Accurate detection of differential RNA processing
Deep transcriptome sequencing (RNA-Seq) has become a vital tool for studying the state of cells in the context of varying environments, genotypes and other factors. RNA-Seq profiling data enable identification of novel isoforms, quantification of known isoforms and detection of changes in transcript...
Saved in:
Published in | Nucleic acids research Vol. 41; no. 10; pp. 5189 - 5198 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
01.05.2013
|
Subjects | |
Online Access | Get full text |
ISSN | 0305-1048 1362-4962 1362-4962 |
DOI | 10.1093/nar/gkt211 |
Cover
Abstract | Deep transcriptome sequencing (RNA-Seq) has become a vital tool for studying the state of cells in the context of varying environments, genotypes and other factors. RNA-Seq profiling data enable identification of novel isoforms, quantification of known isoforms and detection of changes in transcriptional or RNA-processing activity. Existing approaches to detect differential isoform abundance between samples either require a complete isoform annotation or fall short in providing statistically robust and calibrated significance estimates. Here, we propose a suite of statistical tests to address these open needs: a parametric test that uses known isoform annotations to detect changes in relative isoform abundance and a non-parametric test that detects differential read coverages and can be applied when isoform annotations are not available. Both methods account for the discrete nature of read counts and the inherent biological variability. We demonstrate that these tests compare favorably to previous methods, both in terms of accuracy and statistical calibrations. We use these techniques to analyze RNA-Seq libraries from Arabidopsis thaliana and Drosophila melanogaster. The identified differential RNA processing events were consistent with RT-qPCR measurements and previous studies. The proposed toolkit is available from http://bioweb.me/rdiff and enables in-depth analyses of transcriptomes, with or without available isoform annotation. |
---|---|
AbstractList | Deep transcriptome sequencing (RNA-Seq) has become a vital tool for studying the state of cells in the context of varying environments, genotypes and other factors. RNA-Seq profiling data enable identification of novel isoforms, quantification of known isoforms and detection of changes in transcriptional or RNA-processing activity. Existing approaches to detect differential isoform abundance between samples either require a complete isoform annotation or fall short in providing statistically robust and calibrated significance estimates. Here, we propose a suite of statistical tests to address these open needs: a parametric test that uses known isoform annotations to detect changes in relative isoform abundance and a non-parametric test that detects differential read coverages and can be applied when isoform annotations are not available. Both methods account for the discrete nature of read counts and the inherent biological variability. We demonstrate that these tests compare favorably to previous methods, both in terms of accuracy and statistical calibrations. We use these techniques to analyze RNA-Seq libraries from
Arabidopsis thaliana
and
Drosophila melanogaster.
The identified differential RNA processing events were consistent with RT–qPCR measurements and previous studies. The proposed toolkit is available from
http://bioweb.me/rdiff
