Quantitative modeling of EGF receptor ligand discrimination via internalization proofreading
The epidermal growth factor receptor (EGFR) is a central regulator of cell physiology that is stimulated by multiple distinct ligands. Although ligands bind to EGFR while the receptor is exposed on the plasma membrane, EGFR incorporation into endosomes following receptor internalization is an import...
Saved in:
Published in | Physical biology Vol. 20; no. 5; pp. 56008 - 56023 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
IOP Publishing
01.09.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 1478-3975 1478-3967 1478-3975 |
DOI | 10.1088/1478-3975/aceecd |
Cover
Abstract | The epidermal growth factor receptor (EGFR) is a central regulator of cell physiology that is stimulated by multiple distinct ligands. Although ligands bind to EGFR while the receptor is exposed on the plasma membrane, EGFR incorporation into endosomes following receptor internalization is an important aspect of EGFR signaling, with EGFR internalization behavior dependent upon the type of ligand bound. We develop quantitative modeling for EGFR recruitment to and internalization from clathrin domains, focusing on how internalization competes with ligand unbinding from EGFR. We develop two model versions: a kinetic model with EGFR behavior described as transitions between discrete states and a spatial model with EGFR diffusion to circular clathrin domains. We find that a combination of spatial and kinetic proofreading leads to enhanced EGFR internalization ratios in comparison to unbinding differences between ligand types. Various stages of the EGFR internalization process, including recruitment to and internalization from clathrin domains, modulate the internalization differences between receptors bound to different ligands. Our results indicate that following ligand binding, EGFR may encounter multiple clathrin domains before successful recruitment and internalization. The quantitative modeling we have developed describes competition between EGFR internalization and ligand unbinding and the resulting proofreading. |
---|---|
AbstractList | The epidermal growth factor receptor (EGFR) is a central regulator of cell physiology that is stimulated by multiple distinct ligands. Although ligands bind to EGFR while the receptor is exposed on the plasma membrane, EGFR incorporation into endosomes following receptor internalization is an important aspect of EGFR signaling, with EGFR internalization behavior dependent upon the type of ligand bound. We develop quantitative modeling for EGFR recruitment to and internalization from clathrin domains, focusing on how internalization competes with ligand unbinding from EGFR. We develop two model versions: a kinetic model with EGFR behavior described as transitions between discrete states and a spatial model with EGFR diffusion to circular clathrin domains. We find that a combination of spatial and kinetic proofreading leads to enhanced EGFR internalization ratios in comparison to unbinding differences between ligand types. Various stages of the EGFR internalization process, including recruitment to and internalization from clathrin domains, modulate the internalization differences between receptors bound to different ligands. Our results indicate that following ligand binding, EGFR may encounter multiple clathrin domains before successful recruitment and internalization. The quantitative modeling we have developed describes competition between EGFR internalization and ligand unbinding and the resulting proofreading. The epidermal growth factor receptor (EGFR) is a central regulator of cell physiology that is stimulated by multiple distinct ligands. Although ligands bind to EGFR while the receptor is exposed on the plasma membrane, EGFR incorporation into endosomes following receptor internalization is an important aspect of EGFR signaling, with EGFR internalization behavior dependent upon the type of ligand bound. We develop quantitative modeling for EGFR recruitment to and internalization from clathrin domains, focusing on how internalization competes with ligand unbinding from EGFR. We develop two model versions: a kinetic model with EGFR behavior described as transitions between discrete states and a spatial model with EGFR diffusion to circular clathrin domains. We find that a combination of spatial and kinetic proofreading leads to enhanced EGFR internalization ratios in comparison to unbinding differences between ligand types. Various stages of the EGFR internalization process, including recruitment to and internalization from clathrin domains, modulate the internalization differences between receptors bound to different ligands. Our results indicate that following ligand binding, EGFR may encounter multiple clathrin domains before successful recruitment and internalization. The quantitative modeling we have developed describes competition between EGFR internalization and ligand unbinding and the resulting proofreading.The epidermal growth factor receptor (EGFR) is a central regulator of cell physiology that is stimulated by multiple distinct ligands. Although ligands bind to EGFR while the receptor is exposed on the plasma membrane, EGFR incorporation into endosomes following receptor internalization is an important aspect of EGFR signaling, with EGFR internalization behavior dependent upon the type of ligand bound. We develop quantitative modeling for EGFR recruitment to and internalization from clathrin domains, focusing on how internalization competes with ligand unbinding from EGFR. We develop two model versions: a kinetic model with EGFR behavior described as transitions between discrete states and a spatial model with EGFR diffusion to circular clathrin domains. We find that a combination of spatial and kinetic proofreading leads to enhanced EGFR internalization ratios in comparison to unbinding differences between ligand types. Various stages of the EGFR internalization process, including recruitment to and internalization from clathrin domains, modulate the internalization differences between receptors bound to different ligands. Our results indicate that following ligand binding, EGFR may encounter multiple clathrin domains before successful recruitment and internalization. The quantitative modeling we have developed describes competition between EGFR internalization and ligand unbinding and the resulting proofreading. |
Author | Sugiyama, Michael G Brown, Aidan I Antonescu, Costin N Leblanc, Jaleesa A |
Author_xml | – sequence: 1 givenname: Jaleesa A surname: Leblanc fullname: Leblanc, Jaleesa A organization: Toronto Metropolitan University Department of Physics, Toronto, Ontario, Canada – sequence: 2 givenname: Michael G surname: Sugiyama fullname: Sugiyama, Michael G organization: Toronto Metropolitan University Department of Chemistry and Biology, Toronto, Ontario, Canada – sequence: 3 givenname: Costin N surname: Antonescu fullname: Antonescu, Costin N organization: Toronto Metropolitan University Department of Chemistry and Biology, Toronto, Ontario, Canada – sequence: 4 givenname: Aidan I orcidid: 0000-0002-6600-8289 surname: Brown fullname: Brown, Aidan I organization: Toronto Metropolitan University Department of Physics, Toronto, Ontario, Canada |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/37557183$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kM9LwzAYhoMo7ofePUmPHpxr2mZJjyLbFAYi6E0IafJlZHTJTNqB_vVmdhMR9JTw8bxvvjwDdGydBYQucHqDU8bGuKBslJeUjIUEkOoI9b9Hxz_uPTQIYZWmWZml9BT1ckoIxSzvo9enVtjGNKIxW0jWTkFt7DJxOpnOZ4kHCZvG-aQ2S2FVokyQ3qyNjbizydaIxNgGvBW1-ehmG--c9iBUrDlDJ1rUAc735xC9zKbPd_ejxeP84e52MZI5Zc0Il0JkklUZJhUoJssJYCoYo6RQOWhS0QxnmpII54CBKK1Jmhe6UpoUhJX5EF11vfHxtxZCw9dxUahrYcG1gWesYCySGEf0co-21RoU38TvCP_OD0YiMOkA6V0IHjSXX3acbbwwNccp36nnO7d855Z36mMw_RU8dP8Tue4ixm34yrU7j-Fv_BNtppeR |
CODEN | PBHIAT |
CitedBy_id | crossref_primary_10_1038_s41592_024_02584_0 |
Cites_doi | 10.1016/j.semcdb.2014.01.005 10.1021/acs.chemrev.9b00254 10.1080/01621459.1949.10483310 10.1371/journal.pone.0062331 10.1021/acs.analchem.8b00071 10.1073/pnas.71.10.4135 10.1016/j.cell.2017.09.017 10.1002/1878-0261.12155 10.1016/j.yexcr.2008.09.021 10.1016/j.bpj.2021.11.1108 10.1016/j.jhep.2019.09.012 10.1016/S0006-3495(77)85544-6 10.1038/nrm3151 10.1186/1478-811X-11-52 10.1111/j.1600-0854.2009.00943.x 10.1073/pnas.92.11.5042 10.1140/epje/s10189-021-00083-0 10.1074/jbc.M116.747485 10.1128/MCB.26.2.389-401.2006 10.1016/j.bbrc.2016.07.097 10.1016/S0021-9258(18)48269-5 10.1371/journal.pbio.2006660 10.1091/mbc.12.6.1897 10.1074/jbc.M115.710087 10.1016/j.jprot.2022.104503 10.1371/journal.pone.0202331 10.1016/j.devcel.2013.06.019 10.1016/j.cell.2004.08.017 10.1016/S0006-3495(02)75633-6 10.1091/mbc.e04-01-0041 10.1126/science.274.5295.2086 10.1038/nm.3388 10.1110/ps.052045306 10.1016/j.ceb.2007.04.021 10.1083/jcb.201008117 10.1038/nphys2276 10.1016/j.devcel.2008.06.012 10.1038/s41467-023-38390-z 10.1021/bi00083a020 10.1016/S0014-5793(99)00283-5 10.1103/PhysRevE.99.060401 10.1016/j.cell.2007.11.013 10.3109/08977190009003231 10.1074/jbc.274.42.30169 10.1038/s42004-018-0096-x 10.1016/j.cell.2011.01.029 10.3109/08977194.2014.952410 10.1016/j.tcb.2013.11.002 10.1023/A:1016256525951 10.1021/bi801006s 10.1371/journal.pone.0058148 10.1073/pnas.1119911109 10.3390/cancers9050052 10.1517/14728222.2011.648617 10.1038/nature08827 10.1038/ncomms13307 10.1039/C7SC01159H 10.1016/S0300-9084(75)80139-8 10.1016/j.bpj.2015.09.007 10.1371/journal.pone.0054136 10.1111/j.1600-0854.2008.00858.x 10.1074/jbc.270.9.4334 10.1002/anie.201500871 10.1016/j.cell.2010.06.011 10.1016/j.yexcr.2005.05.012 10.7554/eLife.60415 10.1039/c3mb70073a 10.1016/j.pharmthera.2008.11.008 10.1006/excr.1997.3635 10.1371/journal.pone.0143162 10.1073/pnas.1810209115 10.1083/jcb.201001008 |
ContentType | Journal Article |
Copyright | 2023 The Author(s). Published by IOP Publishing Ltd Creative Commons Attribution license. |
Copyright_xml | – notice: 2023 The Author(s). Published by IOP Publishing Ltd – notice: Creative Commons Attribution license. |
DBID | O3W TSCCA AAYXX CITATION NPM 7X8 |
DOI | 10.1088/1478-3975/aceecd |
DatabaseName | Institute of Physics Open Access Journal Titles IOPscience (Open Access) CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: O3W name: Institute of Physics Open Access Journal Titles url: http://iopscience.iop.org/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1478-3975 |
ExternalDocumentID | 37557183 10_1088_1478_3975_aceecd pbaceecd |
Genre | Journal Article |
GrantInformation_xml | – fundername: Natural Sciences and Engineering Research Council of Canada funderid: http://dx.doi.org/10.13039/501100000038 – fundername: Canadian Institutes of Health Research funderid: http://dx.doi.org/10.13039/501100000024 – fundername: Toronto Metropolitan University |
GroupedDBID | --- 123 1JI 4.4 5B3 5VS 5ZH 7.M 7.Q AAGCD AAJIO AAJKP AATNI ABHWH ABJNI ABQJV ABVAM ACAFW ACGFO ACGFS ACHIP AEFHF AENEX AFYNE AKPSB ALMA_UNASSIGNED_HOLDINGS AOAED ASPBG ATQHT AVWKF AZFZN CEBXE CJUJL CRLBU CS3 DU5 EBS EDWGO EMSAF EPQRW EQZZN F5P HAK IJHAN IOP IZVLO KOT LAP N5L N9A O3W P2P PJBAE RIN RNS RO9 ROL RPA SY9 TSCCA UCJ W28 XPP AAYXX ADEQX CITATION NPM 7X8 AEINN M45 |
ID | FETCH-LOGICAL-c378t-19aa2c8b215bed8c96e17a88754d3ef5b7212f753783e1e5dff5034fbdf545893 |
IEDL.DBID | IOP |
ISSN | 1478-3975 1478-3967 |
IngestDate | Fri Sep 05 13:44:48 EDT 2025 Thu Jan 02 22:52:08 EST 2025 Thu Apr 24 22:52:50 EDT 2025 Tue Jul 01 04:07:23 EDT 2025 Wed Aug 21 03:41:45 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Keywords | Kinetic proofreading EGF receptor Diffusive search |
Language | English |
License | Original content from this work may be used under the terms of the Creative Commons Attribution 4.0 license. Any further distribution of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI. Creative Commons Attribution license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c378t-19aa2c8b215bed8c96e17a88754d3ef5b7212f753783e1e5dff5034fbdf545893 |
Notes | PB-101758.R1 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6600-8289 |
OpenAccessLink | https://proxy.k.utb.cz/login?url=https://iopscience.iop.org/article/10.1088/1478-3975/aceecd |
PMID | 37557183 |
PQID | 2848845811 |
PQPubID | 23479 |
PageCount | 16 |
ParticipantIDs | proquest_miscellaneous_2848845811 crossref_primary_10_1088_1478_3975_aceecd iop_journals_10_1088_1478_3975_aceecd crossref_citationtrail_10_1088_1478_3975_aceecd pubmed_primary_37557183 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-09-01 |
PublicationDateYYYYMMDD | 2023-09-01 |
PublicationDate_xml | – month: 09 year: 2023 text: 2023-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Physical biology |
PublicationTitleAbbrev | PhysBio |
PublicationTitleAlternate | Phys. Biol |
PublicationYear | 2023 |
Publisher | IOP Publishing |
Publisher_xml | – name: IOP Publishing |
References | Sigismund (pbaceecdbib5) 2018; 12 Vieira (pbaceecdbib22) 1996; 274 Kholodenko (pbaceecdbib52) 1999; 274 Lemmon (pbaceecdbib3) 2010; 141 Stang (pbaceecdbib16) 2004; 15 Jones (pbaceecdbib27) 1999; 447 French (pbaceecdbib35) 1995; 270 Sugiyama (pbaceecdbib8) 2023; 14 Zhou (pbaceecdbib53) 1993; 32 Yarden (pbaceecdbib2) 2007; 131 Solic (pbaceecdbib32) 1997; 234 Brown (pbaceecdbib76) 2023 Burke (pbaceecdbib23) 2001; 12 Keppel (pbaceecdbib72) 2017; 292 Chong (pbaceecdbib7) 2013; 19 Kim (pbaceecdbib45) 2015; 54 Ibach (pbaceecdbib68) 2015; 10 Grecco (pbaceecdbib1) 2011; 144 Liu (pbaceecdbib69) 2010; 191 Chung (pbaceecdbib9) 2010; 464 Yi (pbaceecdbib13) 2018; 90 Ninio (pbaceecdbib37) 1975; 57 Cui (pbaceecdbib41) 2018; 13 Grebenkov (pbaceecdbib60) 2018; 1 Myers (pbaceecdbib51) 1987; 262 Henriksen (pbaceecdbib19) 2013; 8 Chung (pbaceecdbib33) 2005; 309 Wilson (pbaceecdbib28) 2009; 122 Ronan (pbaceecdbib31) 2016; 291 Berg (pbaceecdbib43) 1977; 20 Nguyen (pbaceecdbib11) 2013; 11 Sigismund (pbaceecdbib18) 2008; 15 Lan (pbaceecdbib61) 2012; 8 Kuan Goh (pbaceecdbib70) 2010; 189 Kazazic (pbaceecdbib17) 2009; 10 Sadowski (pbaceecdbib24) 2009; 315 McMahon (pbaceecdbib63) 2011; 12 Caballero-Díaz (pbaceecdbib64) 2020; 72 Seshacharyulu (pbaceecdbib6) 2012; 16 Bag (pbaceecdbib44) 2015; 109 Kozer (pbaceecdbib12) 2013; 9 Swain (pbaceecdbib39) 2002; 82 Kim (pbaceecdbib47) 2017; 8 Kankanala (pbaceecdbib50) 2009 Lee (pbaceecdbib71) 2006; 15 Redner (pbaceecdbib66) 2001 Scott (pbaceecdbib67) 2021; 44 Needham (pbaceecdbib10) 2016; 7 Freed (pbaceecdbib26) 2017; 171 Aguet (pbaceecdbib58) 2013; 26 Wade (pbaceecdbib49) 2001; 8 Ehrlich (pbaceecdbib48) 2004; 118 Blossey (pbaceecdbib57) 2019; 99 Johannessen (pbaceecdbib14) 2006; 26 Mi (pbaceecdbib73) 2008; 47 Xiao (pbaceecdbib65) 2018; 115 Domagala (pbaceecdbib54) 2000; 18 Jeppe Knudsen (pbaceecdbib29) 2014; 32 Metropolis (pbaceecdbib75) 1949; 44 Guo (pbaceecdbib59) 2022; 121 Wee (pbaceecdbib4) 2017; 9 Berasain (pbaceecdbib30) 2014; 28 Tomas (pbaceecdbib21) 2014; 24 McKeithan (pbaceecdbib38) 1995; 92 Needham (pbaceecdbib74) 2013; 8 Hopfield (pbaceecdbib36) 1974; 71 Murugan (pbaceecdbib40) 2012; 109 Kim (pbaceecdbib46) 2018; 16 Zhou (pbaceecdbib15) 2022; 255 von Zastrow (pbaceecdbib20) 2007; 19 Galstyan (pbaceecdbib42) 2020; 9 Faria (pbaceecdbib34) 2016; 478 Brown (pbaceecdbib62) 2019; 120 Roepstorff (pbaceecdbib25) 2009; 10 Harris (pbaceecdbib55) 2003 Sanders (pbaceecdbib56) 2013; 8 |
References_xml | – volume: 28 start-page: 31 year: 2014 ident: pbaceecdbib30 article-title: Amphiregulin publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2014.01.005 – volume: 120 start-page: 434 year: 2019 ident: pbaceecdbib62 article-title: Theory of nonequilibrium free energy transduction by molecular machines publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.9b00254 – volume: 44 start-page: 335 year: 1949 ident: pbaceecdbib75 article-title: The Monte Carlo method publication-title: J. Am. Stat. Assoc. doi: 10.1080/01621459.1949.10483310 – volume: 8 year: 2013 ident: pbaceecdbib74 article-title: Measuring EGFR separations on cells with 10 nm resolution via fluorophore localization imaging with photobleaching publication-title: PLoS One doi: 10.1371/journal.pone.0062331 – volume: 90 start-page: 5256 year: 2018 ident: pbaceecdbib13 article-title: Targeted quantification of phosphorylation dynamics in the context of EGFR-MAPK pathway publication-title: Anal. Chem. doi: 10.1021/acs.analchem.8b00071 – volume: 71 start-page: 4135 year: 1974 ident: pbaceecdbib36 article-title: Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.71.10.4135 – volume: 171 start-page: 683 year: 2017 ident: pbaceecdbib26 article-title: EGFR ligands differentially stabilize receptor dimers to specify signaling kinetics publication-title: Cell doi: 10.1016/j.cell.2017.09.017 – volume: 12 start-page: 3 year: 2018 ident: pbaceecdbib5 article-title: Emerging functions of the EGFR in cancer publication-title: Mol. Oncol. doi: 10.1002/1878-0261.12155 – volume: 315 start-page: 1601 year: 2009 ident: pbaceecdbib24 article-title: Signaling from endosomes: location makes a difference publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2008.09.021 – volume: 121 start-page: 331a year: 2022 ident: pbaceecdbib59 article-title: Large self-assembled clathrin lattices spontaneously disassemble without sufficient adaptor proteins publication-title: Biophys. J. doi: 10.1016/j.bpj.2021.11.1108 – volume: 72 start-page: 125 year: 2020 ident: pbaceecdbib64 article-title: Clathrin switches transforming growth factor-β role to pro-tumorigenic in liver cancer publication-title: J. Hepatol. doi: 10.1016/j.jhep.2019.09.012 – volume: 20 start-page: 193 year: 1977 ident: pbaceecdbib43 article-title: Physics of chemoreception publication-title: Biophys. J. doi: 10.1016/S0006-3495(77)85544-6 – volume: 12 start-page: 517 year: 2011 ident: pbaceecdbib63 article-title: Molecular mechanism and physiological functions of clathrin-mediated endocytosis publication-title: Nat. Rev. Mol. Cell Biol. doi: 10.1038/nrm3151 – volume: 11 start-page: 1 year: 2013 ident: pbaceecdbib11 article-title: When ubiquitination meets phosphorylation: a systems biology perspective of EGFR/MAPK signalling publication-title: Cell Commun. Signal. doi: 10.1186/1478-811X-11-52 – volume: 10 start-page: 1115 year: 2009 ident: pbaceecdbib25 article-title: Differential effects of EGFR ligands on endocytic sorting of the receptor publication-title: Traffic doi: 10.1111/j.1600-0854.2009.00943.x – volume: 92 start-page: 5042 year: 1995 ident: pbaceecdbib38 article-title: Kinetic proofreading in T-cell receptor signal transduction publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.92.11.5042 – volume: 44 start-page: 80 year: 2021 ident: pbaceecdbib67 article-title: Diffusive search and trajectories on tubular networks: a propagator approach publication-title: Eur. Phys. J. E doi: 10.1140/epje/s10189-021-00083-0 – volume: 292 start-page: 597 year: 2017 ident: pbaceecdbib72 article-title: Biophysical evidence for intrinsic disorder in the C-terminal tails of the epidermal growth factor receptor (EGFR) and HER3 receptor tyrosine kinases publication-title: J. Biol. Chem. doi: 10.1074/jbc.M116.747485 – volume: 26 start-page: 389 year: 2006 ident: pbaceecdbib14 article-title: Activation of the epidermal growth factor (EGF) receptor induces formation of EGF receptor-and Grb2-containing clathrin-coated pits publication-title: Mol. Cell. Biol. doi: 10.1128/MCB.26.2.389-401.2006 – volume: 478 start-page: 39 year: 2016 ident: pbaceecdbib34 article-title: Effects of different ligands on epidermal growth factor receptor (EGFR) nuclear translocation publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2016.07.097 – volume: 262 start-page: 6494 year: 1987 ident: pbaceecdbib51 article-title: Binding, internalization and intracellular processing of protein ligands. Derivation of rate constants by computer modeling publication-title: J. Biol. Chem. doi: 10.1016/S0021-9258(18)48269-5 – volume: 16 year: 2018 ident: pbaceecdbib46 article-title: Direct visualization of single-molecule membrane protein interactions in living cells publication-title: PLoS Biol. doi: 10.1371/journal.pbio.2006660 – volume: 12 start-page: 1897 year: 2001 ident: pbaceecdbib23 article-title: Regulation of epidermal growth factor receptor signaling by endocytosis and intracellular trafficking publication-title: Mol. Biol. Cell doi: 10.1091/mbc.12.6.1897 – volume: 291 start-page: 5528 year: 2016 ident: pbaceecdbib31 article-title: Different epidermal growth factor receptor (EGFR) agonists produce unique signatures for the recruitment of downstream signaling proteins publication-title: J. Biol. Chem. doi: 10.1074/jbc.M115.710087 – volume: 255 year: 2022 ident: pbaceecdbib15 article-title: New trend in ligand-induced EGFR trafficking: a dual-mode clathrin-mediated endocytosis model publication-title: J. Proteom. doi: 10.1016/j.jprot.2022.104503 – volume: 13 year: 2018 ident: pbaceecdbib41 article-title: Identifying feasible operating regimes for early T-cell recognition: the speed, energy, accuracy trade-off in kinetic proofreading and adaptive sorting publication-title: PLoS One doi: 10.1371/journal.pone.0202331 – volume: 26 start-page: 279 year: 2013 ident: pbaceecdbib58 article-title: Advances in analysis of low signal-to-noise images link dynamin and AP2 to the functions of an endocytic checkpoint publication-title: Dev. Cell doi: 10.1016/j.devcel.2013.06.019 – volume: 118 start-page: 591 year: 2004 ident: pbaceecdbib48 article-title: Endocytosis by random initiation and stabilization of clathrin-coated pits publication-title: Cell doi: 10.1016/j.cell.2004.08.017 – volume: 82 start-page: 2928 year: 2002 ident: pbaceecdbib39 article-title: The role of proofreading in signal transduction specificity publication-title: Biophys. J. doi: 10.1016/S0006-3495(02)75633-6 – volume: 15 start-page: 3591 year: 2004 ident: pbaceecdbib16 article-title: Cbl-dependent ubiquitination is required for progression of EGF receptors into clathrin-coated pits publication-title: Mol. Biol. Cell doi: 10.1091/mbc.e04-01-0041 – volume: 274 start-page: 2086 year: 1996 ident: pbaceecdbib22 article-title: Control of EGF receptor signaling by clathrin-mediated endocytosis publication-title: Science doi: 10.1126/science.274.5295.2086 – volume: 19 start-page: 1389 year: 2013 ident: pbaceecdbib7 article-title: The quest to overcome resistance to EGFR-targeted therapies in cancer publication-title: Nat. Med. doi: 10.1038/nm.3388 – volume: 15 start-page: 1142 year: 2006 ident: pbaceecdbib71 article-title: Structure and dynamics of the epidermal growth factor receptor C-terminal phosphorylation domain publication-title: Protein Sci. doi: 10.1110/ps.052045306 – volume: 19 start-page: 436 year: 2007 ident: pbaceecdbib20 article-title: Signaling on the endocytic pathway publication-title: Curr. Opin. Biol. doi: 10.1016/j.ceb.2007.04.021 – volume: 191 start-page: 1381 year: 2010 ident: pbaceecdbib69 article-title: Local clustering of transferrin receptors promotes clathrin-coated pit initiation publication-title: J. Cell Biol. doi: 10.1083/jcb.201008117 – year: 2023 ident: pbaceecdbib76 – volume: 8 start-page: 422 year: 2012 ident: pbaceecdbib61 article-title: The energy–speed–accuracy trade-off in sensory adaptation publication-title: Nat. Phys. doi: 10.1038/nphys2276 – volume: 15 start-page: 209 year: 2008 ident: pbaceecdbib18 article-title: Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable for degradation publication-title: Dev. cell doi: 10.1016/j.devcel.2008.06.012 – year: 2001 ident: pbaceecdbib66 – volume: 14 start-page: 1 year: 2023 ident: pbaceecdbib8 article-title: Confinement of unliganded EGFR by tetraspanin nanodomains gates EGFR ligand binding and signaling publication-title: Nat. Commun. doi: 10.1038/s41467-023-38390-z – volume: 32 start-page: 8193 year: 1993 ident: pbaceecdbib53 article-title: Real-time measurements of kinetics of EGF binding to soluble EGF receptor monomers and dimers support the dimerization model for receptor activation publication-title: Biochemistry doi: 10.1021/bi00083a020 – volume: 447 start-page: 227 year: 1999 ident: pbaceecdbib27 article-title: Binding specificities and affinities of egf domains for ErbB receptors publication-title: FEBS Lett. doi: 10.1016/S0014-5793(99)00283-5 – volume: 99 year: 2019 ident: pbaceecdbib57 article-title: Histone mark recognition controls nucleosome translocation via a kinetic proofreading mechanism: confronting theory and high-throughput experiments publication-title: Phys. Rev. E doi: 10.1103/PhysRevE.99.060401 – volume: 131 start-page: 1018 year: 2007 ident: pbaceecdbib2 article-title: Snapshot: EGFR signaling pathway publication-title: Cell doi: 10.1016/j.cell.2007.11.013 – volume: 18 start-page: 11 year: 2000 ident: pbaceecdbib54 article-title: Stoichiometry, kinetic and binding analysis of the interaction between epidermal growth factor (EGF) and the extracellular domain of the EGF receptor publication-title: Growth Factors doi: 10.3109/08977190009003231 – volume: 274 start-page: 30169 year: 1999 ident: pbaceecdbib52 article-title: Quantification of short term signaling by the epidermal growth factor receptor publication-title: J. Biol. Chem. doi: 10.1074/jbc.274.42.30169 – volume: 1 start-page: 96 year: 2018 ident: pbaceecdbib60 article-title: Strong defocusing of molecular reaction times results from an interplay of geometry and reaction control publication-title: Commun. Chem. doi: 10.1038/s42004-018-0096-x – volume: 144 start-page: 897 year: 2011 ident: pbaceecdbib1 article-title: Signaling from the living plasma membrane publication-title: Cell doi: 10.1016/j.cell.2011.01.029 – volume: 32 start-page: 155 year: 2014 ident: pbaceecdbib29 article-title: EGFR signaling patterns are regulated by its different ligands publication-title: Growth Factors doi: 10.3109/08977194.2014.952410 – volume: 24 start-page: 26 year: 2014 ident: pbaceecdbib21 article-title: EGF receptor trafficking: consequences for signaling and cancer publication-title: Trends cell Biol. doi: 10.1016/j.tcb.2013.11.002 – volume: 8 start-page: 211 year: 2001 ident: pbaceecdbib49 article-title: Use of thiazolidine-mediated ligation for site specific biotinylation of mouse EGF for biosensor immobilisation publication-title: Lett. Pept. Sci. doi: 10.1023/A:1016256525951 – volume: 47 start-page: 10314 year: 2008 ident: pbaceecdbib73 article-title: Functional and structural stability of the epidermal growth factor receptor in detergent micelles and phospholipid nanodiscs publication-title: Biochemistry doi: 10.1021/bi801006s – volume: 8 year: 2013 ident: pbaceecdbib19 article-title: Internalization mechanisms of the epidermal growth factor receptor after activation with different ligands publication-title: PLoS One doi: 10.1371/journal.pone.0058148 – volume: 109 start-page: 12034 year: 2012 ident: pbaceecdbib40 article-title: Speed, dissipation and error in kinetic proofreading publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1119911109 – volume: 9 start-page: 52 year: 2017 ident: pbaceecdbib4 article-title: Epidermal growth factor receptor cell proliferation signaling pathways publication-title: Cancers doi: 10.3390/cancers9050052 – volume: 16 start-page: 15 year: 2012 ident: pbaceecdbib6 article-title: Targeting the EGFR signaling pathway in cancer therapy publication-title: Expert Opin. Ther. Targets doi: 10.1517/14728222.2011.648617 – volume: 464 start-page: 783 year: 2010 ident: pbaceecdbib9 article-title: Spatial control of EGF receptor activation by reversible dimerization on living cells publication-title: Nature doi: 10.1038/nature08827 – volume: 7 year: 2016 ident: pbaceecdbib10 article-title: EGFR oligomerization organizes kinase-active dimers into competent signalling platforms publication-title: Nat. Commun. doi: 10.1038/ncomms13307 – volume: 8 start-page: 4823 year: 2017 ident: pbaceecdbib47 article-title: Single particle tracking-based reaction progress kinetic analysis reveals a series of molecular mechanisms of cetuximab-induced EGFR processes in a single living cell publication-title: Chem. Sci. doi: 10.1039/C7SC01159H – volume: 57 start-page: 587 year: 1975 ident: pbaceecdbib37 article-title: Kinetic amplification of enzyme discrimination publication-title: Biochimie doi: 10.1016/S0300-9084(75)80139-8 – volume: 109 start-page: 1925 year: 2015 ident: pbaceecdbib44 article-title: Plasma membrane organization of epidermal growth factor receptor in resting and ligand-bound states publication-title: Biophys. J. doi: 10.1016/j.bpj.2015.09.007 – volume: 8 year: 2013 ident: pbaceecdbib56 article-title: Molecular determinants of epidermal growth factor binding: a molecular dynamics study publication-title: PLoS One doi: 10.1371/journal.pone.0054136 – volume: 10 start-page: 235 year: 2009 ident: pbaceecdbib17 article-title: Epsin 1 is involved in recruitment of ubiquitinated EGF receptors into clathrin-coated pits publication-title: Traffic doi: 10.1111/j.1600-0854.2008.00858.x – volume: 270 start-page: 4334 year: 1995 ident: pbaceecdbib35 article-title: Intracellular trafficking of epidermal growth factor family ligands is directly influenced by the pH sensitivity of the receptor/ligand interaction publication-title: J. Biol. Chem. doi: 10.1074/jbc.270.9.4334 – volume: 54 start-page: 7028 year: 2015 ident: pbaceecdbib45 article-title: Analysis of interactions between the epidermal growth factor receptor and soluble ligands on the basis of single-molecule diffusivity in the membrane of living cells publication-title: Angew. Chem. doi: 10.1002/anie.201500871 – volume: 141 start-page: 1117 year: 2010 ident: pbaceecdbib3 article-title: Cell signaling by receptor tyrosine kinases publication-title: Cell doi: 10.1016/j.cell.2010.06.011 – volume: 309 start-page: 149 year: 2005 ident: pbaceecdbib33 article-title: Differential effects of amphiregulin and TGF-α on the morphology of MDCK cells publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2005.05.012 – volume: 9 year: 2020 ident: pbaceecdbib42 article-title: Proofreading through spatial gradients publication-title: eLife doi: 10.7554/eLife.60415 – start-page: pp 3 year: 2003 ident: pbaceecdbib55 article-title: EGF receptor ligands – volume: 9 start-page: 1849 year: 2013 ident: pbaceecdbib12 article-title: Exploring higher-order EGFR oligomerisation and phosphorylation—a combined experimental and theoretical approach publication-title: Mol. Biosyst. doi: 10.1039/c3mb70073a – volume: 122 start-page: 1 year: 2009 ident: pbaceecdbib28 article-title: Functional selectivity of EGF family peptide growth factors: implications for cancer publication-title: Pharmacol. Ther. doi: 10.1016/j.pharmthera.2008.11.008 – volume: 234 start-page: 465 year: 1997 ident: pbaceecdbib32 article-title: Differential effects of EGF and amphiregulin on adhesion molecule expression and migration of colon carcinoma cells publication-title: Exp. Cell Res. doi: 10.1006/excr.1997.3635 – year: 2009 ident: pbaceecdbib50 article-title: Binding studies of epidermal growth factor receptor targeted compounds using surface plasmon resonance – volume: 10 year: 2015 ident: pbaceecdbib68 article-title: Single particle tracking reveals that EGFR signaling activity is amplified in clathrin-coated pits publication-title: PLoS One doi: 10.1371/journal.pone.0143162 – volume: 115 start-page: E9570 year: 2018 ident: pbaceecdbib65 article-title: Role for ERK1/2-dependent activation of FCHSD2 in cancer cell-selective regulation of clathrin-mediated endocytosis publication-title: Proc. Natl Acad. Sci. doi: 10.1073/pnas.1810209115 – volume: 189 start-page: 871 year: 2010 ident: pbaceecdbib70 article-title: Multiple mechanisms collectively regulate clathrin-mediated endocytosis of the epidermal growth factor receptor publication-title: J. Cell Biol. doi: 10.1083/jcb.201001008 |
SSID | ssj0029207 |
Score | 2.3544703 |
Snippet | The epidermal growth factor receptor (EGFR) is a central regulator of cell physiology that is stimulated by multiple distinct ligands. Although ligands bind to... |
SourceID | proquest pubmed crossref iop |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 56008 |
SubjectTerms | diffusive search EGF receptor kinetic proofreading |
Title | Quantitative modeling of EGF receptor ligand discrimination via internalization proofreading |
URI | https://iopscience.iop.org/article/10.1088/1478-3975/aceecd https://www.ncbi.nlm.nih.gov/pubmed/37557183 https://www.proquest.com/docview/2848845811 |
Volume | 20 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_alMFetrXbuqzbUKF72IMTO5JsiT6N0SwU2rSwsjwEjGxJJTTYoYkL7V_fk-UYWtYy-mL8cLask3QfvvvdARyE0oSJCmUgQ8MDFoc5ykEpXHltVy09zjVz4OST03h0wY4nfLIBhy0Wplw0or-Ht75QsGdhkxAn-hFzEX2Z8L5CCZ_rTdiirpOSQ--Nz1pvSw5qrHRL3cQo__WGBzppE8d92tys1c7wLUzXH-yzTa561Srr5XePajm-cEbv4E1jjpKfnnQbNkyxA698g8rb9zA9r1RRw9BQKJK6aw6qOlJacvR7SFBYmgX67GQ-u1SFJg7h67uEudUmNzNFZv6H47xBexKcR2mvfeL-B7gYHv35NQqafgxBThOxCiKp1CAXGVoJmdEil7GJEoVSijNNjeUZepMDi_5PIqiJDNfW8pAym2nrwnOSfoROURbmExArYhQ0mjFpLIs0V4JzoRO0rbiJaEy70F-vSJo3xcpdz4x5WgfNhUgdz1LHs9TzrAs_2icWvlDHM7TfcSnS5rQun6HbX2-DFE-dC6WowpTVMkWlLgTOKYq6sOv3RzsqTThHjU8__-coe_Da9bD3iWtfoLO6rsxXtHRW2bd6R-N1TP_eA37O-Rs |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1JS8QwFA4uKF7E3XGNoAcPddpJ0iZHUcd9A0UPQkibRAaGdhhnBP-9L00cEFS89ZA06XvJW_qWD6HdWJg4U7GIRGxYRNO4ADkouGuv7bqlp4Wmrjj5-iY9e6QXz-w54JzWtTBVL4j-A3j0jYI9CUNCHG8m1EX0RcaaCiR8oZs9bcfRJCNgG8OBviVPI49LtOp66dGMEKf86S3f9NI4rP27yVmrnvYcmg02Iz70O5xHY6ZcQFMeRfJjEb3cD1VZ14qB5MI1tA3oI1xZfHLaxiDRTA8ca9ztvKpSY1eG66G8HEvwe0fhjv8r2A0lmRg2VNm-z65fQo_tk4ejsyiAJkQFyfggSoRSrYLnoMpzo3khUpNkCkQJo5oYy3Jw-VoWnJSME5MYpq1lMaE219bF0ARZRhNlVZpVhC1PQRpoSoWxNNFMcca4zsAAYiYhKWmg5hfJZBE6ijtgi66sI9ucS0dk6YgsPZEbaH80o-e7afwxdg-4IMOVevtj3M4XnyRcDRfvUKWphm8SNC_n8E1J0kArnoGjVUnGGKhlsvbPVbbR9N1xW16d31yuoxmHOe8TzTbQxKA_NJtgmQzyrfr0fQJF9txU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantitative+modeling+of+EGF+receptor+ligand+discrimination+via+internalization+proofreading&rft.jtitle=Physical+biology&rft.au=Leblanc%2C+Jaleesa+A&rft.au=Sugiyama%2C+Michael+G&rft.au=Antonescu%2C+Costin+N&rft.au=Brown%2C+Aidan+I&rft.date=2023-09-01&rft.issn=1478-3975&rft.eissn=1478-3975&rft.volume=20&rft.issue=5&rft_id=info:doi/10.1088%2F1478-3975%2Faceecd&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1478-3975&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1478-3975&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1478-3975&client=summon |