Recent Advances of Plasmonic Nanoparticles and their Applications
In the past half-century, surface plasmon resonance in noble metallic nanoparticles has been an important research subject. Recent advances in the synthesis, assembly, characterization, and theories of traditional and non-traditional metal nanostructures open a new pathway to the kaleidoscopic appli...
Saved in:
Published in | Materials Vol. 11; no. 10; p. 1833 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Switzerland
MDPI
26.09.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 1996-1944 1996-1944 |
DOI | 10.3390/ma11101833 |
Cover
Abstract | In the past half-century, surface plasmon resonance in noble metallic nanoparticles has been an important research subject. Recent advances in the synthesis, assembly, characterization, and theories of traditional and non-traditional metal nanostructures open a new pathway to the kaleidoscopic applications of plasmonics. However, accurate and precise models of plasmon resonance are still challenging, as its characteristics can be affected by multiple factors. We herein summarize the recent advances of plasmonic nanoparticles and their applications, particularly regarding the fundamentals and applications of surface plasmon resonance (SPR) in Au nanoparticles, plasmon-enhanced upconversion luminescence, and plasmonic chiral metasurfaces. |
---|---|
AbstractList | In the past half-century, surface plasmon resonance in noble metallic nanoparticles has been an important research subject. Recent advances in the synthesis, assembly, characterization, and theories of traditional and non-traditional metal nanostructures open a new pathway to the kaleidoscopic applications of plasmonics. However, accurate and precise models of plasmon resonance are still challenging, as its characteristics can be affected by multiple factors. We herein summarize the recent advances of plasmonic nanoparticles and their applications, particularly regarding the fundamentals and applications of surface plasmon resonance (SPR) in Au nanoparticles, plasmon-enhanced upconversion luminescence, and plasmonic chiral metasurfaces.In the past half-century, surface plasmon resonance in noble metallic nanoparticles has been an important research subject. Recent advances in the synthesis, assembly, characterization, and theories of traditional and non-traditional metal nanostructures open a new pathway to the kaleidoscopic applications of plasmonics. However, accurate and precise models of plasmon resonance are still challenging, as its characteristics can be affected by multiple factors. We herein summarize the recent advances of plasmonic nanoparticles and their applications, particularly regarding the fundamentals and applications of surface plasmon resonance (SPR) in Au nanoparticles, plasmon-enhanced upconversion luminescence, and plasmonic chiral metasurfaces. In the past half-century, surface plasmon resonance in noble metallic nanoparticles has been an important research subject. Recent advances in the synthesis, assembly, characterization, and theories of traditional and non-traditional metal nanostructures open a new pathway to the kaleidoscopic applications of plasmonics. However, accurate and precise models of plasmon resonance are still challenging, as its characteristics can be affected by multiple factors. We herein summarize the recent advances of plasmonic nanoparticles and their applications, particularly regarding the fundamentals and applications of surface plasmon resonance (SPR) in Au nanoparticles, plasmon-enhanced upconversion luminescence, and plasmonic chiral metasurfaces. |
Author | Luo, Dan Liu, Jianxun Yin, Shengtao He, Huilin Xiao, Dong Wang, Bing Liu, Yanjun Jiang, Shouzhen Ji, Wei |
AuthorAffiliation | 3 School of Information Science and Engineering, Shandong University, Jinan 250000, China; jiwww@sdu.edu.cn 1 Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China; liujianxun@hust.edu.cn (J.L.); hehl@mail.sustc.edu.cn (H.H.); d_xiao@outlook.com (D.X.); 13589831680@163.com (S.Y.); loud@sustc.edu.cn (D.L.) 2 Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China 4 School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; jiang_sz@126.com |
AuthorAffiliation_xml | – name: 4 School of Physics and Electronics, Shandong Normal University, Jinan 250014, China; jiang_sz@126.com – name: 1 Department of Electrical and Electronic Engineering, Southern University of Science and Technology, Shenzhen 518055, China; liujianxun@hust.edu.cn (J.L.); hehl@mail.sustc.edu.cn (H.H.); d_xiao@outlook.com (D.X.); 13589831680@163.com (S.Y.); loud@sustc.edu.cn (D.L.) – name: 2 Wuhan National Laboratory for Optoelectronics and School of Physics, Huazhong University of Science and Technology, Wuhan 430074, China – name: 3 School of Information Science and Engineering, Shandong University, Jinan 250000, China; jiwww@sdu.edu.cn |
Author_xml | – sequence: 1 givenname: Jianxun surname: Liu fullname: Liu, Jianxun – sequence: 2 givenname: Huilin surname: He fullname: He, Huilin – sequence: 3 givenname: Dong surname: Xiao fullname: Xiao, Dong – sequence: 4 givenname: Shengtao surname: Yin fullname: Yin, Shengtao – sequence: 5 givenname: Wei surname: Ji fullname: Ji, Wei – sequence: 6 givenname: Shouzhen surname: Jiang fullname: Jiang, Shouzhen – sequence: 7 givenname: Dan surname: Luo fullname: Luo, Dan – sequence: 8 givenname: Bing surname: Wang fullname: Wang, Bing – sequence: 9 givenname: Yanjun surname: Liu fullname: Liu, Yanjun |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30261657$$D View this record in MEDLINE/PubMed |
BookMark | eNptkdtKxDAQhoMoHta98QGklyKsZjLdtLkRFvEEi4rodZimqRtpk9p0Bd_eej7g3MzAfPP_w8wWW_XBW8Z2gB8gKn7YEABwyBFX2CYoJSeg0nT1R73BxjE-8CEQIRdqnW0gFxLkNNtksxtrrO-TWflE3tiYhCq5rik2wTuTXJIPLXW9M_XQIl8m_cK6Lpm1be0M9S74uM3WKqqjHX_kEbs7Pbk9Pp_Mr84ujmfzicEs7ydTspgrsBKKUhQpr1Jjc0kmK8jkgjhJxKLKQajSArdGoEFRyAERiiNlOGJH77rtsmhs-bp1R7VuO9dQ96wDOf27491C34cnLQWgwnwQ2PsQ6MLj0sZeNy4aW9fkbVhGLQBSqbJpCgO6-9Pry-TzbgPA3wHThRg7W2nj-rd7DNau1sD163f093eGkf0_I5-q_8AvEoePgg |
CitedBy_id | crossref_primary_10_1016_j_isci_2024_111225 crossref_primary_10_1002_slct_202405895 crossref_primary_10_1016_j_apsusc_2024_159547 crossref_primary_10_1021_acs_jpcc_1c02147 crossref_primary_10_3390_ma14040841 crossref_primary_10_1016_j_cej_2024_151788 crossref_primary_10_3390_ma16051801 crossref_primary_10_3390_coatings12091248 crossref_primary_10_1016_j_jmmm_2023_171616 crossref_primary_10_2351_7_0001412 crossref_primary_10_3390_jcs6080218 crossref_primary_10_3390_nano10040685 crossref_primary_10_3390_polym13101604 crossref_primary_10_3390_photonics9120890 crossref_primary_10_3390_toxins15010005 crossref_primary_10_3390_chemosensors11080427 crossref_primary_10_15251_JOR_2024_201_1 crossref_primary_10_2320_matertrans_MT_MN2019042 crossref_primary_10_1021_acsami_3c13921 crossref_primary_10_1021_acsanm_3c00853 crossref_primary_10_1021_acs_jafc_2c00089 crossref_primary_10_1016_j_jconrel_2019_08_032 crossref_primary_10_1016_j_rinp_2022_105742 crossref_primary_10_3390_ma14061380 crossref_primary_10_1016_j_physb_2019_411957 crossref_primary_10_1063_5_0183334 crossref_primary_10_1515_revic_2024_0043 crossref_primary_10_3390_mi13020247 crossref_primary_10_1021_acsami_9b16461 crossref_primary_10_3390_nano10040690 crossref_primary_10_1007_s11468_021_01574_8 crossref_primary_10_1039_D4RA05732E crossref_primary_10_1088_1361_6528_abc035 crossref_primary_10_3390_s23020562 crossref_primary_10_1063_5_0231859 crossref_primary_10_3390_ijms24044142 crossref_primary_10_1016_j_rinp_2022_105519 crossref_primary_10_1088_1361_6528_acdc2b crossref_primary_10_1016_j_nantod_2020_101014 crossref_primary_10_1007_s11468_023_01963_1 crossref_primary_10_3390_ma17133242 crossref_primary_10_3390_ma12010031 crossref_primary_10_1002_chem_201905217 crossref_primary_10_1007_s11468_024_02435_w crossref_primary_10_1021_acsanm_0c01457 crossref_primary_10_3390_nano13091526 crossref_primary_10_1039_D3RA01078C crossref_primary_10_3390_bios12110951 crossref_primary_10_1038_s41578_021_00402_z crossref_primary_10_1016_j_ijbiomac_2021_08_073 crossref_primary_10_1016_j_inoche_2022_109979 crossref_primary_10_1088_2632_959X_ad9c9e crossref_primary_10_1039_D2GC04591E crossref_primary_10_1007_s00339_021_05253_7 crossref_primary_10_3390_ma15010189 crossref_primary_10_3390_molecules24132460 crossref_primary_10_1039_D5RA00458F crossref_primary_10_1134_S1063783424600833 crossref_primary_10_1039_D1JA00149C crossref_primary_10_3390_nano11092460 crossref_primary_10_1016_j_mtchem_2022_101220 crossref_primary_10_3390_app9122512 crossref_primary_10_1039_C9RA00115H crossref_primary_10_3389_fchem_2022_836597 crossref_primary_10_3389_fbioe_2020_558375 crossref_primary_10_1016_j_molstruc_2024_140219 crossref_primary_10_1021_acs_jpcc_2c05582 crossref_primary_10_2217_nnm_2023_0010 crossref_primary_10_1088_1757_899X_902_1_012058 crossref_primary_10_1021_acs_nanolett_0c00601 crossref_primary_10_1063_5_0219146 crossref_primary_10_3390_ma12091411 crossref_primary_10_1002_VIW_20210008 crossref_primary_10_1126_sciadv_abj5505 crossref_primary_10_3390_nano12193366 crossref_primary_10_1016_j_diamond_2023_110264 crossref_primary_10_1088_1742_6596_1410_1_012140 crossref_primary_10_1134_S2635167624600391 crossref_primary_10_3389_fphy_2022_918372 crossref_primary_10_1021_acsomega_4c02150 crossref_primary_10_3390_nano12071202 crossref_primary_10_3390_bios11120527 crossref_primary_10_1063_5_0040128 crossref_primary_10_1007_s11082_021_03089_2 crossref_primary_10_1016_j_optlastec_2022_109032 crossref_primary_10_1016_j_optcom_2024_130783 crossref_primary_10_1364_OE_503031 crossref_primary_10_1002_adfm_201909445 crossref_primary_10_15251_JOR_2022_186_723 crossref_primary_10_3390_ijms24010443 crossref_primary_10_1016_j_saa_2024_124848 crossref_primary_10_3390_nano12060955 crossref_primary_10_1016_j_optmat_2020_110747 crossref_primary_10_3390_mi14030574 crossref_primary_10_48077_scihor_23_10__2020_47_53 crossref_primary_10_1007_s11696_024_03583_3 crossref_primary_10_1016_j_mtphys_2021_100378 crossref_primary_10_3934_energy_2021032 crossref_primary_10_1007_s10854_024_14048_4 crossref_primary_10_1016_j_diamond_2025_112211 crossref_primary_10_3390_nano11102579 crossref_primary_10_1007_s11696_023_02845_w crossref_primary_10_1134_S1087659619030155 crossref_primary_10_1016_j_optmat_2024_115402 crossref_primary_10_1021_acsami_9b20907 crossref_primary_10_1142_S021798492450043X crossref_primary_10_1002_pssb_202000249 crossref_primary_10_1016_j_inoche_2024_112702 crossref_primary_10_1007_s12045_024_0209_z crossref_primary_10_1021_acs_jpca_2c07702 crossref_primary_10_3390_ijms241713306 crossref_primary_10_3390_pharmaceutics13111773 crossref_primary_10_1007_s00339_021_04595_6 crossref_primary_10_1016_j_mtbio_2023_100646 crossref_primary_10_1039_C9NH00106A crossref_primary_10_1063_1_5131734 crossref_primary_10_3762_bjnano_15_56 crossref_primary_10_1016_j_jare_2021_11_006 crossref_primary_10_1016_j_mtcomm_2021_102137 crossref_primary_10_3390_photonics11070618 crossref_primary_10_1149_2162_8777_ac3d1a crossref_primary_10_1016_j_mtsust_2023_100544 crossref_primary_10_1021_acsami_0c19327 crossref_primary_10_3390_ma15041523 crossref_primary_10_3390_nano13030496 crossref_primary_10_3390_nano8110871 crossref_primary_10_1021_acs_jpcc_4c04932 crossref_primary_10_3390_polym16172420 crossref_primary_10_1016_j_talanta_2023_125121 crossref_primary_10_3390_nano11071696 crossref_primary_10_1103_PhysRevMaterials_4_015201 crossref_primary_10_1016_j_sbsr_2021_100414 crossref_primary_10_1039_D0EW00534G crossref_primary_10_1007_s11468_023_02082_7 crossref_primary_10_1016_j_mtphys_2022_100815 crossref_primary_10_1021_acs_chemmater_3c00346 crossref_primary_10_1039_D1TC00877C crossref_primary_10_1021_acsanm_3c04756 crossref_primary_10_3390_ma15207160 crossref_primary_10_3390_mi14122208 crossref_primary_10_3390_jcs5070193 crossref_primary_10_1016_j_colcom_2022_100690 crossref_primary_10_1021_acs_jpca_1c02924 crossref_primary_10_1088_1742_6596_2729_1_012002 crossref_primary_10_2217_nnm_2020_0170 crossref_primary_10_1002_asia_202001202 crossref_primary_10_1002_VIW_20200149 crossref_primary_10_1088_1402_4896_acbfed crossref_primary_10_1021_acsami_2c13267 crossref_primary_10_1002_adom_202302265 crossref_primary_10_1007_s11468_024_02682_x crossref_primary_10_3103_S1068335624600530 crossref_primary_10_1016_j_jsamd_2024_100775 crossref_primary_10_1021_acsami_0c02602 crossref_primary_10_1063_5_0050871 crossref_primary_10_2174_2405461508666221102090945 crossref_primary_10_3390_nano9121691 crossref_primary_10_1016_j_trac_2021_116256 crossref_primary_10_1063_5_0129993 crossref_primary_10_3390_bios13020182 |
Cites_doi | 10.1038/nature10889 10.1021/jp057170o 10.1038/lsa.2016.217 10.1002/adfm.201701842 10.1002/adom.201500380 10.1116/1.586991 10.1021/ja3066336 10.3390/ma11030458 10.1021/nl803677x 10.1021/nl101938p 10.1021/nn506800a 10.1039/c2nr31241g 10.1021/ph500318p 10.1088/1361-648X/aa60f3 10.1103/PhysRevLett.88.077402 10.1364/OE.26.025305 10.1002/adom.201500053 10.1038/nature08777 10.1016/j.nantod.2009.04.001 10.1021/nl404572u 10.1002/anie.201205748 10.1021/ja805683r 10.1116/1.2955728 10.1021/nl500838q 10.1021/acsami.7b03711 10.1039/C7QM00601B 10.1038/srep29449 10.1021/nl400538y 10.1021/nl402782d 10.1021/ja501642p 10.1063/1.3651274 10.1021/acs.chemrev.7b00252 10.1021/nl403383w 10.1002/adma.200901601 10.1021/ja808570g 10.1002/anie.200905805 10.1002/adma.201501816 10.1039/C5RA17705G 10.1039/C7NR03311G 10.1039/C4CS00163J 10.1002/adma.201605434 10.1039/C7NR05499H 10.1002/anie.201005159 10.1021/nl204420s 10.1021/acs.nanolett.7b05033 10.3390/s18010147 10.1021/acsami.5b12075 10.1002/anie.201403408 10.1039/c1sm05628j 10.1021/jp109405j 10.1021/am505633g 10.1021/acs.jpcc.6b03233 10.1039/C5TB01393C 10.1039/C5RA23884F 10.1063/1.3693181 10.1002/adma.201100543 10.1039/C5CS00050E 10.1039/C5CP06121K 10.1016/j.snb.2018.01.113 10.1039/C6NR06239C 10.1088/0957-4484/27/41/412001 10.1039/C7RA13127E 10.1021/acs.analchem.6b01867 10.1038/nphoton.2009.4 10.1364/OE.23.008888 10.1364/OE.26.021626 10.1126/science.1177031 10.1021/nn2044802 10.1021/acs.chemrev.6b00302 10.1063/1.3068747 10.1016/j.nantod.2015.02.007 10.1088/1361-648X/aa85ef 10.1038/nphoton.2009.282 10.1039/C6RA09580A 10.1002/adma.201601680 10.1038/ncomms10304 10.1002/anie.201300441 10.1038/srep19658 10.1039/C7CC04218C 10.1021/ph500293u 10.1002/adma.201502943 10.1364/OL.34.002501 10.1021/jp4024298 10.1038/nature17974 10.1364/OE.20.026012 10.1021/ja404354c 10.1038/ncomms3891 10.1063/1.4882187 10.1038/nmat3685 10.1002/adfm.201502419 |
ContentType | Journal Article |
Copyright | 2018 by the authors. 2018 |
Copyright_xml | – notice: 2018 by the authors. 2018 |
DBID | AAYXX CITATION NPM 7X8 5PM |
DOI | 10.3390/ma11101833 |
DatabaseName | CrossRef PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1996-1944 |
ExternalDocumentID | PMC6213938 30261657 10_3390_ma11101833 |
Genre | Journal Article Review |
GrantInformation_xml | – fundername: Shenzhen Science and Technology Innovation Council grantid: JCYJ20170817111349280 and KQTD2016030111203005 – fundername: Natural Science Foundation of Guangdong Province of China grantid: 2017A030313034 |
GroupedDBID | 29M 2WC 53G 5GY 5VS 8FE 8FG AADQD AAFWJ AAHBH AAYXX ABDBF ABJCF ACUHS ADBBV ADMLS AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS AOIJS BCNDV BENPR BGLVJ CCPQU CITATION CZ9 D1I E3Z EBS ESX FRP GX1 HCIFZ HH5 HYE I-F IPNFZ KB. KC. KQ8 MK~ MODMG M~E OK1 OVT P2P PDBOC PGMZT PHGZM PHGZT PIMPY PROAC RIG RPM TR2 TUS GROUPED_DOAJ NPM 7X8 PQGLB PUEGO 5PM |
ID | FETCH-LOGICAL-c378t-5ae3891e61bd2b40f4ce86ac7bac82a0a633bf8129de10ec23c32b686a2903a73 |
ISSN | 1996-1944 |
IngestDate | Thu Aug 21 18:11:16 EDT 2025 Sun Aug 24 03:40:35 EDT 2025 Wed Feb 19 02:43:41 EST 2025 Thu Apr 24 23:08:46 EDT 2025 Tue Jul 01 02:54:00 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | chiral metasurfaces plasmonic nanoparticles upconversion luminescence |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c378t-5ae3891e61bd2b40f4ce86ac7bac82a0a633bf8129de10ec23c32b686a2903a73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
OpenAccessLink | https://pubmed.ncbi.nlm.nih.gov/PMC6213938 |
PMID | 30261657 |
PQID | 2114697541 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_6213938 proquest_miscellaneous_2114697541 pubmed_primary_30261657 crossref_citationtrail_10_3390_ma11101833 crossref_primary_10_3390_ma11101833 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-09-26 |
PublicationDateYYYYMMDD | 2018-09-26 |
PublicationDate_xml | – month: 09 year: 2018 text: 2018-09-26 day: 26 |
PublicationDecade | 2010 |
PublicationPlace | Switzerland |
PublicationPlace_xml | – name: Switzerland |
PublicationTitle | Materials |
PublicationTitleAlternate | Materials (Basel) |
PublicationYear | 2018 |
Publisher | MDPI |
Publisher_xml | – name: MDPI |
References | (ref_1) 2015; 3 Yeom (ref_74) 2013; 13 Lu (ref_13) 2018; 26 Kwon (ref_52) 2016; 28 Cheng (ref_7) 2018; 2 Gramotnev (ref_19) 2010; 4 Zhang (ref_15) 2016; 120 Liu (ref_49) 2017; 29 Utke (ref_71) 2008; 26 Jain (ref_23) 2006; 110 Yin (ref_47) 2016; 28 Jang (ref_5) 2016; 116 Li (ref_11) 2016; 88 Ke (ref_16) 2015; 23 Liu (ref_76) 2009; 3 Koops (ref_70) 1993; 11 Karimullah (ref_77) 2015; 27 Chikkaraddy (ref_25) 2016; 535 Chauve (ref_87) 2014; 136 Xu (ref_35) 2016; 6 Mark (ref_73) 2013; 12 He (ref_54) 2017; 6 Li (ref_61) 2014; 53 Cui (ref_78) 2014; 14 Hentschel (ref_24) 2010; 10 Bouillard (ref_26) 2012; 12 Kuzyk (ref_86) 2012; 483 Yin (ref_56) 2014; 6 Huang (ref_63) 2018; 10 Yuan (ref_55) 2012; 4 Thiel (ref_68) 2009; 21 Yan (ref_82) 2012; 134 Chen (ref_29) 2018; 18 Jiang (ref_8) 2018; 118 Li (ref_43) 2015; 44 Rohani (ref_46) 2015; 3 Wang (ref_60) 2016; 6 Gansel (ref_67) 2012; 100 Chen (ref_62) 2015; 3 Kang (ref_58) 2017; 27 Schlucker (ref_30) 2014; 53 Wang (ref_64) 2016; 27 Sonnichsen (ref_22) 2002; 88 Kaschke (ref_66) 2012; 20 Park (ref_48) 2015; 44 Decker (ref_79) 2009; 34 Wang (ref_21) 2009; 94 ref_31 Lan (ref_84) 2013; 135 Bao (ref_27) 2014; 115 Wang (ref_20) 2011; 99 Amendola (ref_17) 2016; 18 Li (ref_18) 2014; 14 Cai (ref_10) 2013; 117 Zhang (ref_53) 2010; 49 You (ref_32) 2016; 8 Mastroianni (ref_83) 2009; 131 Khoo (ref_6) 2016; 6 Righini (ref_34) 2009; 9 Scialabba (ref_4) 2017; 9 Min (ref_36) 2013; 4 Guo (ref_39) 2015; 10 Bitar (ref_88) 2011; 7 Qiu (ref_12) 2017; 53 Lechuga (ref_38) 2009; 4 Shen (ref_85) 2013; 13 Bigdeli (ref_9) 2017; 9 Wang (ref_41) 2010; 463 Chen (ref_45) 2016; 7 Sukharev (ref_33) 2017; 29 Han (ref_44) 2014; 53 Yin (ref_51) 2016; 8 Sun (ref_59) 2014; 14 Li (ref_57) 2016; 6 Xiao (ref_75) 2018; 26 Leong (ref_80) 2015; 5 Lu (ref_14) 2018; 261 Ogier (ref_81) 2014; 1 ref_3 Chen (ref_89) 2008; 130 Zhu (ref_90) 2012; 6 Gansel (ref_65) 2009; 325 Esposito (ref_72) 2015; 2 Amendola (ref_2) 2017; 29 Messina (ref_28) 2011; 115 Sugawa (ref_37) 2015; 9 Feng (ref_40) 2018; 8 Radke (ref_69) 2011; 23 Markus (ref_42) 2011; 50 Chen (ref_50) 2015; 25 24305554 - Nat Commun. 2013;4:2891 25853439 - Chem Soc Rev. 2015 May 21;44(10):2940-62 25052250 - Chem Soc Rev. 2015 Mar 21;44(6):1346-78 20182508 - Nature. 2010 Feb 25;463(7284):1061-5 28383273 - ACS Appl Mater Interfaces. 2017 Apr 26;9(16):14453-14469 22324310 - ACS Nano. 2012 Mar 27;6(3):2326-32 22790174 - Nanoscale. 2012 Aug 21;4(16):5132-7 25968726 - Opt Express. 2015 Apr 6;23(7):8888-900 21509833 - Adv Mater. 2011 Jul 19;23(27):3018-21 25204638 - Angew Chem Int Ed Engl. 2014 Oct 27;53(44):11702-15 27111717 - ACS Appl Mater Interfaces. 2016 May 11;8(18):11667-74 25629586 - ACS Nano. 2015 Feb 24;9(2):1895-904 22900978 - J Am Chem Soc. 2012 Sep 12;134(36):15114-21 11863939 - Phys Rev Lett. 2002 Feb 18;88(7):077402 28805193 - J Phys Condens Matter. 2017 Nov 8;29(44):443003 27606801 - Nanotechnology. 2016 Oct 14;27(41):412001 19331419 - J Am Chem Soc. 2009 Jun 24;131(24):8455-9 28722075 - Chem Commun (Camb). 2017 Aug 11;53(62):8691-8694 27385563 - Anal Chem. 2016 Aug 2;88(15):7828-36 26694826 - Phys Chem Chem Phys. 2016 Jan 21;18(3):2230-41 28027647 - Chem Rev. 2016 Dec 28;116(24):14982-15034 24421264 - Angew Chem Int Ed Engl. 2014 Feb 10;53(7):1756-89 29316659 - Sensors (Basel). 2018 Jan 07;18(1):null 19684829 - Opt Lett. 2009 Aug 15;34(16):2501-3 16599493 - J Phys Chem B. 2006 Apr 13;110(14):7238-48 24111695 - Nano Lett. 2013 Nov 13;13(11):5277-83 24844583 - Nano Lett. 2014 Jun 11;14(6):3358-63 29370525 - Nano Lett. 2018 Feb 14;18(2):1344-1350 28960067 - Chem Rev. 2018 Mar 28;118(6):3054-3099 30167245 - Light Sci Appl. 2017 May 19;6(5):e16217 28426435 - J Phys Condens Matter. 2017 May 24;29(20):203002 23879265 - J Am Chem Soc. 2013 Aug 7;135(31):11441-4 24711218 - Angew Chem Int Ed Engl. 2014 May 5;53(19):4756-95 20235253 - Angew Chem Int Ed Engl. 2010 Apr 6;49(16):2865-8 27739545 - Nanoscale. 2016 Oct 27;8(42):18150-18160 27376395 - Adv Mater. 2016 Sep;28(36):7899-7909 29256568 - Nanoscale. 2018 Jan 3;10(2):791-799 27296227 - Nature. 2016 Jul 7;535(7610):127-30 23600476 - Nano Lett. 2013 May 8;13(5):2128-33 23187416 - Opt Express. 2012 Nov 5;20(23):26012-20 22339644 - Nano Lett. 2012 Mar 14;12(3):1561-5 21626614 - Angew Chem Int Ed Engl. 2011 Jun 20;50(26):5808-29 20586409 - Nano Lett. 2010 Jul 14;10(7):2721-6 30130866 - Opt Express. 2018 Aug 20;26(17):21626-21641 27386838 - Sci Rep. 2016 Jul 08;6:29449 29558454 - Materials (Basel). 2018 Mar 20;11(3):null 23793159 - Nat Mater. 2013 Sep;12(9):802-7 19159322 - Nano Lett. 2009 Oct;9(10):3387-91 25279952 - ACS Appl Mater Interfaces. 2014;6(21):18480-8 18800838 - J Am Chem Soc. 2008 Oct 15;130(41):13555-7 29083011 - Nanoscale. 2017 Nov 9;9(43):16546-16563 26792371 - Sci Rep. 2016 Jan 21;6:19658 22422265 - Nature. 2012 Mar 14;483(7389):311-4 28295673 - Adv Mater. 2017 May;29(18) 26833556 - Adv Mater. 2016 Apr 6;28(13):2518-25 24588564 - J Am Chem Soc. 2014 Mar 26;136(12):4788-93 24279776 - Nano Lett. 2014 Jan 8;14(1):101-6 24422639 - Nano Lett. 2014 Feb 12;14(2):1021-5 26739352 - Nat Commun. 2016 Jan 07;7:10304 19696310 - Science. 2009 Sep 18;325(5947):1513-5 26306427 - Adv Mater. 2015 Oct 7;27(37):5610-6 |
References_xml | – volume: 483 start-page: 311 year: 2012 ident: ref_86 article-title: DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response publication-title: Nature doi: 10.1038/nature10889 – volume: 110 start-page: 7238 year: 2006 ident: ref_23 article-title: Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: Applications in biological imaging and biomedicine publication-title: J. Phys. Chem. B doi: 10.1021/jp057170o – volume: 6 start-page: e16217 year: 2017 ident: ref_54 article-title: Plasmonic enhancement and polarization dependence of nonlinear upconversion emissions from single gold nanorod@SiO2@CaF2:Yb3+, Er3+ hybrid core–shell–satellite nanostructures publication-title: Light Sci. Appl. doi: 10.1038/lsa.2016.217 – volume: 27 start-page: 1701842 year: 2017 ident: ref_58 article-title: Plasmonic dual-enhancement and precise color tuning of gold nanorod@SiO2 coupled core–shell–shell upconversion nanocrystals publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201701842 – volume: 3 start-page: 1606 year: 2015 ident: ref_46 article-title: Enhanced luminescence, collective heating, and nanothermometry in an ensemble system composed of Lanthanide-doped upconverting nanoparticles and gold nanorods publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201500380 – volume: 11 start-page: 2386 year: 1993 ident: ref_70 article-title: Constructive three-dimensional lithography with electron-beam induced deposition for quantum effect devices publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.586991 – volume: 134 start-page: 15114 year: 2012 ident: ref_82 article-title: Self-assembly of chiral nanoparticle pyramids with strong R/S optical activity publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3066336 – ident: ref_3 doi: 10.3390/ma11030458 – volume: 9 start-page: 3387 year: 2009 ident: ref_34 article-title: Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas publication-title: Nano Lett. doi: 10.1021/nl803677x – volume: 10 start-page: 2721 year: 2010 ident: ref_24 article-title: Transition from isolated to collective modes in plasmonic oligomers publication-title: Nano Lett. doi: 10.1021/nl101938p – volume: 9 start-page: 1895 year: 2015 ident: ref_37 article-title: Refractive index susceptibility of the plasmonic palladium nanoparticle: Potential as the third plasmonic sensing material publication-title: ACS Nano doi: 10.1021/nn506800a – volume: 4 start-page: 5132 year: 2012 ident: ref_55 article-title: Plasmon enhanced upconversion luminescence of NaYF4:Yb, Er@SiO2@Ag core–shell nanocomposites for cell imaging publication-title: Nanoscale doi: 10.1039/c2nr31241g – volume: 2 start-page: 105 year: 2015 ident: ref_72 article-title: Nanoscale 3D chiral plasmonic helices with circular dichroism at visible frequencies publication-title: ACS Photonics doi: 10.1021/ph500318p – volume: 29 start-page: 203002 year: 2017 ident: ref_2 article-title: Surface plasmon resonance in gold nanoparticles: A review publication-title: J. Phys. Condens. Matter. doi: 10.1088/1361-648X/aa60f3 – volume: 88 start-page: 077402 year: 2002 ident: ref_22 article-title: Drastic reduction of plasmon damping in gold nanorods publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.88.077402 – volume: 26 start-page: 25305 year: 2018 ident: ref_75 article-title: Liquid-crystal-loaded chiral metasurfaces for reconfigurable multiband spin-selective light absorption publication-title: Opt. Express doi: 10.1364/OE.26.025305 – volume: 3 start-page: 602 year: 2015 ident: ref_1 article-title: Modern applications of plasmonic nanoparticles: From energy to health publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201500053 – volume: 463 start-page: 1061 year: 2010 ident: ref_41 article-title: Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping publication-title: Nature doi: 10.1038/nature08777 – volume: 4 start-page: 244 year: 2009 ident: ref_38 article-title: LSPR-based nanobiosensors publication-title: Nano Today doi: 10.1016/j.nantod.2009.04.001 – volume: 14 start-page: 1021 year: 2014 ident: ref_78 article-title: Giant chiral optical response from a twisted-arc metamaterial publication-title: Nano Lett. doi: 10.1021/nl404572u – volume: 53 start-page: 4756 year: 2014 ident: ref_30 article-title: Surface-enhanced Raman spectroscopy: Concepts and chemical applications publication-title: Angew. Chem. Int. Ed. Engl. doi: 10.1002/anie.201205748 – volume: 130 start-page: 13555 year: 2008 ident: ref_89 article-title: A new peptide-based method for the design and synthesis of nanoparticle superstructures: Construction of highly ordered gold nanoparticle double helices publication-title: J. Am. Chem. Soc. doi: 10.1021/ja805683r – volume: 26 start-page: 1197 year: 2008 ident: ref_71 article-title: Gas-assisted focused electron beam and ion beam processing and fabrication publication-title: J. Vac. Sci. Technol. B doi: 10.1116/1.2955728 – volume: 14 start-page: 3358 year: 2014 ident: ref_18 article-title: Resolving single plasmons generated by multiquantum-emitters on a silver nanowire publication-title: Nano Lett. doi: 10.1021/nl500838q – volume: 9 start-page: 14453 year: 2017 ident: ref_4 article-title: Near-infrared light responsive folate targeted gold nanorods for combined photothermal-chemotherapy of osteosarcoma publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b03711 – volume: 2 start-page: 662 year: 2018 ident: ref_7 article-title: Optically active plasmonic resonance in self-assembled nanostructures publication-title: Mater. Chem. Front. doi: 10.1039/C7QM00601B – volume: 6 start-page: 29449 year: 2016 ident: ref_35 article-title: Dual focused coherent beams for three-dimensional optical trapping and continuous rotation of metallic nanostructures publication-title: Sci. Rep. doi: 10.1038/srep29449 – volume: 13 start-page: 2128 year: 2013 ident: ref_85 article-title: Three-dimensional plasmonic chiral tetramers assembled by DNA origami publication-title: Nano Lett. doi: 10.1021/nl400538y – volume: 13 start-page: 5277 year: 2013 ident: ref_74 article-title: Chiral plasmonic nanostructures on achiral nanopillars publication-title: Nano Lett. doi: 10.1021/nl402782d – volume: 136 start-page: 4788 year: 2014 ident: ref_87 article-title: Chiral plasmonic films formed by gold nanorods and cellulose nanocrystals publication-title: J. Am. Chem. Soc. doi: 10.1021/ja501642p – volume: 99 start-page: 151106 year: 2011 ident: ref_20 article-title: Subwavelength lithography by waveguide mode interference publication-title: Appl. Phys. Lett. doi: 10.1063/1.3651274 – volume: 118 start-page: 3054 year: 2018 ident: ref_8 article-title: Active plasmonics: Principles, structures, and applications publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00252 – volume: 14 start-page: 101 year: 2014 ident: ref_59 article-title: Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-Lanthanide nanocrystals publication-title: Nano Lett. doi: 10.1021/nl403383w – volume: 21 start-page: 4680 year: 2009 ident: ref_68 article-title: Three-dimensional bi-chiral photonic crystals publication-title: Adv. Mater. doi: 10.1002/adma.200901601 – volume: 131 start-page: 8455 year: 2009 ident: ref_83 article-title: Pyramidal and chiral groupings of gold nanocrystals assembled using DNA scaffolds publication-title: J. Am. Chem. Soc. doi: 10.1021/ja808570g – volume: 49 start-page: 2865 year: 2010 ident: ref_53 article-title: Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.200905805 – volume: 27 start-page: 5610 year: 2015 ident: ref_77 article-title: Disposable plasmonics: Plastic templated plasmonic metamaterials with tunable chirality publication-title: Adv. Mater. doi: 10.1002/adma.201501816 – volume: 5 start-page: 96366 year: 2015 ident: ref_80 article-title: Fabrication of suspended, three-dimensional chiral plasmonic nanostructures with single-step electron-beam lithography publication-title: RSC Adv. doi: 10.1039/C5RA17705G – volume: 9 start-page: 16546 year: 2017 ident: ref_9 article-title: Nanoparticle-based optical sensor arrays publication-title: Nanoscale doi: 10.1039/C7NR03311G – volume: 44 start-page: 1346 year: 2015 ident: ref_43 article-title: Lab on upconversion nanoparticles: Optical properties and applications engineering via designed nanostructure publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00163J – volume: 29 start-page: 1605434 year: 2017 ident: ref_49 article-title: 808-nm-light-excited Lanthanide-doped nanoparticles: Rational design, luminescence control and theranostic applications publication-title: Adv. Mater. doi: 10.1002/adma.201605434 – volume: 10 start-page: 791 year: 2018 ident: ref_63 article-title: Upconverting nanocomposites with combined photothermal and photodynamic effects publication-title: Nanoscale doi: 10.1039/C7NR05499H – volume: 50 start-page: 5808 year: 2011 ident: ref_42 article-title: Upconverting nanoparticles publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201005159 – volume: 12 start-page: 1561 year: 2012 ident: ref_26 article-title: Low-temperature plasmonics of metallic nanostructures publication-title: Nano Lett. doi: 10.1021/nl204420s – volume: 18 start-page: 1344 year: 2018 ident: ref_29 article-title: Tungsten disulfide-gold nanohole hybrid metasurfaces for nonlinear metalenses in the visible region publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b05033 – ident: ref_31 doi: 10.3390/s18010147 – volume: 8 start-page: 11667 year: 2016 ident: ref_51 article-title: Plasmon-enhanced upconversion luminescence on vertically aligned gold nanorod monolayer supercrystals publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.5b12075 – volume: 53 start-page: 11702 year: 2014 ident: ref_44 article-title: Enhancing luminescence in Lanthanide-doped upconversion nanoparticles publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201403408 – volume: 7 start-page: 8198 year: 2011 ident: ref_88 article-title: Cholesteric liquid crystal self-organization of gold nanoparticles publication-title: Soft Matter doi: 10.1039/c1sm05628j – volume: 115 start-page: 5115 year: 2011 ident: ref_28 article-title: Manipulation and raman spectroscopy with optically trapped metal nanoparticles obtained by pulsed laser ablation in liquids publication-title: J. Phys. Chem. C doi: 10.1021/jp109405j – volume: 6 start-page: 18480 year: 2014 ident: ref_56 article-title: Synthesis of a novel core−shell nanocomposite Ag@SiO2@Lu2O3:Gd/Yb/Er for large enhancing upconversion luminescence and bioimaging publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/am505633g – volume: 120 start-page: 20978 year: 2016 ident: ref_15 article-title: Photo-induced or plasmon-induced reaction: Investigation of the light-induced Azo-coupling of amino groups publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.6b03233 – volume: 3 start-page: 8293 year: 2015 ident: ref_62 article-title: Plasmon-induced hyperthermia: Hybrid upconversion NaYF4:Yb/Er and gold nanomaterials for oral cancer photothermal therapy publication-title: J. Mater. Chem. B doi: 10.1039/C5TB01393C – volume: 6 start-page: 13343 year: 2016 ident: ref_57 article-title: Fabrication of core@spacer@shell Aunanorod@mSiO2@Y2O3:Er nanocomposites with enhanced upconversion fluorescence publication-title: RSC Adv. doi: 10.1039/C5RA23884F – volume: 100 start-page: 101109 year: 2012 ident: ref_67 article-title: Tapered gold-helix metamaterials as improved circular polarizers publication-title: Appl. Phys. Lett. doi: 10.1063/1.3693181 – volume: 23 start-page: 3018 year: 2011 ident: ref_69 article-title: Three-dimensional bichiral plasmonic crystals fabricated by direct laser writing and electroless silver plating publication-title: Adv. Mater. doi: 10.1002/adma.201100543 – volume: 44 start-page: 2940 year: 2015 ident: ref_48 article-title: Plasmon enhancement of luminescence upconversion publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00050E – volume: 18 start-page: 2230 year: 2016 ident: ref_17 article-title: Surface plasmon resonance of silver and gold nanoparticles in the proximity of graphene studied using the discrete dipole approximation method publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C5CP06121K – volume: 261 start-page: 1 year: 2018 ident: ref_14 article-title: A novel natural surface-enhanced Raman spectroscopy (SERS) substrate based on graphene oxide-Ag nanoparticles-Mytiluscoruscus hybrid system publication-title: Sens. Actuator B Chem. doi: 10.1016/j.snb.2018.01.113 – volume: 8 start-page: 18150 year: 2016 ident: ref_32 article-title: Silica-coated triangular gold nanoprisms as distance-dependent plasmon-enhanced fluorescence-based probes for biochemical applications publication-title: Nanoscale doi: 10.1039/C6NR06239C – volume: 27 start-page: 412001 year: 2016 ident: ref_64 article-title: Optical chiral metamaterials: A review of the fundamentals, fabrication methods and applications publication-title: Nanotechnology doi: 10.1088/0957-4484/27/41/412001 – volume: 8 start-page: 4049 year: 2018 ident: ref_40 article-title: A sensitive LSPR sensor based on glutathione-functionalized gold nanoparticles on a substrate for the detection of Pb2+ ions publication-title: RSC Adv. doi: 10.1039/C7RA13127E – volume: 88 start-page: 7828 year: 2016 ident: ref_11 article-title: Surface-enhanced Raman scattering active plasmonic nanoparticles with ultrasmall interior nanogap for multiplex quantitative detection and cancer cell imaging publication-title: Anal. Chem. doi: 10.1021/acs.analchem.6b01867 – volume: 3 start-page: 157 year: 2009 ident: ref_76 article-title: Stereometamaterials publication-title: Nat. Photonics doi: 10.1038/nphoton.2009.4 – volume: 23 start-page: 8888 year: 2015 ident: ref_16 article-title: Plasmonic absorption enhancement in periodic cross-shaped graphene arrays publication-title: Opt. Express doi: 10.1364/OE.23.008888 – volume: 26 start-page: 21626 year: 2018 ident: ref_13 article-title: Sensitive, reproducible, and sTable 3D plasmonic hybrids with bilayer WS2 as nanospacer for SERS analysis publication-title: Opt. Express doi: 10.1364/OE.26.021626 – volume: 325 start-page: 1513 year: 2009 ident: ref_65 article-title: Gold helix photonic metamaterial as broadband circular polarizer publication-title: Science doi: 10.1126/science.1177031 – volume: 6 start-page: 2326 year: 2012 ident: ref_90 article-title: Manipulation of collective optical activity in one-dimensional plasmonic assembly publication-title: ACS Nano doi: 10.1021/nn2044802 – volume: 116 start-page: 14982 year: 2016 ident: ref_5 article-title: Plasmonic solar cells: From rational design to mechanism overview publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00302 – volume: 94 start-page: 011114 year: 2009 ident: ref_21 article-title: Efficient generation of surface plasmon by single-nanoslit illumination under highly oblique incidence publication-title: Appl. Phys. Lett. doi: 10.1063/1.3068747 – volume: 10 start-page: 213 year: 2015 ident: ref_39 article-title: Strategies for enhancing the sensitivity of plasmonic nanosensors publication-title: Nano Today doi: 10.1016/j.nantod.2015.02.007 – volume: 29 start-page: 443003 year: 2017 ident: ref_33 article-title: Optics of exciton-plasmon nanomaterials publication-title: J. Phys. Condens. Matter doi: 10.1088/1361-648X/aa85ef – volume: 4 start-page: 83 year: 2010 ident: ref_19 article-title: Plasmonics beyond the diffraction limit publication-title: Nat. Photonics doi: 10.1038/nphoton.2009.282 – volume: 6 start-page: 56963 year: 2016 ident: ref_60 article-title: Tunable and ultra-broad plasmon enhanced upconversion emission of NaYF4:Yb3+, Er3+ nanoparticles deposited on Au films with papilla Au nanoparticles publication-title: RSC Adv. doi: 10.1039/C6RA09580A – volume: 28 start-page: 7899 year: 2016 ident: ref_52 article-title: A plasmonic platform with disordered array of metal nanoparticles for three-order enhanced upconversion luminescence and highly sensitive near-infrared photodetector publication-title: Adv. Mater. doi: 10.1002/adma.201601680 – volume: 7 start-page: 10304 year: 2016 ident: ref_45 article-title: Confining energy migration in upconversion nanoparticles towards deep ultraviolet lasing publication-title: Nat. Comm. doi: 10.1038/ncomms10304 – volume: 53 start-page: 1756 year: 2014 ident: ref_61 article-title: Anisotropic gold nanoparticles: Synthesis, properties, applications, and toxicity publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201300441 – volume: 6 start-page: 19658 year: 2016 ident: ref_6 article-title: Effects of asymmetric nanostructures on the extinction difference properties of actin biomolecules and filaments publication-title: Sci. Rep. doi: 10.1038/srep19658 – volume: 53 start-page: 8691 year: 2017 ident: ref_12 article-title: A new route for the synthesis of a Ag nanopore-inlay-nanogap structure: Integrated Ag-core@graphene-shell@Ag-jacket nanoparticles for high-efficiency SERS detection publication-title: Chem. Commun. doi: 10.1039/C7CC04218C – volume: 1 start-page: 1074 year: 2014 ident: ref_81 article-title: Macroscopic layers of chiral plasmonic nanoparticle oligomers from colloidal lithography publication-title: ACS Photonics doi: 10.1021/ph500293u – volume: 28 start-page: 2518 year: 2016 ident: ref_47 article-title: Local field modulation induced three-order upconversion enhancement: Combining surface plasmon effect and photonic crystal effect publication-title: Adv. Mater. doi: 10.1002/adma.201502943 – volume: 34 start-page: 2501 year: 2009 ident: ref_79 article-title: Strong optical activity from twisted-cross photonic metamaterials publication-title: Opt. Lett. doi: 10.1364/OL.34.002501 – volume: 117 start-page: 9440 year: 2013 ident: ref_10 article-title: In situ “doping” inverse silica opals with size-controllable gold nanoparticles for refractive index sensing publication-title: J. Phys. Chem. C doi: 10.1021/jp4024298 – volume: 535 start-page: 127 year: 2016 ident: ref_25 article-title: Single-molecule strong coupling at room temperature in plasmonic nanocavities publication-title: Nature doi: 10.1038/nature17974 – volume: 20 start-page: 26012 year: 2012 ident: ref_66 article-title: On metamaterial circular polarizers based on metal N-helices publication-title: Opt. Express doi: 10.1364/OE.20.026012 – volume: 135 start-page: 11441 year: 2013 ident: ref_84 article-title: Bifacial DNA origami-directed discrete, three-dimensional, anisotropic plasmonic nanoarchitectures with tailored optical chirality publication-title: J. Am. Chem. Soc. doi: 10.1021/ja404354c – volume: 4 start-page: 2891 year: 2013 ident: ref_36 article-title: Focused plasmonic trapping of metallic particles publication-title: Nat. Commun. doi: 10.1038/ncomms3891 – volume: 115 start-page: 223503 year: 2014 ident: ref_27 article-title: The redshift of surface plasmon resonance of colloidal gold nanoparticles induced by pressure with diamond anvil cell publication-title: J. Appl. Phys. doi: 10.1063/1.4882187 – volume: 12 start-page: 802 year: 2013 ident: ref_73 article-title: Hybrid nanocolloids with programmed three-dimensional shape and material composition publication-title: Nat. Mater. doi: 10.1038/nmat3685 – volume: 25 start-page: 5462 year: 2015 ident: ref_50 article-title: Large upconversion enhancement in the “Islands” Au–Ag Alloy/NaYF4: Yb3+, Tm3+/Er3+ composite films, and fingerprint identification publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201502419 – reference: 28805193 - J Phys Condens Matter. 2017 Nov 8;29(44):443003 – reference: 24422639 - Nano Lett. 2014 Feb 12;14(2):1021-5 – reference: 18800838 - J Am Chem Soc. 2008 Oct 15;130(41):13555-7 – reference: 29558454 - Materials (Basel). 2018 Mar 20;11(3):null – reference: 25629586 - ACS Nano. 2015 Feb 24;9(2):1895-904 – reference: 24279776 - Nano Lett. 2014 Jan 8;14(1):101-6 – reference: 25968726 - Opt Express. 2015 Apr 6;23(7):8888-900 – reference: 22900978 - J Am Chem Soc. 2012 Sep 12;134(36):15114-21 – reference: 21509833 - Adv Mater. 2011 Jul 19;23(27):3018-21 – reference: 27386838 - Sci Rep. 2016 Jul 08;6:29449 – reference: 27111717 - ACS Appl Mater Interfaces. 2016 May 11;8(18):11667-74 – reference: 27376395 - Adv Mater. 2016 Sep;28(36):7899-7909 – reference: 26833556 - Adv Mater. 2016 Apr 6;28(13):2518-25 – reference: 30130866 - Opt Express. 2018 Aug 20;26(17):21626-21641 – reference: 24421264 - Angew Chem Int Ed Engl. 2014 Feb 10;53(7):1756-89 – reference: 21626614 - Angew Chem Int Ed Engl. 2011 Jun 20;50(26):5808-29 – reference: 11863939 - Phys Rev Lett. 2002 Feb 18;88(7):077402 – reference: 22422265 - Nature. 2012 Mar 14;483(7389):311-4 – reference: 29256568 - Nanoscale. 2018 Jan 3;10(2):791-799 – reference: 19331419 - J Am Chem Soc. 2009 Jun 24;131(24):8455-9 – reference: 26694826 - Phys Chem Chem Phys. 2016 Jan 21;18(3):2230-41 – reference: 27739545 - Nanoscale. 2016 Oct 27;8(42):18150-18160 – reference: 28426435 - J Phys Condens Matter. 2017 May 24;29(20):203002 – reference: 25853439 - Chem Soc Rev. 2015 May 21;44(10):2940-62 – reference: 28027647 - Chem Rev. 2016 Dec 28;116(24):14982-15034 – reference: 27296227 - Nature. 2016 Jul 7;535(7610):127-30 – reference: 28960067 - Chem Rev. 2018 Mar 28;118(6):3054-3099 – reference: 26306427 - Adv Mater. 2015 Oct 7;27(37):5610-6 – reference: 19159322 - Nano Lett. 2009 Oct;9(10):3387-91 – reference: 27385563 - Anal Chem. 2016 Aug 2;88(15):7828-36 – reference: 20235253 - Angew Chem Int Ed Engl. 2010 Apr 6;49(16):2865-8 – reference: 25204638 - Angew Chem Int Ed Engl. 2014 Oct 27;53(44):11702-15 – reference: 25279952 - ACS Appl Mater Interfaces. 2014;6(21):18480-8 – reference: 19684829 - Opt Lett. 2009 Aug 15;34(16):2501-3 – reference: 22339644 - Nano Lett. 2012 Mar 14;12(3):1561-5 – reference: 20586409 - Nano Lett. 2010 Jul 14;10(7):2721-6 – reference: 23879265 - J Am Chem Soc. 2013 Aug 7;135(31):11441-4 – reference: 24711218 - Angew Chem Int Ed Engl. 2014 May 5;53(19):4756-95 – reference: 23187416 - Opt Express. 2012 Nov 5;20(23):26012-20 – reference: 30167245 - Light Sci Appl. 2017 May 19;6(5):e16217 – reference: 24111695 - Nano Lett. 2013 Nov 13;13(11):5277-83 – reference: 29083011 - Nanoscale. 2017 Nov 9;9(43):16546-16563 – reference: 28383273 - ACS Appl Mater Interfaces. 2017 Apr 26;9(16):14453-14469 – reference: 23793159 - Nat Mater. 2013 Sep;12(9):802-7 – reference: 25052250 - Chem Soc Rev. 2015 Mar 21;44(6):1346-78 – reference: 16599493 - J Phys Chem B. 2006 Apr 13;110(14):7238-48 – reference: 23600476 - Nano Lett. 2013 May 8;13(5):2128-33 – reference: 26739352 - Nat Commun. 2016 Jan 07;7:10304 – reference: 26792371 - Sci Rep. 2016 Jan 21;6:19658 – reference: 28295673 - Adv Mater. 2017 May;29(18): – reference: 20182508 - Nature. 2010 Feb 25;463(7284):1061-5 – reference: 24844583 - Nano Lett. 2014 Jun 11;14(6):3358-63 – reference: 29316659 - Sensors (Basel). 2018 Jan 07;18(1):null – reference: 19696310 - Science. 2009 Sep 18;325(5947):1513-5 – reference: 27606801 - Nanotechnology. 2016 Oct 14;27(41):412001 – reference: 29370525 - Nano Lett. 2018 Feb 14;18(2):1344-1350 – reference: 24305554 - Nat Commun. 2013;4:2891 – reference: 24588564 - J Am Chem Soc. 2014 Mar 26;136(12):4788-93 – reference: 22324310 - ACS Nano. 2012 Mar 27;6(3):2326-32 – reference: 22790174 - Nanoscale. 2012 Aug 21;4(16):5132-7 – reference: 28722075 - Chem Commun (Camb). 2017 Aug 11;53(62):8691-8694 |
SSID | ssj0000331829 |
Score | 2.5896363 |
SecondaryResourceType | review_article |
Snippet | In the past half-century, surface plasmon resonance in noble metallic nanoparticles has been an important research subject. Recent advances in the synthesis,... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1833 |
SubjectTerms | Review |
Title | Recent Advances of Plasmonic Nanoparticles and their Applications |
URI | https://www.ncbi.nlm.nih.gov/pubmed/30261657 https://www.proquest.com/docview/2114697541 https://pubmed.ncbi.nlm.nih.gov/PMC6213938 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
journalDatabaseRights | – providerCode: PRVFSB databaseName: Free Full-Text Journals in Chemistry customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: HH5 dateStart: 20080101 isFulltext: true titleUrlDefault: http://abc-chemistry.org/ providerName: ABC ChemistRy – providerCode: PRVAFT databaseName: Open Access Digital Library customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: KQ8 dateStart: 20080101 isFulltext: true titleUrlDefault: http://grweb.coalliance.org/oadl/oadl.html providerName: Colorado Alliance of Research Libraries – providerCode: PRVEBS databaseName: EBSCOhost Academic Search Ultimate customDbUrl: https://search.ebscohost.com/login.aspx?authtype=ip,shib&custid=s3936755&profile=ehost&defaultdb=asn eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: ABDBF dateStart: 20091201 isFulltext: true titleUrlDefault: https://search.ebscohost.com/direct.asp?db=asn providerName: EBSCOhost – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: false ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: ADMLS dateStart: 20091201 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost – providerCode: PRVFQY databaseName: GFMER Free Medical Journals customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: GX1 dateStart: 20080101 isFulltext: true titleUrlDefault: http://www.gfmer.ch/Medical_journals/Free_medical.php providerName: Geneva Foundation for Medical Education and Research – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: M~E dateStart: 20080101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre – providerCode: PRVAQN databaseName: PubMed Central customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: RPM dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.ncbi.nlm.nih.gov/pmc/ providerName: National Library of Medicine – providerCode: PRVPQU databaseName: ProQuest Central customDbUrl: http://www.proquest.com/pqcentral?accountid=15518 eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: BENPR dateStart: 20080101 isFulltext: true titleUrlDefault: https://www.proquest.com/central providerName: ProQuest – providerCode: PRVPQU databaseName: ProQuest Technology Collection customDbUrl: eissn: 1996-1944 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0000331829 issn: 1996-1944 databaseCode: 8FG dateStart: 20080101 isFulltext: true titleUrlDefault: https://search.proquest.com/technologycollection1 providerName: ProQuest |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELa27QUOiDdbYGUEFw4piZ3YyY0FtV1xqBC00t4i23HaSG2CSiJV_HrGduJN2j0ULtHKO44sz5fxzHgeCH0QRMIprnRQFBkPTEEu-OZKHhCpTK9jKgppoy1O2Oos_rZO1rPZ53F2SSsP1J-teSX_w1UYA76aLNl_4Kx_KQzAb-AvPIHD8LwXj0HnM1f5S3eP7-LZQBu-sl1tQG6CQdzHvQ2BktW10zvHjrqhn5No3Zp9jE7VWR4DgG46j6GV9YCuuuqy8mPrSjROG-_PQSNGXHGCnxe6Pm9FM_YuRDYUwqWw9wLRBClHmavReKC3jA1SNBqjJRzJRBAadJuwpjQz0Y1XAsRtOBBNK2LfOql8_CBYLmZ2vpm7g_YIZ8z0sDheR97LFlKQWbZVnV-0q1Frpn_aTJ9qJXdMjdsRsyMV5PQxetTbDnjpePoEzXT9FD0cVZR8hpYOEniABG5K7CGBJ5DAAAlsIYHHkHiOzo4OT7-ugr5LRqAoT9sgEdrcNWsWyYLIOCxjpVMmFJdCpUSEglEqS9DjskJHoVaEKkokAxKShVRw-gLt1k2tXyHMJU0TVoRFwuNYcS5DUF-ZTLkqjeeLzNHHYZdy1ZeQN51MLvO7DJmj9572lyucspXq3bDZOcg1c1klat10v3Ni0uUznsTRHL10m-_fQ43jgCV8jviELZ7A1Eyf_lNXF7Z2OiNg8tB0_16re40ebL6JN2i3ve70W9BBW7lAO-nR8QLtfTk8-f5jYUH3F_cMh8E |
linkProvider | Geneva Foundation for Medical Education and Research |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Recent+Advances+of+Plasmonic+Nanoparticles+and+their+Applications&rft.jtitle=Materials&rft.au=Liu%2C+Jianxun&rft.au=He%2C+Huilin&rft.au=Xiao%2C+Dong&rft.au=Yin%2C+Shengtao&rft.date=2018-09-26&rft.issn=1996-1944&rft.eissn=1996-1944&rft.volume=11&rft.issue=10&rft.spage=1833&rft_id=info:doi/10.3390%2Fma11101833&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_ma11101833 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1996-1944&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1996-1944&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1996-1944&client=summon |