s-Process Nucleosynthesis in Advanced Burning Phases of Massive Stars
We present a detailed study of s-process nucleosynthesis in massive stars of solar-like initial composition and masses 15, 20, 25, and 30 M sub( ). We update our previous results of s-process nucleosynthesis during the core He burning of these stars and then focus on an analysis of the s-process und...
Saved in:
Published in | The Astrophysical journal Vol. 655; no. 2; pp. 1058 - 1078 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Chicago, IL
IOP Publishing
01.02.2007
University of Chicago Press |
Subjects | |
Online Access | Get full text |
ISSN | 0004-637X 1538-4357 |
DOI | 10.1086/509753 |
Cover
Abstract | We present a detailed study of s-process nucleosynthesis in massive stars of solar-like initial composition and masses 15, 20, 25, and 30 M sub( ). We update our previous results of s-process nucleosynthesis during the core He burning of these stars and then focus on an analysis of the s-process under the physical conditions encountered during the shell carbon burning. We show that the recent compilation of the super(22)Ne(a,n) super(25) Mg rate leads to a remarkable reduction of the efficiency of the s-process during core He burning. In particular, this rate leads to the lowest overproduction factor of super(80)Kr found to date during core He burning in massive stars. The s-process yields resulting from shell carbon burning turn out to be very sensitive to the structural evolution of the carbon shell. This structure is influenced by the mass fraction of super(12)C attained at the end of core helium burning, which in turn is mainly determined by the super(12)C(a,g) super(16)O reaction. The still-present uncertainty in the rate for this reaction implies that the s-process in massive stars is also subject to this uncertainty. We identify some isotopes like super(70)Zn and super(87)Rb as the signatures of the s-process during shell carbon burning in massive stars. In determining the relative contribution of our s-only stellar yields to the solar abundances, we find it is important to take into account the neutron exposure of shell carbon burning. When we analyze our yields with a Salpeter initial mass function, we find that massive stars contribute at least 40% to s-only nuclei with mass A , 87. For s-only nuclei with mass A > 90, massive stars contribute on average 67%, except for super(152)Gd, super(187)Os, and super(198)Hg, which contribute 614%, 613%, and 611%, respectively. |
---|---|
AbstractList | We present a detailed study of s-process nucleosynthesis in massive stars of solar-like initial composition and masses 15, 20, 25, and 30 M sub( ). We update our previous results of s-process nucleosynthesis during the core He burning of these stars and then focus on an analysis of the s-process under the physical conditions encountered during the shell carbon burning. We show that the recent compilation of the super(22)Ne(a,n) super(25) Mg rate leads to a remarkable reduction of the efficiency of the s-process during core He burning. In particular, this rate leads to the lowest overproduction factor of super(80)Kr found to date during core He burning in massive stars. The s-process yields resulting from shell carbon burning turn out to be very sensitive to the structural evolution of the carbon shell. This structure is influenced by the mass fraction of super(12)C attained at the end of core helium burning, which in turn is mainly determined by the super(12)C(a,g) super(16)O reaction. The still-present uncertainty in the rate for this reaction implies that the s-process in massive stars is also subject to this uncertainty. We identify some isotopes like super(70)Zn and super(87)Rb as the signatures of the s-process during shell carbon burning in massive stars. In determining the relative contribution of our s-only stellar yields to the solar abundances, we find it is important to take into account the neutron exposure of shell carbon burning. When we analyze our yields with a Salpeter initial mass function, we find that massive stars contribute at least 40% to s-only nuclei with mass A , 87. For s-only nuclei with mass A > 90, massive stars contribute on average 67%, except for super(152)Gd, super(187)Os, and super(198)Hg, which contribute 614%, 613%, and 611%, respectively. We present a detailed study of s-process nucleosynthesis in massive stars of solar-like initial composition and masses 15, 20, 25, and 30 M( . We update our previous results of s-process nucleosynthesis during the core He burning of these stars and then focus on an analysis of the s-process under the physical conditions encountered during the shell carbon burning. We show that the recent compilation of the (22)Ne(a,n)(25) Mg rate leads to a remarkable reduction of the efficiency of the s-process during core He burning. In particular, this rate leads to the lowest overproduction factor of (80)Kr found to date during core He burning in massive stars. The s-process yields resulting from shell carbon burning turn out to be very sensitive to the structural evolution of the carbon shell. This structure is influenced by the mass fraction of (12)C attained at the end of core helium burning, which in turn is mainly determined by the (12)C(a,g)(16)O reaction. The still-present uncertainty in the rate for this reaction implies that the s-process in massive stars is also subject to this uncertainty. We identify some isotopes like (70)Zn and (87)Rb as the signatures of the s-process during shell carbon burning in massive stars. In determining the relative contribution of our s-only stellar yields to the solar abundances, we find it is important to take into account the neutron exposure of shell carbon burning. When we analyze our yields with a Salpeter initial mass function, we find that massive stars contribute at least 40% to s-only nuclei with mass A , 87. For s-only nuclei with mass A > 90, massive stars contribute on average 67%, except for (152)Gd, (187)Os, and (198)Hg, which contribute 614%, 613%, and 611%, respectively. |
Author | El Eid, Mounib F Meyer, Bradley S The, Lih-Sin |
Author_xml | – sequence: 1 fullname: The, Lih-Sin – sequence: 2 fullname: El Eid, Mounib F – sequence: 3 fullname: Meyer, Bradley S |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18510356$$DView record in Pascal Francis |
BookMark | eNp90U1LwzAYB_AgE5xTP0M9qAetJk3SNsc55gtMHajgLaRp6iJdMvN0g317OzYmTPAUAr_887wcoo7zziB0QvA1wXl6w7HION1DXcJpHjPKsw7qYoxZnNLs4wAdAnytrokQXTSEeBy8NgDR81zXxsPSNRMDFiLron65UE6bMrqdB2fdZzSeKDAQ-Sp6UgB2YaLXRgU4QvuVqsEcb84eer8bvg0e4tHL_eOgP4o1zfIm5gnNyrJS3Kgs01gJWhQpxroSOGWEF0oUSaFLrU1BuBIEJ231BAsqCoF1gWkPXaxzZ8F_zw00cmpBm7pWzvg5yIxRljKeslae_yuJYIwRlrTwbAMVaFVXoW3YgpwFO1VhKUneFkB52rqrtdPBAwRTSW0b1VjvmqBsLQmWq-nL9fR__9_ybeIuvFxD62dbs1qPXG1LppzLpH3Aczkrq1af_tU7iT-mW5tq |
CODEN | ASJOAB |
CitedBy_id | crossref_primary_10_1051_0004_6361_201118763 crossref_primary_10_1111_j_1365_2966_2009_16041_x crossref_primary_10_1016_j_gca_2009_01_039 crossref_primary_10_1088_0004_637X_775_1_12 crossref_primary_10_1103_PhysRevC_85_044615 crossref_primary_10_1146_annurev_nucl_102422_080857 crossref_primary_10_1051_0004_6361_202348968 crossref_primary_10_1088_1742_6596_202_1_012023 crossref_primary_10_1103_PhysRevC_93_055803 crossref_primary_10_1111_j_1365_2966_2010_16837_x crossref_primary_10_1088_0004_637X_795_1_34 crossref_primary_10_1088_1742_6596_130_1_012019 crossref_primary_10_1088_2041_8205_718_1_L7 crossref_primary_10_1103_PhysRevC_76_025802 crossref_primary_10_1103_PhysRevC_78_025802 crossref_primary_10_1103_PhysRevC_79_025801 crossref_primary_10_1103_PhysRevC_99_015804 crossref_primary_10_1111_j_1945_5100_2007_tb00562_x crossref_primary_10_1088_0004_637X_736_1_5 crossref_primary_10_1051_0004_6361_201015518 crossref_primary_10_1051_0004_6361_202141069 crossref_primary_10_1103_PhysRevC_79_065802 crossref_primary_10_1103_PhysRevC_94_015804 crossref_primary_10_1088_0004_637X_702_2_1068 crossref_primary_10_1051_0004_6361_201833283 crossref_primary_10_3847_0067_0049_225_2_24 crossref_primary_10_1088_0004_637X_762_1_31 crossref_primary_10_1088_0256_307X_29_1_019701 crossref_primary_10_1103_RevModPhys_83_157 crossref_primary_10_1071_AS08064 crossref_primary_10_1086_592599 crossref_primary_10_1093_mnras_stz178 crossref_primary_10_1093_mnras_stac1373 crossref_primary_10_1140_epja_s10050_022_00883_8 crossref_primary_10_1088_0004_637X_710_2_1557 crossref_primary_10_1007_s11214_009_9517_6 crossref_primary_10_1088_2041_8205_739_2_L58 crossref_primary_10_3390_universe8030170 crossref_primary_10_3847_1538_4365_ace102 crossref_primary_10_1088_1402_4896_aaac69 crossref_primary_10_1080_18811248_2010_9711967 crossref_primary_10_1051_0004_6361_201118381 crossref_primary_10_1111_j_1365_2966_2012_20193_x crossref_primary_10_1093_mnras_staa2281 crossref_primary_10_1103_PhysRevC_102_044616 crossref_primary_10_1140_epja_s10050_022_00827_2 crossref_primary_10_1080_00223131_2015_1056760 crossref_primary_10_1103_PhysRevC_85_065809 crossref_primary_10_1051_0004_6361_201220687 crossref_primary_10_1088_2041_8205_735_2_L37 crossref_primary_10_1016_j_gca_2017_05_001 crossref_primary_10_1103_PhysRevC_97_064617 crossref_primary_10_1103_RevModPhys_89_035007 crossref_primary_10_1103_PhysRevC_104_055806 crossref_primary_10_1111_j_1945_5100_2007_tb00601_x crossref_primary_10_1103_PhysRevC_95_025803 crossref_primary_10_3389_fspas_2021_617765 crossref_primary_10_1016_j_apradiso_2012_05_004 crossref_primary_10_1051_0004_6361_201117630 crossref_primary_10_1051_0004_6361_201117751 crossref_primary_10_1093_mnras_stt728 crossref_primary_10_1093_mnras_stu2657 crossref_primary_10_3847_2041_8213_abc251 crossref_primary_10_1103_PhysRevC_90_045804 crossref_primary_10_1088_0004_637X_698_1_509 crossref_primary_10_1139_p10_105 crossref_primary_10_1140_epja_s10050_023_00968_y crossref_primary_10_1088_0004_637X_739_2_93 crossref_primary_10_1103_PhysRevC_77_055801 crossref_primary_10_1017_pasa_2014_21 crossref_primary_10_1017_S1743921310000980 crossref_primary_10_1088_0954_3899_41_4_044001 crossref_primary_10_3847_1538_4357_ab4fe8 crossref_primary_10_1093_mnras_stv2723 crossref_primary_10_1016_j_gca_2009_09_015 crossref_primary_10_1103_PhysRevC_97_065802 crossref_primary_10_3389_fphy_2022_896011 crossref_primary_10_3847_1538_4365_ad0787 crossref_primary_10_1140_epja_s10050_023_01206_1 crossref_primary_10_1103_PhysRevC_96_025808 crossref_primary_10_1051_0004_6361_202040170 crossref_primary_10_1088_0004_637X_787_1_41 crossref_primary_10_3847_1538_4357_ac4697 crossref_primary_10_3847_1538_4357_aba7b4 crossref_primary_10_1103_PhysRevC_87_045805 crossref_primary_10_1103_PhysRevC_77_051303 crossref_primary_10_1088_0954_3899_41_5_053101 crossref_primary_10_1088_0004_637X_805_1_7 crossref_primary_10_1142_S0218301316300034 crossref_primary_10_1093_mnras_sty1729 crossref_primary_10_1088_0004_637X_720_2_1577 crossref_primary_10_1088_1742_6596_940_1_012006 crossref_primary_10_1093_mnras_stu118 crossref_primary_10_1103_PhysRevC_77_015808 crossref_primary_10_1051_0004_6361_202243331 crossref_primary_10_1088_0034_4885_75_3_036901 crossref_primary_10_1103_PhysRevC_95_015808 crossref_primary_10_1111_j_1365_2966_2012_20638_x crossref_primary_10_3847_1538_4365_aab71e crossref_primary_10_3847_0004_637X_819_2_118 crossref_primary_10_1103_PhysRevC_82_025802 crossref_primary_10_1140_epjp_i2018_12236_2 crossref_primary_10_3847_0004_637X_827_1_29 crossref_primary_10_1051_0004_6361_201014970 crossref_primary_10_1088_0004_637X_749_2_175 crossref_primary_10_1088_0004_637X_706_1_614 crossref_primary_10_1093_mnras_stac2361 crossref_primary_10_1088_0004_637X_701_1_837 crossref_primary_10_1093_mnras_stz2202 |
Cites_doi | 10.1103/PhysRevC.38.295 10.1086/167351 10.1016/0375-9474(95)00445-9 10.1086/380507 10.1016/0016-7037(89)90286-X 10.1086/191669 10.1016/0370-1573(88)90032-4 10.1086/190111 10.1063/1.2807808 10.1086/310240 10.1103/RevModPhys.29.547 10.1086/422162 10.1016/0092-640X(87)90010-6 10.1086/149128 10.1086/338384 10.1103/PhysRevLett.87.202501 10.1088/0034-4885/52/8/002 10.1086/305921 10.1086/127051 10.1016/0003-4916(61)90067-7 10.1086/383225 10.1103/RevModPhys.74.1015 10.1086/151549 10.1016/S0375-9474(99)00030-5 10.1006/adnd.2000.0834 10.1086/308677 10.1086/175004 10.1016/j.epsl.2006.03.044 10.1086/187797 10.1086/303650 10.1086/165125 10.1086/185772 10.1086/307938 10.1086/169932 10.1017/CBO9781139170352 10.1086/313424 10.1016/0092-640X(88)90009-5 10.1086/163580 10.1086/322288 10.1086/185812 10.1086/169622 10.1016/S0370-1573(03)00242-4 10.1086/173119 10.1146/annurev.astro.37.1.239 10.1086/177197 10.1086/173476 |
ContentType | Journal Article |
Copyright | 2007 INIST-CNRS |
Copyright_xml | – notice: 2007 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7TG KL. 8FD H8D L7M |
DOI | 10.1086/509753 |
DatabaseName | CrossRef Pascal-Francis Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Meteorological & Geoastrophysical Abstracts - Academic Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
EISSN | 1538-4357 |
EndPage | 1078 |
ExternalDocumentID | 18510356 10_1086_509753 |
GroupedDBID | 123 1JI 23N 2WC 4.4 85S 8RP AAGCD AAJIO AALHV ABFLS ABPTK ACGFS ACNCT AEFHF AENEX AFDAS ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CS3 DZ EBS EJD F5P G8K IOP KOT MVM N5L O3W O43 OHT OK1 RIN RNS RPA SJN SY9 T37 TN5 WH7 X ZY4 -DZ -~X 2FS 41~ 6J9 6TJ 6TS 9M8 AAFWJ AAYXX ABDPE ABHWH ACBEA ACHIP ADACN ADIYS ADXHL AETEA AFPKN AI. AKPSB CITATION CRLBU FA8 FRP GROUPED_DOAJ IJHAN M~E PJBAE ROL TR2 VH1 WHG XOL XSW YYP ZCG ZKB IQODW 7TG AEINN KL. 8FD H8D L7M |
ID | FETCH-LOGICAL-c378t-5237ddfa5ea77c0a93bb600cf906415ba9b2bcdcceb15a910243510939b90cb03 |
IEDL.DBID | IOP |
ISSN | 0004-637X |
IngestDate | Thu Sep 04 21:11:23 EDT 2025 Thu Sep 04 21:31:04 EDT 2025 Mon Jul 21 09:14:12 EDT 2025 Tue Jul 01 01:15:29 EDT 2025 Thu Apr 24 23:04:46 EDT 2025 Tue Nov 10 14:16:41 EST 2020 Mon May 13 15:58:42 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | s process Nucleosynthesis Stellar abundance Stellar evolution nuclear reactions Massive stars abundances -stars: evolution -stars: interiors |
Language | English |
License | CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-5237ddfa5ea77c0a93bb600cf906415ba9b2bcdcceb15a910243510939b90cb03 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
PQID | 19444142 |
PQPubID | 23462 |
PageCount | 21 |
ParticipantIDs | pascalfrancis_primary_18510356 crossref_primary_10_1086_509753 proquest_miscellaneous_743464564 crossref_citationtrail_10_1086_509753 proquest_miscellaneous_19444142 iop_primary_10_1086_509753 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2007-02-01 |
PublicationDateYYYYMMDD | 2007-02-01 |
PublicationDate_xml | – month: 02 year: 2007 text: 2007-02-01 day: 01 |
PublicationDecade | 2000 |
PublicationPlace | Chicago, IL |
PublicationPlace_xml | – name: Chicago, IL |
PublicationTitle | The Astrophysical journal |
PublicationYear | 2007 |
Publisher | IOP Publishing University of Chicago Press |
Publisher_xml | – name: IOP Publishing – name: University of Chicago Press |
References | rf53_1647 rf24_1618 rf14_1608 rf5_1599 rf34_1628 rf16_1610 rf23_1617 Baraffe I. (rf7_1601) 1992; 258 rf43_1637 rf33_1627 rf8_1602 rf49_1643 rf17_1611 rf46_1640 rf10_1604 rf26_1620 rf4_1598 rf45_1639 rf13_1607 de Jager C. (rf21_1615) 1988; 72 rf37_1631 rf1_1595 rf22_1616 Langer N. (rf35_1629) 1989; 210 rf54_1648 rf25_1619 rf51_1645 rf28_1622 rf50_1644 rf11_1605 Prantzos N. (rf42_1636) 1990; 234 rf2_1596 rf18_1612 rf31_1625 rf19_1613 rf29_1623 rf20_1614 rf3_1597 rf38_1632 rf40_1634 rf30_1624 Rayet M. (rf47_1641) 2000; 354 rf48_1642 rf32_1626 rf52_1646 rf55_1649 rf36_1630 rf39_1633 rf15_1609 rf41_1635 rf12_1606 rf9_1603 rf44_1638 rf56_1650 rf6_1600 rf27_1621 |
References_xml | – ident: rf33_1627 doi: 10.1103/PhysRevC.38.295 – ident: rf9_1603 doi: 10.1086/167351 – ident: rf6_1600 doi: 10.1016/0375-9474(95)00445-9 – ident: rf51_1645 doi: 10.1086/380507 – ident: rf1_1595 doi: 10.1016/0016-7037(89)90286-X – ident: rf10_1604 doi: 10.1086/191669 – ident: rf40_1634 doi: 10.1016/0370-1573(88)90032-4 – volume: 234 start-page: 211 year: 1990 ident: rf42_1636 publication-title: A&A – ident: rf48_1642 doi: 10.1086/190111 – ident: rf30_1624 – ident: rf4_1598 doi: 10.1063/1.2807808 – ident: rf11_1605 doi: 10.1086/310240 – ident: rf12_1606 doi: 10.1103/RevModPhys.29.547 – ident: rf23_1617 doi: 10.1086/422162 – ident: rf49_1643 doi: 10.1016/0092-640X(87)90010-6 – ident: rf19_1613 doi: 10.1086/149128 – ident: rf34_1628 doi: 10.1086/338384 – ident: rf29_1623 doi: 10.1103/PhysRevLett.87.202501 – ident: rf32_1626 doi: 10.1088/0034-4885/52/8/002 – ident: rf16_1610 doi: 10.1086/305921 – ident: rf14_1608 doi: 10.1086/127051 – ident: rf18_1612 doi: 10.1016/0003-4916(61)90067-7 – ident: rf24_1618 doi: 10.1086/383225 – ident: rf56_1650 doi: 10.1103/RevModPhys.74.1015 – ident: rf26_1620 doi: 10.1086/151549 – ident: rf2_1596 doi: 10.1016/S0375-9474(99)00030-5 – ident: rf46_1640 doi: 10.1006/adnd.2000.0834 – ident: rf50_1644 doi: 10.1086/308677 – volume: 354 start-page: 740 year: 2000 ident: rf47_1641 publication-title: A&A – ident: rf31_1625 doi: 10.1086/175004 – ident: rf39_1633 doi: 10.1016/j.epsl.2006.03.044 – volume: 258 start-page: 357 year: 1992 ident: rf7_1601 publication-title: A&A – ident: rf27_1621 doi: 10.1086/187797 – ident: rf55_1649 doi: 10.1086/303650 – ident: rf41_1635 doi: 10.1086/165125 – volume: 72 start-page: 259 year: 1988 ident: rf21_1615 publication-title: A&AS – ident: rf54_1648 doi: 10.1086/185772 – ident: rf52_1646 – ident: rf3_1597 doi: 10.1086/307938 – ident: rf43_1637 doi: 10.1086/169932 – ident: rf20_1614 doi: 10.1017/CBO9781139170352 – ident: rf36_1630 doi: 10.1086/313424 – ident: rf15_1609 doi: 10.1016/0092-640X(88)90009-5 – ident: rf25_1619 doi: 10.1086/163580 – ident: rf28_1622 doi: 10.1086/322288 – ident: rf37_1631 doi: 10.1086/185812 – ident: rf44_1638 doi: 10.1086/169622 – ident: rf5_1599 doi: 10.1016/S0370-1573(03)00242-4 – ident: rf22_1616 doi: 10.1086/173119 – ident: rf53_1647 – ident: rf8_1602 – ident: rf17_1611 – volume: 210 start-page: 187 year: 1989 ident: rf35_1629 publication-title: A&A – ident: rf13_1607 doi: 10.1146/annurev.astro.37.1.239 – ident: rf38_1632 doi: 10.1086/177197 – ident: rf45_1639 doi: 10.1086/173476 |
SSID | ssj0004299 |
Score | 2.2501402 |
Snippet | We present a detailed study of s-process nucleosynthesis in massive stars of solar-like initial composition and masses 15, 20, 25, and 30 M sub( ). We update... We present a detailed study of s-process nucleosynthesis in massive stars of solar-like initial composition and masses 15, 20, 25, and 30 M( . We update our... |
SourceID | proquest pascalfrancis crossref iop |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1058 |
SubjectTerms | Astronomy Earth, ocean, space Exact sciences and technology |
Title | s-Process Nucleosynthesis in Advanced Burning Phases of Massive Stars |
URI | http://iopscience.iop.org/0004-637X/655/2/1058 https://www.proquest.com/docview/19444142 https://www.proquest.com/docview/743464564 |
Volume | 655 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZapEq99MFDLG2pD9Bblmz8io_bCgRIsHsoYm-W7SRiRZus8O4Bfj0zcZaFrlr1ElnKJHHG45nPnocJOZDSi5LrNFGMZwnnGU8sQP2E5TnPwQIOfIn5zheX8vSKn0_EZLVQnDazTvP3odl68hF1JJKpyZEU4iiDaS4wtxdMPwr02Wi8SoPMdId24wPPjhICs6gEe2F7XsMHMBLSBmBGFU-xWFPIrZU5eU9Gy1ydGFxy21_MXd8_rJdu_M8f-EDedYCTDqOEfCSvynqT7A4DboE3v-_pN9q24w5H2CRvxrG1RY5D0qUR0EusetyE-xrgYpgGOq3psAseoN8X7d4KHd-AQQy0qegFAHJQohSA7F3YJlcnxz9_nCbdqQuJZyqf48pUFUVlRWmV8qnVzDlARb7SgF4GwlntMucL70HLCwtoIwPEhUWptNOpdynbIRt1U5e7hCo_YBUsQQsnYZlTFc4pq0FJVNIrpdKyRw6X42F8V5IcT8b4ZVrXeC5NHLce-fpEN4tFONYoDoDdTzeR5QZZboDlJjPIcjMrqh7Ze0725zv2XwjDiizHsoNCQjeW0mFgEqJnxdZlswhmoDnASp71CP0LBQA19CFLvvevLnwib-PeMYbLfCYb87tF-QVAz9ztt6IO1xG7fgSqLfkN |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xUKteWqBFLC3gA_SWJZv4ER-3wApaWPZQqr1ZtpOoqG2ywrsH-us7jrPLS1TiZimTxJ5MZj6P5wGwz7llBZVxJFKaRJQmNNII9aM0y2iGFrBnC5_vfDHkp1f065iNl4AtcmHqSav6uzgMhYIDCw_nbYHQxCHGPpzk5TKsshQtps_buxzdpUMmskW9NOKpGN9rKRTufWCDlvE9PiJSO2RKGbpZPFHMjbUZvIMf83mGIJNf3dnUdO3fRyUcX7yQNXjb4k_SD0TrsFRUG7DVd94jXv-5JZ9JMw4OD7cBr0Zh9B5OXNRmFZChL4Jcu9sK0aO7duS6Iv02loB8mTWuFjL6ifbRkbokF4jPUacSxLU37gNcDU6-H51GbROGyKYim_qNqsjzUrNCC2FjLVNjECTZUiKY6TGjpUmMza1Fpc80go8EAZivUSWNjK2J001Yqeqq2AIibC8tcUeaG467njI3RmiJOqPkVggRFx04mH8WZdsK5b5Rxm_VnJRnXAWOdWBvQTcJNTmeUOwj0xcXvSQoLwmKM6YSpGSZQrZ3YPs-2eNn7D6QiTuyzFchZBynMRcShf-kP2jRVVHPnOpJiiiTJh0gz1AgbvNHypxu_28Ke_B6dDxQ52fDbx_hTfAq-0CaT7AyvZkVOwiHpma3Ef5_6rACOw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=s-Process+Nucleosynthesis+in+Advanced+Burning+Phases+of+Massive+Stars&rft.jtitle=The+Astrophysical+journal&rft.au=The%2C+L-S&rft.au=El+Eid%2C+MF&rft.au=Meyer%2C+B+S&rft.date=2007-02-01&rft.issn=0004-637X&rft.volume=655&rft.issue=2&rft.spage=1058&rft.epage=1078&rft_id=info:doi/10.1086%2F509753&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |