Eigenvector centrality based algorithm for finding a maximal common connected vertex induced molecular substructure of two chemical graphs
•It uses of eigenvector centrality.•ONE DFS SEARCH is sufficient.•It gives large size maximal common connected subgraph. The physical and biological properties of a chemical molecule entity are related to its structure. One of the basic widely accepted principles in chemistry is that compounds with...
Saved in:
| Published in | Journal of molecular structure Vol. 1244; p. 130980 |
|---|---|
| Main Authors | , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier B.V
15.11.2021
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 0022-2860 1872-8014 |
| DOI | 10.1016/j.molstruc.2021.130980 |
Cover
| Abstract | •It uses of eigenvector centrality.•ONE DFS SEARCH is sufficient.•It gives large size maximal common connected subgraph.
The physical and biological properties of a chemical molecule entity are related to its structure. One of the basic widely accepted principles in chemistry is that compounds with similar structures frequently share similar physicochemical properties and biological activities. The process of finding structural similarities between chemical structures of molecules helps to identify the common behavior of these molecules. A familiar approach to capture the structural similarity between two chemical compounds is to detect a maximal Common Connected vertex induced Subgraph (CCS) in their molecular chemical graphs. The proposed algorithm detects a maximal CCS by checking the induced property of the vertices which are collected by performing a DFS search on the tensor product graph of two input molecular chemical graphs. The DFS search will start from the node which has the highest eigenvector centrality in the tensor product graph. The significance of the proposed work is that it uses eigenvector centrality to predict the root node of the DFS search tree, so that the resulting sugraph gets more number of nodes (i.e. large size maximal CCS). The experimental results on synthetic and real chemical database, further ensure the competence of the proposed algorithm when compared with the existing works. |
|---|---|
| AbstractList | •It uses of eigenvector centrality.•ONE DFS SEARCH is sufficient.•It gives large size maximal common connected subgraph.
The physical and biological properties of a chemical molecule entity are related to its structure. One of the basic widely accepted principles in chemistry is that compounds with similar structures frequently share similar physicochemical properties and biological activities. The process of finding structural similarities between chemical structures of molecules helps to identify the common behavior of these molecules. A familiar approach to capture the structural similarity between two chemical compounds is to detect a maximal Common Connected vertex induced Subgraph (CCS) in their molecular chemical graphs. The proposed algorithm detects a maximal CCS by checking the induced property of the vertices which are collected by performing a DFS search on the tensor product graph of two input molecular chemical graphs. The DFS search will start from the node which has the highest eigenvector centrality in the tensor product graph. The significance of the proposed work is that it uses eigenvector centrality to predict the root node of the DFS search tree, so that the resulting sugraph gets more number of nodes (i.e. large size maximal CCS). The experimental results on synthetic and real chemical database, further ensure the competence of the proposed algorithm when compared with the existing works. |
| ArticleNumber | 130980 |
| Author | Parisutham, Nirmala Rethnasamy, Nadarajan |
| Author_xml | – sequence: 1 givenname: Nirmala surname: Parisutham fullname: Parisutham, Nirmala email: nirmalapsgtech2008@gmail.com – sequence: 2 givenname: Nadarajan surname: Rethnasamy fullname: Rethnasamy, Nadarajan |
| BookMark | eNqFkEtOwzAQhi0EEuVxBeQLpIyd1EkkFqCKl4TEBtaW64xbV4ld2U6BK3BqXAobNqxGo5nv18x3Qg6dd0jIBYMpAyYu19PB9zGFUU85cDZlJbQNHJAJa2peNMCqQzIB4LzgjYBjchLjGgBYhifk89Yu0W1RJx-oRpeC6m36oAsVsaOqX_pg02qgJo-NdZ11S6rooN7toHqq_TB4l4tzOSEDWwwJ32leHHVu82Gox14FGsfF94lpDEi9oenNU73Cweocswxqs4pn5MioPuL5Tz0lr3e3L_OH4un5_nF-81Tosm5SMStbYVDouqxRc76oQZm6rjqozIyZEiqu21qxpuxaUQpWCQMN4kx02LLGdLo8JVf7XB18jAGN1DapZP3uedtLBnLnVa7lr1e58yr3XjMu_uCbkGWEj__B6z2I-bmtxSCjtuiyJxuyPdl5-1_EF_TfnXw |
| CitedBy_id | crossref_primary_10_1038_s41467_023_36559_0 crossref_primary_10_1142_S2737416524400076 crossref_primary_10_1016_j_molstruc_2021_131354 crossref_primary_10_2751_jcac_23_50 crossref_primary_10_1093_comnet_cnad001 crossref_primary_10_1016_j_aichem_2023_100007 |
| Cites_doi | 10.1002/cmdc.200800282 10.1016/j.dam.2019.02.023 10.1007/s10115-015-0844-5 10.1073/pnas.1810452115 10.1021/ci9800211 10.1504/IJBRA.2013.054688 10.1016/j.ins.2016.01.074 10.1093/bioinformatics/btn186 10.1023/A:1021271615909 10.1002/qsar.200330831 10.1002/0470073047 10.1007/BF02575586 10.1093/comjnl/45.6.631 10.1201/9780203490204 10.1016/S1359-6446(02)02411-X 10.1016/0020-0190(76)90049-1 10.7155/jgaa.00139 10.1021/ci00056a002 |
| ContentType | Journal Article |
| Copyright | 2021 Elsevier B.V. |
| Copyright_xml | – notice: 2021 Elsevier B.V. |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.molstruc.2021.130980 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Chemistry Physics |
| EISSN | 1872-8014 |
| ExternalDocumentID | 10_1016_j_molstruc_2021_130980 S0022286021011121 |
| GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AAXUO ABGSF ABJNI ABMAC ABNEU ABUDA ABYKQ ACDAQ ACFVG ACGFS ACRLP ADBBV ADECG ADEZE ADUVX AEBSH AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AHHHB AIEXJ AIKHN AITUG AIVDX AJOXV AJSZI ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA IHE J1W KOM M36 M41 MO0 N9A O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 RNS ROL RPZ SDF SDG SES SPC SPCBC SSK SSQ SSU SSZ T5K TN5 UPT XPP YK3 YQT ZMT ~02 ~G- 29L 3O- 53G AAQXK AATTM AAXKI AAYWO AAYXX ABEFU ABFNM ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADIYS ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AGRDE AIGII AIIUN AJQLL AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS EJD FEDTE FGOYB HMU HVGLF HZ~ H~9 R2- SCB SCH SEW UQL WUQ XJT XOL ~HD |
| ID | FETCH-LOGICAL-c378t-5396fe6c737ec22b70af774d04f51f3042c97a183d9636146f08ee56de918fdc3 |
| IEDL.DBID | .~1 |
| ISSN | 0022-2860 |
| IngestDate | Thu Apr 24 23:10:43 EDT 2025 Wed Oct 01 05:15:41 EDT 2025 Fri Feb 23 02:39:32 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Maximal common subgraph Substructure mining Molecular similarity search Graph algorithm |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c378t-5396fe6c737ec22b70af774d04f51f3042c97a183d9636146f08ee56de918fdc3 |
| ParticipantIDs | crossref_citationtrail_10_1016_j_molstruc_2021_130980 crossref_primary_10_1016_j_molstruc_2021_130980 elsevier_sciencedirect_doi_10_1016_j_molstruc_2021_130980 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2021-11-15 |
| PublicationDateYYYYMMDD | 2021-11-15 |
| PublicationDate_xml | – month: 11 year: 2021 text: 2021-11-15 day: 15 |
| PublicationDecade | 2020 |
| PublicationTitle | Journal of molecular structure |
| PublicationYear | 2021 |
| Publisher | Elsevier B.V |
| Publisher_xml | – name: Elsevier B.V |
| References | Cormen (bib0027) 2009 Negre, Morzan, Hendrickson, Pal, Lisi, Patrick Loria, Rivalta, Ho, Batista (bib0028) 2018; 115 Parisutham, Sulochana, Rethnasamy (bib0013) 2016; 46 Gozalbes, Barbosa, Nicola, Horvath, Frolo (bib0002) 2009; 4 Emmert-Streib, Dehmer, Shi (bib0023) 2016; 346 Bunke (bib0021) 1983; 20 Raymond, Willett (bib0009) 2002; 16 Brint, Willett (bib0011) 1987; 27 Parisutham, Sulochana, Rethnasamy (bib0012) 2015 Bomze, Budinich, Pardalos, Pelillo (bib0016) 1999 Sulochana, Parisutham, Rethnasamy (bib0024) 2017; 77 Willett, Barnard, Downs (bib0003) 1998; 38 Levi (bib0015) 1973; 9 Bunke, Foggia, Guidobaldi, Sansone, Vento (bib0017) 2002 Conte, Grossi, Marino, Tattini, Versari (bib0020) 2019; 268 Sheridan, Kearsley (bib0004) 2002; 7 Nouleho, Stéfi, Dominique Barth, Franck Quessette, Marc-Antoine Weisser, Dimitri Watel, and Olivier David. "A new graph modelisation for molecule similarity." Nikolova, Jaworska (bib0010) 2003; 22 Barrow, Burstall (bib0014) 1976; 4 Cao, Jiang, Girke (bib0007) 2008; 24 Diane J. Cook, Lawrence B. Holder, “Mining Graph Data”, John Wiley & Sons, 2007. Raymond, Gardiner, Willett (bib0019) 2002; 45 Ehrlich, Rarey (bib0006) 2011; 1 J.L. Gross and J. Yellen, “Handbook of graph theory”. CRC press, 2004. (2018). Berlo, Winterbach, Groot, Bender, Verheijen, Reinders, Ridder (bib0008) 2013; 9 Sussenguth (bib0022) 1964 Velasquez, Yera, Singh (bib0001) 2006 Conte, Foggia, Vento (bib0018) 2007; 11 Conte (10.1016/j.molstruc.2021.130980_bib0018) 2007; 11 Parisutham (10.1016/j.molstruc.2021.130980_bib0012) 2015 Berlo (10.1016/j.molstruc.2021.130980_bib0008) 2013; 9 Barrow (10.1016/j.molstruc.2021.130980_bib0014) 1976; 4 Conte (10.1016/j.molstruc.2021.130980_bib0020) 2019; 268 Nikolova (10.1016/j.molstruc.2021.130980_bib0010) 2003; 22 10.1016/j.molstruc.2021.130980_bib0026 10.1016/j.molstruc.2021.130980_bib0025 10.1016/j.molstruc.2021.130980_bib0005 Bomze (10.1016/j.molstruc.2021.130980_bib0016) 1999 Sheridan (10.1016/j.molstruc.2021.130980_bib0004) 2002; 7 Brint (10.1016/j.molstruc.2021.130980_bib0011) 1987; 27 Gozalbes (10.1016/j.molstruc.2021.130980_bib0002) 2009; 4 Levi (10.1016/j.molstruc.2021.130980_bib0015) 1973; 9 Sulochana (10.1016/j.molstruc.2021.130980_bib0024) 2017; 77 Negre (10.1016/j.molstruc.2021.130980_bib0028) 2018; 115 Ehrlich (10.1016/j.molstruc.2021.130980_bib0006) 2011; 1 Sussenguth (10.1016/j.molstruc.2021.130980_bib0022) 1964 Bunke (10.1016/j.molstruc.2021.130980_bib0017) 2002 Raymond (10.1016/j.molstruc.2021.130980_bib0019) 2002; 45 Cao (10.1016/j.molstruc.2021.130980_bib0007) 2008; 24 Willett (10.1016/j.molstruc.2021.130980_bib0003) 1998; 38 Bunke (10.1016/j.molstruc.2021.130980_bib0021) 1983; 20 Cormen (10.1016/j.molstruc.2021.130980_bib0027) 2009 Velasquez (10.1016/j.molstruc.2021.130980_bib0001) 2006 Emmert-Streib (10.1016/j.molstruc.2021.130980_bib0023) 2016; 346 Parisutham (10.1016/j.molstruc.2021.130980_bib0013) 2016; 46 Raymond (10.1016/j.molstruc.2021.130980_bib0009) 2002; 16 |
| References_xml | – volume: 27 start-page: 152 year: 1987 end-page: 158 ident: bib0011 article-title: Algorithms for the identification of three-dimensional maximal common substructures publication-title: J. Chem. Inf. Comput. Sci. – start-page: 1 year: 2015 end-page: 24 ident: bib0012 article-title: Vertex cover-based binary tree algorithm to detect all maximum common induced subgraphs in large communication networks publication-title: Knowl Inf Syst – volume: 9 start-page: 407 year: 2013 end-page: 432 ident: bib0008 article-title: Efficient calculation of compound similarity based on maximum common subgraphs and its application to prediction of gene transcript levels publication-title: Int J Bioinform Res Appl – volume: 9 start-page: 341 year: 1973 end-page: 352 ident: bib0015 article-title: A note on the derivation of maximal common subgraphs of two directed or undirected graphs publication-title: Calcolo – volume: 346 start-page: 180 year: 2016 end-page: 197 ident: bib0023 article-title: Fifty years of graph matching, network alignment and network comparison publication-title: Inf Sci (Ny) – start-page: 123 year: 2002 end-page: 132 ident: bib0017 article-title: A comparison of algorithms for maximum common subgraph on randomly connected graphs publication-title: Structural, Syntactic, and Statistical Pattern Recognition – volume: 1 start-page: 68 year: 2011 end-page: 79 ident: bib0006 article-title: Maximum common subgraph isomorphism algorithms and their applications in molecular science: a review publication-title: Wiley Interdisciplinary Reviews: Computational Molecular Science – reference: J.L. Gross and J. Yellen, “Handbook of graph theory”. CRC press, 2004. – volume: 77 year: 2017 ident: bib0024 article-title: Centrality Measures based Algorithm for computing a Maximal Common Connected Edge Subgraph of Two chemical Graphs publication-title: MATCH J. – year: 2009 ident: bib0027 article-title: Introduction to Algorithms – volume: 46 start-page: 213 year: 2016 end-page: 239 ident: bib0013 article-title: Centrality measures-based algorithm to visualize a maximal common induced subgraph in large communication networks publication-title: Knowl Inf Syst – volume: 20 start-page: 35 year: 1983 end-page: 39 ident: bib0021 article-title: What is the distance between graphs ? publication-title: Bulletin of the EATCS – start-page: 1 year: 1999 end-page: 74 ident: bib0016 article-title: The maximum clique problem publication-title: Handbook of Combinatorial Optimization – volume: 268 start-page: 210 year: 2019 end-page: 222 ident: bib0020 article-title: A fast discovery algorithm for large common connected induced subgraphs publication-title: Discrete Applied Mathematics – volume: 22 start-page: 1006 year: 2003 end-page: 1026 ident: bib0010 article-title: Approaches to measure chemical similarity - a review publication-title: QSAR Comb. Sci. – volume: 45 start-page: 631 year: 2002 end-page: 644 ident: bib0019 article-title: Rascal: calculation of graph similarity using maximum common edge subgraphs publication-title: Comput. J. – volume: 4 start-page: 204 year: 2009 end-page: 209 ident: bib0002 article-title: Development and validation of a pharmacophore-based qsar model for the prediction of cns activity publication-title: ChemMedChem – volume: 16 start-page: 521 year: 2002 end-page: 533 ident: bib0009 article-title: Maximum common subgraph isomorphism algorithms for the matching of chemical structures publication-title: J. Comput. Aided Mol. Des. – start-page: 261 year: 2006 end-page: 268 ident: bib0001 article-title: Determining molecular similarity for drug discovery using the wavelet riemannian metric publication-title: BioInformatics and Bio Engineering, 2006. BIBE 2006. Sixth IEEE Symposium on – volume: 7 start-page: 903 year: 2002 end-page: 911 ident: bib0004 article-title: Why do we need so many chemical similarity search methods? publication-title: Drug Discov. Today – volume: 24 start-page: i366 year: 2008 end-page: i374 ident: bib0007 article-title: A maximum common substructure-based algorithm for searching and predicting drug-like compounds publication-title: Bioinformatics – reference: (2018). – volume: 11 start-page: 99 year: 2007 end-page: 143 ident: bib0018 article-title: Challenging complexity of maximum common subgraph detection algorithms: a performance analysis of three algorithms on a wide database of graphs publication-title: J. Graph Algorithms Appl. – volume: 38 start-page: 983 year: 1998 end-page: 996 ident: bib0003 article-title: Chemical similarity searching publication-title: J. Chem. Inf. Comput. Sci. – volume: 115 start-page: E12201 year: 2018 end-page: E12208 ident: bib0028 article-title: Eigenvector centrality for characterization of protein allosteric pathways publication-title: Proc. Natl. Acad. Sci. – reference: Nouleho, Stéfi, Dominique Barth, Franck Quessette, Marc-Antoine Weisser, Dimitri Watel, and Olivier David. "A new graph modelisation for molecule similarity." – volume: 4 start-page: 83 year: 1976 end-page: 84 ident: bib0014 article-title: Subgraph isomorphism, matching relational structures and maximal cliques publication-title: Inf Process Lett – year: 1964 ident: bib0022 article-title: Structural Matching in Information Processing – reference: Diane J. Cook, Lawrence B. Holder, “Mining Graph Data”, John Wiley & Sons, 2007. – ident: 10.1016/j.molstruc.2021.130980_bib0005 – volume: 4 start-page: 204 issue: 2 year: 2009 ident: 10.1016/j.molstruc.2021.130980_bib0002 article-title: Development and validation of a pharmacophore-based qsar model for the prediction of cns activity publication-title: ChemMedChem doi: 10.1002/cmdc.200800282 – start-page: 1 year: 2015 ident: 10.1016/j.molstruc.2021.130980_bib0012 article-title: Vertex cover-based binary tree algorithm to detect all maximum common induced subgraphs in large communication networks publication-title: Knowl Inf Syst – volume: 268 start-page: 210 year: 2019 ident: 10.1016/j.molstruc.2021.130980_bib0020 article-title: A fast discovery algorithm for large common connected induced subgraphs publication-title: Discrete Applied Mathematics doi: 10.1016/j.dam.2019.02.023 – volume: 77 issue: 2 year: 2017 ident: 10.1016/j.molstruc.2021.130980_bib0024 article-title: Centrality Measures based Algorithm for computing a Maximal Common Connected Edge Subgraph of Two chemical Graphs publication-title: MATCH J. – volume: 46 start-page: 213 issue: 1 year: 2016 ident: 10.1016/j.molstruc.2021.130980_bib0013 article-title: Centrality measures-based algorithm to visualize a maximal common induced subgraph in large communication networks publication-title: Knowl Inf Syst doi: 10.1007/s10115-015-0844-5 – start-page: 261 year: 2006 ident: 10.1016/j.molstruc.2021.130980_bib0001 article-title: Determining molecular similarity for drug discovery using the wavelet riemannian metric – volume: 115 start-page: E12201 issue: 52 year: 2018 ident: 10.1016/j.molstruc.2021.130980_bib0028 article-title: Eigenvector centrality for characterization of protein allosteric pathways publication-title: Proc. Natl. Acad. Sci. doi: 10.1073/pnas.1810452115 – volume: 38 start-page: 983 issue: 6 year: 1998 ident: 10.1016/j.molstruc.2021.130980_bib0003 article-title: Chemical similarity searching publication-title: J. Chem. Inf. Comput. Sci. doi: 10.1021/ci9800211 – volume: 9 start-page: 407 issue: 4 year: 2013 ident: 10.1016/j.molstruc.2021.130980_bib0008 article-title: Efficient calculation of compound similarity based on maximum common subgraphs and its application to prediction of gene transcript levels publication-title: Int J Bioinform Res Appl doi: 10.1504/IJBRA.2013.054688 – volume: 346 start-page: 180 year: 2016 ident: 10.1016/j.molstruc.2021.130980_bib0023 article-title: Fifty years of graph matching, network alignment and network comparison publication-title: Inf Sci (Ny) doi: 10.1016/j.ins.2016.01.074 – volume: 24 start-page: i366 issue: 13 year: 2008 ident: 10.1016/j.molstruc.2021.130980_bib0007 article-title: A maximum common substructure-based algorithm for searching and predicting drug-like compounds publication-title: Bioinformatics doi: 10.1093/bioinformatics/btn186 – volume: 16 start-page: 521 issue: 7 year: 2002 ident: 10.1016/j.molstruc.2021.130980_bib0009 article-title: Maximum common subgraph isomorphism algorithms for the matching of chemical structures publication-title: J. Comput. Aided Mol. Des. doi: 10.1023/A:1021271615909 – year: 1964 ident: 10.1016/j.molstruc.2021.130980_bib0022 – year: 2009 ident: 10.1016/j.molstruc.2021.130980_bib0027 – volume: 22 start-page: 1006 issue: 9–10 year: 2003 ident: 10.1016/j.molstruc.2021.130980_bib0010 article-title: Approaches to measure chemical similarity - a review publication-title: QSAR Comb. Sci. doi: 10.1002/qsar.200330831 – ident: 10.1016/j.molstruc.2021.130980_bib0026 doi: 10.1002/0470073047 – volume: 9 start-page: 341 issue: 4 year: 1973 ident: 10.1016/j.molstruc.2021.130980_bib0015 article-title: A note on the derivation of maximal common subgraphs of two directed or undirected graphs publication-title: Calcolo doi: 10.1007/BF02575586 – start-page: 1 year: 1999 ident: 10.1016/j.molstruc.2021.130980_bib0016 article-title: The maximum clique problem – start-page: 123 year: 2002 ident: 10.1016/j.molstruc.2021.130980_bib0017 article-title: A comparison of algorithms for maximum common subgraph on randomly connected graphs – volume: 20 start-page: 35 year: 1983 ident: 10.1016/j.molstruc.2021.130980_bib0021 article-title: What is the distance between graphs ? publication-title: Bulletin of the EATCS – volume: 45 start-page: 631 issue: 6 year: 2002 ident: 10.1016/j.molstruc.2021.130980_bib0019 article-title: Rascal: calculation of graph similarity using maximum common edge subgraphs publication-title: Comput. J. doi: 10.1093/comjnl/45.6.631 – ident: 10.1016/j.molstruc.2021.130980_bib0025 doi: 10.1201/9780203490204 – volume: 7 start-page: 903 issue: 17 year: 2002 ident: 10.1016/j.molstruc.2021.130980_bib0004 article-title: Why do we need so many chemical similarity search methods? publication-title: Drug Discov. Today doi: 10.1016/S1359-6446(02)02411-X – volume: 4 start-page: 83 issue: 4 year: 1976 ident: 10.1016/j.molstruc.2021.130980_bib0014 article-title: Subgraph isomorphism, matching relational structures and maximal cliques publication-title: Inf Process Lett doi: 10.1016/0020-0190(76)90049-1 – volume: 11 start-page: 99 issue: 1 year: 2007 ident: 10.1016/j.molstruc.2021.130980_bib0018 article-title: Challenging complexity of maximum common subgraph detection algorithms: a performance analysis of three algorithms on a wide database of graphs publication-title: J. Graph Algorithms Appl. doi: 10.7155/jgaa.00139 – volume: 27 start-page: 152 issue: 4 year: 1987 ident: 10.1016/j.molstruc.2021.130980_bib0011 article-title: Algorithms for the identification of three-dimensional maximal common substructures publication-title: J. Chem. Inf. Comput. Sci. doi: 10.1021/ci00056a002 – volume: 1 start-page: 68 issue: 1 year: 2011 ident: 10.1016/j.molstruc.2021.130980_bib0006 article-title: Maximum common subgraph isomorphism algorithms and their applications in molecular science: a review publication-title: Wiley Interdisciplinary Reviews: Computational Molecular Science |
| SSID | ssj0001101 |
| Score | 2.3476174 |
| Snippet | •It uses of eigenvector centrality.•ONE DFS SEARCH is sufficient.•It gives large size maximal common connected subgraph.
The physical and biological properties... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 130980 |
| SubjectTerms | Graph algorithm Maximal common subgraph Molecular similarity search Substructure mining |
| Title | Eigenvector centrality based algorithm for finding a maximal common connected vertex induced molecular substructure of two chemical graphs |
| URI | https://dx.doi.org/10.1016/j.molstruc.2021.130980 |
| Volume | 1244 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) customDbUrl: eissn: 1872-8014 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001101 issn: 0022-2860 databaseCode: GBLVA dateStart: 20110101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Complete Freedom Collection [SCCMFC] customDbUrl: eissn: 1872-8014 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001101 issn: 0022-2860 databaseCode: ACRLP dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier SD Freedom Collection Journals [SCFCJ] customDbUrl: eissn: 1872-8014 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001101 issn: 0022-2860 databaseCode: AIKHN dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect (Elsevier) customDbUrl: eissn: 1872-8014 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001101 issn: 0022-2860 databaseCode: .~1 dateStart: 19950101 isFulltext: true titleUrlDefault: https://www.sciencedirect.com providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals customDbUrl: mediaType: online eissn: 1872-8014 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0001101 issn: 0022-2860 databaseCode: AKRWK dateStart: 19930101 isFulltext: true providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3NT8IwFG-IxujFKGrEr7yD1wFlW7sdCYGgRk6ScFtK1yqGMSOonPwD_Kt9r2yKiYkHd1m29aVbX_s-uvd-j7FLgUpA-lp7PBKpF8RGe2PBjWfwCCOplVbkKN4ORH8YXI_CUYV1ylwYCqssZP9KpjtpXdxpFKPZeJpMKMeXdi8EOS24YF0yeRBIqmJQf_8O80D1xkvEcGq9liX8WM_yqYNpRT-xxakwckzwkL8pqDWl09tju4W1CO3VC-2ziplV2XanLNJWZVsuglPPD9hHl3A1X90mPBQhl2hhA6mpFNT0Pn-eLB4yQCMV3I_q2T0oyNRykmEP-Pk4H_GEYlejEQpUptksARsi71PIyiq6MEdJ4zBnX54N5BYWbznoAnUAHPz1_JANe927Tt8rCi142pfRwgv9WFgjtPSl0a3WWDaVRbMwbQY25JY2PHQsFS7-FJcr6nNhmxGyUqQm5pFNtX_ENmb5zBwz8K1ECyJQXIQWZbAfc4UuiU2R75aLaFxjYTm6iS5QyKkYxjQpw80ek5IrCXElWXGlxhpfdE8rHI4_KeKSecmPGZWgsviD9uQftKdsh64oX5GHZ2wDn5tzNFwW4ws3My_YZvvqpj_4BJZa8XU |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT8JAEN4YjMGLUdT4dg5eCyxtd9ujIRB8cYKEW7NsdxFDWyP4OPkD_NXOlNZHYsLBXpq0O2m7szuvznzD2IVAJSBdrR0eiNjxQqOdseDGMXj4gdRKK3IU7_qiN_SuR_5ojbXLWhhKqyxk_1Km59K6uNIoZrPxOJ1SjS9FLwQ5LbhhqZh83fNbkjyw-vt3ngfqN15ChtPwH2XCD_Ukm-U4regotjh1Rg4JH_IvDfVD63S32VZhLsLl8o122JpJa6zaLru01dhGnsKp57vso0PAmi95FB6KnEs0sYH0VAxqNsmepov7BNBKhfxPdToBBYl6myb4BPx-XJB4Qrmr0QoF6tNs3gAHIvNjSMo2ujBHUZODzj4_GcgsLF4z0AXsAOT41_M9Nux2Bu2eU3RacLQrg4Xju6GwRmjpSqNbrbFsKot2Ydz0rM8tRTx0KBXu_hj3Kyp0YZsB8lLEJuSBjbW7zypplpoDBq6VaEJ4igvfohB2Q67QJ7ExMt5yEYwPmV_ObqQLGHLqhjGLynyzh6jkSkRciZZcOWSNL7rHJRDHSoqwZF70a0lFqC1W0B79g_acVXuDu9vo9qp_c8w26Q4VL3L_hFVwrDlFK2YxPstX6Scu-fMK |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Eigenvector+centrality+based+algorithm+for+finding+a+maximal+common+connected+vertex+induced+molecular+substructure+of+two+chemical+graphs&rft.jtitle=Journal+of+molecular+structure&rft.au=Parisutham%2C+Nirmala&rft.au=Rethnasamy%2C+Nadarajan&rft.date=2021-11-15&rft.pub=Elsevier+B.V&rft.issn=0022-2860&rft.eissn=1872-8014&rft.volume=1244&rft_id=info:doi/10.1016%2Fj.molstruc.2021.130980&rft.externalDocID=S0022286021011121 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-2860&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-2860&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-2860&client=summon |