs_jpcc_2c05582
crossref_primary_10_2217_nnm_2023_0010
crossref_primary_10_1088_1757_899X_902_1_012058
crossref_primary_10_1021_acs_nanolett_0c00601
crossref_primary_10_1063_5_0219146
crossref_primary_10_3390_ma12091411
crossref_primary_10_1002_VIW_20210008
crossref_primary_10_1126_sciadv_abj5505
crossref_primary_10_3390_nano12193366
crossref_primary_10_1016_j_diamond_2023_110264
crossref_primary_10_1088_1742_6596_1410_1_012140
crossref_primary_10_1134_S2635167624600391
crossref_primary_10_3389_fphy_2022_918372
crossref_primary_10_1021_acsomega_4c02150
crossref_primary_10_3390_nano12071202
crossref_primary_10_3390_bios11120527
crossref_primary_10_1063_5_0040128
crossref_primary_10_1007_s11082_021_03089_2
crossref_primary_10_1016_j_optlastec_2022_109032
crossref_primary_10_1016_j_optcom_2024_130783
crossref_primary_10_1364_OE_503031
crossref_primary_10_1002_adfm_201909445
crossref_primary_10_15251_JOR_2022_186_723
crossref_primary_10_3390_ijms24010443
crossref_primary_10_1016_j_saa_2024_124848
crossref_primary_10_3390_nano12060955
crossref_primary_10_1016_j_optmat_2020_110747
crossref_primary_10_3390_mi14030574
crossref_primary_10_48077_scihor_23_10__2020_47_53
crossref_primary_10_1007_s11696_024_03583_3
crossref_primary_10_1016_j_mtphys_2021_100378
crossref_primary_10_3934_energy_2021032
crossref_primary_10_1007_s10854_024_14048_4
crossref_primary_10_1016_j_diamond_2025_112211
crossref_primary_10_3390_nano11102579
crossref_primary_10_1007_s11696_023_02845_w
crossref_primary_10_1134_S1087659619030155
crossref_primary_10_1016_j_optmat_2024_115402
crossref_primary_10_1021_acsami_9b20907
crossref_primary_10_1142_S021798492450043X
crossref_primary_10_1002_pssb_202000249
crossref_primary_10_1016_j_inoche_2024_112702
crossref_primary_10_1007_s12045_024_0209_z
crossref_primary_10_1021_acs_jpca_2c07702
crossref_primary_10_3390_ijms241713306
crossref_primary_10_3390_pharmaceutics13111773
crossref_primary_10_1007_s00339_021_04595_6
crossref_primary_10_1016_j_mtbio_2023_100646
crossref_primary_10_1039_C9NH00106A
crossref_primary_10_1063_1_5131734
crossref_primary_10_3762_bjnano_15_56
crossref_primary_10_1016_j_jare_2021_11_006
crossref_primary_10_1016_j_mtcomm_2021_102137
crossref_primary_10_3390_photonics11070618
crossref_primary_10_1149_2162_8777_ac3d1a
crossref_primary_10_1016_j_mtsust_2023_100544
crossref_primary_10_1021_acsami_0c19327
crossref_primary_10_3390_ma15041523
crossref_primary_10_3390_nano13030496
crossref_primary_10_3390_nano8110871
crossref_primary_10_1021_acs_jpcc_4c04932
crossref_primary_10_3390_polym16172420
crossref_primary_10_1016_j_talanta_2023_125121
crossref_primary_10_3390_nano11071696
crossref_primary_10_1103_PhysRevMaterials_4_015201
crossref_primary_10_1016_j_sbsr_2021_100414
crossref_primary_10_1039_D0EW00534G
crossref_primary_10_1007_s11468_023_02082_7
crossref_primary_10_1016_j_mtphys_2022_100815
crossref_primary_10_1021_acs_chemmater_3c00346
crossref_primary_10_1039_D1TC00877C
crossref_primary_10_1021_acsanm_3c04756
crossref_primary_10_3390_ma15207160
crossref_primary_10_3390_mi14122208
crossref_primary_10_3390_jcs5070193
crossref_primary_10_1016_j_colcom_2022_100690
crossref_primary_10_1021_acs_jpca_1c02924
crossref_primary_10_1088_1742_6596_2729_1_012002
crossref_primary_10_2217_nnm_2020_0170
crossref_primary_10_1002_asia_202001202
crossref_primary_10_1002_VIW_20200149
crossref_primary_10_1088_1402_4896_acbfed
crossref_primary_10_1021_acsami_2c13267
crossref_primary_10_1002_adom_202302265
crossref_primary_10_1007_s11468_024_02682_x
crossref_primary_10_3103_S1068335624600530
crossref_primary_10_1016_j_jsamd_2024_100775
crossref_primary_10_1021_acsami_0c02602
crossref_primary_10_1063_5_0050871
crossref_primary_10_2174_2405461508666221102090945
crossref_primary_10_3390_nano9121691
crossref_primary_10_1016_j_trac_2021_116256
crossref_primary_10_1063_5_0129993
crossref_primary_10_3390_bios13020182
Cites_doi 10.1038/nature10889
10.1021/jp057170o
10.1038/lsa.2016.217
10.1002/adfm.201701842
10.1002/adom.201500380
10.1116/1.586991
10.1021/ja3066336
10.3390/ma11030458
10.1021/nl803677x
10.1021/nl101938p
10.1021/nn506800a
10.1039/c2nr31241g
10.1021/ph500318p
10.1088/1361-648X/aa60f3
10.1103/PhysRevLett.88.077402
10.1364/OE.26.025305
10.1002/adom.201500053
10.1038/nature08777
10.1016/j.nantod.2009.04.001
10.1021/nl404572u
10.1002/anie.201205748
10.1021/ja805683r
10.1116/1.2955728
10.1021/nl500838q
10.1021/acsami.7b03711
10.1039/C7QM00601B
10.1038/srep29449
10.1021/nl400538y
10.1021/nl402782d
10.1021/ja501642p
10.1063/1.3651274
10.1021/acs.chemrev.7b00252
10.1021/nl403383w
10.1002/adma.200901601
10.1021/ja808570g
10.1002/anie.200905805
10.1002/adma.201501816
10.1039/C5RA17705G
10.1039/C7NR03311G
10.1039/C4CS00163J
10.1002/adma.201605434
10.1039/C7NR05499H
10.1002/anie.201005159
10.1021/nl204420s
10.1021/acs.nanolett.7b05033
10.3390/s18010147
10.1021/acsami.5b12075
10.1002/anie.201403408
10.1039/c1sm05628j
10.1021/jp109405j
10.1021/am505633g
10.1021/acs.jpcc.6b03233
10.1039/C5TB01393C
10.1039/C5RA23884F
10.1063/1.3693181
10.1002/adma.201100543
10.1039/C5CS00050E
10.1039/C5CP06121K
10.1016/j.snb.2018.01.113
10.1039/C6NR06239C
10.1088/0957-4484/27/41/412001
10.1039/C7RA13127E
10.1021/acs.analchem.6b01867
10.1038/nphoton.2009.4
10.1364/OE.23.008888
10.1364/OE.26.021626
10.1126/science.1177031
10.1021/nn2044802
10.1021/acs.chemrev.6b00302
10.1063/1.3068747
10.1016/j.nantod.2015.02.007
10.1088/1361-648X/aa85ef
10.1038/nphoton.2009.282
10.1039/C6RA09580A
10.1002/adma.201601680
10.1038/ncomms10304
10.1002/anie.201300441
10.1038/srep19658
10.1039/C7CC04218C
10.1021/ph500293u
10.1002/adma.201502943
10.1364/OL.34.002501
10.1021/jp4024298
10.1038/nature17974
10.1364/OE.20.026012
10.1021/ja404354c
10.1038/ncomms3891
10.1063/1.4882187
10.1038/nmat3685
10.1002/adfm.201502419
ContentType Journal Article
Copyright 2018 by the authors. 2018
Copyright_xml – notice: 2018 by the authors. 2018
DBID AAYXX
CITATION
NPM
7X8
5PM
DOI 10.3390/ma11101833
DatabaseName CrossRef
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

CrossRef
PubMed
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1996-1944
ExternalDocumentID PMC6213938
30261657
10_3390_ma11101833
Genre Journal Article
Review
GrantInformation_xml – fundername: Shenzhen Science and Technology Innovation Council
  grantid: JCYJ20170817111349280 and KQTD2016030111203005
– fundername: Natural Science Foundation of Guangdong Province of China
  grantid: 2017A030313034
GroupedDBID 29M
2WC
53G
5GY
5VS
8FE
8FG
AADQD
AAFWJ
AAHBH
AAYXX
ABDBF
ABJCF
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
AOIJS
BCNDV
BENPR
BGLVJ
CCPQU
CITATION
CZ9
D1I
E3Z
EBS
ESX
FRP
GX1
HCIFZ
HH5
HYE
I-F
IPNFZ
KB.
KC.
KQ8
MK~
MODMG
M~E
OK1
OVT
P2P
PDBOC
PGMZT
PHGZM
PHGZT
PIMPY
PROAC
RIG
RPM
TR2
TUS
GROUPED_DOAJ
NPM
7X8
PQGLB
PUEGO
5PM
ID FETCH-LOGICAL-c378t-5ae3891e61bd2b40f4ce86ac7bac82a0a633bf8129de10ec23c32b686a2903a73
ISSN 1996-1944
IngestDate Thu Aug 21 18:11:16 EDT 2025
Sun Aug 24 03:40:35 EDT 2025
Wed Feb 19 02:43:41 EST 2025
Thu Apr 24 23:08:46 EDT 2025
Tue Jul 01 02:54:00 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords chiral metasurfaces
plasmonic nanoparticles
upconversion luminescence
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c378t-5ae3891e61bd2b40f4ce86ac7bac82a0a633bf8129de10ec23c32b686a2903a73
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
OpenAccessLink https://pubmed.ncbi.nlm.nih.gov/PMC6213938
PMID 30261657
PQID 2114697541
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_6213938
proquest_miscellaneous_2114697541
pubmed_primary_30261657
crossref_citationtrail_10_3390_ma11101833
crossref_primary_10_3390_ma11101833
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-09-26
PublicationDateYYYYMMDD 2018-09-26
PublicationDate_xml – month: 09
  year: 2018
  text: 2018-09-26
  day: 26
PublicationDecade 2010
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
PublicationTitle Materials
PublicationTitleAlternate Materials (Basel)
PublicationYear 2018
Publisher MDPI
Publisher_xml – name: MDPI
References (ref_1) 2015; 3
Yeom (ref_74) 2013; 13
Lu (ref_13) 2018; 26
Kwon (ref_52) 2016; 28
Cheng (ref_7) 2018; 2
Gramotnev (ref_19) 2010; 4
Zhang (ref_15) 2016; 120
Liu (ref_49) 2017; 29
Utke (ref_71) 2008; 26
Jain (ref_23) 2006; 110
Yin (ref_47) 2016; 28
Jang (ref_5) 2016; 116
Li (ref_11) 2016; 88
Ke (ref_16) 2015; 23
Liu (ref_76) 2009; 3
Koops (ref_70) 1993; 11
Karimullah (ref_77) 2015; 27
Chikkaraddy (ref_25) 2016; 535
Chauve (ref_87) 2014; 136
Xu (ref_35) 2016; 6
Mark (ref_73) 2013; 12
He (ref_54) 2017; 6
Li (ref_61) 2014; 53
Cui (ref_78) 2014; 14
Hentschel (ref_24) 2010; 10
Bouillard (ref_26) 2012; 12
Kuzyk (ref_86) 2012; 483
Yin (ref_56) 2014; 6
Huang (ref_63) 2018; 10
Yuan (ref_55) 2012; 4
Thiel (ref_68) 2009; 21
Yan (ref_82) 2012; 134
Chen (ref_29) 2018; 18
Jiang (ref_8) 2018; 118
Li (ref_43) 2015; 44
Rohani (ref_46) 2015; 3
Wang (ref_60) 2016; 6
Gansel (ref_67) 2012; 100
Chen (ref_62) 2015; 3
Kang (ref_58) 2017; 27
Schlucker (ref_30) 2014; 53
Wang (ref_64) 2016; 27
Sonnichsen (ref_22) 2002; 88
Kaschke (ref_66) 2012; 20
Park (ref_48) 2015; 44
Decker (ref_79) 2009; 34
Wang (ref_21) 2009; 94
ref_31
Lan (ref_84) 2013; 135
Bao (ref_27) 2014; 115
Wang (ref_20) 2011; 99
Amendola (ref_17) 2016; 18
Li (ref_18) 2014; 14
Cai (ref_10) 2013; 117
Zhang (ref_53) 2010; 49
You (ref_32) 2016; 8
Mastroianni (ref_83) 2009; 131
Khoo (ref_6) 2016; 6
Righini (ref_34) 2009; 9
Scialabba (ref_4) 2017; 9
Min (ref_36) 2013; 4
Guo (ref_39) 2015; 10
Bitar (ref_88) 2011; 7
Qiu (ref_12) 2017; 53
Lechuga (ref_38) 2009; 4
Shen (ref_85) 2013; 13
Bigdeli (ref_9) 2017; 9
Wang (ref_41) 2010; 463
Chen (ref_45) 2016; 7
Sukharev (ref_33) 2017; 29
Han (ref_44) 2014; 53
Yin (ref_51) 2016; 8
Sun (ref_59) 2014; 14
Li (ref_57) 2016; 6
Xiao (ref_75) 2018; 26
Leong (ref_80) 2015; 5
Lu (ref_14) 2018; 261
Ogier (ref_81) 2014; 1
ref_3
Chen (ref_89) 2008; 130
Zhu (ref_90) 2012; 6
Gansel (ref_65) 2009; 325
Esposito (ref_72) 2015; 2
Amendola (ref_2) 2017; 29
Messina (ref_28) 2011; 115
Sugawa (ref_37) 2015; 9
Feng (ref_40) 2018; 8
Radke (ref_69) 2011; 23
Markus (ref_42) 2011; 50
Chen (ref_50) 2015; 25
24305554 - Nat Commun. 2013;4:2891
25853439 - Chem Soc Rev. 2015 May 21;44(10):2940-62
25052250 - Chem Soc Rev. 2015 Mar 21;44(6):1346-78
20182508 - Nature. 2010 Feb 25;463(7284):1061-5
28383273 - ACS Appl Mater Interfaces. 2017 Apr 26;9(16):14453-14469
22324310 - ACS Nano. 2012 Mar 27;6(3):2326-32
22790174 - Nanoscale. 2012 Aug 21;4(16):5132-7
25968726 - Opt Express. 2015 Apr 6;23(7):8888-900
21509833 - Adv Mater. 2011 Jul 19;23(27):3018-21
25204638 - Angew Chem Int Ed Engl. 2014 Oct 27;53(44):11702-15
27111717 - ACS Appl Mater Interfaces. 2016 May 11;8(18):11667-74
25629586 - ACS Nano. 2015 Feb 24;9(2):1895-904
22900978 - J Am Chem Soc. 2012 Sep 12;134(36):15114-21
11863939 - Phys Rev Lett. 2002 Feb 18;88(7):077402
28805193 - J Phys Condens Matter. 2017 Nov 8;29(44):443003
27606801 - Nanotechnology. 2016 Oct 14;27(41):412001
19331419 - J Am Chem Soc. 2009 Jun 24;131(24):8455-9
28722075 - Chem Commun (Camb). 2017 Aug 11;53(62):8691-8694
27385563 - Anal Chem. 2016 Aug 2;88(15):7828-36
26694826 - Phys Chem Chem Phys. 2016 Jan 21;18(3):2230-41
28027647 - Chem Rev. 2016 Dec 28;116(24):14982-15034
24421264 - Angew Chem Int Ed Engl. 2014 Feb 10;53(7):1756-89
29316659 - Sensors (Basel). 2018 Jan 07;18(1):null
19684829 - Opt Lett. 2009 Aug 15;34(16):2501-3
16599493 - J Phys Chem B. 2006 Apr 13;110(14):7238-48
24111695 - Nano Lett. 2013 Nov 13;13(11):5277-83
24844583 - Nano Lett. 2014 Jun 11;14(6):3358-63
29370525 - Nano Lett. 2018 Feb 14;18(2):1344-1350
28960067 - Chem Rev. 2018 Mar 28;118(6):3054-3099
30167245 - Light Sci Appl. 2017 May 19;6(5):e16217
28426435 - J Phys Condens Matter. 2017 May 24;29(20):203002
23879265 - J Am Chem Soc. 2013 Aug 7;135(31):11441-4
24711218 - Angew Chem Int Ed Engl. 2014 May 5;53(19):4756-95
20235253 - Angew Chem Int Ed Engl. 2010 Apr 6;49(16):2865-8
27739545 - Nanoscale. 2016 Oct 27;8(42):18150-18160
27376395 - Adv Mater. 2016 Sep;28(36):7899-7909
29256568 - Nanoscale. 2018 Jan 3;10(2):791-799
27296227 - Nature. 2016 Jul 7;535(7610):127-30
23600476 - Nano Lett. 2013 May 8;13(5):2128-33
23187416 - Opt Express. 2012 Nov 5;20(23):26012-20
22339644 - Nano Lett. 2012 Mar 14;12(3):1561-5
21626614 - Angew Chem Int Ed Engl. 2011 Jun 20;50(26):5808-29
20586409 - Nano Lett. 2010 Jul 14;10(7):2721-6
30130866 - Opt Express. 2018 Aug 20;26(17):21626-21641
27386838 - Sci Rep. 2016 Jul 08;6:29449
29558454 - Materials (Basel). 2018 Mar 20;11(3):null
23793159 - Nat Mater. 2013 Sep;12(9):802-7
19159322 - Nano Lett. 2009 Oct;9(10):3387-91
25279952 - ACS Appl Mater Interfaces. 2014;6(21):18480-8
18800838 - J Am Chem Soc. 2008 Oct 15;130(41):13555-7
29083011 - Nanoscale. 2017 Nov 9;9(43):16546-16563
26792371 - Sci Rep. 2016 Jan 21;6:19658
22422265 - Nature. 2012 Mar 14;483(7389):311-4
28295673 - Adv Mater. 2017 May;29(18)
26833556 - Adv Mater. 2016 Apr 6;28(13):2518-25
24588564 - J Am Chem Soc. 2014 Mar 26;136(12):4788-93
24279776 - Nano Lett. 2014 Jan 8;14(1):101-6
24422639 - Nano Lett. 2014 Feb 12;14(2):1021-5
26739352 - Nat Commun. 2016 Jan 07;7:10304
19696310 - Science. 2009 Sep 18;325(5947):1513-5
26306427 - Adv Mater. 2015 Oct 7;27(37):5610-6
References_xml – volume: 483
  start-page: 311
  year: 2012
  ident: ref_86
  article-title: DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response
  publication-title: Nature
  doi: 10.1038/nature10889
– volume: 110
  start-page: 7238
  year: 2006
  ident: ref_23
  article-title: Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine
  publication-title: J. Phys. Chem. B
  doi: 10.1021/jp057170o
– volume: 6
  start-page: e16217
  year: 2017
  ident: ref_54
  article-title: Plasmonic enhancement and polarization dependence of nonlinear upconversion emissions from single gold nanorod@SiO2@CaF2:Yb3+, Er3+ hybrid core–shell–satellite nanostructures
  publication-title: Light Sci. Appl.