and enables in-depth analyses of transcriptomes, with or without available isoform annotation. Deep transcriptome sequencing (RNA-Seq) has become a vital tool for studying the state of cells in the context of varying environments, genotypes and other factors. RNA-Seq profiling data enable identification of novel isoforms, quantification of known isoforms and detection of changes in transcriptional or RNA-processing activity. Existing approaches to detect differential isoform abundance between samples either require a complete isoform annotation or fall short in providing statistically robust and calibrated significance estimates. Here, we propose a suite of statistical tests to address these open needs: a parametric test that uses known isoform annotations to detect changes in relative isoform abundance and a non-parametric test that detects differential read coverages and can be applied when isoform annotations are not available. Both methods account for the discrete nature of read counts and the inherent biological variability. We demonstrate that these tests compare favorably to previous methods, both in terms of accuracy and statistical calibrations. We use these techniques to analyze RNA-Seq libraries from Arabidopsis thaliana and Drosophila melanogaster. The identified differential RNA processing events were consistent with RT-qPCR measurements and previous studies. The proposed toolkit is available from http://bioweb.me/rdiff and enables in-depth analyses of transcriptomes, with or without available isoform annotation.Deep transcriptome sequencing (RNA-Seq) has become a vital tool for studying the state of cells in the context of varying environments, genotypes and other factors. RNA-Seq profiling data enable identification of novel isoforms, quantification of known isoforms and detection of changes in transcriptional or RNA-processing activity. Existing approaches to detect differential isoform abundance between samples either require a complete isoform annotation or fall short in providing statistically robust and calibrated significance estimates. Here, we propose a suite of statistical tests to address these open needs: a parametric test that uses known isoform annotations to detect changes in relative isoform abundance and a non-parametric test that detects differential read coverages and can be applied when isoform annotations are not available. Both methods account for the discrete nature of read counts and the inherent biological variability. We demonstrate that these tests compare favorably to previous methods, both in terms of accuracy and statistical calibrations. We use these techniques to analyze RNA-Seq libraries from Arabidopsis thaliana and Drosophila melanogaster. The identified differential RNA processing events were consistent with RT-qPCR measurements and previous studies. The proposed toolkit is available from http://bioweb.me/rdiff and enables in-depth analyses of transcriptomes, with or without available isoform annotation. Deep transcriptome sequencing (RNA-Seq) has become a vital tool for studying the state of cells in the context of varying environments, genotypes and other factors. RNA-Seq profiling data enable identification of novel isoforms, quantification of known isoforms and detection of changes in transcriptional or RNA-processing activity. Existing approaches to detect differential isoform abundance between samples either require a complete isoform annotation or fall short in providing statistically robust and calibrated significance estimates. Here, we propose a suite of statistical tests to address these open needs: a parametric test that uses known isoform annotations to detect changes in relative isoform abundance and a non-parametric test that detects differential read coverages and can be applied when isoform annotations are not available. Both methods account for the discrete nature of read counts and the inherent biological variability. We demonstrate that these tests compare favorably to previous methods, both in terms of accuracy and statistical calibrations. We use these techniques to analyze RNA-Seq libraries from Arabidopsis thaliana and Drosophila melanogaster. The identified differential RNA processing events were consistent with RT-qPCR measurements and previous studies. The proposed toolkit is available from http://bioweb.me/rdiff and enables in-depth analyses of transcriptomes, with or without available isoform annotation. |
Author | Kahles, André Bohnert, Regina Borgwardt, Karsten Wachter, Andreas Rätsch, Gunnar Drewe, Philipp Stegle, Oliver Hartmann, Lisa |
AuthorAffiliation | 1 Computational Biology Center, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA, 2 Friedrich Miescher Laboratory of the Max-Planck Society, Spemannstrasse 39, 72076 Tübingen, Germany, 3 Machine Learning and Computational Biology Research Group, Max Planck Institute for Intelligent Systems, Spemannstrasse 38, 72076 Tübingen, Germany, 4 Department of Molecular Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 38, 72076 Tübingen, Germany, 5 Center for Plant Mol. Biology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany and 6 Center for Bioinformatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany |
AuthorAffiliation_xml | – name: 1 Computational Biology Center, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA, 2 Friedrich Miescher Laboratory of the Max-Planck Society, Spemannstrasse 39, 72076 Tübingen, Germany, 3 Machine Learning and Computational Biology Research Group, Max Planck Institute for Intelligent Systems, Spemannstrasse 38, 72076 Tübingen, Germany, 4 Department of Molecular Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 38, 72076 Tübingen, Germany, 5 Center for Plant Mol. Biology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany and 6 Center for Bioinformatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany |
Author_xml | – sequence: 1 givenname: Philipp surname: Drewe fullname: Drewe, Philipp – sequence: 2 givenname: Oliver surname: Stegle fullname: Stegle, Oliver – sequence: 3 givenname: Lisa surname: Hartmann fullname: Hartmann, Lisa – sequence: 4 givenname: André surname: Kahles fullname: Kahles, André – sequence: 5 givenname: Regina surname: Bohnert fullname: Bohnert, Regina – sequence: 6 givenname: Andreas surname: Wachter fullname: Wachter, Andreas – sequence: 7 givenname: Karsten surname: Borgwardt fullname: Borgwardt, Karsten – sequence: 8 givenname: Gunnar surname: Rätsch fullname: Rätsch, Gunnar |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/23585274$$D View this record in MEDLINE/PubMed |
BookMark | eNptkU1LAzEQhoNU7Ide_AGyRxFqJ8ludvcilOIXFAXRc0izkxrdbmqyK_jvTWkVFS8zh3nmnZd5h6TXuAYJOaZwTqHkk0b5yfK1ZZTukQHlgo3TUrAeGQCHbEwhLfpkGMILAE1plh6QPuNZkbE8HRA61brzqsWkwhZ1a12TOJNU1hj02LRW1cnD3TRZe6cxBNssD8m-UXXAo10fkaery8fZzXh-f307m87HmudFGy1knFKuGeR5wWKFXACyAlDREgpEoasMzMJES4KxyjDDNAWmRWkANfIRudjqrrvFCisdzXhVy7W3K-U_pFNW_p409lku3bvkQqQF0ChwuhPw7q3D0MqVDRrrWjXouiBpCsBLkfINevLz1veRrz9F4GwLaO9C8Gi-EQpyE4KMIchtCBGGP7C2rdq8Nvq09X8rn83ziq4 |
CitedBy_id | crossref_primary_10_1186_s12859_014_0364_4 crossref_primary_10_1093_bioinformatics_btw585 crossref_primary_10_3390_ijms18091900 crossref_primary_10_1093_bioinformatics_btx790 crossref_primary_10_1097_RD9_0000000000000045 crossref_primary_10_12688_f1000research_155223_1 crossref_primary_10_1080_15476286_2015_1118604 crossref_primary_10_1093_bioinformatics_btu749 crossref_primary_10_1186_1471_2164_15_862 crossref_primary_10_1186_s13059_016_0881_8 crossref_primary_10_1038_s41467_019_14020_5 crossref_primary_10_1093_bioinformatics_btt442 crossref_primary_10_1016_j_microc_2020_105794 crossref_primary_10_1016_j_talanta_2021_122974 crossref_primary_10_3389_fpls_2022_1038109 crossref_primary_10_1016_j_tibs_2018_05_002 crossref_primary_10_1093_bioinformatics_btw076 crossref_primary_10_1186_s12859_016_1046_1 crossref_primary_10_1186_1471_2105_16_S2_A6 crossref_primary_10_1038_nature13485 crossref_primary_10_1093_bib_bby005 crossref_primary_10_1186_s12864_016_3059_6 crossref_primary_10_12659_MSMBR_892101 crossref_primary_10_1038_s41467_018_04295_5 crossref_primary_10_1038_s41598_022_15762_x |
Cites_doi | 10.1038/nature09322 10.1093/bioinformatics/btp612 10.1007/978-3-540-87361-7_5 10.1093/bioinformatics/btp616 10.1186/gb-2010-11-3-r25 10.1093/bioinformatics/btp113 10.1101/gr.133744.111 10.1101/gr.079558.108 10.1093/bioinformatics/bts260 10.1186/1471-2105-11-422 10.1093/nar/gkq448 10.1073/pnas.1530509100 10.1093/bioinformatics/btp544 10.1126/science.279.5355.1360 10.1093/bioinformatics/btl242 10.1101/gr.108662.110 10.1038/npre.2010.4437.1 10.1242/dev.126.10.2073 10.1093/bioinformatics/btp120 10.1093/nar/gkq041 10.1093/nar/gks666 10.1038/nature07509 10.1038/nrg2484 10.1038/nmeth.1529 10.1002/0471250953.bi1106s32 10.1093/bioinformatics/btm453 10.1093/bioinformatics/btr458 10.1038/nbt.1621 10.1038/nmeth.1528 10.7551/mitpress/7503.003.0069 10.1186/gb-2010-11-10-r106 10.1038/nmeth.1226 |
ContentType | Journal Article |
Copyright | The Author(s) 2013. Published by Oxford University Press. 2013 |
Copyright_xml | – notice: The Author(s) 2013. Published by Oxford University Press. 2013 |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/nar/gkt211 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology Chemistry |
EISSN | 1362-4962 |
EndPage | 5198 |
ExternalDocumentID | PMC3664801 23585274 10_1093_nar_gkt211 |
Genre | Validation Studies Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NCI NIH HHS grantid: U24 CA143840 |
GroupedDBID | --- -DZ -~X .55 .GJ .I3 0R~ 123 18M 1TH 29N 2WC 3O- 4.4 482 53G 5VS 5WA 70E 85S A8Z AAFWJ AAHBH AAMVS AAOGV AAPXW AAUQX AAVAP AAWDT AAYJJ AAYXX ABEJV ABGNP ABIME ABNGD ABPIB ABPTD ABQLI ABSMQ ABXVV ABZEO ACFRR ACGFO ACGFS ACIPB ACIWK ACNCT ACPQN ACPRK ACUKT ACUTJ ACVCV ACZBC ADBBV ADHZD AEGXH AEHUL AEKPW AENEX AENZO AFFNX AFPKN AFRAH AFSHK AFYAG AGKRT AGMDO AGQPQ AHMBA AIAGR ALMA_UNASSIGNED_HOLDINGS ALUQC AMNDL ANFBD AOIJS APJGH AQDSO ASAOO ASPBG ATDFG ATTQO AVWKF AZFZN BAWUL BAYMD BCNDV BEYMZ C1A CAG CIDKT CITATION COF CS3 CXTWN CZ4 D0S DFGAJ DIK DU5 D~K E3Z EBD EBS EJD ELUNK EMOBN F5P FEDTE GROUPED_DOAJ GX1 H13 HH5 HVGLF HYE HZ~ H~9 IH2 KAQDR KQ8 KSI MBTAY MVM NTWIH OAWHX OBC OBS OEB OES OJQWA OVD OVT O~Y P2P PB- PEELM PQQKQ QBD R44 RD5 RNI RNS ROL ROZ RPM RXO RZF RZO SJN SV3 TCN TEORI TN5 TOX TR2 UHB WG7 WOQ X7H X7M XSB XSW YSK ZKX ZXP ~91 ~D7 ~KM ABQTQ CGR CUY CVF ECM EIF NPM 7X8 ESTFP 5PM |
ID | FETCH-LOGICAL-c378t-4953113c2077822070760e280ea1908ee6cd50fbf415622df2f2c102c69f0ece3 |
ISSN | 0305-1048 1362-4962 |
IngestDate | Thu Aug 21 14:05:56 EDT 2025 Mon Sep 08 12:35:31 EDT 2025 Thu Apr 03 06:52:46 EDT 2025 Tue Jul 01 01:41:22 EDT 2025 Thu Apr 24 23:09:39 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Language | English |
License | http://creativecommons.org/licenses/by-nc/3.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c378t-4953113c2077822070760e280ea1908ee6cd50fbf415622df2f2c102c69f0ece3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Undefined-3 |
OpenAccessLink | http://dx.doi.org/10.1093/nar/gkt211 |
PMID | 23585274 |
PQID | 1400396431 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_3664801 proquest_miscellaneous_1400396431 pubmed_primary_23585274 crossref_primary_10_1093_nar_gkt211 crossref_citationtrail_10_1093_nar_gkt211 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2013-05-01 |
PublicationDateYYYYMMDD | 2013-05-01 |
PublicationDate_xml | – month: 05 year: 2013 text: 2013-05-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Nucleic acids research |
PublicationTitleAlternate | Nucleic Acids Res |
PublicationYear | 2013 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Hiller ( key 20170512115039_gkt211-B16) 2009; 25 Trapnell ( key 20170512115039_gkt211-B29) 2010; 28 Wang ( key 20170512115039_gkt211-B31) 2008; 456 Guo ( key 20170512115039_gkt211-B25) 1998; 279 Robinson ( key 20170512115039_gkt211-B20) 2010; 26 Mockler ( key 20170512115039_gkt211-B26) 1999; 126 Anders ( key 20170512115039_gkt211-B7) 2010; 11 Bohnert ( key 20170512115039_gkt211-B10) 2010; 38 Katz ( key 20170512115039_gkt211-B13) 2010; 7 Wang ( key 20170512115039_gkt211-B1) 2009; 10 Marioni ( key 20170512115039_gkt211-B3) 2008; 18 Trapnell ( key 20170512115039_gkt211-B32) 2009; 25 Robinson ( key 20170512115039_gkt211-B5) 2007; 23 Glaus ( key 20170512115039_gkt211-B14) 2012; 28 Loader ( key 20170512115039_gkt211-B21) 2007 Robinson ( key 20170512115039_gkt211-B6) 2010; 11 Griebel ( key 20170512115039_gkt211-B11) 2012; 40 Anders ( key 20170512115039_gkt211-B17) 2012; 22 Bonferroni ( key 20170512115039_gkt211-B22) 1936; 8 Lacroix ( key 20170512115039_gkt211-B15) 2008 Wang ( key 20170512115039_gkt211-B4) 2010; 26 Gretton ( key 20170512115039_gkt211-B23) 2007 Kertesz ( key 20170512115039_gkt211-B33) 2010; 467 Underwood ( key 20170512115039_gkt211-B34) 2010; 7 Borgwardt ( key 20170512115039_gkt211-B24) 2006; 22 Hardcastle ( key 20170512115039_gkt211-B8) 2010; 11 Storey ( key 20170512115039_gkt211-B28) 2003; 100 Singh ( key 20170512115039_gkt211-B19) 2011; 27 Mortazavi ( key 20170512115039_gkt211-B2) 2008; 5 Richard ( key 20170512115039_gkt211-B12) 2010; 38 Brooks ( key 20170512115039_gkt211-B30) 2011; 21 Jiang ( key 20170512115039_gkt211-B9) 2009; 25 Stegle ( key 20170512115039_gkt211-B18) 2010 Jean ( key 20170512115039_gkt211-B27) 2010 17881408 - Bioinformatics. 2007 Nov 1;23(21):2881-7 20979621 - Genome Biol. 2010;11(10):R106 22563066 - Bioinformatics. 2012 Jul 1;28(13):1721-8 19015660 - Nat Rev Genet. 2009 Jan;10(1):57-63 18978772 - Nature. 2008 Nov 27;456(7221):470-6 19762346 - Bioinformatics. 2009 Dec 1;25(23):3056-9 19289445 - Bioinformatics. 2009 May 1;25(9):1105-11 20811459 - Nature. 2010 Sep 2;467(7311):103-7 9478898 - Science. 1998 Feb 27;279(5355):1360-3 20551130 - Nucleic Acids Res. 2010 Jul;38(Web Server issue):W348-51 20698981 - BMC Bioinformatics. 2010;11:422 21057495 - Nat Methods. 2010 Dec;7(12):995-1001 12883005 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5 20150413 - Nucleic Acids Res. 2010 Jun;38(10):e112 10207133 - Development. 1999 May;126(10):2073-82 19910308 - Bioinformatics. 2010 Jan 1;26(1):139-40 18516045 - Nat Methods. 2008 Jul;5(7):621-8 20436464 - Nat Biotechnol. 2010 May;28(5):511-5 19244387 - Bioinformatics. 2009 Apr 15;25(8):1026-32 20196867 - Genome Biol. 2010;11(3):R25 20921232 - Genome Res. 2011 Feb;21(2):193-202 21057496 - Nat Methods. 2010 Dec;7(12):1009-15 16873512 - Bioinformatics. 2006 Jul 15;22(14):e49-57 22962361 - Nucleic Acids Res. 2012 Nov 1;40(20):10073-83 21824971 - Bioinformatics. 2011 Oct 1;27(19):2633-40 18550803 - Genome Res. 2008 Sep;18(9):1509-17 19855105 - Bioinformatics. 2010 Jan 1;26(1):136-8 22722343 - Genome Res. 2012 Oct;22(10):2008-17 21154708 - Curr Protoc Bioinformatics. 2010 Dec;Chapter 11:Unit 11.6 |
References_xml | – volume: 467 start-page: 103 year: 2010 ident: key 20170512115039_gkt211-B33 article-title: Genome-wide measurement of RNA secondary structure in yeast publication-title: Nature doi: 10.1038/nature09322 – volume: 26 start-page: 136 year: 2010 ident: key 20170512115039_gkt211-B4 article-title: DEGseq: an R package for identifying differentially expressed genes from RNA-seq data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp612 – volume-title: Algorithms in Bioinformatics. Vol. 5251 of Lecture Notes in Computer Science year: 2008 ident: key 20170512115039_gkt211-B15 article-title: Exact transcriptome reconstruction from short sequence reads doi: 10.1007/978-3-540-87361-7_5 – volume: 26 start-page: 139 year: 2010 ident: key 20170512115039_gkt211-B20 article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp616 – volume: 11 start-page: R25 year: 2010 ident: key 20170512115039_gkt211-B6 article-title: A scaling normalization method for differential expression analysis of RNA-seq data publication-title: Genome Biol. doi: 10.1186/gb-2010-11-3-r25 – volume: 25 start-page: 1026 year: 2009 ident: key 20170512115039_gkt211-B9 article-title: Statistical inferences for isoform expression in RNA-Seq publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp113 – volume: 22 start-page: 2008 year: 2012 ident: key 20170512115039_gkt211-B17 article-title: Detecting differential usage of exons from RNA-seq data publication-title: Genome Res. doi: 10.1101/gr.133744.111 – volume: 18 start-page: 1509 year: 2008 ident: key 20170512115039_gkt211-B3 article-title: RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays publication-title: Genome Res. doi: 10.1101/gr.079558.108 – volume: 28 start-page: 1721 year: 2012 ident: key 20170512115039_gkt211-B14 article-title: Identifying differentially expressed transcripts from RNA-seq data with biological variation publication-title: Bioinformatics doi: 10.1093/bioinformatics/bts260 – volume: 11 start-page: 422 year: 2010 ident: key 20170512115039_gkt211-B8 article-title: baySeq: empirical Bayesian methods for identifying differential expression in sequence count data publication-title: BMC Bioinformatics doi: 10.1186/1471-2105-11-422 – year: 2007 ident: key 20170512115039_gkt211-B21 article-title: locfit: local regression, likelihood and density estimation – volume: 38 start-page: W348 year: 2010 ident: key 20170512115039_gkt211-B10 article-title: rQuant.web: a tool for RNA-Seq-based transcript quantitation publication-title: Nucleic Acids Research doi: 10.1093/nar/gkq448 – volume: 100 start-page: 9440 year: 2003 ident: key 20170512115039_gkt211-B28 article-title: Statistical significance for genome-wide experiments publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1530509100 – volume: 25 start-page: 3056 year: 2009 ident: key 20170512115039_gkt211-B16 article-title: Identifiability of isoform deconvolution from junction arrays and RNA-Seq publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp544 – volume: 279 start-page: 1360 year: 1998 ident: key 20170512115039_gkt211-B25 article-title: Regulation of flowering time by Arabidopsis photoreceptors publication-title: Science doi: 10.1126/science.279.5355.1360 – volume: 22 start-page: e49 year: 2006 ident: key 20170512115039_gkt211-B24 article-title: Integrating structured biological data by kernel maximum mean discrepancy publication-title: Bioinformatics doi: 10.1093/bioinformatics/btl242 – volume: 21 start-page: 193 year: 2011 ident: key 20170512115039_gkt211-B30 article-title: Conservation of an RNA regulatory map between Drosophila and mammals publication-title: Genome Res. doi: 10.1101/gr.108662.110 – year: 2010 ident: key 20170512115039_gkt211-B18 article-title: Statistical tests for detecting differential RNA-transcript expression from read counts publication-title: Nat. Prec. doi: 10.1038/npre.2010.4437.1 – volume: 126 start-page: 2073 year: 1999 ident: key 20170512115039_gkt211-B26 article-title: Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction publication-title: Development doi: 10.1242/dev.126.10.2073 – volume: 8 start-page: 3 year: 1936 ident: key 20170512115039_gkt211-B22 article-title: Teoria statistica delle classi e calcolo delle probabilit publication-title: Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze – volume: 25 start-page: 1105 year: 2009 ident: key 20170512115039_gkt211-B32 article-title: TopHat: discovering splice junctions with RNA-Seq publication-title: Bioinformatics doi: 10.1093/bioinformatics/btp120 – volume: 38 start-page: e112 year: 2010 ident: key 20170512115039_gkt211-B12 article-title: Prediction of alternative isoforms from exon expression levels in RNA-Seq experiments publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkq041 – volume: 40 start-page: 10073 year: 2012 ident: key 20170512115039_gkt211-B11 article-title: Modelling and simulating generic RNA-Seq experiments with the flux simulator publication-title: Nucleic Acids Res. doi: 10.1093/nar/gks666 – volume: 456 start-page: 470 year: 2008 ident: key 20170512115039_gkt211-B31 article-title: Alternative isoform regulation in human tissue transcriptomes publication-title: Nature doi: 10.1038/nature07509 – volume: 10 start-page: 57 year: 2009 ident: key 20170512115039_gkt211-B1 article-title: RNA-Seq: a revolutionary tool for transcriptomics publication-title: Nat. Rev. Genet. doi: 10.1038/nrg2484 – volume: 7 start-page: 995 year: 2010 ident: key 20170512115039_gkt211-B34 article-title: FragSeq: transcriptome-wide RNA structure probing using high-throughput sequencing publication-title: Nat. Methods doi: 10.1038/nmeth.1529 – year: 2010 ident: key 20170512115039_gkt211-B27 article-title: RNA-Seq read alignments with PALMapper publication-title: Curr. Protoc. Bioinform. doi: 10.1002/0471250953.bi1106s32 – volume: 23 start-page: 2881 year: 2007 ident: key 20170512115039_gkt211-B5 article-title: Moderated statistical tests for assessing differences in tag abundance publication-title: Bioinformatics doi: 10.1093/bioinformatics/btm453 – volume: 27 start-page: 2633 year: 2011 ident: key 20170512115039_gkt211-B19 article-title: FDM: a graph-based statistical method to detect differential transcription using RNA-seq data publication-title: Bioinformatics doi: 10.1093/bioinformatics/btr458 – volume: 28 start-page: 511 year: 2010 ident: key 20170512115039_gkt211-B29 article-title: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation publication-title: Nat. Biotechnol. doi: 10.1038/nbt.1621 – volume: 7 start-page: 1009 year: 2010 ident: key 20170512115039_gkt211-B13 article-title: Analysis and design of RNA sequencing experiments for identifying isoform regulation publication-title: Nat. Methods doi: 10.1038/nmeth.1528 – start-page: 513 volume-title: Advances in Neural Information Processing Systems 19: Proceedings of the 2006 Conference year: 2007 ident: key 20170512115039_gkt211-B23 article-title: A kernel method for the two-sample-problem doi: 10.7551/mitpress/7503.003.0069 – volume: 11 start-page: R106 year: 2010 ident: key 20170512115039_gkt211-B7 article-title: Differential expression analysis for sequence count data publication-title: Genome Biol. doi: 10.1186/gb-2010-11-10-r106 – volume: 5 start-page: 621 year: 2008 ident: key 20170512115039_gkt211-B2 article-title: Mapping and quantifying mammalian transcriptomes by RNA-Seq publication-title: Nat. Methods doi: 10.1038/nmeth.1226 – reference: 16873512 - Bioinformatics. 2006 Jul 15;22(14):e49-57 – reference: 22722343 - Genome Res. 2012 Oct;22(10):2008-17 – reference: 20150413 - Nucleic Acids Res. 2010 Jun;38(10):e112 – reference: 20811459 - Nature. 2010 Sep 2;467(7311):103-7 – reference: 19244387 - Bioinformatics. 2009 Apr 15;25(8):1026-32 – reference: 21057495 - Nat Methods. 2010 Dec;7(12):995-1001 – reference: 22563066 - Bioinformatics. 2012 Jul 1;28(13):1721-8 – reference: 10207133 - Development. 1999 May;126(10):2073-82 – reference: 18978772 - Nature. 2008 Nov 27;456(7221):470-6 – reference: 21154708 - Curr Protoc Bioinformatics. 2010 Dec;Chapter 11:Unit 11.6 – reference: 18516045 - Nat Methods. 2008 Jul;5(7):621-8 – reference: 22962361 - Nucleic Acids Res. 2012 Nov 1;40(20):10073-83 – reference: 19910308 - Bioinformatics. 2010 Jan 1;26(1):139-40 – reference: 19855105 - Bioinformatics. 2010 Jan 1;26(1):136-8 – reference: 20551130 - Nucleic Acids Res. 2010 Jul;38(Web Server issue):W348-51 – reference: 17881408 - Bioinformatics. 2007 Nov 1;23(21):2881-7 – reference: 21057496 - Nat Methods. 2010 Dec;7(12):1009-15 – reference: 18550803 - Genome Res. 2008 Sep;18(9):1509-17 – reference: 20698981 - BMC Bioinformatics. 2010;11:422 – reference: 12883005 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5 – reference: 9478898 - Science. 1998 Feb 27;279(5355):1360-3 – reference: 20436464 - Nat Biotechnol. 2010 May;28(5):511-5 – reference: 19289445 - Bioinformatics. 2009 May 1;25(9):1105-11 – reference: 19762346 - Bioinformatics. 2009 Dec 1;25(23):3056-9 – reference: 20979621 - Genome Biol. 2010;11(10):R106 – reference: 19015660 - Nat Rev Genet. 2009 Jan;10(1):57-63 – reference: 20921232 - Genome Res. 2011 Feb;21(2):193-202 – reference: 21824971 - Bioinformatics. 2011 Oct 1;27(19):2633-40 – reference: 20196867 - Genome Biol. 2010;11(3):R25 |
SSID | ssj0014154 |
Score | 2.2592685 |
Snippet | Deep transcriptome sequencing (RNA-Seq) has become a vital tool for studying the state of cells in the context of varying environments, genotypes and other... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 5189 |
SubjectTerms | Algorithms Animals Arabidopsis - genetics Arabidopsis - metabolism Computational Biology Data Interpretation, Statistical Drosophila melanogaster - genetics Drosophila melanogaster - metabolism Gene Expression Profiling Molecular Sequence Annotation Reverse Transcriptase Polymerase Chain Reaction RNA Isoforms - metabolism RNA Processing, Post-Transcriptional |
Title | Accurate detection of differential RNA processing |
URI | https://www.ncbi.nlm.nih.gov/pubmed/23585274 https://www.proquest.com/docview/1400396431 https://pubmed.ncbi.nlm.nih.gov/PMC3664801 |
Volume | 41 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9NAEF_0fNAX0Ts_6scRUQQ54m02H5s8lqPl0NoDaaFvId1MzupdWtoton-9M9lsknp9OH0JZbtMw84w_c3szG8Ye5fJKJRJlrmQhNwNhPLdJA_AxVAEtZ8nHDg1J38ZR-fT4NMsnLVDEKvuEj3_qH7v7Sv5H63iGuqVumT_QbONUFzAz6hffKKG8XkrHfeV2hLVw0kOGpTFfnbmiaZk-Ndx_2RlmgHsn9R323GL0oitVS1yujvopLUI2K7hJ7QZl1WTidFwaSqQL66opKP1YGt9XQ9cHi02jbP_TOOVN7Z00lzLdzMNXqeur3aOVYdVUntP2LNWe9TA61oO7_jH0DMDg244bkNqVVJR-fDyhxa1B97hxx5fpMPpaJROBrPJXXZPSERL6MEkHzT3RghHzBjj-q0sIW3in6LsUyN5F4LciCv-Lo_t4I3JI_awDhScvtH6Y3YHykN21C8zvbz-5bx3qtLd6k7kkN0_s2P7jphnjcJpjMJZFk7XKBw0Cqc1iidsOhxMzs7dei6Gq3wZa5dKgj3PV4JLwndE2BRxEDGHDOFdDBCpPOTFvKDgXIi8EIVQCCRVlBQcFPhP2UG5LOE5c8Iwl1nAVTjPeTAHkaA_l3EWFBBkRQxxj32wR5WqmjSeZpdcpaZ4wU_xWFNzrD32ttm7MlQpe3e9sSee4snQ9VRWwnK7wSCUGsURIeOeZ0YDjRxq6A6FDHpM7uim2UAs6bvflItvFVu6H0VEkfTiFr_7kj1o7f4VO9DrLbxGzKnnx5WZHVcZmz_kpoTb |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accurate+detection+of+differential+RNA+processing&rft.jtitle=Nucleic+acids+research&rft.au=Drewe%2C+Philipp&rft.au=Stegle%2C+Oliver&rft.au=Hartmann%2C+Lisa&rft.au=Kahles%2C+Andr%C3%A9&rft.date=2013-05-01&rft.issn=1362-4962&rft.eissn=1362-4962&rft.volume=41&rft.issue=10&rft.spage=5189&rft_id=info:doi/10.1093%2Fnar%2Fgkt211&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon |