An optimal resource allocation scheme for virtual machine placement of deploying enterprise applications into the cloud

The emergence of cloud computing can help enterprises reduce their hardware and software investment and save their own operation and maintenance costs, thus more and more enterprises deploy their applications into the cloud. Generally, components of enterprise applications are resided in virtual mac...

Full description

Saved in:
Bibliographic Details
Published inAIMS mathematics Vol. 5; no. 4; pp. 3966 - 3989
Main Authors Sun, Wei, Wang, Yan, Li, Shiyong
Format Journal Article
LanguageEnglish
Published AIMS Press 01.01.2020
Subjects
Online AccessGet full text
ISSN2473-6988
2473-6988
DOI10.3934/math.2020256

Cover

Abstract The emergence of cloud computing can help enterprises reduce their hardware and software investment and save their own operation and maintenance costs, thus more and more enterprises deploy their applications into the cloud. Generally, components of enterprise applications are resided in virtual machines and then hosted by physical machines. In order to achieve the efficiency and utilization of physical machines, reasonable virtual machines placement becomes very important. In this paper we propose a scheme of resource allocation model for virtual machines placement and investigate it with convex optimization approach. We also present a heuristic algorithm to achieve the optimal resource allocation and discuss its equilibrium and stability by applying the asymptotic stability of the continuous dynamic system of Lyapunov stability theory. Finally, we give some numerical examples to illustrate the performance of the resource allocation scheme and confirm its convergence with a certain number of iterations.
AbstractList The emergence of cloud computing can help enterprises reduce their hardware and software investment and save their own operation and maintenance costs, thus more and more enterprises deploy their applications into the cloud. Generally, components of enterprise applications are resided in virtual machines and then hosted by physical machines. In order to achieve the efficiency and utilization of physical machines, reasonable virtual machines placement becomes very important. In this paper we propose a scheme of resource allocation model for virtual machines placement and investigate it with convex optimization approach. We also present a heuristic algorithm to achieve the optimal resource allocation and discuss its equilibrium and stability by applying the asymptotic stability of the continuous dynamic system of Lyapunov stability theory. Finally, we give some numerical examples to illustrate the performance of the resource allocation scheme and confirm its convergence with a certain number of iterations.
Author Sun, Wei
Li, Shiyong
Wang, Yan
Author_xml – sequence: 1
  givenname: Wei
  surname: Sun
  fullname: Sun, Wei
– sequence: 2
  givenname: Yan
  surname: Wang
  fullname: Wang, Yan
– sequence: 3
  givenname: Shiyong
  surname: Li
  fullname: Li, Shiyong
BookMark eNqFkdFKHTEQhkNRqLXe-QB5gK5mk93N5lJEqyD0pr1espOJJ5JNliRHOW9vPEekSKHkImHmy8cw_zdyFGJAQs5bdiGU6C4XXTYXnNXTD1_ICe-kaAY1jkd_vb-Ss5yfGGO85R2X3Ql5uQo0rsUt2tOEOW4TINXeR9DFxUAzbHBBamOizy6VbcUWDRsXkK5eQ-2FQqOlBlcfdy480lrAtCaXq2ddvTuIMnWhRFo2SMHHrflOjq32Gc_e71Py5_bm9_Vd8_Dr5_311UMDQo6laZkdO876fpQjR2tnbft5YB0zIMwg5n42qlfKKC5mMACSgZGgWjkYLfloxCm5P3hN1E9THWvRaTdF7aZ9IabHSafiwOMEAhWCNHZuWTeIfmyFQNNJOSs0rZ2rqzm4tmHVu5e6pQ9hy6a3EKa3EKb3ECr_48BDijkntP_D-SccXNkvryTt_L8_vQLwx59w
CitedBy_id crossref_primary_10_2174_2352096516666230713163440
crossref_primary_10_3233_JIFS_201239
Cites_doi 10.1109/TSC.2011.7
10.1007/s11227-017-2133-4
10.1109/4235.985692
10.1109/ACCESS.2019.2913175
10.1007/s10766-013-0274-5
10.1007/s00500-014-1406-6
10.1109/TSC.2016.2596289
10.1007/s10878-019-00411-3
10.1109/TSUSC.2017.2709980
10.1016/j.comnet.2012.09.008
10.1016/j.procs.2015.08.151
10.1016/j.eswa.2018.11.029
10.1109/COMST.2016.2619485
10.1109/TII.2019.2950109
10.1007/s00500-015-2014-9
10.1109/JPROC.2006.887322
10.1109/TEVC.2016.2623803
10.1016/j.compeleceng.2015.07.020
10.1002/dac.2594
10.1109/TPDS.2014.2362139
10.1108/JSIT-10-2017-0089
10.1109/TPDS.2012.283
10.1109/JSEN.2018.2870228
10.1016/j.ins.2018.06.002
10.1016/j.jss.2014.12.030
10.1109/ACCESS.2018.2818790
10.1007/s11227-009-0318-1
10.1109/ACCESS.2018.2878879
10.1109/MNET.2018.1800187
10.3233/JIFS-172276
10.1016/j.future.2011.04.017
10.1109/TGCN.2017.2780133
ContentType Journal Article
CorporateAuthor School of Economics and Management, Yanshan University, Qinhuangdao, 066004, China
CorporateAuthor_xml – name: School of Economics and Management, Yanshan University, Qinhuangdao, 066004, China
DBID AAYXX
CITATION
ADTOC
UNPAY
DOA
DOI 10.3934/math.2020256
DatabaseName CrossRef
Unpaywall for CDI: Periodical Content
Unpaywall
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
DatabaseTitleList
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 2473-6988
EndPage 3989
ExternalDocumentID oai_doaj_org_article_c3e9ec7dfb1046358133ed477b9ed1fb
10.3934/math.2020256
10_3934_math_2020256
GroupedDBID AAYXX
ADBBV
ALMA_UNASSIGNED_HOLDINGS
AMVHM
BCNDV
CITATION
EBS
FRJ
GROUPED_DOAJ
IAO
ITC
M~E
OK1
RAN
ADTOC
UNPAY
ID FETCH-LOGICAL-c378t-10f8420558782effbaf5b6040dc3d63b5bd9599d923bcdcc70cd7c9176da728d3
IEDL.DBID DOA
ISSN 2473-6988
IngestDate Fri Oct 03 12:51:55 EDT 2025
Mon Sep 15 08:25:17 EDT 2025
Tue Jul 01 03:56:45 EDT 2025
Thu Apr 24 22:51:26 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c378t-10f8420558782effbaf5b6040dc3d63b5bd9599d923bcdcc70cd7c9176da728d3
OpenAccessLink https://doaj.org/article/c3e9ec7dfb1046358133ed477b9ed1fb
PageCount 24
ParticipantIDs doaj_primary_oai_doaj_org_article_c3e9ec7dfb1046358133ed477b9ed1fb
unpaywall_primary_10_3934_math_2020256
crossref_primary_10_3934_math_2020256
crossref_citationtrail_10_3934_math_2020256
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-01-01
PublicationDateYYYYMMDD 2020-01-01
PublicationDate_xml – month: 01
  year: 2020
  text: 2020-01-01
  day: 01
PublicationDecade 2020
PublicationTitle AIMS mathematics
PublicationYear 2020
Publisher AIMS Press
Publisher_xml – name: AIMS Press
References M. Chiang, S. H. Low, A. R. Calderbank (51)
25
47
Z. Xiao, J. Jiang, Y. Zhu (48)
27
X. Liu, Z. Zhan, J. D. Deng (39)
D. Zhao, J. Zhou, K. Li (36)
S. B. Shaw, A. K. Singh (11)
B. Xu, Z. Peng, F. Xiao (35)
F. Alharbi, Y. Tian, M. Tang (40)
F. Stefanello, V. Aggarwal, L. S. Buriol (38)
M. A. Kaaouache, S. Bouamama (42)
Z. Ai, Y. Liu, F. Song (28)
G. Wei, A. V. Vasilakos, Y. Zheng (20)
D. Huang, L. Yi, F. Song (50)
W. Wang, B. Liang, B. Li (19)
F. Song, Z. Ai, Y. Zhou (22)
52
53
S. K. Mishra, D. Puthal, B. Sahoo (15)
F. Song, D. Huang, H. Zhou (49)
34
M. A. Kaaouache, S. Bouamama (37)
S. Chaisiri, B. S. Lee, D. Niyato (33)
N. K. Sharma, G. R. M. Reddy (12)
A. Khosravi, L. L. H. Andrew, R. Buyya (14)
M. Clerc, J. Kennedy (57)
Z. Xiao, W. Song, Q. Chen (13)
M. S. P. Mohamed, S. R. Swarnammal (32)
F. Song, Y. Zhou, Y. Wang (30)
Z. Ai, Y. Zhou, F. Song (23)
A. Beloglazov, J. Abawajy, R. Buyya (10)
4
S. Rahman, A. Gupta, M. Tornatore (17)
F. Song, Y. Zhou, L. Chang (29)
S. Li, W. Sun, J. Liu (56)
F. Lin, X. Lv, I. You (26)
W. Fang, X. Liang, S. Li (46)
21
Q. V. Pham, W. J. Hwang (54)
References_xml – ident: 33
  article-title: i>Optimization of resource provisioning cost in cloud computing</i
  publication-title: IEEE Trans. Serv. Comput.