  doi: 10.1038/lsa.2016.217
– volume: 27
  start-page: 1701842
  year: 2017
  ident: ref_58
  article-title: Plasmonic dual-enhancement and precise color tuning of gold nanorod@SiO2 coupled core–shell–shell upconversion nanocrystals
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201701842
– volume: 3
  start-page: 1606
  year: 2015
  ident: ref_46
  article-title: Enhanced luminescence, collective heating, and nanothermometry in an ensemble system composed of Lanthanide-doped upconverting nanoparticles and gold nanorods
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201500380
– volume: 11
  start-page: 2386
  year: 1993
  ident: ref_70
  article-title: Constructive three-dimensional lithography with electron-beam induced deposition for quantum effect devices
  publication-title: J. Vac. Sci. Technol. B
  doi: 10.1116/1.586991
– volume: 134
  start-page: 15114
  year: 2012
  ident: ref_82
  article-title: Self-assembly of chiral nanoparticle pyramids with strong R/S optical activity
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3066336
– ident: ref_3
  doi: 10.3390/ma11030458
– volume: 9
  start-page: 3387
  year: 2009
  ident: ref_34
  article-title: Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas
  publication-title: Nano Lett.
  doi: 10.1021/nl803677x
– volume: 10
  start-page: 2721
  year: 2010
  ident: ref_24
  article-title: Transition from isolated to collective modes in plasmonic oligomers
  publication-title: Nano Lett.
  doi: 10.1021/nl101938p
– volume: 9
  start-page: 1895
  year: 2015
  ident: ref_37
  article-title: Refractive index susceptibility of the plasmonic palladium nanoparticle: Potential as the third plasmonic sensing material
  publication-title: ACS Nano
  doi: 10.1021/nn506800a
– volume: 4
  start-page: 5132
  year: 2012
  ident: ref_55
  article-title: Plasmon enhanced upconversion luminescence of NaYF4:Yb, Er@SiO2@Ag core–shell nanocomposites for cell imaging
  publication-title: Nanoscale
  doi: 10.1039/c2nr31241g
– volume: 2
  start-page: 105
  year: 2015
  ident: ref_72
  article-title: Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies
  publication-title: ACS Photonics
  doi: 10.1021/ph500318p
– volume: 29
  start-page: 203002
  year: 2017
  ident: ref_2
  article-title: Surface plasmon resonance in gold nanoparticles: A review
  publication-title: J. Phys. Condens. Matter.
  doi: 10.1088/1361-648X/aa60f3
– volume: 88
  start-page: 077402
  year: 2002
  ident: ref_22
  article-title: Drastic reduction of plasmon damping in gold nanorods
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.88.077402
– volume: 26
  start-page: 25305
  year: 2018
  ident: ref_75
  article-title: Liquid-crystal-loaded chiral metasurfaces for reconfigurable multiband spin-selective light absorption
  publication-title: Opt. Express
  doi: 10.1364/OE.26.025305
– volume: 3
  start-page: 602
  year: 2015
  ident: ref_1
  article-title: Modern applications of plasmonic nanoparticles: From energy to health
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201500053
– volume: 463
  start-page: 1061
  year: 2010
  ident: ref_41
  article-title: Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping
  publication-title: Nature
  doi: 10.1038/nature08777
– volume: 4
  start-page: 244
  year: 2009
  ident: ref_38
  article-title: LSPR-based nanobiosensors
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2009.04.001
– volume: 14
  start-page: 1021
  year: 2014
  ident: ref_78
  article-title: Giant chiral optical response from a twisted-arc metamaterial
  publication-title: Nano Lett.
  doi: 10.1021/nl404572u
– volume: 53
  start-page: 4756
  year: 2014
  ident: ref_30
  article-title: Surface-enhanced Raman spectroscopy: Concepts and chemical applications
  publication-title: Angew. Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201205748
– volume: 130
  start-page: 13555
  year: 2008
  ident: ref_89
  article-title: A new peptide-based method for the design and synthesis of nanoparticle superstructures: Construction of highly ordered gold nanoparticle double helices
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja805683r
– volume: 26
  start-page: 1197
  year: 2008
  ident: ref_71
  article-title: Gas-assisted focused electron beam and ion beam processing and fabrication
  publication-title: J. Vac. Sci. Technol. B
  doi: 10.1116/1.2955728
– volume: 14
  start-page: 3358
  year: 2014
  ident: ref_18
  article-title: Resolving single plasmons generated by multiquantum-emitters on a silver nanowire
  publication-title: Nano Lett.
  doi: 10.1021/nl500838q
– volume: 9
  start-page: 14453
  year: 2017
  ident: ref_4
  article-title: Near-infrared light responsive folate targeted gold nanorods for combined photothermal-chemotherapy of osteosarcoma
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b03711
– volume: 2
  start-page: 662
  year: 2018
  ident: ref_7
  article-title: Optically active plasmonic resonance in self-assembled nanostructures
  publication-title: Mater. Chem. Front.
  doi: 10.1039/C7QM00601B
– volume: 6
  start-page: 29449
  year: 2016
  ident: ref_35
  article-title: Dual focused coherent beams for three-dimensional optical trapping and continuous rotation of metallic nanostructures
  publication-title: Sci. Rep.
  doi: 10.1038/srep29449
– volume: 13
  start-page: 2128
  year: 2013
  ident: ref_85
  article-title: Three-dimensional plasmonic chiral tetramers assembled by DNA origami
  publication-title: Nano Lett.
  doi: 10.1021/nl400538y
– volume: 13
  start-page: 5277
  year: 2013
  ident: ref_74
  article-title: Chiral plasmonic nanostructures on achiral nanopillars
  publication-title: Nano Lett.
  doi: 10.1021/nl402782d
– volume: 136
  start-page: 4788
  year: 2014
  ident: ref_87
  article-title: Chiral plasmonic films formed by gold nanorods and cellulose nanocrystals
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja501642p
– volume: 99
  start-page: 151106
  year: 2011
  ident: ref_20
  article-title: Subwavelength lithography by waveguide mode interference
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3651274
– volume: 118
  start-page: 3054
  year: 2018
  ident: ref_8
  article-title: Active plasmonics: Principles, structures, and applications
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00252
– volume: 14
  start-page: 101
  year: 2014
  ident: ref_59
  article-title: Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-Lanthanide nanocrystals
  publication-title: Nano Lett.
  doi: 10.1021/nl403383w
– volume: 21
  start-page: 4680
  year: 2009
  ident: ref_68
  article-title: Three-dimensional bi-chiral photonic crystals
  publication-title: Adv. Mater.
  doi: 10.1002/adma.200901601
– volume: 131
  start-page: 8455
  year: 2009
  ident: ref_83
  article-title: Pyramidal and chiral groupings of gold nanocrystals assembled using DNA scaffolds
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja808570g
– volume: 49
  start-page: 2865
  year: 2010
  ident: ref_53
  article-title: Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.200905805
– volume: 27
  start-page: 5610
  year: 2015
  ident: ref_77
  article-title: Disposable plasmonics: Plastic templated plasmonic metamaterials with tunable chirality
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201501816
– volume: 5
  start-page: 96366
  year: 2015
  ident: ref_80
  article-title: Fabrication of suspended, three-dimensional chiral plasmonic nanostructures with single-step electron-beam lithography
  publication-title: RSC Adv.
  doi: 10.1039/C5RA17705G
– volume: 9
  start-page: 16546
  year: 2017
  ident: ref_9
  article-title: Nanoparticle-based optical sensor arrays
  publication-title: Nanoscale
  doi: 10.1039/C7NR03311G
– volume: 44
  start-page: 1346
  year: 2015
  ident: ref_43
  article-title: Lab on upconversion nanoparticles: Optical properties and applications engineering via designed nanostructure
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00163J
– volume: 29
  start-page: 1605434
  year: 2017
  ident: ref_49
  article-title: 808-nm-light-excited Lanthanide-doped nanoparticles: Rational design, luminescence control and theranostic applications
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201605434
– volume: 10
  start-page: 791
  year: 2018
  ident: ref_63
  article-title: Upconverting nanocomposites with combined photothermal and photodynamic effects
  publication-title: Nanoscale
  doi: 10.1039/C7NR05499H
– volume: 50
  start-page: 5808
  year: 2011
  ident: ref_42
  article-title: Upconverting nanoparticles
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201005159
– volume: 12
  start-page: 1561
  year: 2012
  ident: ref_26
  article-title: Low-temperature plasmonics of metallic nanostructures
  publication-title: Nano Lett.
  doi: 10.1021/nl204420s
– volume: 18
  start-page: 1344
  year: 2018
  ident: ref_29
  article-title: Tungsten disulfide-gold nanohole hybrid metasurfaces for nonlinear metalenses in the visible region
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.7b05033
– ident: ref_31
  doi: 10.3390/s18010147
– volume: 8
  start-page: 11667
  year: 2016
  ident: ref_51
  article-title: Plasmon-enhanced upconversion luminescence on vertically aligned gold nanorod monolayer supercrystals
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.5b12075
– volume: 53
  start-page: 11702
  year: 2014
  ident: ref_44
  article-title: Enhancing luminescence in Lanthanide-doped upconversion nanoparticles
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201403408
– volume: 7
  start-page: 8198
  year: 2011
  ident: ref_88
  article-title: Cholesteric liquid crystal self-organization of gold nanoparticles
  publication-title: Soft Matter
  doi: 10.1039/c1sm05628j
– volume: 115
  start-page: 5115
  year: 2011
  ident: ref_28
  article-title: Manipulation and raman spectroscopy with optically trapped metal nanoparticles obtained by pulsed laser ablation in liquids
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp109405j
– volume: 6
  start-page: 18480
  year: 2014
  ident: ref_56
  article-title: Synthesis of a novel core−shell nanocomposite Ag@SiO2@Lu2O3:Gd/Yb/Er for large enhancing upconversion luminescence and bioimaging
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/am505633g
– volume: 120
  start-page: 20978
  year: 2016
  ident: ref_15
  article-title: Photo-induced or plasmon-induced reaction: Investigation of the light-induced Azo-coupling of amino groups
  publication-title: J. Phys. Chem. C
  doi: 10.1021/acs.jpcc.6b03233
– volume: 3
  start-page: 8293
  year: 2015
  ident: ref_62
  article-title: Plasmon-induced hyperthermia: Hybrid upconversion NaYF4:Yb/Er and gold nanomaterials for oral cancer photothermal therapy
  publication-title: J. Mater. Chem. B
  doi: 10.1039/C5TB01393C
– volume: 6
  start-page: 13343
  year: 2016
  ident: ref_57
  article-title: Fabrication of core@spacer@shell Aunanorod@mSiO2@Y2O3:Er nanocomposites with enhanced upconversion fluorescence
  publication-title: RSC Adv.
  doi: 10.1039/C5RA23884F
– volume: 100
  start-page: 101109
  year: 2012
  ident: ref_67
  article-title: Tapered gold-helix metamaterials as improved circular polarizers
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3693181
– volume: 23
  start-page: 3018
  year: 2011
  ident: ref_69
  article-title: Three-dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201100543
– volume: 44
  start-page: 2940
  year: 2015
  ident: ref_48
  article-title: Plasmon enhancement of luminescence upconversion
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00050E
– volume: 18
  start-page: 2230
  year: 2016
  ident: ref_17
  article-title: Surface plasmon resonance of silver and gold nanoparticles in the proximity of graphene studied using the discrete dipole approximation method
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/C5CP06121K
– volume: 261
  start-page: 1
  year: 2018
  ident: ref_14
  article-title: A novel natural surface-enhanced Raman spectroscopy (SERS) substrate based on graphene oxide-Ag nanoparticles-Mytiluscoruscus hybrid system
  publication-title: Sens. Actuator B Chem.
  doi: 10.1016/j.snb.2018.01.113
– volume: 8
  start-page: 18150
  year: 2016
  ident: ref_32
  article-title: Silica-coated triangular gold nanoprisms as distance-dependent plasmon-enhanced fluorescence-based probes for biochemical applications
  publication-title: Nanoscale
  doi: 10.1039/C6NR06239C
– volume: 27
  start-page: 412001
  year: 2016
  ident: ref_64
  article-title: Optical chiral metamaterials: A review of the fundamentals, fabrication methods and applications
  publication-title: Nanotechnology
  doi: 10.1088/0957-4484/27/41/412001
– volume: 8
  start-page: 4049
  year: 2018
  ident: ref_40
  article-title: A sensitive LSPR sensor based on glutathione-functionalized gold nanoparticles on a substrate for the detection of Pb2+ ions
  publication-title: RSC Adv.
  doi: 10.1039/C7RA13127E
– volume: 88
  start-page: 7828
  year: 2016
  ident: ref_11
  article-title: Surface-enhanced Raman scattering active plasmonic nanoparticles with ultrasmall interior nanogap for multiplex quantitative detection and cancer cell imaging
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.6b01867
– volume: 3
  start-page: 157
  year: 2009
  ident: ref_76
  article-title: Stereometamaterials
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2009.4
– volume: 23
  start-page: 8888
  year: 2015
  ident: ref_16
  article-title: Plasmonic absorption enhancement in periodic cross-shaped graphene arrays
  publication-title: Opt. Express
  doi: 10.1364/OE.23.008888
– volume: 26
  start-page: 21626
  year: 2018
  ident: ref_13
  article-title: Sensitive, reproducible, and sTable 3D plasmonic hybrids with bilayer WS2 as nanospacer for SERS analysis
  publication-title: Opt. Express
  doi: 10.1364/OE.26.021626
– volume: 325
  start-page: 1513
  year: 2009
  ident: ref_65
  article-title: Gold helix photonic metamaterial as broadband circular polarizer
  publication-title: Science
  doi: 10.1126/science.1177031
– volume: 6
  start-page: 2326
  year: 2012
  ident: ref_90
  article-title: Manipulation of collective optical activity in one-dimensional plasmonic assembly
  publication-title: ACS Nano
  doi: 10.1021/nn2044802
– volume: 116
  start-page: 14982
  year: 2016
  ident: ref_5
  article-title: Plasmonic solar cells: From rational design to mechanism overview
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00302
– volume: 94
  start-page: 011114
  year: 2009
  ident: ref_21
  article-title: Efficient generation of surface plasmon by single-nanoslit illumination under highly oblique incidence
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.3068747
– volume: 10
  start-page: 213
  year: 2015
  ident: ref_39
  article-title: Strategies for enhancing the sensitivity of plasmonic nanosensors
  publication-title: Nano Today
  doi: 10.1016/j.nantod.2015.02.007
– volume: 29
  start-page: 443003
  year: 2017
  ident: ref_33
  article-title: Optics of exciton-plasmon nanomaterials
  publication-title: J. Phys. Condens. Matter
  doi: 10.1088/1361-648X/aa85ef
– volume: 4
  start-page: 83
  year: 2010
  ident: ref_19
  article-title: Plasmonics beyond the diffraction limit
  publication-title: Nat. Photonics
  doi: 10.1038/nphoton.2009.282
– volume: 6
  start-page: 56963
  year: 2016
  ident: ref_60
  article-title: Tunable and ultra-broad plasmon enhanced upconversion emission of NaYF4:Yb3+, Er3+ nanoparticles deposited on Au films with papilla Au nanoparticles
  publication-title: RSC Adv.
  doi: 10.1039/C6RA09580A
– volume: 28
  start-page: 7899
  year: 2016
  ident: ref_52
  article-title: A plasmonic platform with disordered array of metal nanoparticles for three-order enhanced upconversion luminescence and highly sensitive near-infrared photodetector
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601680
– volume: 7
  start-page: 10304
  year: 2016
  ident: ref_45
  article-title: Confining energy migration in upconversion nanoparticles towards deep ultraviolet lasing
  publication-title: Nat. Comm.
  doi: 10.1038/ncomms10304
– volume: 53
  start-page: 1756
  year: 2014
  ident: ref_61
  article-title: Anisotropic gold nanoparticles: Synthesis, properties, applications, and toxicity
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201300441
– volume: 6
  start-page: 19658
  year: 2016
  ident: ref_6
  article-title: Effects of asymmetric nanostructures on the extinction difference properties of actin biomolecules and filaments
  publication-title: Sci. Rep.
  doi: 10.1038/srep19658
– volume: 53
  start-page: 8691
  year: 2017
  ident: ref_12
  article-title: A new route for the synthesis of a Ag nanopore-inlay-nanogap structure: Integrated Ag-core@graphene-shell@Ag-jacket nanoparticles for high-efficiency SERS detection
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC04218C
– volume: 1
  start-page: 1074
  year: 2014
  ident: ref_81
  article-title: Macroscopic layers of chiral plasmonic nanoparticle oligomers from colloidal lithography
  publication-title: ACS Photonics
  doi: 10.1021/ph500293u
– volume: 28
  start-page: 2518
  year: 2016
  ident: ref_47
  article-title: Local field modulation induced three-order upconversion enhancement: Combining surface plasmon effect and photonic crystal effect
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201502943
– volume: 34
  start-page: 2501
  year: 2009
  ident: ref_79
  article-title: Strong optical activity from twisted-cross photonic metamaterials
  publication-title: Opt. Lett.
  doi: 10.1364/OL.34.002501
– volume: 117
  start-page: 9440
  year: 2013
  ident: ref_10
  article-title: In situ “doping” inverse silica opals with size-controllable gold nanoparticles for refractive index sensing
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp4024298
– volume: 535
  start-page: 127
  year: 2016
  ident: ref_25
  article-title: Single-molecule strong coupling at room temperature in plasmonic nanocavities
  publication-title: Nature
  doi: 10.1038/nature17974
– volume: 20
  start-page: 26012
  year: 2012
  ident: ref_66
  article-title: On metamaterial circular polarizers based on metal N-helices
  publication-title: Opt. Express
  doi: 10.1364/OE.20.026012
– volume: 135
  start-page: 11441
  year: 2013
  ident: ref_84
  article-title: Bifacial DNA origami-directed discrete, three-dimensional, anisotropic plasmonic nanoarchitectures with tailored optical chirality
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja404354c
– volume: 4
  start-page: 2891
  year: 2013
  ident: ref_36
  article-title: Focused plasmonic trapping of metallic particles
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3891
– volume: 115
  start-page: 223503
  year: 2014
  ident: ref_27
  article-title: The redshift of surface plasmon resonance of colloidal gold nanoparticles induced by pressure with diamond anvil cell
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4882187
– volume: 12
  start-page: 802
  year: 2013
  ident: ref_73
  article-title: Hybrid nanocolloids with programmed three-dimensional shape and material composition
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3685
– volume: 25
  start-page: 5462
  year: 2015
  ident: ref_50
  article-title: Large upconversion enhancement in the “Islands” Au–Ag Alloy/NaYF4: Yb3+, Tm3+/Er3+ composite films, and fingerprint identification
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201502419
– reference: 28805193 - J Phys Condens Matter. 2017 Nov 8;29(44):443003
– reference: 24422639 - Nano Lett. 2014 Feb 12;14(2):1021-5
– reference: 18800838 - J Am Chem Soc. 2008 Oct 15;130(41):13555-7
– reference: 29558454 - Materials (Basel). 2018 Mar 20;11(3):null
– reference: 25629586 - ACS Nano. 2015 Feb 24;9(2):1895-904
– reference: 24279776 - Nano Lett. 2014 Jan 8;14(1):101-6
– reference: 25968726 - Opt Express. 2015 Apr 6;23(7):8888-900
– reference: 22900978 - J Am Chem Soc. 2012 Sep 12;134(36):15114-21
– reference: 21509833 - Adv Mater. 2011 Jul 19;23(27):3018-21
– reference: 27386838 - Sci Rep. 2016 Jul 08;6:29449
– reference: 27111717 - ACS Appl Mater Interfaces. 2016 May 11;8(18):11667-74
– reference: 27376395 - Adv Mater. 2016 Sep;28(36):7899-7909
– reference: 26833556 - Adv Mater. 2016 Apr 6;28(13):2518-25
– reference: 30130866 - Opt Express. 2018 Aug 20;26(17):21626-21641
– reference: 24421264 - Angew Chem Int Ed Engl. 2014 Feb 10;53(7):1756-89
– reference: 21626614 - Angew Chem Int Ed Engl. 2011 Jun 20;50(26):5808-29
– reference: 11863939 - Phys Rev Lett. 2002 Feb 18;88(7):077402
– reference: 22422265 - Nature. 2012 Mar 14;483(7389):311-4
– reference: 29256568 - Nanoscale. 2018 Jan 3;10(2):791-799
– reference: 19331419 - J Am Chem Soc. 2009 Jun 24;131(24):8455-9
– reference: 26694826 - Phys Chem Chem Phys. 2016 Jan 21;18(3):2230-41
– reference: 27739545 - Nanoscale. 2016 Oct 27;8(42):18150-18160
– reference: 28426435 - J Phys Condens Matter. 2017 May 24;29(20):203002
– reference: 25853439 - Chem Soc Rev. 2015 May 21;44(10):2940-62
– reference: 28027647 - Chem Rev. 2016 Dec 28;116(24):14982-15034
– reference: 27296227 - Nature. 2016 Jul 7;535(7610):127-30
– reference: 28960067 - Chem Rev. 2018 Mar 28;118(6):3054-3099
– reference: 26306427 - Adv Mater. 2015 Oct 7;27(37):5610-6
– reference: 19159322 - Nano Lett. 2009 Oct;9(10):3387-91
– reference: 27385563 - Anal Chem. 2016 Aug 2;88(15):7828-36
– reference: 20235253 - Angew Chem Int Ed Engl. 2010 Apr 6;49(16):2865-8
– reference: 25204638 - Angew Chem Int Ed Engl. 2014 Oct 27;53(44):11702-15
– reference: 25279952 - ACS Appl Mater Interfaces. 2014;6(21):18480-8
– reference: 19684829 - Opt Lett. 2009 Aug 15;34(16):2501-3
– reference: 22339644 - Nano Lett. 2012 Mar 14;12(3):1561-5
– reference: 20586409 - Nano Lett. 2010 Jul 14;10(7):2721-6
– reference: 23879265 - J Am Chem Soc. 2013 Aug 7;135(31):11441-4
– reference: 24711218 - Angew Chem Int Ed Engl. 2014 May 5;53(19):4756-95
– reference: 23187416 - Opt Express. 2012 Nov 5;20(23):26012-20
– reference: 30167245 - Light Sci Appl. 2017 May 19;6(5):e16217
– reference: 24111695 - Nano Lett. 2013 Nov 13;13(11):5277-83
– reference: 29083011 - Nanoscale. 2017 Nov 9;9(43):16546-16563
– reference: 28383273 - ACS Appl Mater Interfaces. 2017 Apr 26;9(16):14453-14469
– reference: 23793159 - Nat Mater. 2013 Sep;12(9):802-7
– reference: 25052250 - Chem Soc Rev. 2015 Mar 21;44(6):1346-78
– reference: 16599493 - J Phys Chem B. 2006 Apr 13;110(14):7238-48
– reference: 23600476 - Nano Lett. 2013 May 8;13(5):2128-33
– reference: 26739352 - Nat Commun. 2016 Jan 07;7:10304
– reference: 26792371 - Sci Rep. 2016 Jan 21;6:19658
– reference: 28295673 - Adv Mater. 2017 May;29(18):
– reference: 20182508 - Nature. 2010 Feb 25;463(7284):1061-5
– reference: 24844583 - Nano Lett. 2014 Jun 11;14(6):3358-63
– reference: 29316659 - Sensors (Basel). 2018 Jan 07;18(1):null
– reference: 19696310 - Science. 2009 Sep 18;325(5947):1513-5
– reference: 27606801 - Nanotechnology. 2016 Oct 14;27(41):412001
– reference: 29370525 - Nano Lett. 2018 Feb 14;18(2):1344-1350
– reference: 24305554 - Nat Commun. 2013;4:2891
– reference: 24588564 - J Am Chem Soc. 2014 Mar 26;136(12):4788-93
– reference: 22324310 - ACS Nano. 2012 Mar 27;6(3):2326-32
– reference: 22790174 - Nanoscale. 2012 Aug 21;4(16):5132-7
– reference: 28722075 - Chem Commun (Camb). 2017 Aug 11;53(62):8691-8694
SSID ssj0000331829
Score 2.5896363
SecondaryResourceType review_article
Snippet In the past half-century, surface plasmon resonance in noble metallic nanoparticles has been an important research subject. Recent advances in the synthesis,...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1833
SubjectTerms Review
Title Recent Advances of Plasmonic Nanoparticles and their Applications
URI https://www.ncbi.nlm.nih.gov/pubmed/30261657
https://www.proquest.com/docview/2114697541
https://pubmed.ncbi.nlm.nih.gov/PMC6213938
Volume 11
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVFSB
  databaseName: Free Full-Text Journals in Chemistry
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: HH5
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://abc-chemistry.org/
  providerName: ABC ChemistRy
– providerCode: PRVAFT
  databaseName: Open Access Digital Library
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: KQ8
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html
  providerName: Colorado Alliance of Research Libraries
– providerCode: PRVEBS
  databaseName: EBSCOhost Academic Search Ultimate
  customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: ABDBF
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn
  providerName: EBSCOhost
– providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: false
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: ADMLS
  dateStart: 20091201
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
– providerCode: PRVFQY
  databaseName: GFMER Free Medical Journals
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: GX1
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php
  providerName: Geneva Foundation for Medical Education and Research
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: M~E
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
– providerCode: PRVAQN
  databaseName: PubMed Central
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: RPM
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/
  providerName: National Library of Medicine
– providerCode: PRVPQU
  databaseName: ProQuest Central
  customDbUrl: http://www.proquest.com/pqcentral?accountid=15518
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: BENPR
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://www.proquest.com/central
  providerName: ProQuest
– providerCode: PRVPQU
  databaseName: ProQuest Technology Collection
  customDbUrl:
  eissn: 1996-1944
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0000331829
  issn: 1996-1944
  databaseCode: 8FG
  dateStart: 20080101
  isFulltext: true
  titleUrlDefault: https://search.proquest.com/technologycollection1
  providerName: ProQuest
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa27QUOiDdbYGUEFw4piZ3YyY0FtV1xqBC00t4i23HaSG2CSiJV_HrGduJN2j0ULtHKO44sz5fxzHgeCH0QRMIprnRQFBkPTEEu-OZKHhCpTK9jKgppoy1O2Oos_rZO1rPZ53F2SSsP1J-teSX_w1UYA76aLNl_4Kx_KQzAb-AvPIHD8LwXj0HnM1f5S3eP7-LZQBu-sl1tQG6CQdzHvQ2BktW10zvHjrqhn5No3Zp9jE7VWR4DgG46j6GV9YCuuuqy8mPrSjROG-_PQSNGXHGCnxe6Pm9FM_YuRDYUwqWw9wLRBClHmavReKC3jA1SNBqjJRzJRBAadJuwpjQz0Y1XAsRtOBBNK2LfOql8_CBYLmZ2vpm7g_YIZ8z0sDheR97LFlKQWbZVnV-0q1Frpn_aTJ9qJXdMjdsRsyMV5PQxetTbDnjpePoEzXT9FD0cVZR8hpYOEniABG5K7CGBJ5DAAAlsIYHHkHiOzo4OT7-ugr5LRqAoT9sgEdrcNWsWyYLIOCxjpVMmFJdCpUSEglEqS9DjskJHoVaEKkokAxKShVRw-gLt1k2tXyHMJU0TVoRFwuNYcS5DUF-ZTLkqjeeLzNHHYZdy1ZeQN51MLvO7DJmj9572lyucspXq3bDZOcg1c1klat10v3Ni0uUznsTRHL10m-_fQ43jgCV8jviELZ7A1Eyf_lNXF7Z2OiNg8tB0_16re40ebL6JN2i3ve70W9BBW7lAO-nR8QLtfTk8-f5jYUH3F_cMh8E
linkProvider Geneva Foundation for Medical Education and Research
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+of+Plasmonic+Nanoparticles+and+their+Applications&rft.jtitle=Materials&rft.au=Liu%2C+Jianxun&rft.au=He%2C+Huilin&rft.au=Xiao%2C+Dong&rft.au=Yin%2C+Shengtao&rft.date=2018-09-26&rft.issn=1996-1944&rft.eissn=1996-1944&rft.volume=11&rft.issue=10&rft.spage=1833&rft_id=info:doi/10.3390%2Fma11101833&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ma11101833
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon