Quantitative modeling of EGF receptor ligand discrimination via internalization proofreading

The epidermal growth factor receptor (EGFR) is a central regulator of cell physiology that is stimulated by multiple distinct ligands. Although ligands bind to EGFR while the receptor is exposed on the plasma membrane, EGFR incorporation into endosomes following receptor internalization is an import...

Full description

Saved in:
Bibliographic Details
Published inPhysical biology Vol. 20; no. 5; pp. 56008 - 56023
Main Authors Leblanc, Jaleesa A, Sugiyama, Michael G, Antonescu, Costin N, Brown, Aidan I
Format Journal Article
LanguageEnglish
Published England IOP Publishing 01.09.2023
Subjects
Online AccessGet full text
ISSN1478-3975
1478-3967
1478-3975
DOI10.1088/1478-3975/aceecd

Cover

Abstract The epidermal growth factor receptor (EGFR) is a central regulator of cell physiology that is stimulated by multiple distinct ligands. Although ligands bind to EGFR while the receptor is exposed on the plasma membrane, EGFR incorporation into endosomes following receptor internalization is an important aspect of EGFR signaling, with EGFR internalization behavior dependent upon the type of ligand bound. We develop quantitative modeling for EGFR recruitment to and internalization from clathrin domains, focusing on how internalization competes with ligand unbinding from EGFR. We develop two model versions: a kinetic model with EGFR behavior described as transitions between discrete states and a spatial model with EGFR diffusion to circular clathrin domains. We find that a combination of spatial and kinetic proofreading leads to enhanced EGFR internalization ratios in comparison to unbinding differences between ligand types. Various stages of the EGFR internalization process, including recruitment to and internalization from clathrin domains, modulate the internalization differences between receptors bound to different ligands. Our results indicate that following ligand binding, EGFR may encounter multiple clathrin domains before successful recruitment and internalization. The quantitative modeling we have developed describes competition between EGFR internalization and ligand unbinding and the resulting proofreading.
AbstractList The epidermal growth factor receptor (EGFR) is a central regulator of cell physiology that is stimulated by multiple distinct ligands. Although ligands bind to EGFR while the receptor is exposed on the plasma membrane, EGFR incorporation into endosomes following receptor internalization is an important aspect of EGFR signaling, with EGFR internalization behavior dependent upon the type of ligand bound. We develop quantitative modeling for EGFR recruitment to and internalization from clathrin domains, focusing on how internalization competes with ligand unbinding from EGFR. We develop two model versions: a kinetic model with EGFR behavior described as transitions between discrete states and a spatial model with EGFR diffusion to circular clathrin domains. We find that a combination of spatial and kinetic proofreading leads to enhanced EGFR internalization ratios in comparison to unbinding differences between ligand types. Various stages of the EGFR internalization process, including recruitment to and internalization from clathrin domains, modulate the internalization differences between receptors bound to different ligands. Our results indicate that following ligand binding, EGFR may encounter multiple clathrin domains before successful recruitment and internalization. The quantitative modeling we have developed describes competition between EGFR internalization and ligand unbinding and the resulting proofreading.
The epidermal growth factor receptor (EGFR) is a central regulator of cell physiology that is stimulated by multiple distinct ligands. Although ligands bind to EGFR while the receptor is exposed on the plasma membrane, EGFR incorporation into endosomes following receptor internalization is an important aspect of EGFR signaling, with EGFR internalization behavior dependent upon the type of ligand bound. We develop quantitative modeling for EGFR recruitment to and internalization from clathrin domains, focusing on how internalization competes with ligand unbinding from EGFR. We develop two model versions: a kinetic model with EGFR behavior described as transitions between discrete states and a spatial model with EGFR diffusion to circular clathrin domains. We find that a combination of spatial and kinetic proofreading leads to enhanced EGFR internalization ratios in comparison to unbinding differences between ligand types. Various stages of the EGFR internalization process, including recruitment to and internalization from clathrin domains, modulate the internalization differences between receptors bound to different ligands. Our results indicate that following ligand binding, EGFR may encounter multiple clathrin domains before successful recruitment and internalization. The quantitative modeling we have developed describes competition between EGFR internalization and ligand unbinding and the resulting proofreading.The epidermal growth factor receptor (EGFR) is a central regulator of cell physiology that is stimulated by multiple distinct ligands. Although ligands bind to EGFR while the receptor is exposed on the plasma membrane, EGFR incorporation into endosomes following receptor internalization is an important aspect of EGFR signaling, with EGFR internalization behavior dependent upon the type of ligand bound. We develop quantitative modeling for EGFR recruitment to and internalization from clathrin domains, focusing on how internalization competes with ligand unbinding from EGFR. We develop two model versions: a kinetic model with EGFR behavior described as transitions between discrete states and a spatial model with EGFR diffusion to circular clathrin domains. We find that a combination of spatial and kinetic proofreading leads to enhanced EGFR internalization ratios in comparison to unbinding differences between ligand types. Various stages of the EGFR internalization process, including recruitment to and internalization from clathrin domains, modulate the internalization differences between receptors bound to different ligands. Our results indicate that following ligand binding, EGFR may encounter multiple clathrin domains before successful recruitment and internalization. The quantitative modeling we have developed describes competition between EGFR internalization and ligand unbinding and the resulting proofreading.
Author Sugiyama, Michael G
Brown, Aidan I
Antonescu, Costin N
Leblanc, Jaleesa A
Author_xml – sequence: 1
  givenname: Jaleesa A
  surname: Leblanc
  fullname: Leblanc, Jaleesa A
  organization: Toronto Metropolitan University Department of Physics, Toronto, Ontario, Canada
– sequence: 2
  givenname: Michael G
  surname: Sugiyama
  fullname: Sugiyama, Michael G
  organization: Toronto Metropolitan University Department of Chemistry and Biology, Toronto, Ontario, Canada
– sequence: 3
  givenname: Costin N
  surname: Antonescu
  fullname: Antonescu, Costin N
  organization: Toronto Metropolitan University Department of Chemistry and Biology, Toronto, Ontario, Canada
– sequence: 4
  givenname: Aidan I
  orcidid: 0000-0002-6600-8289
  surname: Brown
  fullname: Brown, Aidan I
  organization: Toronto Metropolitan University Department of Physics, Toronto, Ontario, Canada
BackLink https://www.ncbi.nlm.nih.gov/pubmed/37557183$$D View this record in MEDLINE/PubMed
BookMark eNp9kM9LwzAYhoMo7ofePUmPHpxr2mZJjyLbFAYi6E0IafJlZHTJTNqB_vVmdhMR9JTw8bxvvjwDdGydBYQucHqDU8bGuKBslJeUjIUEkOoI9b9Hxz_uPTQIYZWmWZml9BT1ckoIxSzvo9enVtjGNKIxW0jWTkFt7DJxOpnOZ4kHCZvG-aQ2S2FVokyQ3qyNjbizydaIxNgGvBW1-ehmG--c9iBUrDlDJ1rUAc735xC9zKbPd_ejxeP84e52MZI5Zc0Il0JkklUZJhUoJssJYCoYo6RQOWhS0QxnmpII54CBKK1Jmhe6UpoUhJX5EF11vfHxtxZCw9dxUahrYcG1gWesYCySGEf0co-21RoU38TvCP_OD0YiMOkA6V0IHjSXX3acbbwwNccp36nnO7d855Z36mMw_RU8dP8Tue4ixm34yrU7j-Fv_BNtppeR
CODEN PBHIAT
CitedBy_id crossref_primary_10_1038_s41592_024_02584_0
Cites_doi 10.1016/j.semcdb.2014.01.005
10.1021/acs.chemrev.9b00254
10.1080/01621459.1949.10483310
10.1371/journal.pone.0062331
10.1021/acs.analchem.8b00071
10.1073/pnas.71.10.4135
10.1016/j.cell.2017.09.017
10.1002/1878-0261.12155
10.1016/j.yexcr.2008.09.021
10.1016/j.bpj.2021.11.1108
10.1016/j.jhep.2019.09.012
10.1016/S0006-3495(77)85544-6
10.1038/nrm3151
10.1186/1478-811X-11-52
10.1111/j.1600-0854.2009.00943.x
10.1073/pnas.92.11.5042
10.1140/epje/s10189-021-00083-0
10.1074/jbc.M116.747485
10.1128/MCB.26.2.389-401.2006
10.1016/j.bbrc.2016.07.097
10.1016/S0021-9258(18)48269-5
10.1371/journal.pbio.2006660
10.1091/mbc.12.6.1897
10.1074/jbc.M115.710087
10.1016/j.jprot.2022.104503
10.1371/journal.pone.0202331
10.1016/j.devcel.2013.06.019
10.1016/j.cell.2004.08.017
10.1016/S0006-3495(02)75633-6
10.1091/mbc.e04-01-0041
10.1126/science.274.5295.2086
10.1038/nm.3388
10.1110/ps.052045306
10.1016/j.ceb.2007.04.021
10.1083/jcb.201008117
10.1038/nphys2276
10.1016/j.devcel.2008.06.012
10.1038/s41467-023-38390-z
10.1021/bi00083a020
10.1016/S0014-5793(99)00283-5
10.1103/PhysRevE.99.060401
10.1016/j.cell.2007.11.013
10.3109/08977190009003231
10.1074/jbc.274.42.30169
10.1038/s42004-018-0096-x
10.1016/j.cell.2011.01.029
10.3109/08977194.2014.952410
10.1016/j.tcb.2013.11.002
10.1023/A:1016256525951
10.1021/bi801006s
10.1371/journal.pone.0058148
10.1073/pnas.1119911109
10.3390/cancers9050052
10.1517/14728222.2011.648617
10.1038/nature08827
10.1038/ncomms13307
10.1039/C7SC01159H
10.1016/S0300-9084(75)80139-8
10.1016/j.bpj.2015.09.007
10.1371/journal.pone.0054136
10.1111/j.1600-0854.2008.00858.x
10.1074/jbc.270.9.4334
10.1002/anie.201500871
10.1016/j.cell.2010.06.011
10.1016/j.yexcr.2005.05.012
10.7554/eLife.60415
10.1039/c3mb70073a
10.1016/j.pharmthera.2008.11.008
10.1006/excr.1997.3635
10.1371/journal.pone.0143162
10.1073/pnas.1810209115
10.1083/jcb.201001008
ContentType Journal Article
Copyright 2023 The Author(s). Published by IOP Publishing Ltd
Creative Commons Attribution license.
Copyright_xml – notice: 2023 The Author(s). Published by IOP Publishing Ltd
– notice: Creative Commons Attribution license.
DBID O3W
TSCCA
AAYXX
CITATION
NPM
7X8
DOI 10.1088/1478-3975/aceecd
DatabaseName Institute of Physics Open Access Journal Titles
IOPscience (Open Access)
CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: O3W
  name: Institute of Physics Open Access Journal Titles
  url: http://iopscience.iop.org/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1478-3975
ExternalDocumentID 37557183
10_1088_1478_3975_aceecd
pbaceecd
Genre Journal Article
GrantInformation_xml – fundername: Natural Sciences and Engineering Research Council of Canada
  funderid: http://dx.doi.org/10.13039/501100000038
– fundername: Canadian Institutes of Health Research
  funderid: http://dx.doi.org/10.13039/501100000024
– fundername: Toronto Metropolitan University
GroupedDBID ---
123
1JI
4.4
5B3
5VS
5ZH
7.M
7.Q
AAGCD
AAJIO
AAJKP
AATNI
ABHWH
ABJNI
ABQJV
ABVAM
ACAFW
ACGFO
ACGFS
ACHIP
AEFHF
AENEX
AFYNE
AKPSB
ALMA_UNASSIGNED_HOLDINGS
AOAED
ASPBG
ATQHT
AVWKF
AZFZN
CEBXE
CJUJL
CRLBU
CS3
DU5
EBS
EDWGO
EMSAF
EPQRW
EQZZN
F5P
HAK
IJHAN
IOP
IZVLO
KOT
LAP
N5L
N9A
O3W
P2P
PJBAE
RIN
RNS
RO9
ROL
RPA
SY9
TSCCA
UCJ
W28
XPP
AAYXX
ADEQX
CITATION
NPM
7X8
AEINN
M45
ID FETCH-LOGICAL-c378t-19aa2c8b215bed8c96e17a88754d3ef5b7212f753783e1e5dff5034fbdf545893
IEDL.DBID IOP
ISSN 1478-3975
1478-3967
IngestDate Fri Sep 05 13:44:48 EDT 2025
Thu Jan 02 22:52:08 EST 2025
Thu Apr 24 22:52:50 EDT 2025
Tue Jul 01 04:07:23 EDT 2025
Wed Aug 21 03:41:45 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords Kinetic proofreading
EGF receptor
Diffusive search
Language English
License Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.
Creative Commons Attribution license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-19aa2c8b215bed8c96e17a88754d3ef5b7212f753783e1e5dff5034fbdf545893
Notes PB-101758.R1
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6600-8289
OpenAccessLink https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1478-3975/aceecd
PMID 37557183
PQID 2848845811
PQPubID 23479
PageCount 16
ParticipantIDs proquest_miscellaneous_2848845811
crossref_primary_10_1088_1478_3975_aceecd
iop_journals_10_1088_1478_3975_aceecd
crossref_citationtrail_10_1088_1478_3975_aceecd
pubmed_primary_37557183
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-09-01
PublicationDateYYYYMMDD 2023-09-01
PublicationDate_xml – month: 09
  year: 2023
  text: 2023-09-01
  day: 01
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Physical biology
PublicationTitleAbbrev PhysBio
PublicationTitleAlternate Phys. Biol
PublicationYear 2023
Publisher IOP Publishing
Publisher_xml – name: IOP Publishing
References Sigismund (pbaceecdbib5) 2018; 12
Vieira (pbaceecdbib22) 1996; 274
Kholodenko (pbaceecdbib52) 1999; 274
Lemmon (pbaceecdbib3) 2010; 141
Stang (pbaceecdbib16) 2004; 15
Jones (pbaceecdbib27) 1999; 447
French (pbaceecdbib35) 1995; 270
Sugiyama (pbaceecdbib8) 2023; 14
Zhou (pbaceecdbib53) 1993; 32
Yarden (pbaceecdbib2) 2007; 131
Solic (pbaceecdbib32) 1997; 234
Brown (pbaceecdbib76) 2023
Burke (pbaceecdbib23) 2001; 12
Keppel (pbaceecdbib72) 2017; 292
Chong (pbaceecdbib7) 2013; 19
Kim (pbaceecdbib45) 2015; 54
Ibach (pbaceecdbib68) 2015; 10
Grecco (pbaceecdbib1) 2011; 144
Liu (pbaceecdbib69) 2010; 191
Chung (pbaceecdbib9) 2010; 464
Yi (pbaceecdbib13) 2018; 90
Ninio (pbaceecdbib37) 1975; 57
Cui (pbaceecdbib41) 2018; 13
Grebenkov (pbaceecdbib60) 2018; 1
Myers (pbaceecdbib51) 1987; 262
Henriksen (pbaceecdbib19) 2013; 8
Chung (pbaceecdbib33) 2005; 309
Wilson (pbaceecdbib28) 2009; 122
Ronan (pbaceecdbib31) 2016; 291
Berg (pbaceecdbib43) 1977; 20
Nguyen (pbaceecdbib11) 2013; 11
Sigismund (pbaceecdbib18) 2008; 15
Lan (pbaceecdbib61) 2012; 8
Kuan Goh (pbaceecdbib70) 2010; 189
Kazazic (pbaceecdbib17) 2009; 10
Sadowski (pbaceecdbib24) 2009; 315
McMahon (pbaceecdbib63) 2011; 12
Caballero-Díaz (pbaceecdbib64) 2020; 72
Seshacharyulu (pbaceecdbib6) 2012; 16
Bag (pbaceecdbib44) 2015; 109
Kozer (pbaceecdbib12) 2013; 9
Swain (pbaceecdbib39) 2002; 82
Kim (pbaceecdbib47) 2017; 8
Kankanala (pbaceecdbib50) 2009
Lee (pbaceecdbib71) 2006; 15
Redner (pbaceecdbib66) 2001
Scott (pbaceecdbib67) 2021; 44
Needham (pbaceecdbib10) 2016; 7
Freed (pbaceecdbib26) 2017; 171
Aguet (pbaceecdbib58) 2013; 26
Wade (pbaceecdbib49) 2001; 8
Ehrlich (pbaceecdbib48) 2004; 118
Blossey (pbaceecdbib57) 2019; 99
Johannessen (pbaceecdbib14) 2006; 26
Mi (pbaceecdbib73) 2008; 47
Xiao (pbaceecdbib65) 2018; 115
Domagala (pbaceecdbib54) 2000; 18
Jeppe Knudsen (pbaceecdbib29) 2014; 32
Metropolis (pbaceecdbib75) 1949; 44
Guo (pbaceecdbib59) 2022; 121
Wee (pbaceecdbib4) 2017; 9
Berasain (pbaceecdbib30) 2014; 28
Tomas (pbaceecdbib21) 2014; 24
McKeithan (pbaceecdbib38) 1995; 92
Needham (pbaceecdbib74) 2013; 8
Hopfield (pbaceecdbib36) 1974; 71
Murugan (pbaceecdbib40) 2012; 109
Kim (pbaceecdbib46) 2018; 16
Zhou (pbaceecdbib15) 2022; 255
von Zastrow (pbaceecdbib20) 2007; 19
Galstyan (pbaceecdbib42) 2020; 9
Faria (pbaceecdbib34) 2016; 478
Brown (pbaceecdbib62) 2019; 120
Roepstorff (pbaceecdbib25) 2009; 10
Harris (pbaceecdbib55) 2003
Sanders (pbaceecdbib56) 2013; 8
References_xml – volume: 28
  start-page: 31
  year: 2014
  ident: pbaceecdbib30
  article-title: Amphiregulin
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2014.01.005
– volume: 120
  start-page: 434
  year: 2019
  ident: pbaceecdbib62
  article-title: Theory of nonequilibrium free energy transduction by molecular machines
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.9b00254
– volume: 44
  start-page: 335
  year: 1949
  ident: pbaceecdbib75
  article-title: The Monte Carlo method
  publication-title: J. Am. Stat. Assoc.
  doi: 10.1080/01621459.1949.10483310
– volume: 8
  year: 2013
  ident: pbaceecdbib74
  article-title: Measuring EGFR separations on cells with   10 nm resolution via fluorophore localization imaging with photobleaching
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0062331
– volume: 90
  start-page: 5256
  year: 2018
  ident: pbaceecdbib13
  article-title: Targeted quantification of phosphorylation dynamics in the context of EGFR-MAPK pathway
  publication-title: Anal. Chem.
  doi: 10.1021/acs.analchem.8b00071
– volume: 71
  start-page: 4135
  year: 1974
  ident: pbaceecdbib36
  article-title: Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.71.10.4135
– volume: 171
  start-page: 683
  year: 2017
  ident: pbaceecdbib26
  article-title: EGFR ligands differentially stabilize receptor dimers to specify signaling kinetics
  publication-title: Cell
  doi: 10.1016/j.cell.2017.09.017
– volume: 12
  start-page: 3
  year: 2018
  ident: pbaceecdbib5
  article-title: Emerging functions of the EGFR in cancer
  publication-title: Mol. Oncol.
  doi: 10.1002/1878-0261.12155
– volume: 315
  start-page: 1601
  year: 2009
  ident: pbaceecdbib24
  article-title: Signaling from endosomes: location makes a difference
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2008.09.021
– volume: 121
  start-page: 331a
  year: 2022
  ident: pbaceecdbib59
  article-title: Large self-assembled clathrin lattices spontaneously disassemble without sufficient adaptor proteins
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2021.11.1108
– volume: 72
  start-page: 125
  year: 2020
  ident: pbaceecdbib64
  article-title: Clathrin switches transforming growth factor-β role to pro-tumorigenic in liver cancer
  publication-title: J. Hepatol.
  doi: 10.1016/j.jhep.2019.09.012
– volume: 20
  start-page: 193
  year: 1977
  ident: pbaceecdbib43
  article-title: Physics of chemoreception
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(77)85544-6
– volume: 12
  start-page: 517
  year: 2011
  ident: pbaceecdbib63
  article-title: Molecular mechanism and physiological functions of clathrin-mediated endocytosis
  publication-title: Nat. Rev. Mol. Cell Biol.
  doi: 10.1038/nrm3151
– volume: 11
  start-page: 1
  year: 2013
  ident: pbaceecdbib11
  article-title: When ubiquitination meets phosphorylation: a systems biology perspective of EGFR/MAPK signalling
  publication-title: Cell Commun. Signal.
  doi: 10.1186/1478-811X-11-52
– volume: 10
  start-page: 1115
  year: 2009
  ident: pbaceecdbib25
  article-title: Differential effects of EGFR ligands on endocytic sorting of the receptor
  publication-title: Traffic
  doi: 10.1111/j.1600-0854.2009.00943.x
– volume: 92
  start-page: 5042
  year: 1995
  ident: pbaceecdbib38
  article-title: Kinetic proofreading in T-cell receptor signal transduction
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.92.11.5042
– volume: 44
  start-page: 80
  year: 2021
  ident: pbaceecdbib67
  article-title: Diffusive search and trajectories on tubular networks: a propagator approach
  publication-title: Eur. Phys. J. E
  doi: 10.1140/epje/s10189-021-00083-0
– volume: 292
  start-page: 597
  year: 2017
  ident: pbaceecdbib72
  article-title: Biophysical evidence for intrinsic disorder in the C-terminal tails of the epidermal growth factor receptor (EGFR) and HER3 receptor tyrosine kinases
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M116.747485
– volume: 26
  start-page: 389
  year: 2006
  ident: pbaceecdbib14
  article-title: Activation of the epidermal growth factor (EGF) receptor induces formation of EGF receptor-and Grb2-containing clathrin-coated pits
  publication-title: Mol. Cell. Biol.
  doi: 10.1128/MCB.26.2.389-401.2006
– volume: 478
  start-page: 39
  year: 2016
  ident: pbaceecdbib34
  article-title: Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2016.07.097
– volume: 262
  start-page: 6494
  year: 1987
  ident: pbaceecdbib51
  article-title: Binding, internalization and intracellular processing of protein ligands. Derivation of rate constants by computer modeling
  publication-title: J. Biol. Chem.
  doi: 10.1016/S0021-9258(18)48269-5
– volume: 16
  year: 2018
  ident: pbaceecdbib46
  article-title: Direct visualization of single-molecule membrane protein interactions in living cells
  publication-title: PLoS Biol.
  doi: 10.1371/journal.pbio.2006660
– volume: 12
  start-page: 1897
  year: 2001
  ident: pbaceecdbib23
  article-title: Regulation of epidermal growth factor receptor signaling by endocytosis and intracellular trafficking
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.12.6.1897
– volume: 291
  start-page: 5528
  year: 2016
  ident: pbaceecdbib31
  article-title: Different epidermal growth factor receptor (EGFR) agonists produce unique signatures for the recruitment of downstream signaling proteins
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M115.710087
– volume: 255
  year: 2022
  ident: pbaceecdbib15
  article-title: New trend in ligand-induced EGFR trafficking: a dual-mode clathrin-mediated endocytosis model
  publication-title: J. Proteom.
  doi: 10.1016/j.jprot.2022.104503
– volume: 13
  year: 2018
  ident: pbaceecdbib41
  article-title: Identifying feasible operating regimes for early T-cell recognition: the speed, energy, accuracy trade-off in kinetic proofreading and adaptive sorting
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0202331
– volume: 26
  start-page: 279
  year: 2013
  ident: pbaceecdbib58
  article-title: Advances in analysis of low signal-to-noise images link dynamin and AP2 to the functions of an endocytic checkpoint
  publication-title: Dev. Cell
  doi: 10.1016/j.devcel.2013.06.019
– volume: 118
  start-page: 591
  year: 2004
  ident: pbaceecdbib48
  article-title: Endocytosis by random initiation and stabilization of clathrin-coated pits
  publication-title: Cell
  doi: 10.1016/j.cell.2004.08.017
– volume: 82
  start-page: 2928
  year: 2002
  ident: pbaceecdbib39
  article-title: The role of proofreading in signal transduction specificity
  publication-title: Biophys. J.
  doi: 10.1016/S0006-3495(02)75633-6
– volume: 15
  start-page: 3591
  year: 2004
  ident: pbaceecdbib16
  article-title: Cbl-dependent ubiquitination is required for progression of EGF receptors into clathrin-coated pits
  publication-title: Mol. Biol. Cell
  doi: 10.1091/mbc.e04-01-0041
– volume: 274
  start-page: 2086
  year: 1996
  ident: pbaceecdbib22
  article-title: Control of EGF receptor signaling by clathrin-mediated endocytosis
  publication-title: Science
  doi: 10.1126/science.274.5295.2086
– volume: 19
  start-page: 1389
  year: 2013
  ident: pbaceecdbib7
  article-title: The quest to overcome resistance to EGFR-targeted therapies in cancer
  publication-title: Nat. Med.
  doi: 10.1038/nm.3388
– volume: 15
  start-page: 1142
  year: 2006
  ident: pbaceecdbib71
  article-title: Structure and dynamics of the epidermal growth factor receptor C-terminal phosphorylation domain
  publication-title: Protein Sci.
  doi: 10.1110/ps.052045306
– volume: 19
  start-page: 436
  year: 2007
  ident: pbaceecdbib20
  article-title: Signaling on the endocytic pathway
  publication-title: Curr. Opin. Biol.
  doi: 10.1016/j.ceb.2007.04.021
– volume: 191
  start-page: 1381
  year: 2010
  ident: pbaceecdbib69
  article-title: Local clustering of transferrin receptors promotes clathrin-coated pit initiation
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201008117
– year: 2023
  ident: pbaceecdbib76
– volume: 8
  start-page: 422
  year: 2012
  ident: pbaceecdbib61
  article-title: The energy–speed–accuracy trade-off in sensory adaptation
  publication-title: Nat. Phys.
  doi: 10.1038/nphys2276
– volume: 15
  start-page: 209
  year: 2008
  ident: pbaceecdbib18
  article-title: Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable for degradation
  publication-title: Dev. cell
  doi: 10.1016/j.devcel.2008.06.012
– year: 2001
  ident: pbaceecdbib66
– volume: 14
  start-page: 1
  year: 2023
  ident: pbaceecdbib8
  article-title: Confinement of unliganded EGFR by tetraspanin nanodomains gates EGFR ligand binding and signaling
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-38390-z
– volume: 32
  start-page: 8193
  year: 1993
  ident: pbaceecdbib53
  article-title: Real-time measurements of kinetics of EGF binding to soluble EGF receptor monomers and dimers support the dimerization model for receptor activation
  publication-title: Biochemistry
  doi: 10.1021/bi00083a020
– volume: 447
  start-page: 227
  year: 1999
  ident: pbaceecdbib27
  article-title: Binding specificities and affinities of egf domains for ErbB receptors
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(99)00283-5
– volume: 99
  year: 2019
  ident: pbaceecdbib57
  article-title: Histone mark recognition controls nucleosome translocation via a kinetic proofreading mechanism: confronting theory and high-throughput experiments
  publication-title: Phys. Rev. E
  doi: 10.1103/PhysRevE.99.060401
– volume: 131
  start-page: 1018
  year: 2007
  ident: pbaceecdbib2
  article-title: Snapshot: EGFR signaling pathway
  publication-title: Cell
  doi: 10.1016/j.cell.2007.11.013
– volume: 18
  start-page: 11
  year: 2000
  ident: pbaceecdbib54
  article-title: Stoichiometry, kinetic and binding analysis of the interaction between epidermal growth factor (EGF) and the extracellular domain of the EGF receptor
  publication-title: Growth Factors
  doi: 10.3109/08977190009003231
– volume: 274
  start-page: 30169
  year: 1999
  ident: pbaceecdbib52
  article-title: Quantification of short term signaling by the epidermal growth factor receptor
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.274.42.30169
– volume: 1
  start-page: 96
  year: 2018
  ident: pbaceecdbib60
  article-title: Strong defocusing of molecular reaction times results from an interplay of geometry and reaction control
  publication-title: Commun. Chem.
  doi: 10.1038/s42004-018-0096-x
– volume: 144
  start-page: 897
  year: 2011
  ident: pbaceecdbib1
  article-title: Signaling from the living plasma membrane
  publication-title: Cell
  doi: 10.1016/j.cell.2011.01.029
– volume: 32
  start-page: 155
  year: 2014
  ident: pbaceecdbib29
  article-title: EGFR signaling patterns are regulated by its different ligands
  publication-title: Growth Factors
  doi: 10.3109/08977194.2014.952410
– volume: 24
  start-page: 26
  year: 2014
  ident: pbaceecdbib21
  article-title: EGF receptor trafficking: consequences for signaling and cancer
  publication-title: Trends cell Biol.
  doi: 10.1016/j.tcb.2013.11.002
– volume: 8
  start-page: 211
  year: 2001
  ident: pbaceecdbib49
  article-title: Use of thiazolidine-mediated ligation for site specific biotinylation of mouse EGF for biosensor immobilisation
  publication-title: Lett. Pept. Sci.
  doi: 10.1023/A:1016256525951
– volume: 47
  start-page: 10314
  year: 2008
  ident: pbaceecdbib73
  article-title: Functional and structural stability of the epidermal growth factor receptor in detergent micelles and phospholipid nanodiscs
  publication-title: Biochemistry
  doi: 10.1021/bi801006s
– volume: 8
  year: 2013
  ident: pbaceecdbib19
  article-title: Internalization mechanisms of the epidermal growth factor receptor after activation with different ligands
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0058148
– volume: 109
  start-page: 12034
  year: 2012
  ident: pbaceecdbib40
  article-title: Speed, dissipation and error in kinetic proofreading
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.1119911109
– volume: 9
  start-page: 52
  year: 2017
  ident: pbaceecdbib4
  article-title: Epidermal growth factor receptor cell proliferation signaling pathways
  publication-title: Cancers
  doi: 10.3390/cancers9050052
– volume: 16
  start-page: 15
  year: 2012
  ident: pbaceecdbib6
  article-title: Targeting the EGFR signaling pathway in cancer therapy
  publication-title: Expert Opin. Ther. Targets
  doi: 10.1517/14728222.2011.648617
– volume: 464
  start-page: 783
  year: 2010
  ident: pbaceecdbib9
  article-title: Spatial control of EGF receptor activation by reversible dimerization on living cells
  publication-title: Nature
  doi: 10.1038/nature08827
– volume: 7
  year: 2016
  ident: pbaceecdbib10
  article-title: EGFR oligomerization organizes kinase-active dimers into competent signalling platforms
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms13307
– volume: 8
  start-page: 4823
  year: 2017
  ident: pbaceecdbib47
  article-title: Single particle tracking-based reaction progress kinetic analysis reveals a series of molecular mechanisms of cetuximab-induced EGFR processes in a single living cell
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC01159H
– volume: 57
  start-page: 587
  year: 1975
  ident: pbaceecdbib37
  article-title: Kinetic amplification of enzyme discrimination
  publication-title: Biochimie
  doi: 10.1016/S0300-9084(75)80139-8
– volume: 109
  start-page: 1925
  year: 2015
  ident: pbaceecdbib44
  article-title: Plasma membrane organization of epidermal growth factor receptor in resting and ligand-bound states
  publication-title: Biophys. J.
  doi: 10.1016/j.bpj.2015.09.007
– volume: 8
  year: 2013
  ident: pbaceecdbib56
  article-title: Molecular determinants of epidermal growth factor binding: a molecular dynamics study
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0054136
– volume: 10
  start-page: 235
  year: 2009
  ident: pbaceecdbib17
  article-title: Epsin 1 is involved in recruitment of ubiquitinated EGF receptors into clathrin-coated pits
  publication-title: Traffic
  doi: 10.1111/j.1600-0854.2008.00858.x
– volume: 270
  start-page: 4334
  year: 1995
  ident: pbaceecdbib35
  article-title: Intracellular trafficking of epidermal growth factor family ligands is directly influenced by the pH sensitivity of the receptor/ligand interaction
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.270.9.4334
– volume: 54
  start-page: 7028
  year: 2015
  ident: pbaceecdbib45
  article-title: Analysis of interactions between the epidermal growth factor receptor and soluble ligands on the basis of single-molecule diffusivity in the membrane of living cells
  publication-title: Angew. Chem.
  doi: 10.1002/anie.201500871
– volume: 141
  start-page: 1117
  year: 2010
  ident: pbaceecdbib3
  article-title: Cell signaling by receptor tyrosine kinases
  publication-title: Cell
  doi: 10.1016/j.cell.2010.06.011
– volume: 309
  start-page: 149
  year: 2005
  ident: pbaceecdbib33
  article-title: Differential effects of amphiregulin and TGF-α on the morphology of MDCK cells
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2005.05.012
– volume: 9
  year: 2020
  ident: pbaceecdbib42
  article-title: Proofreading through spatial gradients
  publication-title: eLife
  doi: 10.7554/eLife.60415
– start-page: pp 3
  year: 2003
  ident: pbaceecdbib55
  article-title: EGF receptor ligands
– volume: 9
  start-page: 1849
  year: 2013
  ident: pbaceecdbib12
  article-title: Exploring higher-order EGFR oligomerisation and phosphorylation—a combined experimental and theoretical approach
  publication-title: Mol. Biosyst.
  doi: 10.1039/c3mb70073a
– volume: 122
  start-page: 1
  year: 2009
  ident: pbaceecdbib28
  article-title: Functional selectivity of EGF family peptide growth factors: implications for cancer
  publication-title: Pharmacol. Ther.
  doi: 10.1016/j.pharmthera.2008.11.008
– volume: 234
  start-page: 465
  year: 1997
  ident: pbaceecdbib32
  article-title: Differential effects of EGF and amphiregulin on adhesion molecule expression and migration of colon carcinoma cells
  publication-title: Exp. Cell Res.
  doi: 10.1006/excr.1997.3635
– year: 2009
  ident: pbaceecdbib50
  article-title: Binding studies of epidermal growth factor receptor targeted compounds using surface plasmon resonance
– volume: 10
  year: 2015
  ident: pbaceecdbib68
  article-title: Single particle tracking reveals that EGFR signaling activity is amplified in clathrin-coated pits
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0143162
– volume: 115
  start-page: E9570
  year: 2018
  ident: pbaceecdbib65
  article-title: Role for ERK1/2-dependent activation of FCHSD2 in cancer cell-selective regulation of clathrin-mediated endocytosis
  publication-title: Proc. Natl Acad. Sci.
  doi: 10.1073/pnas.1810209115
– volume: 189
  start-page: 871
  year: 2010
  ident: pbaceecdbib70
  article-title: Multiple mechanisms collectively regulate clathrin-mediated endocytosis of the epidermal growth factor receptor
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.201001008
SSID ssj0029207
Score 2.3544703
Snippet The epidermal growth factor receptor (EGFR) is a central regulator of cell physiology that is stimulated by multiple distinct ligands. Although ligands bind to...
SourceID proquest
pubmed
crossref
iop
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 56008
SubjectTerms diffusive search
EGF receptor
kinetic proofreading
Title Quantitative modeling of EGF receptor ligand discrimination via internalization proofreading
URI https://iopscience.iop.org/article/10.1088/1478-3975/aceecd
https://www.ncbi.nlm.nih.gov/pubmed/37557183
https://www.proquest.com/docview/2848845811
Volume 20
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_alMFetrXbuqzbUKF72IMTO5JsiT6N0SwU2rSwsjwEjGxJJTTYoYkL7V_fk-UYWtYy-mL8cLask3QfvvvdARyE0oSJCmUgQ8MDFoc5ykEpXHltVy09zjVz4OST03h0wY4nfLIBhy0Wplw0or-Ht75QsGdhkxAn-hFzEX2Z8L5CCZ_rTdiirpOSQ--Nz1pvSw5qrHRL3cQo__WGBzppE8d92tys1c7wLUzXH-yzTa561Srr5XePajm-cEbv4E1jjpKfnnQbNkyxA698g8rb9zA9r1RRw9BQKJK6aw6qOlJacvR7SFBYmgX67GQ-u1SFJg7h67uEudUmNzNFZv6H47xBexKcR2mvfeL-B7gYHv35NQqafgxBThOxCiKp1CAXGVoJmdEil7GJEoVSijNNjeUZepMDi_5PIqiJDNfW8pAym2nrwnOSfoROURbmExArYhQ0mjFpLIs0V4JzoRO0rbiJaEy70F-vSJo3xcpdz4x5WgfNhUgdz1LHs9TzrAs_2icWvlDHM7TfcSnS5rQun6HbX2-DFE-dC6WowpTVMkWlLgTOKYq6sOv3RzsqTThHjU8__-coe_Da9bD3iWtfoLO6rsxXtHRW2bd6R-N1TP_eA37O-Rs
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8QwFA4uKF7E3XGNoAcPddpJ0iZHUcd9A0UPQkibRAaGdhhnBP-9L00cEFS89ZA06XvJW_qWD6HdWJg4U7GIRGxYRNO4ADkouGuv7bqlp4Wmrjj5-iY9e6QXz-w54JzWtTBVL4j-A3j0jYI9CUNCHG8m1EX0RcaaCiR8oZs9bcfRJCNgG8OBviVPI49LtOp66dGMEKf86S3f9NI4rP27yVmrnvYcmg02Iz70O5xHY6ZcQFMeRfJjEb3cD1VZ14qB5MI1tA3oI1xZfHLaxiDRTA8ca9ztvKpSY1eG66G8HEvwe0fhjv8r2A0lmRg2VNm-z65fQo_tk4ejsyiAJkQFyfggSoRSrYLnoMpzo3khUpNkCkQJo5oYy3Jw-VoWnJSME5MYpq1lMaE219bF0ARZRhNlVZpVhC1PQRpoSoWxNNFMcca4zsAAYiYhKWmg5hfJZBE6ijtgi66sI9ucS0dk6YgsPZEbaH80o-e7afwxdg-4IMOVevtj3M4XnyRcDRfvUKWphm8SNC_n8E1J0kArnoGjVUnGGKhlsvbPVbbR9N1xW16d31yuoxmHOe8TzTbQxKA_NJtgmQzyrfr0fQJF9txU
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+modeling+of+EGF+receptor+ligand+discrimination+via+internalization+proofreading&rft.jtitle=Physical+biology&rft.au=Leblanc%2C+Jaleesa+A&rft.au=Sugiyama%2C+Michael+G&rft.au=Antonescu%2C+Costin+N&rft.au=Brown%2C+Aidan+I&rft.date=2023-09-01&rft.issn=1478-3975&rft.eissn=1478-3975&rft.volume=20&rft.issue=5&rft_id=info:doi/10.1088%2F1478-3975%2Faceecd&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1478-3975&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1478-3975&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1478-3975&client=summon