  doi: 10.1109/TSC.2011.7
– ident: 15
  article-title: t al. An adaptive task allocation technique for green cloud computing</i
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-017-2133-4
– ident: 57
  article-title: i>The particle swarm-explosion, stability, and convergence in a multidimensional complex space</i
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/4235.985692
– ident: 36
  article-title: i>An energy-aware algorithm for virtual machine placement in cloud computing</i
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2019.2913175
– ident: 49
  article-title: t al. An optimization-based scheme for efficient virtual machine placement</i
  publication-title: Int. J. Parallel Program.
  doi: 10.1007/s10766-013-0274-5
– ident: 35
  article-title: t al. Dynamic deployment of virtual machines in cloud computing using multi-objective optimization</i
  publication-title: Soft Comput.
  doi: 10.1007/s00500-014-1406-6
– ident: 12
  article-title: i>Multi-objective energy efficient virtual machines allocation at the cloud data center</i
  publication-title: IEEE Trans. Serv. Comput.
  doi: 10.1109/TSC.2016.2596289
– ident: 38
  article-title: t al. Hybrid algorithms for placement of virtual machines across geo-separated data centers</i
  publication-title: J. Comb. Optim.
  doi: 10.1007/s10878-019-00411-3
– ident: 25
  article-title: t al. Enabling collaborative edge computing for software defined vehicular networks</i
– ident: 34
  article-title: i>Exploring mixed integer programming reformulations for virtual machine placement with disk anti-colocation constraints</i
– ident: 14
  article-title: i>Dynamic VM placement method for minimizing energy and carbon cost in geographically distributed cloud data centers</i
  publication-title: IEEE Trans. Sustainable Comput.
  doi: 10.1109/TSUSC.2017.2709980
– ident: 46
  article-title: t al. VMPlanner: Optimizing virtual machine placement and traffic flow routing to reduce network power costs in cloud data centers</i
  publication-title: Comput. Netw.
  doi: 10.1016/j.comnet.2012.09.008
– ident: 42
  article-title: i>Solving bin packing problem with a hybrid genetic algorithm for VM placement in cloud</i
  publication-title: Procedia Comput. Sci.
  doi: 10.1016/j.procs.2015.08.151
– ident: 40
  article-title: t al. An ant colony system for energy-efficient dynamic virtual machine placement in data centers</i
  publication-title: Expert Syst. Appl.
  doi: 10.1016/j.eswa.2018.11.029
– ident: 54
  article-title: i>Network utility maximization based congestion control over wireless networks: A survey and potential directives</i
  publication-title: IEEE Commun. Surv. Tut.
  doi: 10.1109/COMST.2016.2619485
– ident: 22
  article-title: t al. Smart collaborative automation for receive buffer control in multipath industrial networks</i
  publication-title: IEEE Trans. Ind. Inform.
  doi: 10.1109/TII.2019.2950109
– ident: 32
  article-title: i>An efficient framework to handle integrated VM workloads in heterogeneous cloud infrastructure</i
  publication-title: Soft Comput.
  doi: 10.1007/s00500-015-2014-9
– ident: 52
  article-title: i>Utility maximization for bandwidth allocation in peer-to-peer file-sharing networks</i
– ident: 51
  article-title: t al. Layering as optimization decomposition: a mathematical theory of network architectures</i
  publication-title: Proc. IEEE
  doi: 10.1109/JPROC.2006.887322
– ident: 39
  article-title: t al. An energy efficient ant colony system for virtual machine placement in cloud computing</i
  publication-title: IEEE Trans. Evol. Comput.
  doi: 10.1109/TEVC.2016.2623803
– ident: 11
  article-title: i>Use of proactive and reactive hotspot detection technique to reduce the number of virtual machine migration and energy consumption in cloud data center</i
  publication-title: Comput. Electr. Eng.
  doi: 10.1016/j.compeleceng.2015.07.020
– ident: 50
  article-title: t al. A secure cost-effective migration of enterprise applications to the cloud</i
  publication-title: Int. J. Commun. Syst.
  doi: 10.1002/dac.2594
– ident: 19
  article-title: i>Multi-resource fair allocation in heterogeneous cloud computing systems</i
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2014.2362139
– ident: 47
  article-title: t al. Dynamic performance optimization for cloud computing using M/M/m queueing system</i
– ident: 37
  article-title: i>An energy-efficient VM placement method for cloud data centers using a hybrid genetic algorithm</i
  publication-title: J. Syst. Inf. Technol.
  doi: 10.1108/JSIT-10-2017-0089
– ident: 13
  article-title: i>Dynamic resource allocation using virtual machines for cloud computing environment</i
  publication-title: IEEE Trans. Parallel Distrib. Syst.
  doi: 10.1109/TPDS.2012.283
– ident: 23
  article-title: i>A smart collaborative routing protocol for reliable data diffusion in IoT scenarios</i
  publication-title: Sensors
  doi: 10.1109/JSEN.2018.2870228
– ident: 4
  article-title: i>Optimal resource allocation model and algorithm for elastic enterprise</i> applications migration to the cloud</i
– ident: 27
  article-title: t al. Intercloud and hetNet for mobile cloud computing in 5G systems: Design issues, challenges, and optimization</i
– ident: 30
  article-title: t al. Smart collaborative distribution for privacy enhancement in moving target defense</i
  publication-title: Inf. Sci.
  doi: 10.1016/j.ins.2018.06.002
– ident: 48
  article-title: t al. A solution of dynamic VMs placement problem for energy consumption optimization based on evolutionary game theory</i
  publication-title: J. Syst. Softw.
  doi: 10.1016/j.jss.2014.12.030
– ident: 28
  article-title: t al. A smart collaborative charging algorithm for mobile power distribution in 5G networks</i
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2818790
– ident: 20
  article-title: t al. A game-theoretic method of fair resource allocation for cloud computing services</i
  publication-title: J. Supercomput.
  doi: 10.1007/s11227-009-0318-1
– ident: 26
  article-title: t al. A novel utility based resource management scheme in vehicular social edge computing</i
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2018.2878879
– ident: 29
  article-title: t al. Modeling space-terrestrial integrated networks with smart collaborative theory</i
  publication-title: IEEE Netw.
  doi: 10.1109/MNET.2018.1800187
– ident: 56
  article-title: i>A mechanism of bandwidth allocation for peer-to-peer file-sharing networks via particle swarm optimization</i
  publication-title: J. Intell. Fuzzy Syst.
  doi: 10.3233/JIFS-172276
– ident: 21
  article-title: t al. Betweenness centrality based software defined routing: Observation from practical Internet datasets</i
– ident: 53
  article-title: W. E. Boyce, R. C. DiPrima, Elementary Differential Equations and Boundary Value Problems,
– ident: 10
  article-title: i>Energy-aware resource allocation heuristics for efficient management of data centers for Cloud computing</i
  publication-title: Futur. Gener. Comp. Syst.
  doi: 10.1016/j.future.2011.04.017
– ident: 17
  article-title: t al. Dynamic workload migration over backbone network to minimize data center electricity cost</i
  publication-title: IEEE Trans. Green Commun. Netw.
  doi: 10.1109/TGCN.2017.2780133
SSID ssj0002124274
Score 2.1373544
Snippet The emergence of cloud computing can help enterprises reduce their hardware and software investment and save their own operation and maintenance costs, thus...
SourceID doaj
unpaywall
crossref
SourceType Open Website
Open Access Repository
Enrichment Source
Index Database
StartPage 3966
SubjectTerms cloud computing
convex optimization
data center
resource allocation
virtual machine placement
SummonAdditionalLinks – databaseName: Unpaywall
  dbid: UNPAY
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB51y4HlAOwDUV7yAfayCsvGju0cCwJVSKA9UAlOUfySqm0TVFIQ_HpmmrQqu-Jxi6KJY3lszzdvgP3AVUAcHyIpXIwKiuaRzj2VcbVeWhEboSnB-eJS9vri_Dq5bsH-LBdmwX_PUy5-IWwjl0FMovkTLMkEEXcblvqXf7o31DdOKB7JVOs6pv2_T15Im2lR_hVYnhS3-eNDPhwuSJKzNTidzaEOIPl7OKnMoX36pzzje5Nch9UGSrJuzfsv0PLFV1i5mNdhvfsGD92ClXgpjJBu3BjqGbnaa0MdQ9XWjzxD4MruB2NKJWGjaXSlZ9NgLTIdsjIw56kvMEo55usgxcEdjrPg-2aDoioZ_pnZYTlx36F_dnp10ouaVguR5UpXeBkHLeKjJNGIGHwIJg-JkXjAneVOcpMYlyZp6hAOGuusVUfWKYuqnnS5irXjG9AuysJvAhMW1bqgcmFFQtph6l1QqQyeclZxjA78nLEks00dcmqHMcxQH6HlzGg5s2Y5O3Awp76t62-8QndM3J3TUNXs6QvkU9Ycwsxyn3qrXDDk2abKb5x7J5QyOMnfwXTgx3xvvPm3rY8SbsNneqptNjvQrsYTv4sopjJ7zSZ-Blv98cA
  priority: 102
  providerName: Unpaywall
Title An optimal resource allocation scheme for virtual machine placement of deploying enterprise applications into the cloud
URI https://doi.org/10.3934/math.2020256
https://doaj.org/article/c3e9ec7dfb1046358133ed477b9ed1fb
UnpaywallVersion publishedVersion
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVAON
  databaseName: DOAJ Directory of Open Access Journals
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: DOA
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://www.doaj.org/
  providerName: Directory of Open Access Journals
– providerCode: PRVHPJ
  databaseName: ROAD: Directory of Open Access Scholarly Resources
  customDbUrl:
  eissn: 2473-6988
  dateEnd: 99991231
  omitProxy: true
  ssIdentifier: ssj0002124274
  issn: 2473-6988
  databaseCode: M~E
  dateStart: 20160101
  isFulltext: true
  titleUrlDefault: https://road.issn.org
  providerName: ISSN International Centre
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kHrQH8Yn1UfagXiS0ZjfZ5FhFKUKLBwv1FLIvKKRJaVOL_96ZJIZ4UC9ew7AbZmfnvd8QcmWZsODHW8fn2oUAJWBOEBuEcVXGV9yVPMAHzqOxP5zw56k3bYz6wp6wEh64ZFxPMRMaJbSVWI1EtC7GjOZCyNDoOytR-_aDsBFMoQ4Ghcwh3io73VnIeA_8P6w9uGjjv9mgAqq_TXbW6SL-2MRJ0rAvT_tkr3IM6aD8oQOyZdJD0h7VqKqrI7IZpDSDKz4HumWVdqdYOC_TbhQCVTM3FNxQ-j5b4sMQOi96JQ0tWq8wEUgzS7XBKb9gs6gpWw5nK1inUcmmszTPKOxMVZKt9TGZPD2-PgydanCCo5gIclCtNuBu3_MCsP_GWhlbT_pwXbVi2mfSkzr0wlCDcyeVVkr0lRYKAjdfx8INNDshrTRLzSmhXEGQZkXMFfcw1gOmWxH61uALVFijQ26_WBmpClUch1skEUQXyPgIGR9VjO-Q65p6UaJp_EB3j6dS0yAGdvEBJCOqJCP6SzI65KY-0193O_uP3c7JLi5XZmcuSCtfrs0l-Cu57Bai2SXbk_HL4O0TN6ruNQ
linkProvider Directory of Open Access Journals
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB51y4HlAOwDUV7yAfayCsvGju0cCwJVSKA9UAlOUfySqm0TVFIQ_HpmmrQqu-Jxi6KJY3lszzdvgP3AVUAcHyIpXIwKiuaRzj2VcbVeWhEboSnB-eJS9vri_Dq5bsH-LBdmwX_PUy5-IWwjl0FMovkTLMkEEXcblvqXf7o31DdOKB7JVOs6pv2_T15Im2lR_hVYnhS3-eNDPhwuSJKzNTidzaEOIPl7OKnMoX36pzzje5Nch9UGSrJuzfsv0PLFV1i5mNdhvfsGD92ClXgpjJBu3BjqGbnaa0MdQ9XWjzxD4MruB2NKJWGjaXSlZ9NgLTIdsjIw56kvMEo55usgxcEdjrPg-2aDoioZ_pnZYTlx36F_dnp10ouaVguR5UpXeBkHLeKjJNGIGHwIJg-JkXjAneVOcpMYlyZp6hAOGuusVUfWKYuqnnS5irXjG9AuysJvAhMW1bqgcmFFQtph6l1QqQyeclZxjA78nLEks00dcmqHMcxQH6HlzGg5s2Y5O3Awp76t62-8QndM3J3TUNXs6QvkU9Ycwsxyn3qrXDDk2abKb5x7J5QyOMnfwXTgx3xvvPm3rY8SbsNneqptNjvQrsYTv4sopjJ7zSZ-Blv98cA
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimal+resource+allocation+scheme+for+virtual+machine+placement+of+deploying+enterprise+applications+into+the+cloud&rft.jtitle=AIMS+mathematics&rft.au=Wei+Sun&rft.au=Yan+Wang&rft.au=Shiyong+Li&rft.date=2020-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=5&rft.issue=4&rft.spage=3966&rft.epage=3989&rft_id=info:doi/10.3934%2Fmath.2020256&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c3e9ec7dfb1046358133ed477b9ed1fb
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon