An optimal resource allocation scheme for virtual machine placement of deploying enterprise applications into the cloud
The emergence of cloud computing can help enterprises reduce their hardware and software investment and save their own operation and maintenance costs, thus more and more enterprises deploy their applications into the cloud. Generally, components of enterprise applications are resided in virtual mac...
Saved in:
| Published in | AIMS mathematics Vol. 5; no. 4; pp. 3966 - 3989 |
|---|---|
| Main Authors | , , |
| Format | Journal Article |
| Language | English |
| Published |
AIMS Press
01.01.2020
|
| Subjects | |
| Online Access | Get full text |
| ISSN | 2473-6988 2473-6988 |
| DOI | 10.3934/math.2020256 |
Cover
| Abstract | The emergence of cloud computing can help enterprises reduce their hardware and software investment and save their own operation and maintenance costs, thus more and more enterprises deploy their applications into the cloud. Generally, components of enterprise applications are resided in virtual machines and then hosted by physical machines. In order to achieve the efficiency and utilization of physical machines, reasonable virtual machines placement becomes very important. In this paper we propose a scheme of resource allocation model for virtual machines placement and investigate it with convex optimization approach. We also present a heuristic algorithm to achieve the optimal resource allocation and discuss its equilibrium and stability by applying the asymptotic stability of the continuous dynamic system of Lyapunov stability theory. Finally, we give some numerical examples to illustrate the performance of the resource allocation scheme and confirm its convergence with a certain number of iterations. |
|---|---|
| AbstractList | The emergence of cloud computing can help enterprises reduce their hardware and software investment and save their own operation and maintenance costs, thus more and more enterprises deploy their applications into the cloud. Generally, components of enterprise applications are resided in virtual machines and then hosted by physical machines. In order to achieve the efficiency and utilization of physical machines, reasonable virtual machines placement becomes very important. In this paper we propose a scheme of resource allocation model for virtual machines placement and investigate it with convex optimization approach. We also present a heuristic algorithm to achieve the optimal resource allocation and discuss its equilibrium and stability by applying the asymptotic stability of the continuous dynamic system of Lyapunov stability theory. Finally, we give some numerical examples to illustrate the performance of the resource allocation scheme and confirm its convergence with a certain number of iterations. |
| Author | Sun, Wei Li, Shiyong Wang, Yan |
| Author_xml | – sequence: 1 givenname: Wei surname: Sun fullname: Sun, Wei – sequence: 2 givenname: Yan surname: Wang fullname: Wang, Yan – sequence: 3 givenname: Shiyong surname: Li fullname: Li, Shiyong |
| BookMark | eNqFkdFKHTEQhkNRqLXe-QB5gK5mk93N5lJEqyD0pr1espOJJ5JNliRHOW9vPEekSKHkImHmy8cw_zdyFGJAQs5bdiGU6C4XXTYXnNXTD1_ICe-kaAY1jkd_vb-Ss5yfGGO85R2X3Ql5uQo0rsUt2tOEOW4TINXeR9DFxUAzbHBBamOizy6VbcUWDRsXkK5eQ-2FQqOlBlcfdy480lrAtCaXq2ddvTuIMnWhRFo2SMHHrflOjq32Gc_e71Py5_bm9_Vd8_Dr5_311UMDQo6laZkdO876fpQjR2tnbft5YB0zIMwg5n42qlfKKC5mMACSgZGgWjkYLfloxCm5P3hN1E9THWvRaTdF7aZ9IabHSafiwOMEAhWCNHZuWTeIfmyFQNNJOSs0rZ2rqzm4tmHVu5e6pQ9hy6a3EKa3EKb3ECr_48BDijkntP_D-SccXNkvryTt_L8_vQLwx59w |
| CitedBy_id | crossref_primary_10_2174_2352096516666230713163440 crossref_primary_10_3233_JIFS_201239 |
| Cites_doi | 10.1109/TSC.2011.7 10.1007/s11227-017-2133-4 10.1109/4235.985692 10.1109/ACCESS.2019.2913175 10.1007/s10766-013-0274-5 10.1007/s00500-014-1406-6 10.1109/TSC.2016.2596289 10.1007/s10878-019-00411-3 10.1109/TSUSC.2017.2709980 10.1016/j.comnet.2012.09.008 10.1016/j.procs.2015.08.151 10.1016/j.eswa.2018.11.029 10.1109/COMST.2016.2619485 10.1109/TII.2019.2950109 10.1007/s00500-015-2014-9 10.1109/JPROC.2006.887322 10.1109/TEVC.2016.2623803 10.1016/j.compeleceng.2015.07.020 10.1002/dac.2594 10.1109/TPDS.2014.2362139 10.1108/JSIT-10-2017-0089 10.1109/TPDS.2012.283 10.1109/JSEN.2018.2870228 10.1016/j.ins.2018.06.002 10.1016/j.jss.2014.12.030 10.1109/ACCESS.2018.2818790 10.1007/s11227-009-0318-1 10.1109/ACCESS.2018.2878879 10.1109/MNET.2018.1800187 10.3233/JIFS-172276 10.1016/j.future.2011.04.017 10.1109/TGCN.2017.2780133 |
| ContentType | Journal Article |
| CorporateAuthor | School of Economics and Management, Yanshan University, Qinhuangdao, 066004, China |
| CorporateAuthor_xml | – name: School of Economics and Management, Yanshan University, Qinhuangdao, 066004, China |
| DBID | AAYXX CITATION ADTOC UNPAY DOA |
| DOI | 10.3934/math.2020256 |
| DatabaseName | CrossRef Unpaywall for CDI: Periodical Content Unpaywall DOAJ (Directory of Open Access Journals) |
| DatabaseTitle | CrossRef |
| DatabaseTitleList | |
| Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository |
| DeliveryMethod | fulltext_linktorsrc |
| Discipline | Mathematics |
| EISSN | 2473-6988 |
| EndPage | 3989 |
| ExternalDocumentID | oai_doaj_org_article_c3e9ec7dfb1046358133ed477b9ed1fb 10.3934/math.2020256 10_3934_math_2020256 |
| GroupedDBID | AAYXX ADBBV ALMA_UNASSIGNED_HOLDINGS AMVHM BCNDV CITATION EBS FRJ GROUPED_DOAJ IAO ITC M~E OK1 RAN ADTOC UNPAY |
| ID | FETCH-LOGICAL-c378t-10f8420558782effbaf5b6040dc3d63b5bd9599d923bcdcc70cd7c9176da728d3 |
| IEDL.DBID | DOA |
| ISSN | 2473-6988 |
| IngestDate | Fri Oct 03 12:51:55 EDT 2025 Mon Sep 15 08:25:17 EDT 2025 Tue Jul 01 03:56:45 EDT 2025 Thu Apr 24 22:51:26 EDT 2025 |
| IsDoiOpenAccess | true |
| IsOpenAccess | true |
| IsPeerReviewed | true |
| IsScholarly | true |
| Issue | 4 |
| Language | English |
| License | cc-by |
| LinkModel | DirectLink |
| MergedId | FETCHMERGED-LOGICAL-c378t-10f8420558782effbaf5b6040dc3d63b5bd9599d923bcdcc70cd7c9176da728d3 |
| OpenAccessLink | https://doaj.org/article/c3e9ec7dfb1046358133ed477b9ed1fb |
| PageCount | 24 |
| ParticipantIDs | doaj_primary_oai_doaj_org_article_c3e9ec7dfb1046358133ed477b9ed1fb unpaywall_primary_10_3934_math_2020256 crossref_primary_10_3934_math_2020256 crossref_citationtrail_10_3934_math_2020256 |
| ProviderPackageCode | CITATION AAYXX |
| PublicationCentury | 2000 |
| PublicationDate | 2020-01-01 |
| PublicationDateYYYYMMDD | 2020-01-01 |
| PublicationDate_xml | – month: 01 year: 2020 text: 2020-01-01 day: 01 |
| PublicationDecade | 2020 |
| PublicationTitle | AIMS mathematics |
| PublicationYear | 2020 |
| Publisher | AIMS Press |
| Publisher_xml | – name: AIMS Press |
| References | M. Chiang, S. H. Low, A. R. Calderbank (51) 25 47 Z. Xiao, J. Jiang, Y. Zhu (48) 27 X. Liu, Z. Zhan, J. D. Deng (39) D. Zhao, J. Zhou, K. Li (36) S. B. Shaw, A. K. Singh (11) B. Xu, Z. Peng, F. Xiao (35) F. Alharbi, Y. Tian, M. Tang (40) F. Stefanello, V. Aggarwal, L. S. Buriol (38) M. A. Kaaouache, S. Bouamama (42) Z. Ai, Y. Liu, F. Song (28) G. Wei, A. V. Vasilakos, Y. Zheng (20) D. Huang, L. Yi, F. Song (50) W. Wang, B. Liang, B. Li (19) F. Song, Z. Ai, Y. Zhou (22) 52 53 S. K. Mishra, D. Puthal, B. Sahoo (15) F. Song, D. Huang, H. Zhou (49) 34 M. A. Kaaouache, S. Bouamama (37) S. Chaisiri, B. S. Lee, D. Niyato (33) N. K. Sharma, G. R. M. Reddy (12) A. Khosravi, L. L. H. Andrew, R. Buyya (14) M. Clerc, J. Kennedy (57) Z. Xiao, W. Song, Q. Chen (13) M. S. P. Mohamed, S. R. Swarnammal (32) F. Song, Y. Zhou, Y. Wang (30) Z. Ai, Y. Zhou, F. Song (23) A. Beloglazov, J. Abawajy, R. Buyya (10) 4 S. Rahman, A. Gupta, M. Tornatore (17) F. Song, Y. Zhou, L. Chang (29) S. Li, W. Sun, J. Liu (56) F. Lin, X. Lv, I. You (26) W. Fang, X. Liang, S. Li (46) 21 Q. V. Pham, W. J. Hwang (54) |
| References_xml | – ident: 33 article-title: i>Optimization of resource provisioning cost in cloud computing</i publication-title: IEEE Trans. Serv. Comput. doi: 10.1109/TSC.2011.7 – ident: 15 article-title: t al. An adaptive task allocation technique for green cloud computing</i publication-title: J. Supercomput. doi: 10.1007/s11227-017-2133-4 – ident: 57 article-title: i>The particle swarm-explosion, stability, and convergence in a multidimensional complex space</i publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/4235.985692 – ident: 36 article-title: i>An energy-aware algorithm for virtual machine placement in cloud computing</i publication-title: IEEE Access doi: 10.1109/ACCESS.2019.2913175 – ident: 49 article-title: t al. An optimization-based scheme for efficient virtual machine placement</i publication-title: Int. J. Parallel Program. doi: 10.1007/s10766-013-0274-5 – ident: 35 article-title: t al. Dynamic deployment of virtual machines in cloud computing using multi-objective optimization</i publication-title: Soft Comput. doi: 10.1007/s00500-014-1406-6 – ident: 12 article-title: i>Multi-objective energy efficient virtual machines allocation at the cloud data center</i publication-title: IEEE Trans. Serv. Comput. doi: 10.1109/TSC.2016.2596289 – ident: 38 article-title: t al. Hybrid algorithms for placement of virtual machines across geo-separated data centers</i publication-title: J. Comb. Optim. doi: 10.1007/s10878-019-00411-3 – ident: 25 article-title: t al. Enabling collaborative edge computing for software defined vehicular networks</i – ident: 34 article-title: i>Exploring mixed integer programming reformulations for virtual machine placement with disk anti-colocation constraints</i – ident: 14 article-title: i>Dynamic VM placement method for minimizing energy and carbon cost in geographically distributed cloud data centers</i publication-title: IEEE Trans. Sustainable Comput. doi: 10.1109/TSUSC.2017.2709980 – ident: 46 article-title: t al. VMPlanner: Optimizing virtual machine placement and traffic flow routing to reduce network power costs in cloud data centers</i publication-title: Comput. Netw. doi: 10.1016/j.comnet.2012.09.008 – ident: 42 article-title: i>Solving bin packing problem with a hybrid genetic algorithm for VM placement in cloud</i publication-title: Procedia Comput. Sci. doi: 10.1016/j.procs.2015.08.151 – ident: 40 article-title: t al. An ant colony system for energy-efficient dynamic virtual machine placement in data centers</i publication-title: Expert Syst. Appl. doi: 10.1016/j.eswa.2018.11.029 – ident: 54 article-title: i>Network utility maximization based congestion control over wireless networks: A survey and potential directives</i publication-title: IEEE Commun. Surv. Tut. doi: 10.1109/COMST.2016.2619485 – ident: 22 article-title: t al. Smart collaborative automation for receive buffer control in multipath industrial networks</i publication-title: IEEE Trans. Ind. Inform. doi: 10.1109/TII.2019.2950109 – ident: 32 article-title: i>An efficient framework to handle integrated VM workloads in heterogeneous cloud infrastructure</i publication-title: Soft Comput. doi: 10.1007/s00500-015-2014-9 – ident: 52 article-title: i>Utility maximization for bandwidth allocation in peer-to-peer file-sharing networks</i – ident: 51 article-title: t al. Layering as optimization decomposition: a mathematical theory of network architectures</i publication-title: Proc. IEEE doi: 10.1109/JPROC.2006.887322 – ident: 39 article-title: t al. An energy efficient ant colony system for virtual machine placement in cloud computing</i publication-title: IEEE Trans. Evol. Comput. doi: 10.1109/TEVC.2016.2623803 – ident: 11 article-title: i>Use of proactive and reactive hotspot detection technique to reduce the number of virtual machine migration and energy consumption in cloud data center</i publication-title: Comput. Electr. Eng. doi: 10.1016/j.compeleceng.2015.07.020 – ident: 50 article-title: t al. A secure cost-effective migration of enterprise applications to the cloud</i publication-title: Int. J. Commun. Syst. doi: 10.1002/dac.2594 – ident: 19 article-title: i>Multi-resource fair allocation in heterogeneous cloud computing systems</i publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2014.2362139 – ident: 47 article-title: t al. Dynamic performance optimization for cloud computing using M/M/m queueing system</i – ident: 37 article-title: i>An energy-efficient VM placement method for cloud data centers using a hybrid genetic algorithm</i publication-title: J. Syst. Inf. Technol. doi: 10.1108/JSIT-10-2017-0089 – ident: 13 article-title: i>Dynamic resource allocation using virtual machines for cloud computing environment</i publication-title: IEEE Trans. Parallel Distrib. Syst. doi: 10.1109/TPDS.2012.283 – ident: 23 article-title: i>A smart collaborative routing protocol for reliable data diffusion in IoT scenarios</i publication-title: Sensors doi: 10.1109/JSEN.2018.2870228 – ident: 4 article-title: i>Optimal resource allocation model and algorithm for elastic enterprise</i> applications migration to the cloud</i – ident: 27 article-title: t al. Intercloud and hetNet for mobile cloud computing in 5G systems: Design issues, challenges, and optimization</i – ident: 30 article-title: t al. Smart collaborative distribution for privacy enhancement in moving target defense</i publication-title: Inf. Sci. doi: 10.1016/j.ins.2018.06.002 – ident: 48 article-title: t al. A solution of dynamic VMs placement problem for energy consumption optimization based on evolutionary game theory</i publication-title: J. Syst. Softw. doi: 10.1016/j.jss.2014.12.030 – ident: 28 article-title: t al. A smart collaborative charging algorithm for mobile power distribution in 5G networks</i publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2818790 – ident: 20 article-title: t al. A game-theoretic method of fair resource allocation for cloud computing services</i publication-title: J. Supercomput. doi: 10.1007/s11227-009-0318-1 – ident: 26 article-title: t al. A novel utility based resource management scheme in vehicular social edge computing</i publication-title: IEEE Access doi: 10.1109/ACCESS.2018.2878879 – ident: 29 article-title: t al. Modeling space-terrestrial integrated networks with smart collaborative theory</i publication-title: IEEE Netw. doi: 10.1109/MNET.2018.1800187 – ident: 56 article-title: i>A mechanism of bandwidth allocation for peer-to-peer file-sharing networks via particle swarm optimization</i publication-title: J. Intell. Fuzzy Syst. doi: 10.3233/JIFS-172276 – ident: 21 article-title: t al. Betweenness centrality based software defined routing: Observation from practical Internet datasets</i – ident: 53 article-title: W. E. Boyce, R. C. DiPrima, Elementary Differential Equations and Boundary Value Problems, – ident: 10 article-title: i>Energy-aware resource allocation heuristics for efficient management of data centers for Cloud computing</i publication-title: Futur. Gener. Comp. Syst. doi: 10.1016/j.future.2011.04.017 – ident: 17 article-title: t al. Dynamic workload migration over backbone network to minimize data center electricity cost</i publication-title: IEEE Trans. Green Commun. Netw. doi: 10.1109/TGCN.2017.2780133 |
| SSID | ssj0002124274 |
| Score | 2.1373544 |
| Snippet | The emergence of cloud computing can help enterprises reduce their hardware and software investment and save their own operation and maintenance costs, thus... |
| SourceID | doaj unpaywall crossref |
| SourceType | Open Website Open Access Repository Enrichment Source Index Database |
| StartPage | 3966 |
| SubjectTerms | cloud computing convex optimization data center resource allocation virtual machine placement |
| SummonAdditionalLinks | – databaseName: Unpaywall dbid: UNPAY link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB51y4HlAOwDUV7yAfayCsvGju0cCwJVSKA9UAlOUfySqm0TVFIQ_HpmmrQqu-Jxi6KJY3lszzdvgP3AVUAcHyIpXIwKiuaRzj2VcbVeWhEboSnB-eJS9vri_Dq5bsH-LBdmwX_PUy5-IWwjl0FMovkTLMkEEXcblvqXf7o31DdOKB7JVOs6pv2_T15Im2lR_hVYnhS3-eNDPhwuSJKzNTidzaEOIPl7OKnMoX36pzzje5Nch9UGSrJuzfsv0PLFV1i5mNdhvfsGD92ClXgpjJBu3BjqGbnaa0MdQ9XWjzxD4MruB2NKJWGjaXSlZ9NgLTIdsjIw56kvMEo55usgxcEdjrPg-2aDoioZ_pnZYTlx36F_dnp10ouaVguR5UpXeBkHLeKjJNGIGHwIJg-JkXjAneVOcpMYlyZp6hAOGuusVUfWKYuqnnS5irXjG9AuysJvAhMW1bqgcmFFQtph6l1QqQyeclZxjA78nLEks00dcmqHMcxQH6HlzGg5s2Y5O3Awp76t62-8QndM3J3TUNXs6QvkU9Ycwsxyn3qrXDDk2abKb5x7J5QyOMnfwXTgx3xvvPm3rY8SbsNneqptNjvQrsYTv4sopjJ7zSZ-Blv98cA priority: 102 providerName: Unpaywall |
| Title | An optimal resource allocation scheme for virtual machine placement of deploying enterprise applications into the cloud |
| URI | https://doi.org/10.3934/math.2020256 https://doaj.org/article/c3e9ec7dfb1046358133ed477b9ed1fb |
| UnpaywallVersion | publishedVersion |
| Volume | 5 |
| hasFullText | 1 |
| inHoldings | 1 |
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVAON databaseName: DOAJ Directory of Open Access Journals customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: DOA dateStart: 20160101 isFulltext: true titleUrlDefault: https://www.doaj.org/ providerName: Directory of Open Access Journals – providerCode: PRVHPJ databaseName: ROAD: Directory of Open Access Scholarly Resources customDbUrl: eissn: 2473-6988 dateEnd: 99991231 omitProxy: true ssIdentifier: ssj0002124274 issn: 2473-6988 databaseCode: M~E dateStart: 20160101 isFulltext: true titleUrlDefault: https://road.issn.org providerName: ISSN International Centre |
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6kHrQH8Yn1UfagXiS0ZjfZ5FhFKUKLBwv1FLIvKKRJaVOL_96ZJIZ4UC9ew7AbZmfnvd8QcmWZsODHW8fn2oUAJWBOEBuEcVXGV9yVPMAHzqOxP5zw56k3bYz6wp6wEh64ZFxPMRMaJbSVWI1EtC7GjOZCyNDoOytR-_aDsBFMoQ4Ghcwh3io73VnIeA_8P6w9uGjjv9mgAqq_TXbW6SL-2MRJ0rAvT_tkr3IM6aD8oQOyZdJD0h7VqKqrI7IZpDSDKz4HumWVdqdYOC_TbhQCVTM3FNxQ-j5b4sMQOi96JQ0tWq8wEUgzS7XBKb9gs6gpWw5nK1inUcmmszTPKOxMVZKt9TGZPD2-PgydanCCo5gIclCtNuBu3_MCsP_GWhlbT_pwXbVi2mfSkzr0wlCDcyeVVkr0lRYKAjdfx8INNDshrTRLzSmhXEGQZkXMFfcw1gOmWxH61uALVFijQ26_WBmpClUch1skEUQXyPgIGR9VjO-Q65p6UaJp_EB3j6dS0yAGdvEBJCOqJCP6SzI65KY-0193O_uP3c7JLi5XZmcuSCtfrs0l-Cu57Bai2SXbk_HL4O0TN6ruNQ |
| linkProvider | Directory of Open Access Journals |
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT-MwEB51y4HlAOwDUV7yAfayCsvGju0cCwJVSKA9UAlOUfySqm0TVFIQ_HpmmrQqu-Jxi6KJY3lszzdvgP3AVUAcHyIpXIwKiuaRzj2VcbVeWhEboSnB-eJS9vri_Dq5bsH-LBdmwX_PUy5-IWwjl0FMovkTLMkEEXcblvqXf7o31DdOKB7JVOs6pv2_T15Im2lR_hVYnhS3-eNDPhwuSJKzNTidzaEOIPl7OKnMoX36pzzje5Nch9UGSrJuzfsv0PLFV1i5mNdhvfsGD92ClXgpjJBu3BjqGbnaa0MdQ9XWjzxD4MruB2NKJWGjaXSlZ9NgLTIdsjIw56kvMEo55usgxcEdjrPg-2aDoioZ_pnZYTlx36F_dnp10ouaVguR5UpXeBkHLeKjJNGIGHwIJg-JkXjAneVOcpMYlyZp6hAOGuusVUfWKYuqnnS5irXjG9AuysJvAhMW1bqgcmFFQtph6l1QqQyeclZxjA78nLEks00dcmqHMcxQH6HlzGg5s2Y5O3Awp76t62-8QndM3J3TUNXs6QvkU9Ycwsxyn3qrXDDk2abKb5x7J5QyOMnfwXTgx3xvvPm3rY8SbsNneqptNjvQrsYTv4sopjJ7zSZ-Blv98cA |
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+optimal+resource+allocation+scheme+for+virtual+machine+placement+of+deploying+enterprise+applications+into+the+cloud&rft.jtitle=AIMS+mathematics&rft.au=Wei+Sun&rft.au=Yan+Wang&rft.au=Shiyong+Li&rft.date=2020-01-01&rft.pub=AIMS+Press&rft.eissn=2473-6988&rft.volume=5&rft.issue=4&rft.spage=3966&rft.epage=3989&rft_id=info:doi/10.3934%2Fmath.2020256&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_c3e9ec7dfb1046358133ed477b9ed1fb |
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2473-6988&client=summon |
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2473-6988&client=summon |
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2473-6988&client=summon |