Accurate detection of differential RNA processing

Deep transcriptome sequencing (RNA-Seq) has become a vital tool for studying the state of cells in the context of varying environments, genotypes and other factors. RNA-Seq profiling data enable identification of novel isoforms, quantification of known isoforms and detection of changes in transcript...

Full description

Saved in:
Bibliographic Details
Published inNucleic acids research Vol. 41; no. 10; pp. 5189 - 5198
Main Authors Drewe, Philipp, Stegle, Oliver, Hartmann, Lisa, Kahles, André, Bohnert, Regina, Wachter, Andreas, Borgwardt, Karsten, Rätsch, Gunnar
Format Journal Article
LanguageEnglish
Published England Oxford University Press 01.05.2013
Subjects
Online AccessGet full text
ISSN0305-1048
1362-4962
1362-4962
DOI10.1093/nar/gkt211

Cover

Abstract Deep transcriptome sequencing (RNA-Seq) has become a vital tool for studying the state of cells in the context of varying environments, genotypes and other factors. RNA-Seq profiling data enable identification of novel isoforms, quantification of known isoforms and detection of changes in transcriptional or RNA-processing activity. Existing approaches to detect differential isoform abundance between samples either require a complete isoform annotation or fall short in providing statistically robust and calibrated significance estimates. Here, we propose a suite of statistical tests to address these open needs: a parametric test that uses known isoform annotations to detect changes in relative isoform abundance and a non-parametric test that detects differential read coverages and can be applied when isoform annotations are not available. Both methods account for the discrete nature of read counts and the inherent biological variability. We demonstrate that these tests compare favorably to previous methods, both in terms of accuracy and statistical calibrations. We use these techniques to analyze RNA-Seq libraries from Arabidopsis thaliana and Drosophila melanogaster. The identified differential RNA processing events were consistent with RT-qPCR measurements and previous studies. The proposed toolkit is available from http://bioweb.me/rdiff and enables in-depth analyses of transcriptomes, with or without available isoform annotation.
AbstractList Deep transcriptome sequencing (RNA-Seq) has become a vital tool for studying the state of cells in the context of varying environments, genotypes and other factors. RNA-Seq profiling data enable identification of novel isoforms, quantification of known isoforms and detection of changes in transcriptional or RNA-processing activity. Existing approaches to detect differential isoform abundance between samples either require a complete isoform annotation or fall short in providing statistically robust and calibrated significance estimates. Here, we propose a suite of statistical tests to address these open needs: a parametric test that uses known isoform annotations to detect changes in relative isoform abundance and a non-parametric test that detects differential read coverages and can be applied when isoform annotations are not available. Both methods account for the discrete nature of read counts and the inherent biological variability. We demonstrate that these tests compare favorably to previous methods, both in terms of accuracy and statistical calibrations. We use these techniques to analyze RNA-Seq libraries from Arabidopsis thaliana and Drosophila melanogaster. The identified differential RNA processing events were consistent with RT–qPCR measurements and previous studies. The proposed toolkit is available from http://bioweb.me/rdiff and enables in-depth analyses of transcriptomes, with or without available isoform annotation.
Deep transcriptome sequencing (RNA-Seq) has become a vital tool for studying the state of cells in the context of varying environments, genotypes and other factors. RNA-Seq profiling data enable identification of novel isoforms, quantification of known isoforms and detection of changes in transcriptional or RNA-processing activity. Existing approaches to detect differential isoform abundance between samples either require a complete isoform annotation or fall short in providing statistically robust and calibrated significance estimates. Here, we propose a suite of statistical tests to address these open needs: a parametric test that uses known isoform annotations to detect changes in relative isoform abundance and a non-parametric test that detects differential read coverages and can be applied when isoform annotations are not available. Both methods account for the discrete nature of read counts and the inherent biological variability. We demonstrate that these tests compare favorably to previous methods, both in terms of accuracy and statistical calibrations. We use these techniques to analyze RNA-Seq libraries from Arabidopsis thaliana and Drosophila melanogaster. The identified differential RNA processing events were consistent with RT-qPCR measurements and previous studies. The proposed toolkit is available from http://bioweb.me/rdiff and enables in-depth analyses of transcriptomes, with or without available isoform annotation.Deep transcriptome sequencing (RNA-Seq) has become a vital tool for studying the state of cells in the context of varying environments, genotypes and other factors. RNA-Seq profiling data enable identification of novel isoforms, quantification of known isoforms and detection of changes in transcriptional or RNA-processing activity. Existing approaches to detect differential isoform abundance between samples either require a complete isoform annotation or fall short in providing statistically robust and calibrated significance estimates. Here, we propose a suite of statistical tests to address these open needs: a parametric test that uses known isoform annotations to detect changes in relative isoform abundance and a non-parametric test that detects differential read coverages and can be applied when isoform annotations are not available. Both methods account for the discrete nature of read counts and the inherent biological variability. We demonstrate that these tests compare favorably to previous methods, both in terms of accuracy and statistical calibrations. We use these techniques to analyze RNA-Seq libraries from Arabidopsis thaliana and Drosophila melanogaster. The identified differential RNA processing events were consistent with RT-qPCR measurements and previous studies. The proposed toolkit is available from http://bioweb.me/rdiff and enables in-depth analyses of transcriptomes, with or without available isoform annotation.
Deep transcriptome sequencing (RNA-Seq) has become a vital tool for studying the state of cells in the context of varying environments, genotypes and other factors. RNA-Seq profiling data enable identification of novel isoforms, quantification of known isoforms and detection of changes in transcriptional or RNA-processing activity. Existing approaches to detect differential isoform abundance between samples either require a complete isoform annotation or fall short in providing statistically robust and calibrated significance estimates. Here, we propose a suite of statistical tests to address these open needs: a parametric test that uses known isoform annotations to detect changes in relative isoform abundance and a non-parametric test that detects differential read coverages and can be applied when isoform annotations are not available. Both methods account for the discrete nature of read counts and the inherent biological variability. We demonstrate that these tests compare favorably to previous methods, both in terms of accuracy and statistical calibrations. We use these techniques to analyze RNA-Seq libraries from Arabidopsis thaliana and Drosophila melanogaster. The identified differential RNA processing events were consistent with RT-qPCR measurements and previous studies. The proposed toolkit is available from http://bioweb.me/rdiff and enables in-depth analyses of transcriptomes, with or without available isoform annotation.
Author Kahles, André
Bohnert, Regina
Borgwardt, Karsten
Wachter, Andreas
Rätsch, Gunnar
Drewe, Philipp
Stegle, Oliver
Hartmann, Lisa
AuthorAffiliation 1 Computational Biology Center, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA, 2 Friedrich Miescher Laboratory of the Max-Planck Society, Spemannstrasse 39, 72076 Tübingen, Germany, 3 Machine Learning and Computational Biology Research Group, Max Planck Institute for Intelligent Systems, Spemannstrasse 38, 72076 Tübingen, Germany, 4 Department of Molecular Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 38, 72076 Tübingen, Germany, 5 Center for Plant Mol. Biology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany and 6 Center for Bioinformatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany
AuthorAffiliation_xml – name: 1 Computational Biology Center, Sloan-Kettering Institute, 1275 York Avenue, New York, NY 10065, USA, 2 Friedrich Miescher Laboratory of the Max-Planck Society, Spemannstrasse 39, 72076 Tübingen, Germany, 3 Machine Learning and Computational Biology Research Group, Max Planck Institute for Intelligent Systems, Spemannstrasse 38, 72076 Tübingen, Germany, 4 Department of Molecular Biology, Max Planck Institute for Developmental Biology, Spemannstrasse 38, 72076 Tübingen, Germany, 5 Center for Plant Mol. Biology, University of Tübingen, Auf der Morgenstelle 28, 72076 Tübingen, Germany and 6 Center for Bioinformatics, University of Tübingen, Sand 14, 72076 Tübingen, Germany
Author_xml – sequence: 1
  givenname: Philipp
  surname: Drewe
  fullname: Drewe, Philipp
– sequence: 2
  givenname: Oliver
  surname: Stegle
  fullname: Stegle, Oliver
– sequence: 3
  givenname: Lisa
  surname: Hartmann
  fullname: Hartmann, Lisa
– sequence: 4
  givenname: André
  surname: Kahles
  fullname: Kahles, André
– sequence: 5
  givenname: Regina
  surname: Bohnert
  fullname: Bohnert, Regina
– sequence: 6
  givenname: Andreas
  surname: Wachter
  fullname: Wachter, Andreas
– sequence: 7
  givenname: Karsten
  surname: Borgwardt
  fullname: Borgwardt, Karsten
– sequence: 8
  givenname: Gunnar
  surname: Rätsch
  fullname: Rätsch, Gunnar
BackLink https://www.ncbi.nlm.nih.gov/pubmed/23585274$$D View this record in MEDLINE/PubMed
BookMark eNptkU1LAzEQhoNU7Ide_AGyRxFqJ8ludvcilOIXFAXRc0izkxrdbmqyK_jvTWkVFS8zh3nmnZd5h6TXuAYJOaZwTqHkk0b5yfK1ZZTukQHlgo3TUrAeGQCHbEwhLfpkGMILAE1plh6QPuNZkbE8HRA61brzqsWkwhZ1a12TOJNU1hj02LRW1cnD3TRZe6cxBNssD8m-UXXAo10fkaery8fZzXh-f307m87HmudFGy1knFKuGeR5wWKFXACyAlDREgpEoasMzMJES4KxyjDDNAWmRWkANfIRudjqrrvFCisdzXhVy7W3K-U_pFNW_p409lku3bvkQqQF0ChwuhPw7q3D0MqVDRrrWjXouiBpCsBLkfINevLz1veRrz9F4GwLaO9C8Gi-EQpyE4KMIchtCBGGP7C2rdq8Nvq09X8rn83ziq4
CitedBy_id crossref_primary_10_1186_s12859_014_0364_4
crossref_primary_10_1093_bioinformatics_btw585
crossref_primary_10_3390_ijms18091900
crossref_primary_10_1093_bioinformatics_btx790
crossref_primary_10_1097_RD9_0000000000000045
crossref_primary_10_12688_f1000research_155223_1
crossref_primary_10_1080_15476286_2015_1118604
crossref_primary_10_1093_bioinformatics_btu749
crossref_primary_10_1186_1471_2164_15_862
crossref_primary_10_1186_s13059_016_0881_8
crossref_primary_10_1038_s41467_019_14020_5
crossref_primary_10_1093_bioinformatics_btt442
crossref_primary_10_1016_j_microc_2020_105794
crossref_primary_10_1016_j_talanta_2021_122974
crossref_primary_10_3389_fpls_2022_1038109
crossref_primary_10_1016_j_tibs_2018_05_002
crossref_primary_10_1093_bioinformatics_btw076
crossref_primary_10_1186_s12859_016_1046_1
crossref_primary_10_1186_1471_2105_16_S2_A6
crossref_primary_10_1038_nature13485
crossref_primary_10_1093_bib_bby005
crossref_primary_10_1186_s12864_016_3059_6
crossref_primary_10_12659_MSMBR_892101
crossref_primary_10_1038_s41467_018_04295_5
crossref_primary_10_1038_s41598_022_15762_x
Cites_doi 10.1038/nature09322
10.1093/bioinformatics/btp612
10.1007/978-3-540-87361-7_5
10.1093/bioinformatics/btp616
10.1186/gb-2010-11-3-r25
10.1093/bioinformatics/btp113
10.1101/gr.133744.111
10.1101/gr.079558.108
10.1093/bioinformatics/bts260
10.1186/1471-2105-11-422
10.1093/nar/gkq448
10.1073/pnas.1530509100
10.1093/bioinformatics/btp544
10.1126/science.279.5355.1360
10.1093/bioinformatics/btl242
10.1101/gr.108662.110
10.1038/npre.2010.4437.1
10.1242/dev.126.10.2073
10.1093/bioinformatics/btp120
10.1093/nar/gkq041
10.1093/nar/gks666
10.1038/nature07509
10.1038/nrg2484
10.1038/nmeth.1529
10.1002/0471250953.bi1106s32
10.1093/bioinformatics/btm453
10.1093/bioinformatics/btr458
10.1038/nbt.1621
10.1038/nmeth.1528
10.7551/mitpress/7503.003.0069
10.1186/gb-2010-11-10-r106
10.1038/nmeth.1226
ContentType Journal Article
Copyright The Author(s) 2013. Published by Oxford University Press. 2013
Copyright_xml – notice: The Author(s) 2013. Published by Oxford University Press. 2013
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/nar/gkt211
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
Chemistry
EISSN 1362-4962
EndPage 5198
ExternalDocumentID PMC3664801
23585274
10_1093_nar_gkt211
Genre Validation Studies
Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NCI NIH HHS
  grantid: U24 CA143840
GroupedDBID ---
-DZ
-~X
.55
.GJ
.I3
0R~
123
18M
1TH
29N
2WC
3O-
4.4
482
53G
5VS
5WA
70E
85S
A8Z
AAFWJ
AAHBH
AAMVS
AAOGV
AAPXW
AAUQX
AAVAP
AAWDT
AAYJJ
AAYXX
ABEJV
ABGNP
ABIME
ABNGD
ABPIB
ABPTD
ABQLI
ABSMQ
ABXVV
ABZEO
ACFRR
ACGFO
ACGFS
ACIPB
ACIWK
ACNCT
ACPQN
ACPRK
ACUKT
ACUTJ
ACVCV
ACZBC
ADBBV
ADHZD
AEGXH
AEHUL
AEKPW
AENEX
AENZO
AFFNX
AFPKN
AFRAH
AFSHK
AFYAG
AGKRT
AGMDO
AGQPQ
AHMBA
AIAGR
ALMA_UNASSIGNED_HOLDINGS
ALUQC
AMNDL
ANFBD
AOIJS
APJGH
AQDSO
ASAOO
ASPBG
ATDFG
ATTQO
AVWKF
AZFZN
BAWUL
BAYMD
BCNDV
BEYMZ
C1A
CAG
CIDKT
CITATION
COF
CS3
CXTWN
CZ4
D0S
DFGAJ
DIK
DU5
D~K
E3Z
EBD
EBS
EJD
ELUNK
EMOBN
F5P
FEDTE
GROUPED_DOAJ
GX1
H13
HH5
HVGLF
HYE
HZ~
H~9
IH2
KAQDR
KQ8
KSI
MBTAY
MVM
NTWIH
OAWHX
OBC
OBS
OEB
OES
OJQWA
OVD
OVT
O~Y
P2P
PB-
PEELM
PQQKQ
QBD
R44
RD5
RNI
RNS
ROL
ROZ
RPM
RXO
RZF
RZO
SJN
SV3
TCN
TEORI
TN5
TOX
TR2
UHB
WG7
WOQ
X7H
X7M
XSB
XSW
YSK
ZKX
ZXP
~91
~D7
~KM
ABQTQ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ESTFP
5PM
ID FETCH-LOGICAL-c378t-4953113c2077822070760e280ea1908ee6cd50fbf415622df2f2c102c69f0ece3
ISSN 0305-1048
1362-4962
IngestDate Thu Aug 21 14:05:56 EDT 2025
Mon Sep 08 12:35:31 EDT 2025
Thu Apr 03 06:52:46 EDT 2025
Tue Jul 01 01:41:22 EDT 2025
Thu Apr 24 23:09:39 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Language English
License http://creativecommons.org/licenses/by-nc/3.0
This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c378t-4953113c2077822070760e280ea1908ee6cd50fbf415622df2f2c102c69f0ece3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Undefined-3
OpenAccessLink http://dx.doi.org/10.1093/nar/gkt211
PMID 23585274
PQID 1400396431
PQPubID 23479
PageCount 10
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_3664801
proquest_miscellaneous_1400396431
pubmed_primary_23585274
crossref_primary_10_1093_nar_gkt211
crossref_citationtrail_10_1093_nar_gkt211
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2013-05-01
PublicationDateYYYYMMDD 2013-05-01
PublicationDate_xml – month: 05
  year: 2013
  text: 2013-05-01
  day: 01
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Nucleic acids research
PublicationTitleAlternate Nucleic Acids Res
PublicationYear 2013
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Hiller ( key 20170512115039_gkt211-B16) 2009; 25
Trapnell ( key 20170512115039_gkt211-B29) 2010; 28
Wang ( key 20170512115039_gkt211-B31) 2008; 456
Guo ( key 20170512115039_gkt211-B25) 1998; 279
Robinson ( key 20170512115039_gkt211-B20) 2010; 26
Mockler ( key 20170512115039_gkt211-B26) 1999; 126
Anders ( key 20170512115039_gkt211-B7) 2010; 11
Bohnert ( key 20170512115039_gkt211-B10) 2010; 38
Katz ( key 20170512115039_gkt211-B13) 2010; 7
Wang ( key 20170512115039_gkt211-B1) 2009; 10
Marioni ( key 20170512115039_gkt211-B3) 2008; 18
Trapnell ( key 20170512115039_gkt211-B32) 2009; 25
Robinson ( key 20170512115039_gkt211-B5) 2007; 23
Glaus ( key 20170512115039_gkt211-B14) 2012; 28
Loader ( key 20170512115039_gkt211-B21) 2007
Robinson ( key 20170512115039_gkt211-B6) 2010; 11
Griebel ( key 20170512115039_gkt211-B11) 2012; 40
Anders ( key 20170512115039_gkt211-B17) 2012; 22
Bonferroni ( key 20170512115039_gkt211-B22) 1936; 8
Lacroix ( key 20170512115039_gkt211-B15) 2008
Wang ( key 20170512115039_gkt211-B4) 2010; 26
Gretton ( key 20170512115039_gkt211-B23) 2007
Kertesz ( key 20170512115039_gkt211-B33) 2010; 467
Underwood ( key 20170512115039_gkt211-B34) 2010; 7
Borgwardt ( key 20170512115039_gkt211-B24) 2006; 22
Hardcastle ( key 20170512115039_gkt211-B8) 2010; 11
Storey ( key 20170512115039_gkt211-B28) 2003; 100
Singh ( key 20170512115039_gkt211-B19) 2011; 27
Mortazavi ( key 20170512115039_gkt211-B2) 2008; 5
Richard ( key 20170512115039_gkt211-B12) 2010; 38
Brooks ( key 20170512115039_gkt211-B30) 2011; 21
Jiang ( key 20170512115039_gkt211-B9) 2009; 25
Stegle ( key 20170512115039_gkt211-B18) 2010
Jean ( key 20170512115039_gkt211-B27) 2010
17881408 - Bioinformatics. 2007 Nov 1;23(21):2881-7
20979621 - Genome Biol. 2010;11(10):R106
22563066 - Bioinformatics. 2012 Jul 1;28(13):1721-8
19015660 - Nat Rev Genet. 2009 Jan;10(1):57-63
18978772 - Nature. 2008 Nov 27;456(7221):470-6
19762346 - Bioinformatics. 2009 Dec 1;25(23):3056-9
19289445 - Bioinformatics. 2009 May 1;25(9):1105-11
20811459 - Nature. 2010 Sep 2;467(7311):103-7
9478898 - Science. 1998 Feb 27;279(5355):1360-3
20551130 - Nucleic Acids Res. 2010 Jul;38(Web Server issue):W348-51
20698981 - BMC Bioinformatics. 2010;11:422
21057495 - Nat Methods. 2010 Dec;7(12):995-1001
12883005 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5
20150413 - Nucleic Acids Res. 2010 Jun;38(10):e112
10207133 - Development. 1999 May;126(10):2073-82
19910308 - Bioinformatics. 2010 Jan 1;26(1):139-40
18516045 - Nat Methods. 2008 Jul;5(7):621-8
20436464 - Nat Biotechnol. 2010 May;28(5):511-5
19244387 - Bioinformatics. 2009 Apr 15;25(8):1026-32
20196867 - Genome Biol. 2010;11(3):R25
20921232 - Genome Res. 2011 Feb;21(2):193-202
21057496 - Nat Methods. 2010 Dec;7(12):1009-15
16873512 - Bioinformatics. 2006 Jul 15;22(14):e49-57
22962361 - Nucleic Acids Res. 2012 Nov 1;40(20):10073-83
21824971 - Bioinformatics. 2011 Oct 1;27(19):2633-40
18550803 - Genome Res. 2008 Sep;18(9):1509-17
19855105 - Bioinformatics. 2010 Jan 1;26(1):136-8
22722343 - Genome Res. 2012 Oct;22(10):2008-17
21154708 - Curr Protoc Bioinformatics. 2010 Dec;Chapter 11:Unit 11.6
References_xml – volume: 467
  start-page: 103
  year: 2010
  ident: key 20170512115039_gkt211-B33
  article-title: Genome-wide measurement of RNA secondary structure in yeast
  publication-title: Nature
  doi: 10.1038/nature09322
– volume: 26
  start-page: 136
  year: 2010
  ident: key 20170512115039_gkt211-B4
  article-title: DEGseq: an R package for identifying differentially expressed genes from RNA-seq data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp612
– volume-title: Algorithms in Bioinformatics. Vol. 5251 of Lecture Notes in Computer Science
  year: 2008
  ident: key 20170512115039_gkt211-B15
  article-title: Exact transcriptome reconstruction from short sequence reads
  doi: 10.1007/978-3-540-87361-7_5
– volume: 26
  start-page: 139
  year: 2010
  ident: key 20170512115039_gkt211-B20
  article-title: edgeR: a Bioconductor package for differential expression analysis of digital gene expression data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp616
– volume: 11
  start-page: R25
  year: 2010
  ident: key 20170512115039_gkt211-B6
  article-title: A scaling normalization method for differential expression analysis of RNA-seq data
  publication-title: Genome Biol.
  doi: 10.1186/gb-2010-11-3-r25
– volume: 25
  start-page: 1026
  year: 2009
  ident: key 20170512115039_gkt211-B9
  article-title: Statistical inferences for isoform expression in RNA-Seq
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp113
– volume: 22
  start-page: 2008
  year: 2012
  ident: key 20170512115039_gkt211-B17
  article-title: Detecting differential usage of exons from RNA-seq data
  publication-title: Genome Res.
  doi: 10.1101/gr.133744.111
– volume: 18
  start-page: 1509
  year: 2008
  ident: key 20170512115039_gkt211-B3
  article-title: RNA-seq: an assessment of technical reproducibility and comparison with gene expression arrays
  publication-title: Genome Res.
  doi: 10.1101/gr.079558.108
– volume: 28
  start-page: 1721
  year: 2012
  ident: key 20170512115039_gkt211-B14
  article-title: Identifying differentially expressed transcripts from RNA-seq data with biological variation
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/bts260
– volume: 11
  start-page: 422
  year: 2010
  ident: key 20170512115039_gkt211-B8
  article-title: baySeq: empirical Bayesian methods for identifying differential expression in sequence count data
  publication-title: BMC Bioinformatics
  doi: 10.1186/1471-2105-11-422
– year: 2007
  ident: key 20170512115039_gkt211-B21
  article-title: locfit: local regression, likelihood and density estimation
– volume: 38
  start-page: W348
  year: 2010
  ident: key 20170512115039_gkt211-B10
  article-title: rQuant.web: a tool for RNA-Seq-based transcript quantitation
  publication-title: Nucleic Acids Research
  doi: 10.1093/nar/gkq448
– volume: 100
  start-page: 9440
  year: 2003
  ident: key 20170512115039_gkt211-B28
  article-title: Statistical significance for genome-wide experiments
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.1530509100
– volume: 25
  start-page: 3056
  year: 2009
  ident: key 20170512115039_gkt211-B16
  article-title: Identifiability of isoform deconvolution from junction arrays and RNA-Seq
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp544
– volume: 279
  start-page: 1360
  year: 1998
  ident: key 20170512115039_gkt211-B25
  article-title: Regulation of flowering time by Arabidopsis photoreceptors
  publication-title: Science
  doi: 10.1126/science.279.5355.1360
– volume: 22
  start-page: e49
  year: 2006
  ident: key 20170512115039_gkt211-B24
  article-title: Integrating structured biological data by kernel maximum mean discrepancy
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btl242
– volume: 21
  start-page: 193
  year: 2011
  ident: key 20170512115039_gkt211-B30
  article-title: Conservation of an RNA regulatory map between Drosophila and mammals
  publication-title: Genome Res.
  doi: 10.1101/gr.108662.110
– year: 2010
  ident: key 20170512115039_gkt211-B18
  article-title: Statistical tests for detecting differential RNA-transcript expression from read counts
  publication-title: Nat. Prec.
  doi: 10.1038/npre.2010.4437.1
– volume: 126
  start-page: 2073
  year: 1999
  ident: key 20170512115039_gkt211-B26
  article-title: Antagonistic actions of Arabidopsis cryptochromes and phytochrome B in the regulation of floral induction
  publication-title: Development
  doi: 10.1242/dev.126.10.2073
– volume: 8
  start-page: 3
  year: 1936
  ident: key 20170512115039_gkt211-B22
  article-title: Teoria statistica delle classi e calcolo delle probabilit
  publication-title: Pubblicazioni del R Istituto Superiore di Scienze Economiche e Commerciali di Firenze
– volume: 25
  start-page: 1105
  year: 2009
  ident: key 20170512115039_gkt211-B32
  article-title: TopHat: discovering splice junctions with RNA-Seq
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btp120
– volume: 38
  start-page: e112
  year: 2010
  ident: key 20170512115039_gkt211-B12
  article-title: Prediction of alternative isoforms from exon expression levels in RNA-Seq experiments
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkq041
– volume: 40
  start-page: 10073
  year: 2012
  ident: key 20170512115039_gkt211-B11
  article-title: Modelling and simulating generic RNA-Seq experiments with the flux simulator
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gks666
– volume: 456
  start-page: 470
  year: 2008
  ident: key 20170512115039_gkt211-B31
  article-title: Alternative isoform regulation in human tissue transcriptomes
  publication-title: Nature
  doi: 10.1038/nature07509
– volume: 10
  start-page: 57
  year: 2009
  ident: key 20170512115039_gkt211-B1
  article-title: RNA-Seq: a revolutionary tool for transcriptomics
  publication-title: Nat. Rev. Genet.
  doi: 10.1038/nrg2484
– volume: 7
  start-page: 995
  year: 2010
  ident: key 20170512115039_gkt211-B34
  article-title: FragSeq: transcriptome-wide RNA structure probing using high-throughput sequencing
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1529
– year: 2010
  ident: key 20170512115039_gkt211-B27
  article-title: RNA-Seq read alignments with PALMapper
  publication-title: Curr. Protoc. Bioinform.
  doi: 10.1002/0471250953.bi1106s32
– volume: 23
  start-page: 2881
  year: 2007
  ident: key 20170512115039_gkt211-B5
  article-title: Moderated statistical tests for assessing differences in tag abundance
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btm453
– volume: 27
  start-page: 2633
  year: 2011
  ident: key 20170512115039_gkt211-B19
  article-title: FDM: a graph-based statistical method to detect differential transcription using RNA-seq data
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btr458
– volume: 28
  start-page: 511
  year: 2010
  ident: key 20170512115039_gkt211-B29
  article-title: Transcript assembly and quantification by RNA-Seq reveals unannotated transcripts and isoform switching during cell differentiation
  publication-title: Nat. Biotechnol.
  doi: 10.1038/nbt.1621
– volume: 7
  start-page: 1009
  year: 2010
  ident: key 20170512115039_gkt211-B13
  article-title: Analysis and design of RNA sequencing experiments for identifying isoform regulation
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1528
– start-page: 513
  volume-title: Advances in Neural Information Processing Systems 19: Proceedings of the 2006 Conference
  year: 2007
  ident: key 20170512115039_gkt211-B23
  article-title: A kernel method for the two-sample-problem
  doi: 10.7551/mitpress/7503.003.0069
– volume: 11
  start-page: R106
  year: 2010
  ident: key 20170512115039_gkt211-B7
  article-title: Differential expression analysis for sequence count data
  publication-title: Genome Biol.
  doi: 10.1186/gb-2010-11-10-r106
– volume: 5
  start-page: 621
  year: 2008
  ident: key 20170512115039_gkt211-B2
  article-title: Mapping and quantifying mammalian transcriptomes by RNA-Seq
  publication-title: Nat. Methods
  doi: 10.1038/nmeth.1226
– reference: 16873512 - Bioinformatics. 2006 Jul 15;22(14):e49-57
– reference: 22722343 - Genome Res. 2012 Oct;22(10):2008-17
– reference: 20150413 - Nucleic Acids Res. 2010 Jun;38(10):e112
– reference: 20811459 - Nature. 2010 Sep 2;467(7311):103-7
– reference: 19244387 - Bioinformatics. 2009 Apr 15;25(8):1026-32
– reference: 21057495 - Nat Methods. 2010 Dec;7(12):995-1001
– reference: 22563066 - Bioinformatics. 2012 Jul 1;28(13):1721-8
– reference: 10207133 - Development. 1999 May;126(10):2073-82
– reference: 18978772 - Nature. 2008 Nov 27;456(7221):470-6
– reference: 21154708 - Curr Protoc Bioinformatics. 2010 Dec;Chapter 11:Unit 11.6
– reference: 18516045 - Nat Methods. 2008 Jul;5(7):621-8
– reference: 22962361 - Nucleic Acids Res. 2012 Nov 1;40(20):10073-83
– reference: 19910308 - Bioinformatics. 2010 Jan 1;26(1):139-40
– reference: 19855105 - Bioinformatics. 2010 Jan 1;26(1):136-8
– reference: 20551130 - Nucleic Acids Res. 2010 Jul;38(Web Server issue):W348-51
– reference: 17881408 - Bioinformatics. 2007 Nov 1;23(21):2881-7
– reference: 21057496 - Nat Methods. 2010 Dec;7(12):1009-15
– reference: 18550803 - Genome Res. 2008 Sep;18(9):1509-17
– reference: 20698981 - BMC Bioinformatics. 2010;11:422
– reference: 12883005 - Proc Natl Acad Sci U S A. 2003 Aug 5;100(16):9440-5
– reference: 9478898 - Science. 1998 Feb 27;279(5355):1360-3
– reference: 20436464 - Nat Biotechnol. 2010 May;28(5):511-5
– reference: 19289445 - Bioinformatics. 2009 May 1;25(9):1105-11
– reference: 19762346 - Bioinformatics. 2009 Dec 1;25(23):3056-9
– reference: 20979621 - Genome Biol. 2010;11(10):R106
– reference: 19015660 - Nat Rev Genet. 2009 Jan;10(1):57-63
– reference: 20921232 - Genome Res. 2011 Feb;21(2):193-202
– reference: 21824971 - Bioinformatics. 2011 Oct 1;27(19):2633-40
– reference: 20196867 - Genome Biol. 2010;11(3):R25
SSID ssj0014154
Score 2.2592685
Snippet Deep transcriptome sequencing (RNA-Seq) has become a vital tool for studying the state of cells in the context of varying environments, genotypes and other...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 5189
SubjectTerms Algorithms
Animals
Arabidopsis - genetics
Arabidopsis - metabolism
Computational Biology
Data Interpretation, Statistical
Drosophila melanogaster - genetics
Drosophila melanogaster - metabolism
Gene Expression Profiling
Molecular Sequence Annotation
Reverse Transcriptase Polymerase Chain Reaction
RNA Isoforms - metabolism
RNA Processing, Post-Transcriptional
Title Accurate detection of differential RNA processing
URI https://www.ncbi.nlm.nih.gov/pubmed/23585274
https://www.proquest.com/docview/1400396431
https://pubmed.ncbi.nlm.nih.gov/PMC3664801
Volume 41
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3di9NAEF_0fNAX0Ts_6scRUQQ54m02H5s8lqPl0NoDaaFvId1MzupdWtoton-9M9lsknp9OH0JZbtMw84w_c3szG8Ye5fJKJRJlrmQhNwNhPLdJA_AxVAEtZ8nHDg1J38ZR-fT4NMsnLVDEKvuEj3_qH7v7Sv5H63iGuqVumT_QbONUFzAz6hffKKG8XkrHfeV2hLVw0kOGpTFfnbmiaZk-Ndx_2RlmgHsn9R323GL0oitVS1yujvopLUI2K7hJ7QZl1WTidFwaSqQL66opKP1YGt9XQ9cHi02jbP_TOOVN7Z00lzLdzMNXqeur3aOVYdVUntP2LNWe9TA61oO7_jH0DMDg244bkNqVVJR-fDyhxa1B97hxx5fpMPpaJROBrPJXXZPSERL6MEkHzT3RghHzBjj-q0sIW3in6LsUyN5F4LciCv-Lo_t4I3JI_awDhScvtH6Y3YHykN21C8zvbz-5bx3qtLd6k7kkN0_s2P7jphnjcJpjMJZFk7XKBw0Cqc1iidsOhxMzs7dei6Gq3wZa5dKgj3PV4JLwndE2BRxEDGHDOFdDBCpPOTFvKDgXIi8EIVQCCRVlBQcFPhP2UG5LOE5c8Iwl1nAVTjPeTAHkaA_l3EWFBBkRQxxj32wR5WqmjSeZpdcpaZ4wU_xWFNzrD32ttm7MlQpe3e9sSee4snQ9VRWwnK7wSCUGsURIeOeZ0YDjRxq6A6FDHpM7uim2UAs6bvflItvFVu6H0VEkfTiFr_7kj1o7f4VO9DrLbxGzKnnx5WZHVcZmz_kpoTb
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accurate+detection+of+differential+RNA+processing&rft.jtitle=Nucleic+acids+research&rft.au=Drewe%2C+Philipp&rft.au=Stegle%2C+Oliver&rft.au=Hartmann%2C+Lisa&rft.au=Kahles%2C+Andr%C3%A9&rft.date=2013-05-01&rft.issn=1362-4962&rft.eissn=1362-4962&rft.volume=41&rft.issue=10&rft.spage=5189&rft_id=info:doi/10.1093%2Fnar%2Fgkt211&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0305-1048&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0305-1048&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0305-1048&client=summon