Solving combined heat and power economic dispatch problem using real coded genetic algorithm with improved Mühlenbein mutation
•An improved Mühlenbein mutation is proposed for GA algorithm.•Proposed algorithm is evaluated using different benchmark functions.•The proposed algorithm has shown better convergence and constraint handling capability.•Proposed algorithm found lower cost for CHPED problem in comparison with other a...
Saved in:
| Published in | Applied thermal engineering Vol. 99; pp. 465 - 475 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
Elsevier Ltd
25.04.2016
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 1359-4311 |
| DOI | 10.1016/j.applthermaleng.2015.12.136 |
Cover
| Abstract | •An improved Mühlenbein mutation is proposed for GA algorithm.•Proposed algorithm is evaluated using different benchmark functions.•The proposed algorithm has shown better convergence and constraint handling capability.•Proposed algorithm found lower cost for CHPED problem in comparison with other algorithms.
The combined heat and power economic dispatch (CHPED) is a complicated optimization problem which determines the production of heat and power units to obtain the minimum production costs of the system, satisfying the heat and power demands and considering operational constraints. This paper presents a real coded genetic algorithm with improved Mühlenbein mutation (RCGA-IMM) for solving CHPED optimization task. Mühlenbein mutation is implemented on basic RCGA for speeding up the convergence and improving the optimization problem results. To evaluate the performance features, the proposed RCGA-IMM procedure is employed on six benchmark functions. The effect of valve-point and transmission losses is considered in cost function and four test systems are presented to demonstrate the effectiveness and superiority of the proposed method. In all test cases the obtained solutions utilizing RCGA-IMM optimization method are feasible and in most instances express a marked improvement over the provided results by recent works in this area. |
|---|---|
| AbstractList | •An improved Mühlenbein mutation is proposed for GA algorithm.•Proposed algorithm is evaluated using different benchmark functions.•The proposed algorithm has shown better convergence and constraint handling capability.•Proposed algorithm found lower cost for CHPED problem in comparison with other algorithms.
The combined heat and power economic dispatch (CHPED) is a complicated optimization problem which determines the production of heat and power units to obtain the minimum production costs of the system, satisfying the heat and power demands and considering operational constraints. This paper presents a real coded genetic algorithm with improved Mühlenbein mutation (RCGA-IMM) for solving CHPED optimization task. Mühlenbein mutation is implemented on basic RCGA for speeding up the convergence and improving the optimization problem results. To evaluate the performance features, the proposed RCGA-IMM procedure is employed on six benchmark functions. The effect of valve-point and transmission losses is considered in cost function and four test systems are presented to demonstrate the effectiveness and superiority of the proposed method. In all test cases the obtained solutions utilizing RCGA-IMM optimization method are feasible and in most instances express a marked improvement over the provided results by recent works in this area. |
| Author | Nazari-Heris, M. Mohammadi-ivatloo, B. Haghrah, A. |
| Author_xml | – sequence: 1 givenname: A. surname: Haghrah fullname: Haghrah, A. email: arslan.haghrah@gmail.com – sequence: 2 givenname: M. surname: Nazari-Heris fullname: Nazari-Heris, M. email: mnazari.heris@gmail.com – sequence: 3 givenname: B. surname: Mohammadi-ivatloo fullname: Mohammadi-ivatloo, B. email: bmohammadi@tabrizu.ac.ir |
| BookMark | eNqNkLFOwzAQhj0UibbwDh5YE-zYcROJBSoKSEUMwGw5zrVxldiR47Zi4sXYeDFclQWmLnfD3ffr7pugkXUWELqiJKWEiutNqvq-DQ34TrVg12lGaJ7SLKVMjNCYsrxMOKP0HE2GYUMIzYoZH6PPV9fujF1j7brKWKhxAypgZWvcuz14DNpZ1xmNazP0KugG995VLXR4Oxw4D6qNcB3JNVgIcVO1a-dNaDq8jxWbLhK7OH_-_mriaRUYi7ttUME4e4HOVqod4PK3T9H74v5t_pgsXx6e5rfLRLNZERJWEMJBcKEZ4zzTs7wQBWdARcUqBlrlRSlKTlcrLbJcaMipylnFBSFVrWjJpujmmKu9GwYPK9l70yn_ISmRB4FyI_8KlAeBkmYyCoz43T9cm-MDwSvTnhqyOIZAfHRnwMtBG7AaauNBB1k7c1rQDzhmoRk |
| CitedBy_id | crossref_primary_10_1109_ACCESS_2020_3034730 crossref_primary_10_3390_en15197166 crossref_primary_10_3390_fluids7070248 crossref_primary_10_1007_s40095_021_00443_8 crossref_primary_10_3390_pr8040441 crossref_primary_10_1051_ro_2019043 crossref_primary_10_1007_s40998_019_00208_4 crossref_primary_10_1016_j_enbuild_2021_111571 crossref_primary_10_1007_s00521_024_10715_z crossref_primary_10_14483_22487638_18245 crossref_primary_10_1016_j_asoc_2016_12_046 crossref_primary_10_4018_IJAMC_290532 crossref_primary_10_1016_j_energy_2018_02_025 crossref_primary_10_1016_j_engappai_2020_103763 crossref_primary_10_1016_j_energy_2022_124340 crossref_primary_10_1016_j_egypro_2017_05_062 crossref_primary_10_3390_su12072709 crossref_primary_10_1007_s42235_024_00569_5 crossref_primary_10_3390_app131810380 crossref_primary_10_1016_j_applthermaleng_2018_12_088 crossref_primary_10_3390_en15165977 crossref_primary_10_3390_biomimetics8080587 crossref_primary_10_1016_j_asoc_2021_108017 crossref_primary_10_1016_j_ijepes_2019_105770 crossref_primary_10_3390_en16031221 crossref_primary_10_1115_1_4041413 crossref_primary_10_1016_j_ijhydene_2020_08_227 crossref_primary_10_1016_j_ref_2020_06_008 crossref_primary_10_1088_1755_1315_983_1_012030 crossref_primary_10_1109_ACCESS_2025_3529618 crossref_primary_10_3389_fenrg_2021_767277 crossref_primary_10_1002_etep_2660 crossref_primary_10_1088_1755_1315_983_1_012027 crossref_primary_10_1016_j_asoc_2019_105770 crossref_primary_10_1016_j_eswa_2022_116625 crossref_primary_10_3390_en13112840 crossref_primary_10_3390_pr10050817 crossref_primary_10_1016_j_epsr_2019_105982 crossref_primary_10_1016_j_compeleceng_2025_110059 crossref_primary_10_1016_j_applthermaleng_2019_03_095 crossref_primary_10_1049_gtd2_12404 crossref_primary_10_1002_dac_4532 crossref_primary_10_1080_0305215X_2019_1690650 crossref_primary_10_1080_15325008_2022_2151666 crossref_primary_10_1016_j_apenergy_2019_01_056 crossref_primary_10_3390_en14154553 crossref_primary_10_1155_2020_4215906 crossref_primary_10_1016_j_ijepes_2019_02_040 crossref_primary_10_1002_jnm_2660 crossref_primary_10_1109_ACCESS_2023_3344679 crossref_primary_10_3390_biomimetics8080608 crossref_primary_10_1016_j_energy_2021_122795 crossref_primary_10_1016_j_rser_2017_06_024 crossref_primary_10_1016_j_eswa_2023_120452 crossref_primary_10_1016_j_asoc_2021_108351 crossref_primary_10_1109_ACCESS_2022_3183562 crossref_primary_10_1016_j_applthermaleng_2020_115939 crossref_primary_10_1007_s40998_022_00560_y crossref_primary_10_1016_j_rser_2016_05_086 crossref_primary_10_1016_j_applthermaleng_2018_10_020 crossref_primary_10_1016_j_engappai_2023_106443 crossref_primary_10_1016_j_energy_2017_04_007 crossref_primary_10_1016_j_energy_2018_10_072 crossref_primary_10_1007_s12652_020_02589_5 crossref_primary_10_1016_j_epsr_2020_106538 crossref_primary_10_1016_j_seta_2022_102757 crossref_primary_10_1109_ACCESS_2019_2933980 crossref_primary_10_1016_j_seta_2021_101944 crossref_primary_10_1109_TII_2017_2779239 crossref_primary_10_1016_j_energy_2020_118497 crossref_primary_10_1016_j_applthermaleng_2017_03_114 crossref_primary_10_1080_03772063_2020_1724522 crossref_primary_10_1016_j_knosys_2020_106461 crossref_primary_10_1016_j_energy_2018_07_200 crossref_primary_10_3390_en15093290 crossref_primary_10_1016_j_knosys_2020_106463 crossref_primary_10_1016_j_seta_2022_102512 crossref_primary_10_1016_j_aej_2023_01_021 crossref_primary_10_1080_00207543_2023_2173511 crossref_primary_10_1016_j_asoc_2021_107088 crossref_primary_10_1016_j_est_2023_107433 crossref_primary_10_1016_j_rser_2017_07_030 crossref_primary_10_1049_iet_est_2018_5070 crossref_primary_10_1109_ACCESS_2020_2963887 crossref_primary_10_1016_j_egyr_2022_06_054 crossref_primary_10_1007_s00521_017_3074_9 crossref_primary_10_3390_en14041008 crossref_primary_10_1016_j_energy_2016_07_155 crossref_primary_10_1016_j_energy_2023_128031 crossref_primary_10_1016_j_energy_2018_05_110 crossref_primary_10_1016_j_applthermaleng_2016_12_016 crossref_primary_10_1155_2024_6665062 crossref_primary_10_1016_j_jclepro_2024_141160 crossref_primary_10_1007_s00521_019_04610_1 crossref_primary_10_1016_j_epsr_2023_109400 crossref_primary_10_3390_computation8040101 crossref_primary_10_1016_j_eswa_2023_122272 crossref_primary_10_3390_pr9020339 crossref_primary_10_1007_s13369_022_07124_6 crossref_primary_10_3390_math9172053 crossref_primary_10_1002_cpe_6341 crossref_primary_10_1016_j_engappai_2022_104753 crossref_primary_10_1016_j_egyr_2020_10_004 crossref_primary_10_1016_j_knosys_2022_108902 crossref_primary_10_1109_ACCESS_2020_3038740 crossref_primary_10_1016_j_aej_2021_07_001 crossref_primary_10_1088_1742_6596_2201_1_012003 crossref_primary_10_3390_en16196974 crossref_primary_10_1109_JSYST_2018_2837224 crossref_primary_10_1016_j_egyr_2021_05_078 crossref_primary_10_1016_j_energy_2017_03_054 crossref_primary_10_1016_j_apenergy_2023_121167 crossref_primary_10_1016_j_applthermaleng_2024_122781 crossref_primary_10_1016_j_scs_2018_12_036 crossref_primary_10_1109_JSYST_2019_2958179 crossref_primary_10_3390_pr11041232 crossref_primary_10_1016_j_energy_2022_123108 |
| Cites_doi | 10.1016/j.ijepes.2012.07.038 10.1016/j.apenergy.2008.10.002 10.1016/j.ijepes.2013.12.006 10.1016/j.enconman.2013.03.013 10.1007/s11708-013-0248-8 10.1080/07313569808955828 10.1016/j.epsr.2003.08.006 10.1016/j.epsr.2008.03.011 10.1109/JSYST.2013.2258747 10.1016/S0378-7796(99)00011-5 10.1109/TEVC.2009.2011992 10.1016/j.ijepes.2015.07.031 10.1109/59.336125 10.1109/59.544642 10.1080/15325000902994348 10.1016/j.applthermaleng.2008.12.004 10.1080/15325000600596775 10.1049/iet-gtd.2014.0322 10.1016/S0378-7796(02)00028-7 10.1016/j.apenergy.2014.09.039 10.1016/j.applthermaleng.2015.05.017 10.1016/j.epsr.2012.08.005 10.1016/j.ijepes.2007.08.002 10.1016/j.energy.2014.04.059 10.1007/s11708-013-0276-4 10.1016/j.ijepes.2007.06.006 10.1016/j.enconman.2010.10.017 10.1109/TPWRS.2005.851958 10.1016/j.enconman.2014.01.051 10.1023/A:1006504901164 10.1016/j.ijepes.2015.06.023 10.1016/j.ijepes.2013.05.027 |
| ContentType | Journal Article |
| Copyright | 2016 Elsevier Ltd |
| Copyright_xml | – notice: 2016 Elsevier Ltd |
| DBID | AAYXX CITATION |
| DOI | 10.1016/j.applthermaleng.2015.12.136 |
| DatabaseName | CrossRef |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Engineering |
| EndPage | 475 |
| ExternalDocumentID | 10_1016_j_applthermaleng_2015_12_136 S1359431116000272 |
| GroupedDBID | --K --M .~1 0R~ 1B1 1RT 1~. 1~5 23M 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ AABNK AACTN AAEDT AAEDW AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARJD AAXUO ABFNM ABJNI ABMAC ABNUV ABYKQ ACDAQ ACGFS ACIWK ACRLP ADBBV ADEWK ADEZE ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJBFU AJOXV AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BELTK BJAXD BKOJK BLXMC CS3 EBS EFJIC EFLBG EJD ENUVR EO8 EO9 EP2 EP3 FDB FEDTE FIRID FNPLU FYGXN G-Q GBLVA HVGLF IHE J1W JARJE JJJVA KOM M41 MO0 MS~ N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SDF SDG SDP SES SPC SPCBC SSG SSR SST SSZ T5K TN5 ~G- AAQXK AATTM AAXKI AAYWO AAYXX ABWVN ABXDB ACLOT ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGQPQ AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN CITATION EFKBS FGOYB HZ~ R2- SEW ~HD |
| ID | FETCH-LOGICAL-c378t-38004e646c33442c7586843e16b3b3eca5896941ffc6256ce51a53b4600bda193 |
| IEDL.DBID | .~1 |
| ISSN | 1359-4311 |
| IngestDate | Thu Apr 24 22:57:11 EDT 2025 Wed Oct 01 03:08:32 EDT 2025 Fri Feb 23 02:33:17 EST 2024 |
| IsPeerReviewed | true |
| IsScholarly | true |
| Keywords | Real code genetic algorithm (RCGA) Combined heat and power (CHP) Economic dispatch Non-convex optimization problem |
| Language | English |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c378t-38004e646c33442c7586843e16b3b3eca5896941ffc6256ce51a53b4600bda193 |
| PageCount | 11 |
| ParticipantIDs | crossref_primary_10_1016_j_applthermaleng_2015_12_136 crossref_citationtrail_10_1016_j_applthermaleng_2015_12_136 elsevier_sciencedirect_doi_10_1016_j_applthermaleng_2015_12_136 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2016-04-25 |
| PublicationDateYYYYMMDD | 2016-04-25 |
| PublicationDate_xml | – month: 04 year: 2016 text: 2016-04-25 day: 25 |
| PublicationDecade | 2010 |
| PublicationTitle | Applied thermal engineering |
| PublicationYear | 2016 |
| Publisher | Elsevier Ltd |
| Publisher_xml | – name: Elsevier Ltd |
| References | Wang, Singh (bib0095) 2008; 30 Su, Chiang (bib0100) 2004; 69 Roy, Paul, Sultana (bib0180) 2014; 57 Haghrah, Mohammadi-Ivatloo, Seyedmonir (bib0130) 2014; 9 Alipour, Zare, Mohammadi-Ivatloo (bib0030) 2014; 71 Victoire, Jeyakumar (bib0120) 2005; 20 Adhvaryyu, Chattopadhyay, Bhattacharjya (bib0175) 2014 Herrera, Lozano, Verdegay (bib0135) 1998; 12 Subbaraj, Rengaraj, Salivahanan (bib0070) 2009; 86 Huang, Lin (bib0060) 2013; 53 Khorram, Jaberipour (bib0075) 2011; 52 Wong, Algie (bib0160) 2002; 61 Jayabarathi, Yazdani, Ramesh, Raghunathan (bib0080) 2014; 8 Basu (bib0170) 2011; 38 Alipour, Mohammadi-Ivatloo, Zare (bib0010) 2014; 136 Song, Chou, Stonham (bib0090) 1999; 52 Jayakumar, Subramanian, Ganesan, Elanchezhian (bib0185) 2016; 74 Guo, Henwood, van Ooijen (bib0040) 1996; 11 Abdolmohammadi, Kazemi (bib0055) 2013; 71 Lee, El-Sharkawi (bib0125) 2008; vol. 39 Rooijers, van Amerongen (bib0035) 1994; 9 Hagh, Teimourzadeh, Alipour, Aliasghary (bib0085) 2014; 80 Abdelaziz, Kamh, Mekhamer, Badr (bib0115) 2008; 78 He, Wu, Saunders (bib0140) 2009; 13 Sashirekha, Pasupuleti, Moin, Tan (bib0050) 2013; 44 Song, Xuan (bib0145) 1998; 26 Mohammadi-Ivatloo, Moradi-Dalvand, Rabiee (bib0065) 2013; 95 Basu (bib0105) 2015; 73 Mohammadi-Ivatloo, Rabiee, Soroudi (bib0110) 2013; 7 Rao (bib0155) 2006; 34 Yazdani, Jayabarathi, Ramesh, Raghunathan (bib0165) 2013; 7 Ramesh, Jayabarathi, Shrivastava, Baska (bib0150) 2009; 37 Jena, Basu, Panigrahi (bib0045) 2014 Vasebi, Fesanghary, Bathaee (bib0015) 2007; 29 Wang, Lahdelma, Wang, Jiao, Zhu, Zou (bib0025) 2015; 87 Dong, Liu, Riffat (bib0020) 2009; 29 Song (10.1016/j.applthermaleng.2015.12.136_bib0145) 1998; 26 Adhvaryyu (10.1016/j.applthermaleng.2015.12.136_bib0175) 2014 Ramesh (10.1016/j.applthermaleng.2015.12.136_bib0150) 2009; 37 Su (10.1016/j.applthermaleng.2015.12.136_bib0100) 2004; 69 Haghrah (10.1016/j.applthermaleng.2015.12.136_bib0130) 2014; 9 Yazdani (10.1016/j.applthermaleng.2015.12.136_bib0165) 2013; 7 Basu (10.1016/j.applthermaleng.2015.12.136_bib0170) 2011; 38 Jena (10.1016/j.applthermaleng.2015.12.136_bib0045) 2014 Basu (10.1016/j.applthermaleng.2015.12.136_bib0105) 2015; 73 Wong (10.1016/j.applthermaleng.2015.12.136_bib0160) 2002; 61 Abdelaziz (10.1016/j.applthermaleng.2015.12.136_bib0115) 2008; 78 Jayabarathi (10.1016/j.applthermaleng.2015.12.136_bib0080) 2014; 8 Wang (10.1016/j.applthermaleng.2015.12.136_bib0025) 2015; 87 Herrera (10.1016/j.applthermaleng.2015.12.136_bib0135) 1998; 12 Roy (10.1016/j.applthermaleng.2015.12.136_bib0180) 2014; 57 Jayakumar (10.1016/j.applthermaleng.2015.12.136_bib0185) 2016; 74 Huang (10.1016/j.applthermaleng.2015.12.136_bib0060) 2013; 53 Hagh (10.1016/j.applthermaleng.2015.12.136_bib0085) 2014; 80 Mohammadi-Ivatloo (10.1016/j.applthermaleng.2015.12.136_bib0110) 2013; 7 Subbaraj (10.1016/j.applthermaleng.2015.12.136_bib0070) 2009; 86 Wang (10.1016/j.applthermaleng.2015.12.136_bib0095) 2008; 30 Guo (10.1016/j.applthermaleng.2015.12.136_bib0040) 1996; 11 Alipour (10.1016/j.applthermaleng.2015.12.136_bib0010) 2014; 136 Rooijers (10.1016/j.applthermaleng.2015.12.136_bib0035) 1994; 9 Abdolmohammadi (10.1016/j.applthermaleng.2015.12.136_bib0055) 2013; 71 Lee (10.1016/j.applthermaleng.2015.12.136_bib0125) 2008; vol. 39 Alipour (10.1016/j.applthermaleng.2015.12.136_bib0030) 2014; 71 Song (10.1016/j.applthermaleng.2015.12.136_bib0090) 1999; 52 He (10.1016/j.applthermaleng.2015.12.136_bib0140) 2009; 13 Khorram (10.1016/j.applthermaleng.2015.12.136_bib0075) 2011; 52 Victoire (10.1016/j.applthermaleng.2015.12.136_bib0120) 2005; 20 Sashirekha (10.1016/j.applthermaleng.2015.12.136_bib0050) 2013; 44 Mohammadi-Ivatloo (10.1016/j.applthermaleng.2015.12.136_bib0065) 2013; 95 Dong (10.1016/j.applthermaleng.2015.12.136_bib0020) 2009; 29 Vasebi (10.1016/j.applthermaleng.2015.12.136_bib0015) 2007; 29 Rao (10.1016/j.applthermaleng.2015.12.136_bib0155) 2006; 34 |
| References_xml | – start-page: 338 year: 2014 end-page: 343 ident: bib0175 article-title: Application of bio-inspired krill herd algorithm to combined heat and power economic dispatch – volume: 71 start-page: 289 year: 2014 end-page: 301 ident: bib0030 article-title: Short-term scheduling of combined heat and power generation units in the presence of demand response programs publication-title: Energy – volume: 95 start-page: 9 year: 2013 end-page: 18 ident: bib0065 article-title: Combined heat and power economic dispatch problem solution using particle swarm optimization with time varying acceleration coefficients publication-title: Electr. Pow. Syst. Res – volume: 73 start-page: 819 year: 2015 end-page: 829 ident: bib0105 article-title: Combined heat and power economic dispatch using opposition-based group search optimization publication-title: Int. J. Elec. Power – volume: 7 start-page: 777 year: 2013 end-page: 785 ident: bib0110 article-title: Nonconvex dynamic economic power dispatch problems solution using hybrid immune-genetic algorithm publication-title: IEEE Syst. J. – start-page: 1 year: 2014 end-page: 8 ident: bib0045 article-title: Differential evolution with Gaussian mutation for combined heat and power economic dispatch publication-title: Soft Comput – volume: 29 start-page: 713 year: 2007 end-page: 719 ident: bib0015 article-title: Combined heat and power economic dispatch by harmony search algorithm publication-title: Int. J. Electr. Power Energ. Syst – volume: 9 start-page: 75 year: 2014 end-page: 89 ident: bib0130 article-title: Real coded genetic algorithm approach with random transfer vectors-based mutation for short-term hydro–thermal scheduling publication-title: IET Gener. Transm. Distrib – volume: 52 start-page: 115 year: 1999 end-page: 121 ident: bib0090 article-title: Combined heat and power economic dispatch by improved ant colony search algorithm publication-title: Electric Power Systems Research – volume: 80 start-page: 446 year: 2014 end-page: 456 ident: bib0085 article-title: Improved group search optimization method for solving CHPED in large scale power systems publication-title: Energy Convers. Manag – volume: 37 start-page: 1231 year: 2009 end-page: 1240 ident: bib0150 article-title: A novel selective particle swarm optimization approach for combined heat and power economic dispatch publication-title: Electr. Pow. Compo. Sys – volume: 69 start-page: 187 year: 2004 end-page: 195 ident: bib0100 article-title: An incorporated algorithm for combined heat and power economic dispatch publication-title: Electric Power Systems Research – volume: 71 start-page: 21 year: 2013 end-page: 31 ident: bib0055 article-title: A benders decomposition approach for a combined heat and power economic dispatch publication-title: Energy Convers. Manag – volume: 136 start-page: 393 year: 2014 end-page: 404 ident: bib0010 article-title: Stochastic risk-constrained short-term scheduling of industrial cogeneration systems in the presence of demand response programs publication-title: Appl. Energy – volume: 61 start-page: 227 year: 2002 end-page: 232 ident: bib0160 article-title: Evolutionary programming approach for combined heat and power dispatch publication-title: Electric Power Systems Research – volume: 9 start-page: 1392 year: 1994 end-page: 1398 ident: bib0035 article-title: Static economic dispatch for co-generation systems publication-title: IEEE Trans. Power Syst – volume: 26 start-page: 363 year: 1998 end-page: 372 ident: bib0145 article-title: Combined heat and power economic dispatch using genetic algorithm based penalty function method publication-title: Electr. Mach. Pow. Syst – volume: 86 start-page: 915 year: 2009 end-page: 921 ident: bib0070 article-title: Enhancement of combined heat and power economic dispatch using self adaptive real-coded genetic algorithm publication-title: Appl. Energy – volume: 52 start-page: 1550 year: 2011 end-page: 1554 ident: bib0075 article-title: Harmony search algorithm for solving combined heat and power economic dispatch problems publication-title: Energy Convers. Manag – volume: 53 start-page: 482 year: 2013 end-page: 487 ident: bib0060 article-title: A harmony-genetic based heuristic approach toward economic dispatching combined heat and power publication-title: Int. J. Electr. Power Energ. Syst – volume: 7 start-page: 133 year: 2013 end-page: 139 ident: bib0165 article-title: Combined heat and power economic dispatch problem using firefly algorithm publication-title: Front. Energ – volume: 74 start-page: 252 year: 2016 end-page: 264 ident: bib0185 article-title: Grey wolf optimization for combined heat and power dispatch with cogeneration systems publication-title: Int. J. Electr. Power Energ. Syst – volume: 29 start-page: 2119 year: 2009 end-page: 2126 ident: bib0020 article-title: Development of small-scale and micro-scale biomass-fuelled CHP systems – a literature review publication-title: Appl. Therm. Eng – volume: 13 start-page: 973 year: 2009 end-page: 990 ident: bib0140 article-title: Group search optimizer: an optimization algorithm inspired by animal searching behavior publication-title: IEEE Trans. Evol. Comput – volume: 8 start-page: 25 year: 2014 end-page: 30 ident: bib0080 article-title: Combined heat and power economic dispatch problem using the invasive weed optimization algorithm publication-title: Front. Energ – volume: 34 start-page: 1043 year: 2006 end-page: 1056 ident: bib0155 article-title: Combined heat and power economic dispatch: a direct solution publication-title: Electr. Mach. Pow. Syst – volume: 38 start-page: 13527 year: 2011 end-page: 13531 ident: bib0170 article-title: Bee colony optimization for combined heat and power economic dispatch publication-title: Expert Syst. Appl – volume: 78 start-page: 1784 year: 2008 end-page: 1788 ident: bib0115 article-title: A hybrid HNN-QP approach for dynamic economic dispatch problem publication-title: Electric Power Systems Research – volume: 87 start-page: 402 year: 2015 end-page: 411 ident: bib0025 article-title: Analysis of the location for peak heating in CHP based combined district heating systems publication-title: Appl. Therm. Eng – volume: 11 start-page: 1778 year: 1996 end-page: 1784 ident: bib0040 article-title: An algorithm for combined heat and power economic dispatch publication-title: Power Systems, IEEE Transactions on – volume: 57 start-page: 392 year: 2014 end-page: 403 ident: bib0180 article-title: Oppositional teaching learning based optimization approach for combined heat and power dispatch publication-title: Int. J. Electr. Power Energ. Syst – volume: 30 start-page: 226 year: 2008 end-page: 234 ident: bib0095 article-title: Stochastic combined heat and power dispatch based on multi-objective particle swarm optimization publication-title: Int. J. Electr. Power Energ. Syst – volume: 20 start-page: 1273 year: 2005 end-page: 1282 ident: bib0120 article-title: Reserve constrained dynamic dispatch of units with valve-point effects publication-title: Power Systems, IEEE Transactions on – volume: vol. 39 year: 2008 ident: bib0125 publication-title: Modern Heuristic Optimization Techniques: Theory and Applications to Power Systems – volume: 12 start-page: 265 year: 1998 end-page: 319 ident: bib0135 article-title: Tackling real-coded genetic algorithms: operators and tools for behavioural analysis publication-title: Artif. Intell. Rev – volume: 44 start-page: 421 year: 2013 end-page: 430 ident: bib0050 article-title: Combined heat and power (CHP) economic dispatch solved using Lagrangian relaxation with surrogate subgradient multiplier updates publication-title: Int. J. Electr. Power Energ. Syst – volume: 44 start-page: 421 issue: 1 year: 2013 ident: 10.1016/j.applthermaleng.2015.12.136_bib0050 article-title: Combined heat and power (CHP) economic dispatch solved using Lagrangian relaxation with surrogate subgradient multiplier updates publication-title: Int. J. Electr. Power Energ. Syst doi: 10.1016/j.ijepes.2012.07.038 – volume: 86 start-page: 915 issue: 6 year: 2009 ident: 10.1016/j.applthermaleng.2015.12.136_bib0070 article-title: Enhancement of combined heat and power economic dispatch using self adaptive real-coded genetic algorithm publication-title: Appl. Energy doi: 10.1016/j.apenergy.2008.10.002 – volume: 57 start-page: 392 year: 2014 ident: 10.1016/j.applthermaleng.2015.12.136_bib0180 article-title: Oppositional teaching learning based optimization approach for combined heat and power dispatch publication-title: Int. J. Electr. Power Energ. Syst doi: 10.1016/j.ijepes.2013.12.006 – start-page: 338 year: 2014 ident: 10.1016/j.applthermaleng.2015.12.136_bib0175 – volume: 71 start-page: 21 year: 2013 ident: 10.1016/j.applthermaleng.2015.12.136_bib0055 article-title: A benders decomposition approach for a combined heat and power economic dispatch publication-title: Energy Convers. Manag doi: 10.1016/j.enconman.2013.03.013 – volume: 7 start-page: 133 issue: 2 year: 2013 ident: 10.1016/j.applthermaleng.2015.12.136_bib0165 article-title: Combined heat and power economic dispatch problem using firefly algorithm publication-title: Front. Energ doi: 10.1007/s11708-013-0248-8 – volume: 26 start-page: 363 issue: 4 year: 1998 ident: 10.1016/j.applthermaleng.2015.12.136_bib0145 article-title: Combined heat and power economic dispatch using genetic algorithm based penalty function method publication-title: Electr. Mach. Pow. Syst doi: 10.1080/07313569808955828 – volume: 69 start-page: 187 issue: 2 year: 2004 ident: 10.1016/j.applthermaleng.2015.12.136_bib0100 article-title: An incorporated algorithm for combined heat and power economic dispatch publication-title: Electric Power Systems Research doi: 10.1016/j.epsr.2003.08.006 – volume: 78 start-page: 1784 issue: 10 year: 2008 ident: 10.1016/j.applthermaleng.2015.12.136_bib0115 article-title: A hybrid HNN-QP approach for dynamic economic dispatch problem publication-title: Electric Power Systems Research doi: 10.1016/j.epsr.2008.03.011 – volume: 7 start-page: 777 issue: 4 year: 2013 ident: 10.1016/j.applthermaleng.2015.12.136_bib0110 article-title: Nonconvex dynamic economic power dispatch problems solution using hybrid immune-genetic algorithm publication-title: IEEE Syst. J. doi: 10.1109/JSYST.2013.2258747 – volume: 52 start-page: 115 issue: 2 year: 1999 ident: 10.1016/j.applthermaleng.2015.12.136_bib0090 article-title: Combined heat and power economic dispatch by improved ant colony search algorithm publication-title: Electric Power Systems Research doi: 10.1016/S0378-7796(99)00011-5 – volume: 13 start-page: 973 issue: 5 year: 2009 ident: 10.1016/j.applthermaleng.2015.12.136_bib0140 article-title: Group search optimizer: an optimization algorithm inspired by animal searching behavior publication-title: IEEE Trans. Evol. Comput doi: 10.1109/TEVC.2009.2011992 – volume: 74 start-page: 252 year: 2016 ident: 10.1016/j.applthermaleng.2015.12.136_bib0185 article-title: Grey wolf optimization for combined heat and power dispatch with cogeneration systems publication-title: Int. J. Electr. Power Energ. Syst doi: 10.1016/j.ijepes.2015.07.031 – start-page: 1 year: 2014 ident: 10.1016/j.applthermaleng.2015.12.136_bib0045 article-title: Differential evolution with Gaussian mutation for combined heat and power economic dispatch publication-title: Soft Comput – volume: 9 start-page: 1392 issue: 3 year: 1994 ident: 10.1016/j.applthermaleng.2015.12.136_bib0035 article-title: Static economic dispatch for co-generation systems publication-title: IEEE Trans. Power Syst doi: 10.1109/59.336125 – volume: vol. 39 year: 2008 ident: 10.1016/j.applthermaleng.2015.12.136_bib0125 – volume: 11 start-page: 1778 issue: 4 year: 1996 ident: 10.1016/j.applthermaleng.2015.12.136_bib0040 article-title: An algorithm for combined heat and power economic dispatch publication-title: Power Systems, IEEE Transactions on doi: 10.1109/59.544642 – volume: 37 start-page: 1231 issue: 11 year: 2009 ident: 10.1016/j.applthermaleng.2015.12.136_bib0150 article-title: A novel selective particle swarm optimization approach for combined heat and power economic dispatch publication-title: Electr. Pow. Compo. Sys doi: 10.1080/15325000902994348 – volume: 29 start-page: 2119 issue: 11 year: 2009 ident: 10.1016/j.applthermaleng.2015.12.136_bib0020 article-title: Development of small-scale and micro-scale biomass-fuelled CHP systems – a literature review publication-title: Appl. Therm. Eng doi: 10.1016/j.applthermaleng.2008.12.004 – volume: 34 start-page: 1043 issue: 9 year: 2006 ident: 10.1016/j.applthermaleng.2015.12.136_bib0155 article-title: Combined heat and power economic dispatch: a direct solution publication-title: Electr. Mach. Pow. Syst doi: 10.1080/15325000600596775 – volume: 9 start-page: 75 year: 2014 ident: 10.1016/j.applthermaleng.2015.12.136_bib0130 article-title: Real coded genetic algorithm approach with random transfer vectors-based mutation for short-term hydro–thermal scheduling publication-title: IET Gener. Transm. Distrib doi: 10.1049/iet-gtd.2014.0322 – volume: 38 start-page: 13527 issue: 11 year: 2011 ident: 10.1016/j.applthermaleng.2015.12.136_bib0170 article-title: Bee colony optimization for combined heat and power economic dispatch publication-title: Expert Syst. Appl – volume: 61 start-page: 227 issue: 3 year: 2002 ident: 10.1016/j.applthermaleng.2015.12.136_bib0160 article-title: Evolutionary programming approach for combined heat and power dispatch publication-title: Electric Power Systems Research doi: 10.1016/S0378-7796(02)00028-7 – volume: 136 start-page: 393 year: 2014 ident: 10.1016/j.applthermaleng.2015.12.136_bib0010 article-title: Stochastic risk-constrained short-term scheduling of industrial cogeneration systems in the presence of demand response programs publication-title: Appl. Energy doi: 10.1016/j.apenergy.2014.09.039 – volume: 87 start-page: 402 year: 2015 ident: 10.1016/j.applthermaleng.2015.12.136_bib0025 article-title: Analysis of the location for peak heating in CHP based combined district heating systems publication-title: Appl. Therm. Eng doi: 10.1016/j.applthermaleng.2015.05.017 – volume: 95 start-page: 9 year: 2013 ident: 10.1016/j.applthermaleng.2015.12.136_bib0065 article-title: Combined heat and power economic dispatch problem solution using particle swarm optimization with time varying acceleration coefficients publication-title: Electr. Pow. Syst. Res doi: 10.1016/j.epsr.2012.08.005 – volume: 30 start-page: 226 issue: 3 year: 2008 ident: 10.1016/j.applthermaleng.2015.12.136_bib0095 article-title: Stochastic combined heat and power dispatch based on multi-objective particle swarm optimization publication-title: Int. J. Electr. Power Energ. Syst doi: 10.1016/j.ijepes.2007.08.002 – volume: 71 start-page: 289 year: 2014 ident: 10.1016/j.applthermaleng.2015.12.136_bib0030 article-title: Short-term scheduling of combined heat and power generation units in the presence of demand response programs publication-title: Energy doi: 10.1016/j.energy.2014.04.059 – volume: 8 start-page: 25 issue: 1 year: 2014 ident: 10.1016/j.applthermaleng.2015.12.136_bib0080 article-title: Combined heat and power economic dispatch problem using the invasive weed optimization algorithm publication-title: Front. Energ doi: 10.1007/s11708-013-0276-4 – volume: 29 start-page: 713 issue: 10 year: 2007 ident: 10.1016/j.applthermaleng.2015.12.136_bib0015 article-title: Combined heat and power economic dispatch by harmony search algorithm publication-title: Int. J. Electr. Power Energ. Syst doi: 10.1016/j.ijepes.2007.06.006 – volume: 52 start-page: 1550 issue: 2 year: 2011 ident: 10.1016/j.applthermaleng.2015.12.136_bib0075 article-title: Harmony search algorithm for solving combined heat and power economic dispatch problems publication-title: Energy Convers. Manag doi: 10.1016/j.enconman.2010.10.017 – volume: 20 start-page: 1273 issue: 3 year: 2005 ident: 10.1016/j.applthermaleng.2015.12.136_bib0120 article-title: Reserve constrained dynamic dispatch of units with valve-point effects publication-title: Power Systems, IEEE Transactions on doi: 10.1109/TPWRS.2005.851958 – volume: 80 start-page: 446 year: 2014 ident: 10.1016/j.applthermaleng.2015.12.136_bib0085 article-title: Improved group search optimization method for solving CHPED in large scale power systems publication-title: Energy Convers. Manag doi: 10.1016/j.enconman.2014.01.051 – volume: 12 start-page: 265 issue: 4 year: 1998 ident: 10.1016/j.applthermaleng.2015.12.136_bib0135 article-title: Tackling real-coded genetic algorithms: operators and tools for behavioural analysis publication-title: Artif. Intell. Rev doi: 10.1023/A:1006504901164 – volume: 73 start-page: 819 year: 2015 ident: 10.1016/j.applthermaleng.2015.12.136_bib0105 article-title: Combined heat and power economic dispatch using opposition-based group search optimization publication-title: Int. J. Elec. Power doi: 10.1016/j.ijepes.2015.06.023 – volume: 53 start-page: 482 year: 2013 ident: 10.1016/j.applthermaleng.2015.12.136_bib0060 article-title: A harmony-genetic based heuristic approach toward economic dispatching combined heat and power publication-title: Int. J. Electr. Power Energ. Syst doi: 10.1016/j.ijepes.2013.05.027 |
| SSID | ssj0012874 |
| Score | 2.515088 |
| Snippet | •An improved Mühlenbein mutation is proposed for GA algorithm.•Proposed algorithm is evaluated using different benchmark functions.•The proposed algorithm has... |
| SourceID | crossref elsevier |
| SourceType | Enrichment Source Index Database Publisher |
| StartPage | 465 |
| SubjectTerms | Combined heat and power (CHP) Economic dispatch Non-convex optimization problem Real code genetic algorithm (RCGA) |
| Title | Solving combined heat and power economic dispatch problem using real coded genetic algorithm with improved Mühlenbein mutation |
| URI | https://dx.doi.org/10.1016/j.applthermaleng.2015.12.136 |
| Volume | 99 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVESC databaseName: Baden-Württemberg Complete Freedom Collection (Elsevier) issn: 1359-4311 databaseCode: GBLVA dateStart: 20110101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0012874 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect issn: 1359-4311 databaseCode: .~1 dateStart: 19960101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0012874 providerName: Elsevier – providerCode: PRVESC databaseName: Elsevier ScienceDirect Journals issn: 1359-4311 databaseCode: AIKHN dateStart: 19960101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0012874 providerName: Elsevier – providerCode: PRVESC databaseName: ScienceDirect Freedom Collection issn: 1359-4311 databaseCode: ACRLP dateStart: 19960101 customDbUrl: isFulltext: true dateEnd: 99991231 titleUrlDefault: https://www.sciencedirect.com omitProxy: true ssIdentifier: ssj0012874 providerName: Elsevier – providerCode: PRVLSH databaseName: Elsevier Journals issn: 1359-4311 databaseCode: AKRWK dateStart: 19960101 customDbUrl: isFulltext: true mediaType: online dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0012874 providerName: Library Specific Holdings |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEF5EQfQgPvHNHLzGstlHN3iQUpSq6EULvYVNdlMjaVqkveof8-YfcyZN1YKHgsc8dklmlplv3oydGZFx7r0JUBnYQIaeBzbTPhAidJlxRhpPhuL9g-505W1P9ZZYe1YLQ2mVteyfyvRKWtd3GjU1G6M8bzxyoSJUf5zrKn5GcljKJk0xOH_7TvPg1M-9MrpUFNDbq-zsJ8eLgsSEswaWxpZQopci5yCvGjb_oaZ-qZ7rTbZRY0ZoTT9riy35cput_-okuMPeH4cFuQYA_wNtXe-AhCzY0sGI5qCBrwuQweUoQ5BVUI-SAcp87wNixwKovt0BHimqbARb9Iev-fh5AOSshbxyP-Dz-8-P54ISw_ISBpNpKH-Xda-vntqdoJ6tEKSiacaBQKAovZY6FULKMEWzQRspPNeJSIRPrTIR1bhmWYoWkk694laJRCKtE2cR9e2x5XJY-n0GmTPaRpE3JmnKxCqLrENYxx2BwySTB-xiRso4rRuP0_yLIp5lmL3E84yIiRExD2NkxAFT36tH0wYcC667nHEtnjtQMeqKhXY4_PcOR2wNrzQFn0J1zJbHrxN_ghhmnJxWh_SUrbRu7joPX35T98g |
| linkProvider | Elsevier |
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8QwEA6i4OMgPvHtHLzWJc1jUzyIiLI-1osK3kLapFrpdhdZr_rHvPnHnOl2fYAHwWvThHYmzHzzZmzPiJzzEEyEysBFMg48crkOkRCxz4030gQyFLtXunMrz-_U3QQ7HtfCUFplI_tHMr2W1s2TVkPN1qAoWtdcqATVH-e6jp-hHJ6SKm6TBbb_8pnnwamhe211qSSi16fZ3leSF0WJCWj1HM0toUwvRd5BXnds_kVPfdM9pwtsvgGNcDT6rkU2EaolNvetleAye73ul-QbAPwRNHaDB5Ky4CoPAxqEBqGpQAZfoBBBXkEzSwYo9f0eEDyWQAXuHvBOUWkjuPK-_1QMH3pA3looav8Drnff3x5KygwrKug9j2L5K-z29OTmuBM1wxWiTLTNMBKIFGXQUmdCSBlnaDdoI0XgOhWpCJlTJqEi1zzP0ETSWVDcKZFKJHbqHcK-VTZZ9auwxiD3RrskCcakbZk65ZB3iOu4J3SY5nKdHYxJabOm8zgNwCjtOMXs0f5khCVGWB5bZMQ6U5-7B6MOHH_cdzjmmv1xoywqiz-dsPHvE3bZTOeme2kvz64uNtksrmiKRMVqi00On57DNgKaYbpTX9gPMdz5XQ |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Solving+combined+heat+and+power+economic+dispatch+problem+using+real+coded+genetic+algorithm+with+improved+M%C3%BChlenbein+mutation&rft.jtitle=Applied+thermal+engineering&rft.au=Haghrah%2C+A.&rft.au=Nazari-Heris%2C+M.&rft.au=Mohammadi-ivatloo%2C+B.&rft.date=2016-04-25&rft.issn=1359-4311&rft.volume=99&rft.spage=465&rft.epage=475&rft_id=info:doi/10.1016%2Fj.applthermaleng.2015.12.136&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_applthermaleng_2015_12_136 |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1359-4311&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1359-4311&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1359-4311&client=summon |