Precoded Large Scale Multi‐User‐MIMO System Using Likelihood Ascent Search for Signal Detection

Multiple antennas at each user equipment (UE) and/or thousands of antennas at the base station (BS) comprise the extremely spectrum efficient large scale multi‐user multiple input multiple output system (BS). Due to space constraints, the closely spaced numerous antennas at each UE may cause inter a...

Full description

Saved in:
Bibliographic Details
Published inRadio science Vol. 57; no. 12
Main Authors Bagadi, Kalapraveen, Ravikumar, Chinthaginjala V., Alibakhshikenari, Mohammad, Challa, Nagaraj, Rajesh, Anbazhagan, Aïssa, Sonia, Dayoub, Iyad, Falcone, Francisco, Limiti, Ernesto
Format Journal Article
LanguageEnglish
Published Washington Blackwell Publishing Ltd 01.12.2022
American Geophysical Union
Subjects
Online AccessGet full text
ISSN0048-6604
1944-799X
1944-799X
DOI10.1029/2022RS007573

Cover

Abstract Multiple antennas at each user equipment (UE) and/or thousands of antennas at the base station (BS) comprise the extremely spectrum efficient large scale multi‐user multiple input multiple output system (BS). Due to space constraints, the closely spaced numerous antennas at each UE may cause inter antenna interference (IAI). Furthermore, when one UE comes into contact with another UE in the same cellular network, multi‐user interference (MUI) may be introduced to the received signal. To mitigate IAI, efficient precoding pre‐coding is necessary at each UE, and the MUI present at the BS can be canceled by efficient Multi‐user Detection (MUD) techniques. The majority of earlier literature deal with one or more of these interferences. This paper implements a joint pre‐coding and MUD, Lenstra‐Lovasz (LLL) based Lattice Reduction (LR) assisted likelihood accent search (LAS) (LLL‐LR‐LAS), to mitigate IAI and MUI simultaneously LLL‐based LR pre‐coding mitigates IAI at each UE, and the LAS algorithm is a neighborhood search‐based MUD that cancels BS MUI. The proposed approaches' performance was evaluated using Bit Error Rate analysis, and their complexity were determined using multiplication and addition. Key Points An Lenstra‐Lovasz (LLL)‐based Lattice Reduction (LR) aided likelihood accent search (LAS) detector for large‐scale multi‐user multiple input multiple output systems is suggested This work reduces the performance‐complexity gap while also mitigating inter antenna interference and multi‐user interference The suggested LLL‐based LR‐LAS approaches achieve maximum likelihood (ML) performance with a significant complexity gain over ML detector than traditional ones
AbstractList Multiple antennas at each user equipment (UE) and/or thousands of antennas at the base station (BS) comprise the extremely spectrum efficient large scale multi‐user multiple input multiple output system (BS). Due to space constraints, the closely spaced numerous antennas at each UE may cause inter antenna interference (IAI). Furthermore, when one UE comes into contact with another UE in the same cellular network, multi‐user interference (MUI) may be introduced to the received signal. To mitigate IAI, efficient precoding pre‐coding is necessary at each UE, and the MUI present at the BS can be canceled by efficient Multi‐user Detection (MUD) techniques. The majority of earlier literature deal with one or more of these interferences. This paper implements a joint pre‐coding and MUD, Lenstra‐Lovasz (LLL) based Lattice Reduction (LR) assisted likelihood accent search (LAS) (LLL‐LR‐LAS), to mitigate IAI and MUI simultaneously LLL‐based LR pre‐coding mitigates IAI at each UE, and the LAS algorithm is a neighborhood search‐based MUD that cancels BS MUI. The proposed approaches' performance was evaluated using Bit Error Rate analysis, and their complexity were determined using multiplication and addition. An Lenstra‐Lovasz (LLL)‐based Lattice Reduction (LR) aided likelihood accent search (LAS) detector for large‐scale multi‐user multiple input multiple output systems is suggested This work reduces the performance‐complexity gap while also mitigating inter antenna interference and multi‐user interference The suggested LLL‐based LR‐LAS approaches achieve maximum likelihood (ML) performance with a significant complexity gain over ML detector than traditional ones
Multiple antennas at each User Equipment (UE) and/or thousands of antennas at the Base Station comprise the extremely spectrum efficient large scale Multi-User Multiple Input Multiple Output (MU-MIMO) system (BS). Due to space constraints, the closely spaced numerous antennas at each UE may cause Inter Antenna Interference (IAI). Furthermore, when one UE comes into contact with another UE in the same cellular network, Multi-User Interference (MUI) may be introduced to the received signal. To mitigate IAI, efficient precoding pre-coding is necessary at each UE, and the MUI present at the BS can be cancelled by efficient Multi-user Detection (MUD) techniques. The majority of earlier literatures deal with one or more of these interferences. This paper implements a joint pre-coding and MUD, Lenstra-Lovasz (LLL) based Lattice Reduction (LR) assisted Likelihood Accent Search (LAS) (LLL-LR-LAS), to mitigate IAI and MUI simultaneously LLL-based LR pre-coding mitigates IAI at each UE, and the LAS algorithm is a neighbourhood search-based MUD that cancels BS MUI. The proposed approaches' performance was evaluated using Bit Error Rate (BER) analysis, and their complexity were determined using multiplication and addition.
Multiple antennas at each user equipment (UE) and/or thousands of antennas at the base station (BS) comprise the extremely spectrum efficient large scale multi‐user multiple input multiple output system (BS). Due to space constraints, the closely spaced numerous antennas at each UE may cause inter antenna interference (IAI). Furthermore, when one UE comes into contact with another UE in the same cellular network, multi‐user interference (MUI) may be introduced to the received signal. To mitigate IAI, efficient precoding pre‐coding is necessary at each UE, and the MUI present at the BS can be canceled by efficient Multi‐user Detection (MUD) techniques. The majority of earlier literature deal with one or more of these interferences. This paper implements a joint pre‐coding and MUD, Lenstra‐Lovasz (LLL) based Lattice Reduction (LR) assisted likelihood accent search (LAS) (LLL‐LR‐LAS), to mitigate IAI and MUI simultaneously LLL‐based LR pre‐coding mitigates IAI at each UE, and the LAS algorithm is a neighborhood search‐based MUD that cancels BS MUI. The proposed approaches' performance was evaluated using Bit Error Rate analysis, and their complexity were determined using multiplication and addition. Key Points An Lenstra‐Lovasz (LLL)‐based Lattice Reduction (LR) aided likelihood accent search (LAS) detector for large‐scale multi‐user multiple input multiple output systems is suggested This work reduces the performance‐complexity gap while also mitigating inter antenna interference and multi‐user interference The suggested LLL‐based LR‐LAS approaches achieve maximum likelihood (ML) performance with a significant complexity gain over ML detector than traditional ones
Multiple antennas at each user equipment (UE) and/or thousands of antennas at the base station (BS) comprise the extremely spectrum efficient large scale multi‐user multiple input multiple output system (BS). Due to space constraints, the closely spaced numerous antennas at each UE may cause inter antenna interference (IAI). Furthermore, when one UE comes into contact with another UE in the same cellular network, multi‐user interference (MUI) may be introduced to the received signal. To mitigate IAI, efficient precoding pre‐coding is necessary at each UE, and the MUI present at the BS can be canceled by efficient Multi‐user Detection (MUD) techniques. The majority of earlier literature deal with one or more of these interferences. This paper implements a joint pre‐coding and MUD, Lenstra‐Lovasz (LLL) based Lattice Reduction (LR) assisted likelihood accent search (LAS) (LLL‐LR‐LAS), to mitigate IAI and MUI simultaneously LLL‐based LR pre‐coding mitigates IAI at each UE, and the LAS algorithm is a neighborhood search‐based MUD that cancels BS MUI. The proposed approaches' performance was evaluated using Bit Error Rate analysis, and their complexity were determined using multiplication and addition.
Author Alibakhshikenari, Mohammad
Dayoub, Iyad
Bagadi, Kalapraveen
Limiti, Ernesto
Falcone, Francisco
Rajesh, Anbazhagan
Aïssa, Sonia
Challa, Nagaraj
Ravikumar, Chinthaginjala V.
Author_xml – sequence: 1
  givenname: Kalapraveen
  orcidid: 0000-0003-1082-1972
  surname: Bagadi
  fullname: Bagadi, Kalapraveen
  organization: Vellore Institute of Technology (VIT)
– sequence: 2
  givenname: Chinthaginjala V.
  surname: Ravikumar
  fullname: Ravikumar, Chinthaginjala V.
  email: cvrkvit@gmail.com
  organization: Vellore Institute of Technology (VIT)
– sequence: 3
  givenname: Mohammad
  orcidid: 0000-0002-8263-1572
  surname: Alibakhshikenari
  fullname: Alibakhshikenari, Mohammad
  email: mohammad.alibakhshikenari@uc3m.es
  organization: Universidad Carlos III de Madrid
– sequence: 4
  givenname: Nagaraj
  orcidid: 0000-0001-9909-3849
  surname: Challa
  fullname: Challa, Nagaraj
  organization: Bapatla Engineering College
– sequence: 5
  givenname: Anbazhagan
  surname: Rajesh
  fullname: Rajesh, Anbazhagan
  organization: SASTRA University
– sequence: 6
  givenname: Sonia
  surname: Aïssa
  fullname: Aïssa, Sonia
  organization: Institut National de la Recherche Scientifique (INRS)
– sequence: 7
  givenname: Iyad
  surname: Dayoub
  fullname: Dayoub, Iyad
  organization: INSA Hauts de France
– sequence: 8
  givenname: Francisco
  surname: Falcone
  fullname: Falcone, Francisco
  organization: Tecnologico de Monterrey
– sequence: 9
  givenname: Ernesto
  orcidid: 0000-0003-4668-7461
  surname: Limiti
  fullname: Limiti, Ernesto
  organization: University of Rome “Tor Vergata”
BackLink https://hal.science/hal-03890650$$DView record in HAL
BookMark eNp9kc9u1DAQxi1UJLaFGw9giRMSof6XOD6u2kIrZVXUsFJv1tSZ3XVJ48XOUu2NR-AZeRISpVUBIU6fNPrNzDffHJKDLnRIyGvO3nMmzLFgQlzVjOlcy2dkxo1SmTbm-oDMGFNlVhRMvSCHKd0yxlVeqBlxnyK60GBDK4hrpLWDFuli1_b-5_cfy4RxkMXF4pLW-9TjHV0m361p5b9g6zchNHSeHHY9rRGi29BViLT26w5aeoo9ut6H7iV5voI24asHPSLLD2efT86z6vLjxcm8ypzUpcmkY6A1OmiYNggiFzlvTNmAdJwzBCYbAeKmkUKh0gXwlRHc6RvZ5MCd0fKIZNPcXbeF_T20rd1GfwdxbzmzY0J2TCimKaGBfzvxG3giA3h7Pq_sWGOyNKzI2Tc-sG8mdhvD1x2m3t6GXRzOTFbovFSaKTFOFBPlYkgp4so638OYQR_Bt3_YeHzU0PTur6Z_uf4Nf9hx71vc_5e1V6e14NwY-QsDlaLT
CitedBy_id crossref_primary_10_1109_ACCESS_2024_3422182
crossref_primary_10_12720_jait_15_5_672_681
crossref_primary_10_1016_j_asej_2025_103286
crossref_primary_10_1016_j_rineng_2024_103275
crossref_primary_10_1038_s41598_025_92676_4
crossref_primary_10_1155_2023_6430987
crossref_primary_10_1016_j_asej_2024_103136
Cites_doi 10.17485/ijst/2016/v9i30/95994
10.17485/ijst/2016/v9i20/90005
10.1109/9780470547229
10.1109/35.642841
10.1109/lcomm.2015.2391103
10.1109/TWC.2021.3089501
10.1109/3477.752798
10.17485/ijst/2016/v9i20/89851
10.1080/00207217.2012.743085
10.1109/TGCN.2018.2800537
10.1007/s11277-021-08688-6
10.1109/ACCESS.2020.2965290
10.1016/j.phycom.2016.07.001
10.1109/tcom.1971.1090705
10.1109/ACCESS.2022.3211392
10.1049/iet-com.2012.0688
10.1109/ACCESS.2021.3113782
10.1007/s11277-013-1492-2
10.3103/s0735272720050015
10.1049/ecej:20020202
10.1002/dac.2579
ContentType Journal Article
Copyright 2022. The Authors.
2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Attribution
Copyright_xml – notice: 2022. The Authors.
– notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: Attribution
DBID 24P
AAYXX
CITATION
7SP
8FD
H8D
L7M
1XC
VOOES
ADTOC
UNPAY
DOI 10.1029/2022RS007573
DatabaseName Wiley Online Library Open Access
CrossRef
Electronics & Communications Abstracts
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
Hyper Article en Ligne (HAL)
Hyper Article en Ligne (HAL) (Open Access)
Unpaywall for CDI: Periodical Content
Unpaywall
DatabaseTitle CrossRef
Aerospace Database
Technology Research Database
Advanced Technologies Database with Aerospace
Electronics & Communications Abstracts
DatabaseTitleList CrossRef


Aerospace Database
Database_xml – sequence: 1
  dbid: 24P
  name: Wiley Online Library Open Access
  url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html
  sourceTypes: Publisher
– sequence: 2
  dbid: UNPAY
  name: Unpaywall
  url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/
  sourceTypes: Open Access Repository
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Engineering
EISSN 1944-799X
EndPage n/a
ExternalDocumentID 10.1029/2022rs007573
oai:HAL:hal-03890650v1
10_1029_2022RS007573
RDS21199
Genre researchArticle
GrantInformation_xml – fundername: Gobierno de España
  funderid: PID2021‐127409OB‐C31 CONDOR
– fundername: Innovación y Universidades
– fundername: European Union's Horizon 2020
– fundername: Read & Publish
  funderid: CRUE‐CSIC2022
– fundername: Universidad Carlos III de Madrid
– fundername: Marie Sklodowska‐Curie
  funderid: 801538
– fundername: Ministerio de Ciencia
GroupedDBID -~X
05W
0R~
123
186
1OB
1OC
24P
29P
31~
33P
3V.
50Y
6IK
6TJ
8-1
88I
8FE
8FG
8FH
8G5
8R4
8R5
A00
AAESR
AAHHS
AAHQN
AAIHA
AAJGR
AAMNL
AANHP
AANLZ
AASGY
AAXRX
AAYCA
AAZKR
ABAZT
ABCUV
ABDPE
ABJNI
ABTAH
ABUWG
ACAHQ
ACBEA
ACBWZ
ACCFJ
ACCZN
ACGFO
ACGFS
ACGOD
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
AEEZP
AEIGN
AENEX
AEQDE
AEUYN
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFKRA
AFPWT
AFWVQ
AHBTC
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
ALXUD
AMYDB
ARAPS
ASPBG
AVWKF
AZFZN
AZQEC
AZVAB
BDRZF
BEFXN
BENPR
BFFAM
BFHJK
BGLVJ
BGNUA
BHPHI
BKEBE
BKSAR
BMXJE
BPEOZ
BPHCQ
BRXPI
CCPQU
CS3
D1K
DCZOG
DPXWK
DRFUL
DRSTM
DU5
DWQXO
EBS
EJD
FEDTE
G-S
GNUQQ
GODZA
GUQSH
HCIFZ
HGLYW
HVGLF
HZ~
H~9
IPLJI
JAVBF
K6-
LATKE
LEEKS
LITHE
LK5
LOXES
LUTES
LYRES
M2O
M2P
M7R
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
MY~
O9-
OCL
OHT
OK1
P-X
P2P
P2W
P62
PCBAR
PQQKQ
PROAC
Q2X
R.K
RIWAO
RJQFR
ROL
SAMSI
SUPJJ
TN5
UHW
UQL
VOH
WBKPD
WIN
WXSBR
WYJ
XOL
YNT
ZY4
ZZTAW
~02
~OA
~~A
AAMMB
AAYXX
ABVLG
ADMLS
AEFGJ
AEYWJ
AGHNM
AGQPQ
AGXDD
AGYGG
AIDQK
AIDYY
AIQQE
CITATION
LH4
PHGZM
PHGZT
PQGLB
PUEGO
7SP
8FD
H8D
L7M
1XC
VOOES
ADTOC
UNPAY
ID FETCH-LOGICAL-c3789-3c0a77ecad079ea25251d98da3c110ea03d2a2bd324e476a1f921c7b3d5a1c973
IEDL.DBID UNPAY
ISSN 0048-6604
1944-799X
IngestDate Sun Oct 26 02:38:53 EDT 2025
Tue Oct 14 20:43:43 EDT 2025
Thu Aug 07 08:51:36 EDT 2025
Thu Apr 24 23:10:20 EDT 2025
Wed Oct 01 04:45:59 EDT 2025
Wed Jan 22 16:25:35 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 12
Language English
License Attribution
Attribution: http://creativecommons.org/licenses/by
cc-by
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3789-3c0a77ecad079ea25251d98da3c110ea03d2a2bd324e476a1f921c7b3d5a1c973
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-4668-7461
0000-0001-9909-3849
0000-0002-8263-1572
0000-0003-1082-1972
0000-0003-0910-4722
OpenAccessLink https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2022RS007573
PQID 2758470423
PQPubID 54001
PageCount 12
ParticipantIDs unpaywall_primary_10_1029_2022rs007573
hal_primary_oai_HAL_hal_03890650v1
proquest_journals_2758470423
crossref_citationtrail_10_1029_2022RS007573
crossref_primary_10_1029_2022RS007573
wiley_primary_10_1029_2022RS007573_RDS21199
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate December 2022
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: December 2022
PublicationDecade 2020
PublicationPlace Washington
PublicationPlace_xml – name: Washington
PublicationTitle Radio science
PublicationYear 2022
Publisher Blackwell Publishing Ltd
American Geophysical Union
Publisher_xml – name: Blackwell Publishing Ltd
– name: American Geophysical Union
References 2021; 9
2002; 14
2021; 20
2015; 19
2019; 31
2020; 63
2016b; 11
1999; 29
2014; 27
2013; 100
1993
2004; 2
1999; 2
2021; 121
2013; 7
1995; 4
1995; 3
2016a; 9
2020; 8
2018; 9
2018; 2
2001
2017c
2017b
2017a
1971; 19
2020
1997; 35
2016; 20
2019
2022; 10
1998; 1
2016b; 9
2016a; 11
2014; 77
2016; 9
e_1_2_10_23_1
e_1_2_10_21_1
Ravikumar C. V. (e_1_2_10_32_1) 2018; 9
Jayaprabath (e_1_2_10_15_1) 2019
Ravikumar C. V. (e_1_2_10_28_1) 2017
Verdu S. (e_1_2_10_35_1) 1998
Viterbi A. J. (e_1_2_10_36_1) 1995
e_1_2_10_2_1
Erceg V. (e_1_2_10_11_1) 2001
Ravikumar C. V. (e_1_2_10_31_1) 2016; 11
e_1_2_10_4_1
e_1_2_10_18_1
Ravikumar C. V. (e_1_2_10_30_1) 2016; 11
e_1_2_10_3_1
e_1_2_10_19_1
e_1_2_10_6_1
Prasad R. (e_1_2_10_22_1) 2004
e_1_2_10_39_1
e_1_2_10_5_1
Imaudin M. D. (e_1_2_10_14_1) 2020
e_1_2_10_17_1
e_1_2_10_38_1
e_1_2_10_8_1
e_1_2_10_37_1
e_1_2_10_7_1
e_1_2_10_12_1
e_1_2_10_9_1
e_1_2_10_13_1
e_1_2_10_34_1
e_1_2_10_10_1
Miller L. (e_1_2_10_20_1) 1998
e_1_2_10_33_1
Ravi Kumar C. V. (e_1_2_10_29_1) 2019; 31
Jitish (e_1_2_10_16_1) 2020
Ravi Kumar C. V. (e_1_2_10_26_1) 2017
Ravi Kumar C. V. (e_1_2_10_27_1) 2017
Proakis J. G. (e_1_2_10_24_1) 1995
e_1_2_10_25_1
References_xml – volume: 9
  year: 2016a
  article-title: Performance analysis of HSRP in provisioning layer‐3 gateway redundancy for corporate networks
  publication-title: Indian Journalof Science and Technology
– volume: 3
  year: 1995
– volume: 20
  start-page: 93
  year: 2016
  end-page: 108
  article-title: Recent trends in multiuser detection techniques for SDMA–OFDM communication system
  publication-title: Physical Communication
– volume: 2
  year: 1999
– volume: 11
  start-page: 6284
  issue: 9
  year: 2016a
  end-page: 6289
  article-title: Implementing mobile adhoc networks with improved
  publication-title: AODV protocol” International Journal of Applied Engineering and Research
– volume: 121
  start-page: 1627
  issue: 3
  year: 2021
  end-page: 1646
  article-title: Design of large scale MU‐MIMO system with joint precoding and detection schemes for beyond 5G wireless networks
  publication-title: Wireless Personal Communications
– year: 2017c
  article-title: Receiver design using artificial neural network for signal detection in MC‐CDMA system
  publication-title: International Journal of Intelligent Engineering & Systems
– volume: 7
  start-page: 1394
  issue: 13
  year: 2013
  end-page: 1404
  article-title: Efficient complex radial basis function model for multiuser detection in a space division multiple access/multiple input multiple output orthogonal frequency division multiplexing system
  publication-title: IET Communications
– volume: 14
  start-page: 52
  issue: 2
  year: 2002
  end-page: 60
  article-title: Multicarrier CDMA for future generation mobile communication
  publication-title: Electronics & Communication Engineering Journal
– volume: 27
  start-page: 3837
  issue: 12
  year: 2014
  end-page: 3854
  article-title: Minimum symbol error rate multiuser detection using an effective invasive weed optimization for MIMO/SDMA–OFDM system
  publication-title: International Journal of Communication Systems
– year: 2001
  article-title: Channel models for fixed wireless applications 802
  publication-title: Contribution IEEE
– volume: 77
  start-page: 21
  issue: 1
  year: 2014
  end-page: 39
  article-title: Multiuser detection in SDMA–OFDM wireless communication system using complex multilayer perceptron neural network
  publication-title: Wireless Personal Communications
– volume: 2
  start-page: 385
  issue: 2
  year: 2018
  end-page: 396
  article-title: Energy efficiency and asymptotic performance evaluation of beamforming structures in doubly massive MIMO mmWave systems
  publication-title: IEEE Transactions on Green Communications and Networking
– volume: 29
  start-page: 262
  issue: 2
  year: 1999
  end-page: 271
  article-title: Nonlinear channel equalization for QAM signal constellation using artificial neural networks
  publication-title: IEEE Transactions on Systems, Man, and Cybernetics
– volume: 2
  year: 2004
– volume: 31
  start-page: 1263
  issue: 2
  year: 2019
  end-page: 1273
  article-title: Design of multilayer perceptron receiver for MC‐CDMA system to mitigate multiple access interference and non‐linear distortion
  publication-title: Neural Computing & Applications
– volume: 20
  start-page: 8006
  issue: 12
  year: 2021
  end-page: 8022
  article-title: Robust efficient hybrid pre‐coding scheme for mmWave cell‐free and user‐centric massive MIMO communication
  publication-title: IEEE Transactions on Wireless Communications
– volume: 4
  year: 1995
– volume: 19
  start-page: 628
  issue: 5
  year: 1971
  end-page: 634
  article-title: Data transmission by frequency‐division multiplexing using the discrete Fourier transform
  publication-title: IEEE Transactions on Communications
– volume: 100
  start-page: 1332
  issue: 10
  year: 2013
  end-page: 1347
  article-title: Neural network‐based multiuser detection for SDMA–OFDM system over IEEE 802.11 n indoor wireless local area network channel models
  publication-title: International Journal of Electronics
– volume: 63
  start-page: 223
  issue: 5
  year: 2020
  end-page: 234
  article-title: Likelihood ascent search detection for coded massive MU—MIMO systems to mitigate IAI and MUI
  publication-title: Radioelectronics and Communications Systems
– volume: 9
  start-page: 133820
  year: 2021
  end-page: 133834
  article-title: Impact of Circuit Intake Power on the Spectral Energy Efficiency of Massive MIMO With Channel Estimation Errors
  publication-title: IEEE Access
– start-page: 285
  year: 2020
  end-page: 296
– volume: 9
  issue: 30
  year: 2016b
  article-title: Robust neural network based multiuser detector in MC‐CDMA MAI mitigation
  publication-title: Indian Journal of Science and Technology
– volume: 11
  issue: 9
  year: 2016b
  article-title: Improoving Interference alignment of Gaussian MIMO x channel and Gaussian MIMO z channel
  publication-title: International Journal of Applied Engineering Research
– volume: 9
  start-page: 578
  issue: 13
  year: 2018
  end-page: 585
  article-title: Adaptive cruise control and cooperative cruise control in real life traffic situation
  publication-title: International Journal of Mechanical Engineering & Technology
– volume: 8
  start-page: 10491
  year: 2020
  end-page: 10502
  article-title: FDD channel inference methods with experimental performance evaluation
  publication-title: IEEE Access
– volume: 10
  start-page: 105674
  year: 2022
  end-page: 105684
  article-title: Detection of Signals in MC–CDMA using a novel iterative block decision feedback equalizer
  publication-title: IEEE Access
– year: 2020
– year: 2017a
– volume: 1
  year: 1998
– volume: 19
  start-page: 661
  issue: 4
  year: 2015
  end-page: 664
  article-title: Novel frequency‐domain oversampling receiver for CP MC–CDMA systems
  publication-title: IEEE Communications Letters
– year: 2019
– volume: 9
  issue: 20
  year: 2016
  article-title: Performance analysis of ipv4 to ipv6 transition methods
  publication-title: Indian Journal of Science & Technology
– year: 1993
– year: 2017b
  article-title: MCCDMA receiver design using recurrent neural networks for eliminating multiple access interference and nonlinear distortion
  publication-title: International Journal of Communication Systems
– volume: 35
  start-page: 126
  issue: 12
  year: 1997
  end-page: 133
  article-title: Overview of multicarrier CDMA
  publication-title: IEEE Communications Magazine
– ident: e_1_2_10_25_1
  doi: 10.17485/ijst/2016/v9i30/95994
– ident: e_1_2_10_17_1
  doi: 10.17485/ijst/2016/v9i20/90005
– volume: 11
  issue: 9
  year: 2016
  ident: e_1_2_10_31_1
  article-title: Improoving Interference alignment of Gaussian MIMO x channel and Gaussian MIMO z channel
  publication-title: International Journal of Applied Engineering Research
– volume: 11
  start-page: 6284
  issue: 9
  year: 2016
  ident: e_1_2_10_30_1
  article-title: Implementing mobile adhoc networks with improved
  publication-title: AODV protocol” International Journal of Applied Engineering and Research
– ident: e_1_2_10_34_1
  doi: 10.1109/9780470547229
– ident: e_1_2_10_39_1
– year: 2017
  ident: e_1_2_10_27_1
  article-title: MCCDMA receiver design using recurrent neural networks for eliminating multiple access interference and nonlinear distortion
  publication-title: International Journal of Communication Systems
– volume: 9
  start-page: 578
  issue: 13
  year: 2018
  ident: e_1_2_10_32_1
  article-title: Adaptive cruise control and cooperative cruise control in real life traffic situation
  publication-title: International Journal of Mechanical Engineering & Technology
– ident: e_1_2_10_23_1
  doi: 10.1109/35.642841
– volume-title: Performance analysis of interior and exterior routing protocols
  year: 2019
  ident: e_1_2_10_15_1
– ident: e_1_2_10_38_1
  doi: 10.1109/lcomm.2015.2391103
– ident: e_1_2_10_12_1
  doi: 10.1109/TWC.2021.3089501
– volume-title: CDMA systems engineering handbook
  year: 1998
  ident: e_1_2_10_20_1
– ident: e_1_2_10_21_1
  doi: 10.1109/3477.752798
– ident: e_1_2_10_33_1
  doi: 10.17485/ijst/2016/v9i20/89851
– ident: e_1_2_10_2_1
  doi: 10.1080/00207217.2012.743085
– ident: e_1_2_10_8_1
  doi: 10.1109/TGCN.2018.2800537
– volume-title: OFDM for wireless communications systems
  year: 2004
  ident: e_1_2_10_22_1
– volume-title: CDMA: Principles of spread spectrum communication
  year: 1995
  ident: e_1_2_10_36_1
– ident: e_1_2_10_10_1
  doi: 10.1007/s11277-021-08688-6
– ident: e_1_2_10_13_1
  doi: 10.1109/ACCESS.2020.2965290
– volume-title: Designof MC‐CDMA receiver using radial basisfunction network to mitigate multiple access interference and nonlinear distortion
  year: 2017
  ident: e_1_2_10_26_1
– ident: e_1_2_10_4_1
  doi: 10.1016/j.phycom.2016.07.001
– volume-title: Digital communications
  year: 1995
  ident: e_1_2_10_24_1
– ident: e_1_2_10_37_1
  doi: 10.1109/tcom.1971.1090705
– ident: e_1_2_10_7_1
  doi: 10.1109/ACCESS.2022.3211392
– ident: e_1_2_10_5_1
  doi: 10.1049/iet-com.2012.0688
– ident: e_1_2_10_18_1
  doi: 10.1109/ACCESS.2021.3113782
– year: 2001
  ident: e_1_2_10_11_1
  article-title: Channel models for fixed wireless applications 802
  publication-title: Contribution IEEE
– volume-title: Signal detection in MC‐CDMA system using ELM receiver to mitigate MAI and non‐linear distortion
  year: 2020
  ident: e_1_2_10_14_1
– volume: 31
  start-page: 1263
  issue: 2
  year: 2019
  ident: e_1_2_10_29_1
  article-title: Design of multilayer perceptron receiver for MC‐CDMA system to mitigate multiple access interference and non‐linear distortion
  publication-title: Neural Computing & Applications
– ident: e_1_2_10_3_1
  doi: 10.1007/s11277-013-1492-2
– ident: e_1_2_10_9_1
  doi: 10.3103/s0735272720050015
– year: 2017
  ident: e_1_2_10_28_1
  article-title: Receiver design using artificial neural network for signal detection in MC‐CDMA system
  publication-title: International Journal of Intelligent Engineering & Systems
– volume-title: Multiuser detection
  year: 1998
  ident: e_1_2_10_35_1
– start-page: 285
  volume-title: LPWAN technologies for IoTdeployment.11
  year: 2020
  ident: e_1_2_10_16_1
– ident: e_1_2_10_19_1
  doi: 10.1049/ecej:20020202
– ident: e_1_2_10_6_1
  doi: 10.1002/dac.2579
SSID ssj0014564
Score 2.4524307
Snippet Multiple antennas at each user equipment (UE) and/or thousands of antennas at the base station (BS) comprise the extremely spectrum efficient large scale...
Multiple antennas at each User Equipment (UE) and/or thousands of antennas at the Base Station comprise the extremely spectrum efficient large scale Multi-User...
SourceID unpaywall
hal
proquest
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Algorithms
Antennas
Bit error rate
Cellular communication
Coding
Engineering Sciences
inter antenna interference (IAI)
Interference
Mud
Multiplication
multi‐user detection (MUD)
multi‐user interference (MUI)
Searching
Signal and Image processing
Signal detection
SummonAdditionalLinks – databaseName: Wiley Online Library Open Access
  dbid: 24P
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1bS8MwFMcPXh7UB_GK9UYQ9UWKa3rJ8ji8MGVTcQ58K2ma6XBU2abimx_Bz-gn8Zy0KxNU8Kk0nJCSkzT_JCe_AOzKqGPRUi6K5Y4bCCNcZan7QRKhoItwUKMDzs2LqN4Ozm_D22LBjc7C5HyIcsGNeob9X1MHV8mggA0QIxNn7fy6RUOe8Cdh2kMpQy2cB1flLgKhUvId5qobRZWgCHzH_Ifjub8NSZP3FBA5pjZnnrMn9faqer3v-tUOQKcLMF8oR1bLXb0IEyZbgrkxnuASOE2UwI99u1LO9tlRr4t61L4tg76iuW9qUtag4G_WQucYZs_ffr5_tLEl4qN51rxkOcSc2WAC1ug-YD0R-5jVLPiJ5QHKDMUua3Xv6JOOzdAGdGUr0D49uTmqu8UNC672RVW6vq4oIYxWaUVIo3iIaieV1VT5GmWBURU_5YonKaouE4hIeR3JPS0SPw2Vp6XwV2Eqe8zMGrBQh5HPTUhQL5x0SakSgiCjnVBJoEMHDkaVHOsCP063YPRiuw3OZTzuEgf2SuunHLvxi90O-qs0IVZ2vdaIKY3IgaQ_XzwHNkfujIseOoi5oA1iigpyYL908Y-F9Qejwg6s___8ovj6uEXUPLn-L-sNmKX0PFBmE6aG_WezhXJnmGzbNv0FQMjy4g
  priority: 102
  providerName: Wiley-Blackwell
Title Precoded Large Scale Multi‐User‐MIMO System Using Likelihood Ascent Search for Signal Detection
URI https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022RS007573
https://www.proquest.com/docview/2758470423
https://hal.science/hal-03890650
https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2022RS007573
UnpaywallVersion publishedVersion
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
journalDatabaseRights – providerCode: PRVEBS
  databaseName: Inspec with Full Text
  customDbUrl:
  eissn: 1944-799X
  dateEnd: 20241103
  omitProxy: false
  ssIdentifier: ssj0014564
  issn: 0048-6604
  databaseCode: ADMLS
  dateStart: 19681101
  isFulltext: true
  titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text
  providerName: EBSCOhost
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFL2i7QPwwGAwERiVhWAvKFObL9eP0cpUUDOqhUrlKXIcF6pVWdW1m-CJn7DfuF-ye-2k6hAgJJ4iR9eJnVz7HtvHxwBvRDQ10lIuguWpG3DNXWlU94M8QkAXYVCjDc7JSTQYBx8n4WRrL4zVh9hMuFHLMP01NfBFMbX9fCU5IGjk7p2mFPa434BWFCIeb0JrfDKKv9il5Z4bRR27tBwELhdiUrHf6-zLC5v9TlxqfCNW5BbkvL8uF_L7lZzP74JYE4WOd0DV5bfkk7PD9So_VD9-kXb8vwo-hkcVSGWx9aoncE-Xu_BwS7pwF5wE0fb50kzKswN2NJ8h9DWpp6BGNMwudMGGxDNnKfqBZmar783P6zE6PV6SD8knZvXSmeEtsOHsDEtMMsssNhpTzHKhGeJqls6-UpH6emW4Y-UzGB-__3w0cKvDHFzl855wfdWRnGsliw4XWnohAqtC9ArpK0QgWnb8wpNeXiDA0wGPZHcqvK7iuV-EsqsE9_egWZ6X-jmwUIWR7-mQ9MNwfCeEzElvGe24zAMVOvCu_pWZqpTO6cCNeWZW3D2RbX9WB95urBdW4eMPdq_RKzYmJMs9iIcZ3SORQoK6l10H9munyarO4CLzOK1FEwHJgYONI_32ZbU3YhWMa_y1RNlpPyWBPvHiXx_7Eh5Q0tJx9qG5Wq71KwRVq7wNDS8YtaEV95Nh2q7a0C1QoBq8
linkProvider Unpaywall
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1BT9swFMefBjuwHSYGTMvWgYUGFxTROIldH6sCKiNhiFKJW-Q47qioAioFtNs-wj7jPsnec9KoSAxppyjRs2z52fHf9vPPAF-VGDm0lI9ieeRH0kpfO-p-lAsUdAIHNTrgnJ6K_jD6dhlf1vec0lmYig_RLLhRz3D_a-rgtCBd0wYIkonTdn4-oDFPhkvwOhKBoNkXj86abQRipVRbzB1fiHZUR75j-v3F1E_GpKUriohckJsr9-Wt_vmoJ5OnAtaNQEer8K6Wjqxb-fo9vLLlGrxdAAqugZeiBr6ZuqVytst6kzEKUve2DuaMJr-FLVhC0d9sgN6xzB3A_fPr9xCbIj7S4_Q7qyjmzEUTsGR8jRVF8GPWdeQnVkUoM1S7bDD-QUU6sDMX0VVuwPDo8KLX9-srFnwTyo7yQ9PWUlqji7ZUVvMY5U6hOoUODeoCq9thwTXPC5RdNpJCByPFAyPzsIh1YJQMP8ByeVPaj8BiE4uQ25ioXjjrUkrnREFGO6nzyMQe7M0rOTM1f5yuwZhkbh-cq2zRJR7sNNa3FXfjH3bb6K_GhGDZ_W6S0TdCB5IAfQg8aM3dmdVd9C7jknaIKSzIg93Gxc9mNr2bZ7bn_P9iibLzgwFh89Sn_7LegpX-RZpkyfHpyWd4QzZV1EwLlmfTe_sFtc8s33Tt-y9qc_ZO
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1Lb9NAEMdHNEg8DggKqIYAKwS5VFYdvzZ7jBKiBJIQNUTqzVrvbmhE5ER5tOLWj9DP2E_SmbVjJRIgcbJsjWVrx-v5787sbwE-iXhq0VIuiuWpG3LDXWmp-2Eao6CLMajRAufBMO5Owq8X0UWxzymthcn5EOWEG_UM-7-mDm6WelrQBgiSicN2_3xMMY8HR_AwjDAYEto5HJVpBGKl5CnmhhvHXlhUvuP9Z_t3H8Sko0uqiNyTm4-32VL-vpbz-aGAtRGo8xyeFdKRNXNfv4AHJjuGp3tAwWNwBqiBFys7Vc5qrDWfoSC1Zy9BjWjwq41mfar-ZmP0jmF2Ae7dze0EP0U8DHqD7yynmDNbTcD6s1_YUAQ_Zk1LfmJ5hTJDtcvGs5_0Sm2zsRVd2SuYdL78aHXdYosFVwW8IdxAeZJzo6T2uDDSj1DuaNHQMlCoC4z0Au1LP9Uou0zIY1mfCr-ueBroSNaV4MFrqGSLzJwAi1QUB76JiOqFoy4hZEoUZLTjMg1V5MDprpETVfDHaRuMeWLz4L5I9l3iwOfSeplzN_5i9xH9VZoQLLvb7Cd0jdCBJECv6g5Ud-5Mii66TnxOGWIqC3KgVrr4jw9brXcPO7X-_-cbJeftMWHzxJv_sv4Aj0btTtLvDb-9hSdkkhfNVKGyWW3NO5Q-m_S9_bzvAS8X9d0
linkToUnpaywall http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dT9swFL0a5WHjYRts0wJsstDGyxTU5sOuHysYKlMLiK5S9xQ5trtVVKEq7RA88RP4jfslu9dOqjKNaRJPkaPrxE6ufY_t42OAD5IPnbRUiGB5GCbCilA51f0k5wjoOAY12uDcPebtfvJlkA6W9sJ4fYjFhBu1DNdfUwOfmKHv50vJAUkj9-isR2FPxCuwylPE4zVY7R-ftr75peVmyHndLy0nSSikHJTs9yr79NJnvxeXVn4QK3IJcj6dFxN1faXG4_sg1kWhwxegq_J78sn53nyW7-mbP6QdH1fBl_C8BKms5b1qHZ7YYgPWlqQLNyDoItq-mLpJebbL9scjhL4u9Qr0KQ2zjTWsQzxz1kM_sMxt9f11e9dHp8dL96h7wrxeOnO8BdYZnWOJSWaZtZzGFPNcaIa4mvVG36lIB3bmuGPFa-gffv663w7LwxxCHYumDGNdV0JYrUxdSKuiFIGVkU2jYo0IxKp6bCIV5QYBnk0EV42hjBpa5LFJVUNLEb-BWnFR2LfAUp3yOLIp6Yfh-E5KlZPeMtoJlSc6DeBT9SszXSqd04Eb48ytuEcyW_6sAXxcWE-8wscDdjvoFQsTkuVutzoZ3SORQoK6PxsBbFdOk5WdwWUWCVqLJgJSALsLR_rryypvxCo41_hnibKzgx4J9MnN_33sFjyjpKfjbENtNp3bdwiqZvn7stX8BvJhGFE
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Precoded+Large+Scale+Multi%E2%80%90User%E2%80%90MIMO+System+Using+Likelihood+Ascent+Search+for+Signal+Detection&rft.jtitle=Radio+science&rft.au=Bagadi%2C+Kalapraveen&rft.au=Ravikumar%2C+Chinthaginjala+V&rft.au=Alibakhshikenari%2C+Mohammad&rft.au=Challa%2C+Nagaraj&rft.date=2022-12-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0048-6604&rft.eissn=1944-799X&rft.volume=57&rft.issue=12&rft_id=info:doi/10.1029%2F2022RS007573&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-6604&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-6604&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-6604&client=summon