Analytical binomial lookback options with double-exponential jumps

We study the problem of the convergence of the adjusted binomial lookback option in double-exponential jump diffusion models. By using the results of [Dai, M., (2000). A modified binomial tree method for currency lookback options. Acta Mathematica Sinica, 16, 445–454; Kou, S., & Wang, H. (2004)....

Full description

Saved in:
Bibliographic Details
Published inJournal of the Korean Statistical Society Vol. 38; no. 4; pp. 397 - 404
Main Author Park, Hyun Suk
Format Journal Article
LanguageEnglish
Published Singapore Elsevier B.V 01.12.2009
Springer Singapore
한국통계학회
Subjects
Online AccessGet full text
ISSN1226-3192
2005-2863
DOI10.1016/j.jkss.2009.07.002

Cover

More Information
Summary:We study the problem of the convergence of the adjusted binomial lookback option in double-exponential jump diffusion models. By using the results of [Dai, M., (2000). A modified binomial tree method for currency lookback options. Acta Mathematica Sinica, 16, 445–454; Kou, S., & Wang, H. (2004). Option pricing under a double exponential jump diffusion model. Management Science, 50, 1178–1192] and [Park, H.S., Kim, K.I., & Qian, X. (2009). A Mathematical modeling for the Lookback option with jump diffusion using Binomial tree method. Journal of Computational and Applied Mathematics, preprint], we show the equivalence between the adjusted binomial tree method and the explicit difference scheme. The convergence is also theoretically proved through the notion of viscosity solution. Numerical results coincide with the theoretical results.
Bibliography:G704-000337.2009.38.4.005
ISSN:1226-3192
2005-2863
DOI:10.1016/j.jkss.2009.07.002