s-Process Nucleosynthesis in Advanced Burning Phases of Massive Stars

We present a detailed study of s-process nucleosynthesis in massive stars of solar-like initial composition and masses 15, 20, 25, and 30 M sub( ). We update our previous results of s-process nucleosynthesis during the core He burning of these stars and then focus on an analysis of the s-process und...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 655; no. 2; pp. 1058 - 1078
Main Authors The, Lih-Sin, El Eid, Mounib F, Meyer, Bradley S
Format Journal Article
LanguageEnglish
Published Chicago, IL IOP Publishing 01.02.2007
University of Chicago Press
Subjects
Online AccessGet full text
ISSN0004-637X
1538-4357
DOI10.1086/509753

Cover

Abstract We present a detailed study of s-process nucleosynthesis in massive stars of solar-like initial composition and masses 15, 20, 25, and 30 M sub( ). We update our previous results of s-process nucleosynthesis during the core He burning of these stars and then focus on an analysis of the s-process under the physical conditions encountered during the shell carbon burning. We show that the recent compilation of the super(22)Ne(a,n) super(25) Mg rate leads to a remarkable reduction of the efficiency of the s-process during core He burning. In particular, this rate leads to the lowest overproduction factor of super(80)Kr found to date during core He burning in massive stars. The s-process yields resulting from shell carbon burning turn out to be very sensitive to the structural evolution of the carbon shell. This structure is influenced by the mass fraction of super(12)C attained at the end of core helium burning, which in turn is mainly determined by the super(12)C(a,g) super(16)O reaction. The still-present uncertainty in the rate for this reaction implies that the s-process in massive stars is also subject to this uncertainty. We identify some isotopes like super(70)Zn and super(87)Rb as the signatures of the s-process during shell carbon burning in massive stars. In determining the relative contribution of our s-only stellar yields to the solar abundances, we find it is important to take into account the neutron exposure of shell carbon burning. When we analyze our yields with a Salpeter initial mass function, we find that massive stars contribute at least 40% to s-only nuclei with mass A , 87. For s-only nuclei with mass A > 90, massive stars contribute on average 67%, except for super(152)Gd, super(187)Os, and super(198)Hg, which contribute 614%, 613%, and 611%, respectively.
AbstractList We present a detailed study of s-process nucleosynthesis in massive stars of solar-like initial composition and masses 15, 20, 25, and 30 M sub( ). We update our previous results of s-process nucleosynthesis during the core He burning of these stars and then focus on an analysis of the s-process under the physical conditions encountered during the shell carbon burning. We show that the recent compilation of the super(22)Ne(a,n) super(25) Mg rate leads to a remarkable reduction of the efficiency of the s-process during core He burning. In particular, this rate leads to the lowest overproduction factor of super(80)Kr found to date during core He burning in massive stars. The s-process yields resulting from shell carbon burning turn out to be very sensitive to the structural evolution of the carbon shell. This structure is influenced by the mass fraction of super(12)C attained at the end of core helium burning, which in turn is mainly determined by the super(12)C(a,g) super(16)O reaction. The still-present uncertainty in the rate for this reaction implies that the s-process in massive stars is also subject to this uncertainty. We identify some isotopes like super(70)Zn and super(87)Rb as the signatures of the s-process during shell carbon burning in massive stars. In determining the relative contribution of our s-only stellar yields to the solar abundances, we find it is important to take into account the neutron exposure of shell carbon burning. When we analyze our yields with a Salpeter initial mass function, we find that massive stars contribute at least 40% to s-only nuclei with mass A , 87. For s-only nuclei with mass A > 90, massive stars contribute on average 67%, except for super(152)Gd, super(187)Os, and super(198)Hg, which contribute 614%, 613%, and 611%, respectively.
We present a detailed study of s-process nucleosynthesis in massive stars of solar-like initial composition and masses 15, 20, 25, and 30 M( . We update our previous results of s-process nucleosynthesis during the core He burning of these stars and then focus on an analysis of the s-process under the physical conditions encountered during the shell carbon burning. We show that the recent compilation of the (22)Ne(a,n)(25) Mg rate leads to a remarkable reduction of the efficiency of the s-process during core He burning. In particular, this rate leads to the lowest overproduction factor of (80)Kr found to date during core He burning in massive stars. The s-process yields resulting from shell carbon burning turn out to be very sensitive to the structural evolution of the carbon shell. This structure is influenced by the mass fraction of (12)C attained at the end of core helium burning, which in turn is mainly determined by the (12)C(a,g)(16)O reaction. The still-present uncertainty in the rate for this reaction implies that the s-process in massive stars is also subject to this uncertainty. We identify some isotopes like (70)Zn and (87)Rb as the signatures of the s-process during shell carbon burning in massive stars. In determining the relative contribution of our s-only stellar yields to the solar abundances, we find it is important to take into account the neutron exposure of shell carbon burning. When we analyze our yields with a Salpeter initial mass function, we find that massive stars contribute at least 40% to s-only nuclei with mass A , 87. For s-only nuclei with mass A > 90, massive stars contribute on average 67%, except for (152)Gd, (187)Os, and (198)Hg, which contribute 614%, 613%, and 611%, respectively.
Author El Eid, Mounib F
Meyer, Bradley S
The, Lih-Sin
Author_xml – sequence: 1
  fullname: The, Lih-Sin
– sequence: 2
  fullname: El Eid, Mounib F
– sequence: 3
  fullname: Meyer, Bradley S
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=18510356$$DView record in Pascal Francis
BookMark eNp90U1LwzAYB_AgE5xTP0M9qAetJk3SNsc55gtMHajgLaRp6iJdMvN0g317OzYmTPAUAr_887wcoo7zziB0QvA1wXl6w7HION1DXcJpHjPKsw7qYoxZnNLs4wAdAnytrokQXTSEeBy8NgDR81zXxsPSNRMDFiLron65UE6bMrqdB2fdZzSeKDAQ-Sp6UgB2YaLXRgU4QvuVqsEcb84eer8bvg0e4tHL_eOgP4o1zfIm5gnNyrJS3Kgs01gJWhQpxroSOGWEF0oUSaFLrU1BuBIEJ231BAsqCoF1gWkPXaxzZ8F_zw00cmpBm7pWzvg5yIxRljKeslae_yuJYIwRlrTwbAMVaFVXoW3YgpwFO1VhKUneFkB52rqrtdPBAwRTSW0b1VjvmqBsLQmWq-nL9fR__9_ybeIuvFxD62dbs1qPXG1LppzLpH3Aczkrq1af_tU7iT-mW5tq
CODEN ASJOAB
CitedBy_id crossref_primary_10_1051_0004_6361_201118763
crossref_primary_10_1111_j_1365_2966_2009_16041_x
crossref_primary_10_1016_j_gca_2009_01_039
crossref_primary_10_1088_0004_637X_775_1_12
crossref_primary_10_1103_PhysRevC_85_044615
crossref_primary_10_1146_annurev_nucl_102422_080857
crossref_primary_10_1051_0004_6361_202348968
crossref_primary_10_1088_1742_6596_202_1_012023
crossref_primary_10_1103_PhysRevC_93_055803
crossref_primary_10_1111_j_1365_2966_2010_16837_x
crossref_primary_10_1088_0004_637X_795_1_34
crossref_primary_10_1088_1742_6596_130_1_012019
crossref_primary_10_1088_2041_8205_718_1_L7
crossref_primary_10_1103_PhysRevC_76_025802
crossref_primary_10_1103_PhysRevC_78_025802
crossref_primary_10_1103_PhysRevC_79_025801
crossref_primary_10_1103_PhysRevC_99_015804
crossref_primary_10_1111_j_1945_5100_2007_tb00562_x
crossref_primary_10_1088_0004_637X_736_1_5
crossref_primary_10_1051_0004_6361_201015518
crossref_primary_10_1051_0004_6361_202141069
crossref_primary_10_1103_PhysRevC_79_065802
crossref_primary_10_1103_PhysRevC_94_015804
crossref_primary_10_1088_0004_637X_702_2_1068
crossref_primary_10_1051_0004_6361_201833283
crossref_primary_10_3847_0067_0049_225_2_24
crossref_primary_10_1088_0004_637X_762_1_31
crossref_primary_10_1088_0256_307X_29_1_019701
crossref_primary_10_1103_RevModPhys_83_157
crossref_primary_10_1071_AS08064
crossref_primary_10_1086_592599
crossref_primary_10_1093_mnras_stz178
crossref_primary_10_1093_mnras_stac1373
crossref_primary_10_1140_epja_s10050_022_00883_8
crossref_primary_10_1088_0004_637X_710_2_1557
crossref_primary_10_1007_s11214_009_9517_6
crossref_primary_10_1088_2041_8205_739_2_L58
crossref_primary_10_3390_universe8030170
crossref_primary_10_3847_1538_4365_ace102
crossref_primary_10_1088_1402_4896_aaac69
crossref_primary_10_1080_18811248_2010_9711967
crossref_primary_10_1051_0004_6361_201118381
crossref_primary_10_1111_j_1365_2966_2012_20193_x
crossref_primary_10_1093_mnras_staa2281
crossref_primary_10_1103_PhysRevC_102_044616
crossref_primary_10_1140_epja_s10050_022_00827_2
crossref_primary_10_1080_00223131_2015_1056760
crossref_primary_10_1103_PhysRevC_85_065809
crossref_primary_10_1051_0004_6361_201220687
crossref_primary_10_1088_2041_8205_735_2_L37
crossref_primary_10_1016_j_gca_2017_05_001
crossref_primary_10_1103_PhysRevC_97_064617
crossref_primary_10_1103_RevModPhys_89_035007
crossref_primary_10_1103_PhysRevC_104_055806
crossref_primary_10_1111_j_1945_5100_2007_tb00601_x
crossref_primary_10_1103_PhysRevC_95_025803
crossref_primary_10_3389_fspas_2021_617765
crossref_primary_10_1016_j_apradiso_2012_05_004
crossref_primary_10_1051_0004_6361_201117630
crossref_primary_10_1051_0004_6361_201117751
crossref_primary_10_1093_mnras_stt728
crossref_primary_10_1093_mnras_stu2657
crossref_primary_10_3847_2041_8213_abc251
crossref_primary_10_1103_PhysRevC_90_045804
crossref_primary_10_1088_0004_637X_698_1_509
crossref_primary_10_1139_p10_105
crossref_primary_10_1140_epja_s10050_023_00968_y
crossref_primary_10_1088_0004_637X_739_2_93
crossref_primary_10_1103_PhysRevC_77_055801
crossref_primary_10_1017_pasa_2014_21
crossref_primary_10_1017_S1743921310000980
crossref_primary_10_1088_0954_3899_41_4_044001
crossref_primary_10_3847_1538_4357_ab4fe8
crossref_primary_10_1093_mnras_stv2723
crossref_primary_10_1016_j_gca_2009_09_015
crossref_primary_10_1103_PhysRevC_97_065802
crossref_primary_10_3389_fphy_2022_896011
crossref_primary_10_3847_1538_4365_ad0787
crossref_primary_10_1140_epja_s10050_023_01206_1
crossref_primary_10_1103_PhysRevC_96_025808
crossref_primary_10_1051_0004_6361_202040170
crossref_primary_10_1088_0004_637X_787_1_41
crossref_primary_10_3847_1538_4357_ac4697
crossref_primary_10_3847_1538_4357_aba7b4
crossref_primary_10_1103_PhysRevC_87_045805
crossref_primary_10_1103_PhysRevC_77_051303
crossref_primary_10_1088_0954_3899_41_5_053101
crossref_primary_10_1088_0004_637X_805_1_7
crossref_primary_10_1142_S0218301316300034
crossref_primary_10_1093_mnras_sty1729
crossref_primary_10_1088_0004_637X_720_2_1577
crossref_primary_10_1088_1742_6596_940_1_012006
crossref_primary_10_1093_mnras_stu118
crossref_primary_10_1103_PhysRevC_77_015808
crossref_primary_10_1051_0004_6361_202243331
crossref_primary_10_1088_0034_4885_75_3_036901
crossref_primary_10_1103_PhysRevC_95_015808
crossref_primary_10_1111_j_1365_2966_2012_20638_x
crossref_primary_10_3847_1538_4365_aab71e
crossref_primary_10_3847_0004_637X_819_2_118
crossref_primary_10_1103_PhysRevC_82_025802
crossref_primary_10_1140_epjp_i2018_12236_2
crossref_primary_10_3847_0004_637X_827_1_29
crossref_primary_10_1051_0004_6361_201014970
crossref_primary_10_1088_0004_637X_749_2_175
crossref_primary_10_1088_0004_637X_706_1_614
crossref_primary_10_1093_mnras_stac2361
crossref_primary_10_1088_0004_637X_701_1_837
crossref_primary_10_1093_mnras_stz2202
Cites_doi 10.1103/PhysRevC.38.295
10.1086/167351
10.1016/0375-9474(95)00445-9
10.1086/380507
10.1016/0016-7037(89)90286-X
10.1086/191669
10.1016/0370-1573(88)90032-4
10.1086/190111
10.1063/1.2807808
10.1086/310240
10.1103/RevModPhys.29.547
10.1086/422162
10.1016/0092-640X(87)90010-6
10.1086/149128
10.1086/338384
10.1103/PhysRevLett.87.202501
10.1088/0034-4885/52/8/002
10.1086/305921
10.1086/127051
10.1016/0003-4916(61)90067-7
10.1086/383225
10.1103/RevModPhys.74.1015
10.1086/151549
10.1016/S0375-9474(99)00030-5
10.1006/adnd.2000.0834
10.1086/308677
10.1086/175004
10.1016/j.epsl.2006.03.044
10.1086/187797
10.1086/303650
10.1086/165125
10.1086/185772
10.1086/307938
10.1086/169932
10.1017/CBO9781139170352
10.1086/313424
10.1016/0092-640X(88)90009-5
10.1086/163580
10.1086/322288
10.1086/185812
10.1086/169622
10.1016/S0370-1573(03)00242-4
10.1086/173119
10.1146/annurev.astro.37.1.239
10.1086/177197
10.1086/173476
ContentType Journal Article
Copyright 2007 INIST-CNRS
Copyright_xml – notice: 2007 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7TG
KL.
8FD
H8D
L7M
DOI 10.1086/509753
DatabaseName CrossRef
Pascal-Francis
Meteorological & Geoastrophysical Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts - Academic
Meteorological & Geoastrophysical Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList Meteorological & Geoastrophysical Abstracts - Academic
Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
EISSN 1538-4357
EndPage 1078
ExternalDocumentID 18510356
10_1086_509753
GroupedDBID 123
1JI
23N
2WC
4.4
85S
8RP
AAGCD
AAJIO
AALHV
ABFLS
ABPTK
ACGFS
ACNCT
AEFHF
AENEX
AFDAS
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CS3
DZ
EBS
EJD
F5P
G8K
IOP
KOT
MVM
N5L
O3W
O43
OHT
OK1
RIN
RNS
RPA
SJN
SY9
T37
TN5
WH7
X
ZY4
-DZ
-~X
2FS
41~
6J9
6TJ
6TS
9M8
AAFWJ
AAYXX
ABDPE
ABHWH
ACBEA
ACHIP
ADACN
ADIYS
ADXHL
AETEA
AFPKN
AI.
AKPSB
CITATION
CRLBU
FA8
FRP
GROUPED_DOAJ
IJHAN
M~E
PJBAE
ROL
TR2
VH1
WHG
XOL
XSW
YYP
ZCG
ZKB
IQODW
7TG
AEINN
KL.
8FD
H8D
L7M
ID FETCH-LOGICAL-c378t-5237ddfa5ea77c0a93bb600cf906415ba9b2bcdcceb15a910243510939b90cb03
IEDL.DBID IOP
ISSN 0004-637X
IngestDate Thu Sep 04 21:11:23 EDT 2025
Thu Sep 04 21:31:04 EDT 2025
Mon Jul 21 09:14:12 EDT 2025
Tue Jul 01 01:15:29 EDT 2025
Thu Apr 24 23:04:46 EDT 2025
Tue Nov 10 14:16:41 EST 2020
Mon May 13 15:58:42 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords s process
Nucleosynthesis
Stellar abundance
Stellar evolution
nuclear reactions
Massive stars
abundances -stars: evolution -stars: interiors
Language English
License CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-5237ddfa5ea77c0a93bb600cf906415ba9b2bcdcceb15a910243510939b90cb03
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
PQID 19444142
PQPubID 23462
PageCount 21
ParticipantIDs pascalfrancis_primary_18510356
crossref_primary_10_1086_509753
proquest_miscellaneous_743464564
crossref_citationtrail_10_1086_509753
proquest_miscellaneous_19444142
iop_primary_10_1086_509753
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2007-02-01
PublicationDateYYYYMMDD 2007-02-01
PublicationDate_xml – month: 02
  year: 2007
  text: 2007-02-01
  day: 01
PublicationDecade 2000
PublicationPlace Chicago, IL
PublicationPlace_xml – name: Chicago, IL
PublicationTitle The Astrophysical journal
PublicationYear 2007
Publisher IOP Publishing
University of Chicago Press
Publisher_xml – name: IOP Publishing
– name: University of Chicago Press
References rf53_1647
rf24_1618
rf14_1608
rf5_1599
rf34_1628
rf16_1610
rf23_1617
Baraffe I. (rf7_1601) 1992; 258
rf43_1637
rf33_1627
rf8_1602
rf49_1643
rf17_1611
rf46_1640
rf10_1604
rf26_1620
rf4_1598
rf45_1639
rf13_1607
de Jager C. (rf21_1615) 1988; 72
rf37_1631
rf1_1595
rf22_1616
Langer N. (rf35_1629) 1989; 210
rf54_1648
rf25_1619
rf51_1645
rf28_1622
rf50_1644
rf11_1605
Prantzos N. (rf42_1636) 1990; 234
rf2_1596
rf18_1612
rf31_1625
rf19_1613
rf29_1623
rf20_1614
rf3_1597
rf38_1632
rf40_1634
rf30_1624
Rayet M. (rf47_1641) 2000; 354
rf48_1642
rf32_1626
rf52_1646
rf55_1649
rf36_1630
rf39_1633
rf15_1609
rf41_1635
rf12_1606
rf9_1603
rf44_1638
rf56_1650
rf6_1600
rf27_1621
References_xml – ident: rf33_1627
  doi: 10.1103/PhysRevC.38.295
– ident: rf9_1603
  doi: 10.1086/167351
– ident: rf6_1600
  doi: 10.1016/0375-9474(95)00445-9
– ident: rf51_1645
  doi: 10.1086/380507
– ident: rf1_1595
  doi: 10.1016/0016-7037(89)90286-X
– ident: rf10_1604
  doi: 10.1086/191669
– ident: rf40_1634
  doi: 10.1016/0370-1573(88)90032-4
– volume: 234
  start-page: 211
  year: 1990
  ident: rf42_1636
  publication-title: A&A
– ident: rf48_1642
  doi: 10.1086/190111
– ident: rf30_1624
– ident: rf4_1598
  doi: 10.1063/1.2807808
– ident: rf11_1605
  doi: 10.1086/310240
– ident: rf12_1606
  doi: 10.1103/RevModPhys.29.547
– ident: rf23_1617
  doi: 10.1086/422162
– ident: rf49_1643
  doi: 10.1016/0092-640X(87)90010-6
– ident: rf19_1613
  doi: 10.1086/149128
– ident: rf34_1628
  doi: 10.1086/338384
– ident: rf29_1623
  doi: 10.1103/PhysRevLett.87.202501
– ident: rf32_1626
  doi: 10.1088/0034-4885/52/8/002
– ident: rf16_1610
  doi: 10.1086/305921
– ident: rf14_1608
  doi: 10.1086/127051
– ident: rf18_1612
  doi: 10.1016/0003-4916(61)90067-7
– ident: rf24_1618
  doi: 10.1086/383225
– ident: rf56_1650
  doi: 10.1103/RevModPhys.74.1015
– ident: rf26_1620
  doi: 10.1086/151549
– ident: rf2_1596
  doi: 10.1016/S0375-9474(99)00030-5
– ident: rf46_1640
  doi: 10.1006/adnd.2000.0834
– ident: rf50_1644
  doi: 10.1086/308677
– volume: 354
  start-page: 740
  year: 2000
  ident: rf47_1641
  publication-title: A&A
– ident: rf31_1625
  doi: 10.1086/175004
– ident: rf39_1633
  doi: 10.1016/j.epsl.2006.03.044
– volume: 258
  start-page: 357
  year: 1992
  ident: rf7_1601
  publication-title: A&A
– ident: rf27_1621
  doi: 10.1086/187797
– ident: rf55_1649
  doi: 10.1086/303650
– ident: rf41_1635
  doi: 10.1086/165125
– volume: 72
  start-page: 259
  year: 1988
  ident: rf21_1615
  publication-title: A&AS
– ident: rf54_1648
  doi: 10.1086/185772
– ident: rf52_1646
– ident: rf3_1597
  doi: 10.1086/307938
– ident: rf43_1637
  doi: 10.1086/169932
– ident: rf20_1614
  doi: 10.1017/CBO9781139170352
– ident: rf36_1630
  doi: 10.1086/313424
– ident: rf15_1609
  doi: 10.1016/0092-640X(88)90009-5
– ident: rf25_1619
  doi: 10.1086/163580
– ident: rf28_1622
  doi: 10.1086/322288
– ident: rf37_1631
  doi: 10.1086/185812
– ident: rf44_1638
  doi: 10.1086/169622
– ident: rf5_1599
  doi: 10.1016/S0370-1573(03)00242-4
– ident: rf22_1616
  doi: 10.1086/173119
– ident: rf53_1647
– ident: rf8_1602
– ident: rf17_1611
– volume: 210
  start-page: 187
  year: 1989
  ident: rf35_1629
  publication-title: A&A
– ident: rf13_1607
  doi: 10.1146/annurev.astro.37.1.239
– ident: rf38_1632
  doi: 10.1086/177197
– ident: rf45_1639
  doi: 10.1086/173476
SSID ssj0004299
Score 2.2501402
Snippet We present a detailed study of s-process nucleosynthesis in massive stars of solar-like initial composition and masses 15, 20, 25, and 30 M sub( ). We update...
We present a detailed study of s-process nucleosynthesis in massive stars of solar-like initial composition and masses 15, 20, 25, and 30 M( . We update our...
SourceID proquest
pascalfrancis
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1058
SubjectTerms Astronomy
Earth, ocean, space
Exact sciences and technology
Title s-Process Nucleosynthesis in Advanced Burning Phases of Massive Stars
URI http://iopscience.iop.org/0004-637X/655/2/1058
https://www.proquest.com/docview/19444142
https://www.proquest.com/docview/743464564
Volume 655
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT9wwELZapEq99MFDLG2pD9Bblmz8io_bCgRIsHsoYm-W7SRiRZus8O4Bfj0zcZaFrlr1ElnKJHHG45nPnocJOZDSi5LrNFGMZwnnGU8sQP2E5TnPwQIOfIn5zheX8vSKn0_EZLVQnDazTvP3odl68hF1JJKpyZEU4iiDaS4wtxdMPwr02Wi8SoPMdId24wPPjhICs6gEe2F7XsMHMBLSBmBGFU-xWFPIrZU5eU9Gy1ydGFxy21_MXd8_rJdu_M8f-EDedYCTDqOEfCSvynqT7A4DboE3v-_pN9q24w5H2CRvxrG1RY5D0qUR0EusetyE-xrgYpgGOq3psAseoN8X7d4KHd-AQQy0qegFAHJQohSA7F3YJlcnxz9_nCbdqQuJZyqf48pUFUVlRWmV8qnVzDlARb7SgF4GwlntMucL70HLCwtoIwPEhUWptNOpdynbIRt1U5e7hCo_YBUsQQsnYZlTFc4pq0FJVNIrpdKyRw6X42F8V5IcT8b4ZVrXeC5NHLce-fpEN4tFONYoDoDdTzeR5QZZboDlJjPIcjMrqh7Ze0725zv2XwjDiizHsoNCQjeW0mFgEqJnxdZlswhmoDnASp71CP0LBQA19CFLvvevLnwib-PeMYbLfCYb87tF-QVAz9ztt6IO1xG7fgSqLfkN
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7xUKteWqBFLC3gA_SWJZv4ER-3wApaWPZQqr1ZtpOoqG2ywrsH-us7jrPLS1TiZimTxJ5MZj6P5wGwz7llBZVxJFKaRJQmNNII9aM0y2iGFrBnC5_vfDHkp1f065iNl4AtcmHqSav6uzgMhYIDCw_nbYHQxCHGPpzk5TKsshQtps_buxzdpUMmskW9NOKpGN9rKRTufWCDlvE9PiJSO2RKGbpZPFHMjbUZvIMf83mGIJNf3dnUdO3fRyUcX7yQNXjb4k_SD0TrsFRUG7DVd94jXv-5JZ9JMw4OD7cBr0Zh9B5OXNRmFZChL4Jcu9sK0aO7duS6Iv02loB8mTWuFjL6ifbRkbokF4jPUacSxLU37gNcDU6-H51GbROGyKYim_qNqsjzUrNCC2FjLVNjECTZUiKY6TGjpUmMza1Fpc80go8EAZivUSWNjK2J001Yqeqq2AIibC8tcUeaG467njI3RmiJOqPkVggRFx04mH8WZdsK5b5Rxm_VnJRnXAWOdWBvQTcJNTmeUOwj0xcXvSQoLwmKM6YSpGSZQrZ3YPs-2eNn7D6QiTuyzFchZBynMRcShf-kP2jRVVHPnOpJiiiTJh0gz1AgbvNHypxu_28Ke_B6dDxQ52fDbx_hTfAq-0CaT7AyvZkVOwiHpma3Ef5_6rACOw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=s-Process+Nucleosynthesis+in+Advanced+Burning+Phases+of+Massive+Stars&rft.jtitle=The+Astrophysical+journal&rft.au=The%2C+L-S&rft.au=El+Eid%2C+MF&rft.au=Meyer%2C+B+S&rft.date=2007-02-01&rft.issn=0004-637X&rft.volume=655&rft.issue=2&rft.spage=1058&rft.epage=1078&rft_id=info:doi/10.1086%2F509753&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon