Eigenvector centrality based algorithm for finding a maximal common connected vertex induced molecular substructure of two chemical graphs

•It uses of eigenvector centrality.•ONE DFS SEARCH is sufficient.•It gives large size maximal common connected subgraph. The physical and biological properties of a chemical molecule entity are related to its structure. One of the basic widely accepted principles in chemistry is that compounds with...

Full description

Saved in:
Bibliographic Details
Published inJournal of molecular structure Vol. 1244; p. 130980
Main Authors Parisutham, Nirmala, Rethnasamy, Nadarajan
Format Journal Article
LanguageEnglish
Published Elsevier B.V 15.11.2021
Subjects
Online AccessGet full text
ISSN0022-2860
1872-8014
DOI10.1016/j.molstruc.2021.130980

Cover

Abstract •It uses of eigenvector centrality.•ONE DFS SEARCH is sufficient.•It gives large size maximal common connected subgraph. The physical and biological properties of a chemical molecule entity are related to its structure. One of the basic widely accepted principles in chemistry is that compounds with similar structures frequently share similar physicochemical properties and biological activities. The process of finding structural similarities between chemical structures of molecules helps to identify the common behavior of these molecules. A familiar approach to capture the structural similarity between two chemical compounds is to detect a maximal Common Connected vertex induced Subgraph (CCS) in their molecular chemical graphs. The proposed algorithm detects a maximal CCS by checking the induced property of the vertices which are collected by performing a DFS search on the tensor product graph of two input molecular chemical graphs. The DFS search will start from the node which has the highest eigenvector centrality in the tensor product graph. The significance of the proposed work is that it uses eigenvector centrality to predict the root node of the DFS search tree, so that the resulting sugraph gets more number of nodes (i.e. large size maximal CCS). The experimental results on synthetic and real chemical database, further ensure the competence of the proposed algorithm when compared with the existing works.
AbstractList •It uses of eigenvector centrality.•ONE DFS SEARCH is sufficient.•It gives large size maximal common connected subgraph. The physical and biological properties of a chemical molecule entity are related to its structure. One of the basic widely accepted principles in chemistry is that compounds with similar structures frequently share similar physicochemical properties and biological activities. The process of finding structural similarities between chemical structures of molecules helps to identify the common behavior of these molecules. A familiar approach to capture the structural similarity between two chemical compounds is to detect a maximal Common Connected vertex induced Subgraph (CCS) in their molecular chemical graphs. The proposed algorithm detects a maximal CCS by checking the induced property of the vertices which are collected by performing a DFS search on the tensor product graph of two input molecular chemical graphs. The DFS search will start from the node which has the highest eigenvector centrality in the tensor product graph. The significance of the proposed work is that it uses eigenvector centrality to predict the root node of the DFS search tree, so that the resulting sugraph gets more number of nodes (i.e. large size maximal CCS). The experimental results on synthetic and real chemical database, further ensure the competence of the proposed algorithm when compared with the existing works.
ArticleNumber 130980
Author Parisutham, Nirmala
Rethnasamy, Nadarajan
Author_xml – sequence: 1
  givenname: Nirmala
  surname: Parisutham
  fullname: Parisutham, Nirmala
  email: nirmalapsgtech2008@gmail.com
– sequence: 2
  givenname: Nadarajan
  surname: Rethnasamy
  fullname: Rethnasamy, Nadarajan
BookMark eNqFkEtOwzAQhi0EEuVxBeQLpIyd1EkkFqCKl4TEBtaW64xbV4ld2U6BK3BqXAobNqxGo5nv18x3Qg6dd0jIBYMpAyYu19PB9zGFUU85cDZlJbQNHJAJa2peNMCqQzIB4LzgjYBjchLjGgBYhifk89Yu0W1RJx-oRpeC6m36oAsVsaOqX_pg02qgJo-NdZ11S6rooN7toHqq_TB4l4tzOSEDWwwJ32leHHVu82Gox14FGsfF94lpDEi9oenNU73Cweocswxqs4pn5MioPuL5Tz0lr3e3L_OH4un5_nF-81Tosm5SMStbYVDouqxRc76oQZm6rjqozIyZEiqu21qxpuxaUQpWCQMN4kx02LLGdLo8JVf7XB18jAGN1DapZP3uedtLBnLnVa7lr1e58yr3XjMu_uCbkGWEj__B6z2I-bmtxSCjtuiyJxuyPdl5-1_EF_TfnXw
CitedBy_id crossref_primary_10_1038_s41467_023_36559_0
crossref_primary_10_1142_S2737416524400076
crossref_primary_10_1016_j_molstruc_2021_131354
crossref_primary_10_2751_jcac_23_50
crossref_primary_10_1093_comnet_cnad001
crossref_primary_10_1016_j_aichem_2023_100007
Cites_doi 10.1002/cmdc.200800282
10.1016/j.dam.2019.02.023
10.1007/s10115-015-0844-5
10.1073/pnas.1810452115
10.1021/ci9800211
10.1504/IJBRA.2013.054688
10.1016/j.ins.2016.01.074
10.1093/bioinformatics/btn186
10.1023/A:1021271615909
10.1002/qsar.200330831
10.1002/0470073047
10.1007/BF02575586
10.1093/comjnl/45.6.631
10.1201/9780203490204
10.1016/S1359-6446(02)02411-X
10.1016/0020-0190(76)90049-1
10.7155/jgaa.00139
10.1021/ci00056a002
ContentType Journal Article
Copyright 2021 Elsevier B.V.
Copyright_xml – notice: 2021 Elsevier B.V.
DBID AAYXX
CITATION
DOI 10.1016/j.molstruc.2021.130980
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Physics
EISSN 1872-8014
ExternalDocumentID 10_1016_j_molstruc_2021_130980
S0022286021011121
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AAXUO
ABGSF
ABJNI
ABMAC
ABNEU
ABUDA
ABYKQ
ACDAQ
ACFVG
ACGFS
ACRLP
ADBBV
ADECG
ADEZE
ADUVX
AEBSH
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AIVDX
AJOXV
AJSZI
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M36
M41
MO0
N9A
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
RNS
ROL
RPZ
SDF
SDG
SES
SPC
SPCBC
SSK
SSQ
SSU
SSZ
T5K
TN5
UPT
XPP
YK3
YQT
ZMT
~02
~G-
29L
3O-
53G
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABEFU
ABFNM
ABWVN
ABXDB
ACLOT
ACNNM
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGQPQ
AGRDE
AIGII
AIIUN
AJQLL
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
CITATION
EFKBS
EJD
FEDTE
FGOYB
HMU
HVGLF
HZ~
H~9
R2-
SCB
SCH
SEW
UQL
WUQ
XJT
XOL
~HD
ID FETCH-LOGICAL-c378t-5396fe6c737ec22b70af774d04f51f3042c97a183d9636146f08ee56de918fdc3
IEDL.DBID .~1
ISSN 0022-2860
IngestDate Thu Apr 24 23:10:43 EDT 2025
Wed Oct 01 05:15:41 EDT 2025
Fri Feb 23 02:39:32 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Maximal common subgraph
Substructure mining
Molecular similarity search
Graph algorithm
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-5396fe6c737ec22b70af774d04f51f3042c97a183d9636146f08ee56de918fdc3
ParticipantIDs crossref_citationtrail_10_1016_j_molstruc_2021_130980
crossref_primary_10_1016_j_molstruc_2021_130980
elsevier_sciencedirect_doi_10_1016_j_molstruc_2021_130980
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-11-15
PublicationDateYYYYMMDD 2021-11-15
PublicationDate_xml – month: 11
  year: 2021
  text: 2021-11-15
  day: 15
PublicationDecade 2020
PublicationTitle Journal of molecular structure
PublicationYear 2021
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Cormen (bib0027) 2009
Negre, Morzan, Hendrickson, Pal, Lisi, Patrick Loria, Rivalta, Ho, Batista (bib0028) 2018; 115
Parisutham, Sulochana, Rethnasamy (bib0013) 2016; 46
Gozalbes, Barbosa, Nicola, Horvath, Frolo (bib0002) 2009; 4
Emmert-Streib, Dehmer, Shi (bib0023) 2016; 346
Bunke (bib0021) 1983; 20
Raymond, Willett (bib0009) 2002; 16
Brint, Willett (bib0011) 1987; 27
Parisutham, Sulochana, Rethnasamy (bib0012) 2015
Bomze, Budinich, Pardalos, Pelillo (bib0016) 1999
Sulochana, Parisutham, Rethnasamy (bib0024) 2017; 77
Willett, Barnard, Downs (bib0003) 1998; 38
Levi (bib0015) 1973; 9
Bunke, Foggia, Guidobaldi, Sansone, Vento (bib0017) 2002
Conte, Grossi, Marino, Tattini, Versari (bib0020) 2019; 268
Sheridan, Kearsley (bib0004) 2002; 7
Nouleho, Stéfi, Dominique Barth, Franck Quessette, Marc-Antoine Weisser, Dimitri Watel, and Olivier David. "A new graph modelisation for molecule similarity."
Nikolova, Jaworska (bib0010) 2003; 22
Barrow, Burstall (bib0014) 1976; 4
Cao, Jiang, Girke (bib0007) 2008; 24
Diane J. Cook, Lawrence B. Holder, “Mining Graph Data”, John Wiley & Sons, 2007.
Raymond, Gardiner, Willett (bib0019) 2002; 45
Ehrlich, Rarey (bib0006) 2011; 1
J.L. Gross and J. Yellen, “Handbook of graph theory”. CRC press, 2004.
(2018).
Berlo, Winterbach, Groot, Bender, Verheijen, Reinders, Ridder (bib0008) 2013; 9
Sussenguth (bib0022) 1964
Velasquez, Yera, Singh (bib0001) 2006
Conte, Foggia, Vento (bib0018) 2007; 11
Conte (10.1016/j.molstruc.2021.130980_bib0018) 2007; 11
Parisutham (10.1016/j.molstruc.2021.130980_bib0012) 2015
Berlo (10.1016/j.molstruc.2021.130980_bib0008) 2013; 9
Barrow (10.1016/j.molstruc.2021.130980_bib0014) 1976; 4
Conte (10.1016/j.molstruc.2021.130980_bib0020) 2019; 268
Nikolova (10.1016/j.molstruc.2021.130980_bib0010) 2003; 22
10.1016/j.molstruc.2021.130980_bib0026
10.1016/j.molstruc.2021.130980_bib0025
10.1016/j.molstruc.2021.130980_bib0005
Bomze (10.1016/j.molstruc.2021.130980_bib0016) 1999
Sheridan (10.1016/j.molstruc.2021.130980_bib0004) 2002; 7
Brint (10.1016/j.molstruc.2021.130980_bib0011) 1987; 27
Gozalbes (10.1016/j.molstruc.2021.130980_bib0002) 2009; 4
Levi (10.1016/j.molstruc.2021.130980_bib0015) 1973; 9
Sulochana (10.1016/j.molstruc.2021.130980_bib0024) 2017; 77
Negre (10.1016/j.molstruc.2021.130980_bib0028) 2018; 115
Ehrlich (10.1016/j.molstruc.2021.130980_bib0006) 2011; 1
Sussenguth (10.1016/j.molstruc.2021.130980_bib0022) 1964
Bunke (10.1016/j.molstruc.2021.130980_bib0017) 2002
Raymond (10.1016/j.molstruc.2021.130980_bib0019) 2002; 45
Cao (10.1016/j.molstruc.2021.130980_bib0007) 2008; 24
Willett (10.1016/j.molstruc.2021.130980_bib0003) 1998; 38
Bunke (10.1016/j.molstruc.2021.130980_bib0021) 1983; 20
Cormen (10.1016/j.molstruc.2021.130980_bib0027) 2009
Velasquez (10.1016/j.molstruc.2021.130980_bib0001) 2006
Emmert-Streib (10.1016/j.molstruc.2021.130980_bib0023) 2016; 346
Parisutham (10.1016/j.molstruc.2021.130980_bib0013) 2016; 46
Raymond (10.1016/j.molstruc.2021.130980_bib0009) 2002; 16
References_xml – volume: 27
  start-page: 152
  year: 1987
  end-page: 158
  ident: bib0011
  article-title: Algorithms for the identification of three-dimensional maximal common substructures
  publication-title: J. Chem. Inf. Comput. Sci.
– start-page: 1
  year: 2015
  end-page: 24
  ident: bib0012
  article-title: Vertex cover-based binary tree algorithm to detect all maximum common induced subgraphs in large communication networks
  publication-title: Knowl Inf Syst
– volume: 9
  start-page: 407
  year: 2013
  end-page: 432
  ident: bib0008
  article-title: Efficient calculation of compound similarity based on maximum common subgraphs and its application to prediction of gene transcript levels
  publication-title: Int J Bioinform Res Appl
– volume: 9
  start-page: 341
  year: 1973
  end-page: 352
  ident: bib0015
  article-title: A note on the derivation of maximal common subgraphs of two directed or undirected graphs
  publication-title: Calcolo
– volume: 346
  start-page: 180
  year: 2016
  end-page: 197
  ident: bib0023
  article-title: Fifty years of graph matching, network alignment and network comparison
  publication-title: Inf Sci (Ny)
– start-page: 123
  year: 2002
  end-page: 132
  ident: bib0017
  article-title: A comparison of algorithms for maximum common subgraph on randomly connected graphs
  publication-title: Structural, Syntactic, and Statistical Pattern Recognition
– volume: 1
  start-page: 68
  year: 2011
  end-page: 79
  ident: bib0006
  article-title: Maximum common subgraph isomorphism algorithms and their applications in molecular science: a review
  publication-title: Wiley Interdisciplinary Reviews: Computational Molecular Science
– reference: J.L. Gross and J. Yellen, “Handbook of graph theory”. CRC press, 2004.
– volume: 77
  year: 2017
  ident: bib0024
  article-title: Centrality Measures based Algorithm for computing a Maximal Common Connected Edge Subgraph of Two chemical Graphs
  publication-title: MATCH J.
– year: 2009
  ident: bib0027
  article-title: Introduction to Algorithms
– volume: 46
  start-page: 213
  year: 2016
  end-page: 239
  ident: bib0013
  article-title: Centrality measures-based algorithm to visualize a maximal common induced subgraph in large communication networks
  publication-title: Knowl Inf Syst
– volume: 20
  start-page: 35
  year: 1983
  end-page: 39
  ident: bib0021
  article-title: What is the distance between graphs ?
  publication-title: Bulletin of the EATCS
– start-page: 1
  year: 1999
  end-page: 74
  ident: bib0016
  article-title: The maximum clique problem
  publication-title: Handbook of Combinatorial Optimization
– volume: 268
  start-page: 210
  year: 2019
  end-page: 222
  ident: bib0020
  article-title: A fast discovery algorithm for large common connected induced subgraphs
  publication-title: Discrete Applied Mathematics
– volume: 22
  start-page: 1006
  year: 2003
  end-page: 1026
  ident: bib0010
  article-title: Approaches to measure chemical similarity - a review
  publication-title: QSAR Comb. Sci.
– volume: 45
  start-page: 631
  year: 2002
  end-page: 644
  ident: bib0019
  article-title: Rascal: calculation of graph similarity using maximum common edge subgraphs
  publication-title: Comput. J.
– volume: 4
  start-page: 204
  year: 2009
  end-page: 209
  ident: bib0002
  article-title: Development and validation of a pharmacophore-based qsar model for the prediction of cns activity
  publication-title: ChemMedChem
– volume: 16
  start-page: 521
  year: 2002
  end-page: 533
  ident: bib0009
  article-title: Maximum common subgraph isomorphism algorithms for the matching of chemical structures
  publication-title: J. Comput. Aided Mol. Des.
– start-page: 261
  year: 2006
  end-page: 268
  ident: bib0001
  article-title: Determining molecular similarity for drug discovery using the wavelet riemannian metric
  publication-title: BioInformatics and Bio Engineering, 2006. BIBE 2006. Sixth IEEE Symposium on
– volume: 7
  start-page: 903
  year: 2002
  end-page: 911
  ident: bib0004
  article-title: Why do we need so many chemical similarity search methods?
  publication-title: Drug Discov. Today
– volume: 24
  start-page: i366
  year: 2008
  end-page: i374
  ident: bib0007
  article-title: A maximum common substructure-based algorithm for searching and predicting drug-like compounds
  publication-title: Bioinformatics
– reference: (2018).
– volume: 11
  start-page: 99
  year: 2007
  end-page: 143
  ident: bib0018
  article-title: Challenging complexity of maximum common subgraph detection algorithms: a performance analysis of three algorithms on a wide database of graphs
  publication-title: J. Graph Algorithms Appl.
– volume: 38
  start-page: 983
  year: 1998
  end-page: 996
  ident: bib0003
  article-title: Chemical similarity searching
  publication-title: J. Chem. Inf. Comput. Sci.
– volume: 115
  start-page: E12201
  year: 2018
  end-page: E12208
  ident: bib0028
  article-title: Eigenvector centrality for characterization of protein allosteric pathways
  publication-title: Proc. Natl. Acad. Sci.
– reference: Nouleho, Stéfi, Dominique Barth, Franck Quessette, Marc-Antoine Weisser, Dimitri Watel, and Olivier David. "A new graph modelisation for molecule similarity."
– volume: 4
  start-page: 83
  year: 1976
  end-page: 84
  ident: bib0014
  article-title: Subgraph isomorphism, matching relational structures and maximal cliques
  publication-title: Inf Process Lett
– year: 1964
  ident: bib0022
  article-title: Structural Matching in Information Processing
– reference: Diane J. Cook, Lawrence B. Holder, “Mining Graph Data”, John Wiley & Sons, 2007.
– ident: 10.1016/j.molstruc.2021.130980_bib0005
– volume: 4
  start-page: 204
  issue: 2
  year: 2009
  ident: 10.1016/j.molstruc.2021.130980_bib0002
  article-title: Development and validation of a pharmacophore-based qsar model for the prediction of cns activity
  publication-title: ChemMedChem
  doi: 10.1002/cmdc.200800282
– start-page: 1
  year: 2015
  ident: 10.1016/j.molstruc.2021.130980_bib0012
  article-title: Vertex cover-based binary tree algorithm to detect all maximum common induced subgraphs in large communication networks
  publication-title: Knowl Inf Syst
– volume: 268
  start-page: 210
  year: 2019
  ident: 10.1016/j.molstruc.2021.130980_bib0020
  article-title: A fast discovery algorithm for large common connected induced subgraphs
  publication-title: Discrete Applied Mathematics
  doi: 10.1016/j.dam.2019.02.023
– volume: 77
  issue: 2
  year: 2017
  ident: 10.1016/j.molstruc.2021.130980_bib0024
  article-title: Centrality Measures based Algorithm for computing a Maximal Common Connected Edge Subgraph of Two chemical Graphs
  publication-title: MATCH J.
– volume: 46
  start-page: 213
  issue: 1
  year: 2016
  ident: 10.1016/j.molstruc.2021.130980_bib0013
  article-title: Centrality measures-based algorithm to visualize a maximal common induced subgraph in large communication networks
  publication-title: Knowl Inf Syst
  doi: 10.1007/s10115-015-0844-5
– start-page: 261
  year: 2006
  ident: 10.1016/j.molstruc.2021.130980_bib0001
  article-title: Determining molecular similarity for drug discovery using the wavelet riemannian metric
– volume: 115
  start-page: E12201
  issue: 52
  year: 2018
  ident: 10.1016/j.molstruc.2021.130980_bib0028
  article-title: Eigenvector centrality for characterization of protein allosteric pathways
  publication-title: Proc. Natl. Acad. Sci.
  doi: 10.1073/pnas.1810452115
– volume: 38
  start-page: 983
  issue: 6
  year: 1998
  ident: 10.1016/j.molstruc.2021.130980_bib0003
  article-title: Chemical similarity searching
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci9800211
– volume: 9
  start-page: 407
  issue: 4
  year: 2013
  ident: 10.1016/j.molstruc.2021.130980_bib0008
  article-title: Efficient calculation of compound similarity based on maximum common subgraphs and its application to prediction of gene transcript levels
  publication-title: Int J Bioinform Res Appl
  doi: 10.1504/IJBRA.2013.054688
– volume: 346
  start-page: 180
  year: 2016
  ident: 10.1016/j.molstruc.2021.130980_bib0023
  article-title: Fifty years of graph matching, network alignment and network comparison
  publication-title: Inf Sci (Ny)
  doi: 10.1016/j.ins.2016.01.074
– volume: 24
  start-page: i366
  issue: 13
  year: 2008
  ident: 10.1016/j.molstruc.2021.130980_bib0007
  article-title: A maximum common substructure-based algorithm for searching and predicting drug-like compounds
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn186
– volume: 16
  start-page: 521
  issue: 7
  year: 2002
  ident: 10.1016/j.molstruc.2021.130980_bib0009
  article-title: Maximum common subgraph isomorphism algorithms for the matching of chemical structures
  publication-title: J. Comput. Aided Mol. Des.
  doi: 10.1023/A:1021271615909
– year: 1964
  ident: 10.1016/j.molstruc.2021.130980_bib0022
– year: 2009
  ident: 10.1016/j.molstruc.2021.130980_bib0027
– volume: 22
  start-page: 1006
  issue: 9–10
  year: 2003
  ident: 10.1016/j.molstruc.2021.130980_bib0010
  article-title: Approaches to measure chemical similarity - a review
  publication-title: QSAR Comb. Sci.
  doi: 10.1002/qsar.200330831
– ident: 10.1016/j.molstruc.2021.130980_bib0026
  doi: 10.1002/0470073047
– volume: 9
  start-page: 341
  issue: 4
  year: 1973
  ident: 10.1016/j.molstruc.2021.130980_bib0015
  article-title: A note on the derivation of maximal common subgraphs of two directed or undirected graphs
  publication-title: Calcolo
  doi: 10.1007/BF02575586
– start-page: 1
  year: 1999
  ident: 10.1016/j.molstruc.2021.130980_bib0016
  article-title: The maximum clique problem
– start-page: 123
  year: 2002
  ident: 10.1016/j.molstruc.2021.130980_bib0017
  article-title: A comparison of algorithms for maximum common subgraph on randomly connected graphs
– volume: 20
  start-page: 35
  year: 1983
  ident: 10.1016/j.molstruc.2021.130980_bib0021
  article-title: What is the distance between graphs ?
  publication-title: Bulletin of the EATCS
– volume: 45
  start-page: 631
  issue: 6
  year: 2002
  ident: 10.1016/j.molstruc.2021.130980_bib0019
  article-title: Rascal: calculation of graph similarity using maximum common edge subgraphs
  publication-title: Comput. J.
  doi: 10.1093/comjnl/45.6.631
– ident: 10.1016/j.molstruc.2021.130980_bib0025
  doi: 10.1201/9780203490204
– volume: 7
  start-page: 903
  issue: 17
  year: 2002
  ident: 10.1016/j.molstruc.2021.130980_bib0004
  article-title: Why do we need so many chemical similarity search methods?
  publication-title: Drug Discov. Today
  doi: 10.1016/S1359-6446(02)02411-X
– volume: 4
  start-page: 83
  issue: 4
  year: 1976
  ident: 10.1016/j.molstruc.2021.130980_bib0014
  article-title: Subgraph isomorphism, matching relational structures and maximal cliques
  publication-title: Inf Process Lett
  doi: 10.1016/0020-0190(76)90049-1
– volume: 11
  start-page: 99
  issue: 1
  year: 2007
  ident: 10.1016/j.molstruc.2021.130980_bib0018
  article-title: Challenging complexity of maximum common subgraph detection algorithms: a performance analysis of three algorithms on a wide database of graphs
  publication-title: J. Graph Algorithms Appl.
  doi: 10.7155/jgaa.00139
– volume: 27
  start-page: 152
  issue: 4
  year: 1987
  ident: 10.1016/j.molstruc.2021.130980_bib0011
  article-title: Algorithms for the identification of three-dimensional maximal common substructures
  publication-title: J. Chem. Inf. Comput. Sci.
  doi: 10.1021/ci00056a002
– volume: 1
  start-page: 68
  issue: 1
  year: 2011
  ident: 10.1016/j.molstruc.2021.130980_bib0006
  article-title: Maximum common subgraph isomorphism algorithms and their applications in molecular science: a review
  publication-title: Wiley Interdisciplinary Reviews: Computational Molecular Science
SSID ssj0001101
Score 2.3476174
Snippet •It uses of eigenvector centrality.•ONE DFS SEARCH is sufficient.•It gives large size maximal common connected subgraph. The physical and biological properties...
SourceID crossref
elsevier
SourceType Enrichment Source
Index Database
Publisher
StartPage 130980
SubjectTerms Graph algorithm
Maximal common subgraph
Molecular similarity search
Substructure mining
Title Eigenvector centrality based algorithm for finding a maximal common connected vertex induced molecular substructure of two chemical graphs
URI https://dx.doi.org/10.1016/j.molstruc.2021.130980
Volume 1244
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVESC
  databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier)
  customDbUrl:
  eissn: 1872-8014
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001101
  issn: 0022-2860
  databaseCode: GBLVA
  dateStart: 20110101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Complete Freedom Collection [SCCMFC]
  customDbUrl:
  eissn: 1872-8014
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001101
  issn: 0022-2860
  databaseCode: ACRLP
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: Elsevier SD Freedom Collection Journals [SCFCJ]
  customDbUrl:
  eissn: 1872-8014
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001101
  issn: 0022-2860
  databaseCode: AIKHN
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVESC
  databaseName: ScienceDirect (Elsevier)
  customDbUrl:
  eissn: 1872-8014
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001101
  issn: 0022-2860
  databaseCode: .~1
  dateStart: 19950101
  isFulltext: true
  titleUrlDefault: https://www.sciencedirect.com
  providerName: Elsevier
– providerCode: PRVLSH
  databaseName: Elsevier Journals
  customDbUrl:
  mediaType: online
  eissn: 1872-8014
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0001101
  issn: 0022-2860
  databaseCode: AKRWK
  dateStart: 19930101
  isFulltext: true
  providerName: Library Specific Holdings
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG-IxujFKGrEr7yD1wFlW7sdCYGgRk6ScFtK1yqGMSOonPwD_Kt9r2yKiYkHd1m29aVbX_s-uvd-j7FLgUpA-lp7PBKpF8RGe2PBjWfwCCOplVbkKN4ORH8YXI_CUYV1ylwYCqssZP9KpjtpXdxpFKPZeJpMKMeXdi8EOS24YF0yeRBIqmJQf_8O80D1xkvEcGq9liX8WM_yqYNpRT-xxakwckzwkL8pqDWl09tju4W1CO3VC-2ziplV2XanLNJWZVsuglPPD9hHl3A1X90mPBQhl2hhA6mpFNT0Pn-eLB4yQCMV3I_q2T0oyNRykmEP-Pk4H_GEYlejEQpUptksARsi71PIyiq6MEdJ4zBnX54N5BYWbznoAnUAHPz1_JANe927Tt8rCi142pfRwgv9WFgjtPSl0a3WWDaVRbMwbQY25JY2PHQsFS7-FJcr6nNhmxGyUqQm5pFNtX_ENmb5zBwz8K1ECyJQXIQWZbAfc4UuiU2R75aLaFxjYTm6iS5QyKkYxjQpw80ek5IrCXElWXGlxhpfdE8rHI4_KeKSecmPGZWgsviD9uQftKdsh64oX5GHZ2wDn5tzNFwW4ws3My_YZvvqpj_4BJZa8XU
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4YjMGLUdT4dg5eCyxtd9ujIRB8cYKEW7NsdxFDWyP4OPkD_NXOlNZHYsLBXpq0O2m7szuvznzD2IVAJSBdrR0eiNjxQqOdseDGMXj4gdRKK3IU7_qiN_SuR_5ojbXLWhhKqyxk_1Km59K6uNIoZrPxOJ1SjS9FLwQ5LbhhqZh83fNbkjyw-vt3ngfqN15ChtPwH2XCD_Ukm-U4regotjh1Rg4JH_IvDfVD63S32VZhLsLl8o122JpJa6zaLru01dhGnsKp57vso0PAmi95FB6KnEs0sYH0VAxqNsmepov7BNBKhfxPdToBBYl6myb4BPx-XJB4Qrmr0QoF6tNs3gAHIvNjSMo2ujBHUZODzj4_GcgsLF4z0AXsAOT41_M9Nux2Bu2eU3RacLQrg4Xju6GwRmjpSqNbrbFsKot2Ydz0rM8tRTx0KBXu_hj3Kyp0YZsB8lLEJuSBjbW7zypplpoDBq6VaEJ4igvfohB2Q67QJ7ExMt5yEYwPmV_ObqQLGHLqhjGLynyzh6jkSkRciZZcOWSNL7rHJRDHSoqwZF70a0lFqC1W0B79g_acVXuDu9vo9qp_c8w26Q4VL3L_hFVwrDlFK2YxPstX6Scu-fMK
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Eigenvector+centrality+based+algorithm+for+finding+a+maximal+common+connected+vertex+induced+molecular+substructure+of+two+chemical+graphs&rft.jtitle=Journal+of+molecular+structure&rft.au=Parisutham%2C+Nirmala&rft.au=Rethnasamy%2C+Nadarajan&rft.date=2021-11-15&rft.pub=Elsevier+B.V&rft.issn=0022-2860&rft.eissn=1872-8014&rft.volume=1244&rft_id=info:doi/10.1016%2Fj.molstruc.2021.130980&rft.externalDocID=S0022286021011121
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2860&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2860&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2860&client=summon