Precoded Large Scale Multi‐User‐MIMO System Using Likelihood Ascent Search for Signal Detection
Multiple antennas at each user equipment (UE) and/or thousands of antennas at the base station (BS) comprise the extremely spectrum efficient large scale multi‐user multiple input multiple output system (BS). Due to space constraints, the closely spaced numerous antennas at each UE may cause inter a...
        Saved in:
      
    
          | Published in | Radio science Vol. 57; no. 12 | 
|---|---|
| Main Authors | , , , , , , , , | 
| Format | Journal Article | 
| Language | English | 
| Published | 
        Washington
          Blackwell Publishing Ltd
    
        01.12.2022
     American Geophysical Union  | 
| Subjects | |
| Online Access | Get full text | 
| ISSN | 0048-6604 1944-799X 1944-799X  | 
| DOI | 10.1029/2022RS007573 | 
Cover
| Abstract | Multiple antennas at each user equipment (UE) and/or thousands of antennas at the base station (BS) comprise the extremely spectrum efficient large scale multi‐user multiple input multiple output system (BS). Due to space constraints, the closely spaced numerous antennas at each UE may cause inter antenna interference (IAI). Furthermore, when one UE comes into contact with another UE in the same cellular network, multi‐user interference (MUI) may be introduced to the received signal. To mitigate IAI, efficient precoding pre‐coding is necessary at each UE, and the MUI present at the BS can be canceled by efficient Multi‐user Detection (MUD) techniques. The majority of earlier literature deal with one or more of these interferences. This paper implements a joint pre‐coding and MUD, Lenstra‐Lovasz (LLL) based Lattice Reduction (LR) assisted likelihood accent search (LAS) (LLL‐LR‐LAS), to mitigate IAI and MUI simultaneously LLL‐based LR pre‐coding mitigates IAI at each UE, and the LAS algorithm is a neighborhood search‐based MUD that cancels BS MUI. The proposed approaches' performance was evaluated using Bit Error Rate analysis, and their complexity were determined using multiplication and addition.
Key Points
An Lenstra‐Lovasz (LLL)‐based Lattice Reduction (LR) aided likelihood accent search (LAS) detector for large‐scale multi‐user multiple input multiple output systems is suggested
This work reduces the performance‐complexity gap while also mitigating inter antenna interference and multi‐user interference
The suggested LLL‐based LR‐LAS approaches achieve maximum likelihood (ML) performance with a significant complexity gain over ML detector than traditional ones | 
    
|---|---|
| AbstractList | Multiple antennas at each user equipment (UE) and/or thousands of antennas at the base station (BS) comprise the extremely spectrum efficient large scale multi‐user multiple input multiple output system (BS). Due to space constraints, the closely spaced numerous antennas at each UE may cause inter antenna interference (IAI). Furthermore, when one UE comes into contact with another UE in the same cellular network, multi‐user interference (MUI) may be introduced to the received signal. To mitigate IAI, efficient precoding pre‐coding is necessary at each UE, and the MUI present at the BS can be canceled by efficient Multi‐user Detection (MUD) techniques. The majority of earlier literature deal with one or more of these interferences. This paper implements a joint pre‐coding and MUD, Lenstra‐Lovasz (LLL) based Lattice Reduction (LR) assisted likelihood accent search (LAS) (LLL‐LR‐LAS), to mitigate IAI and MUI simultaneously LLL‐based LR pre‐coding mitigates IAI at each UE, and the LAS algorithm is a neighborhood search‐based MUD that cancels BS MUI. The proposed approaches' performance was evaluated using Bit Error Rate analysis, and their complexity were determined using multiplication and addition.
An Lenstra‐Lovasz (LLL)‐based Lattice Reduction (LR) aided likelihood accent search (LAS) detector for large‐scale multi‐user multiple input multiple output systems is suggested
This work reduces the performance‐complexity gap while also mitigating inter antenna interference and multi‐user interference
The suggested LLL‐based LR‐LAS approaches achieve maximum likelihood (ML) performance with a significant complexity gain over ML detector than traditional ones Multiple antennas at each User Equipment (UE) and/or thousands of antennas at the Base Station comprise the extremely spectrum efficient large scale Multi-User Multiple Input Multiple Output (MU-MIMO) system (BS). Due to space constraints, the closely spaced numerous antennas at each UE may cause Inter Antenna Interference (IAI). Furthermore, when one UE comes into contact with another UE in the same cellular network, Multi-User Interference (MUI) may be introduced to the received signal. To mitigate IAI, efficient precoding pre-coding is necessary at each UE, and the MUI present at the BS can be cancelled by efficient Multi-user Detection (MUD) techniques. The majority of earlier literatures deal with one or more of these interferences. This paper implements a joint pre-coding and MUD, Lenstra-Lovasz (LLL) based Lattice Reduction (LR) assisted Likelihood Accent Search (LAS) (LLL-LR-LAS), to mitigate IAI and MUI simultaneously LLL-based LR pre-coding mitigates IAI at each UE, and the LAS algorithm is a neighbourhood search-based MUD that cancels BS MUI. The proposed approaches' performance was evaluated using Bit Error Rate (BER) analysis, and their complexity were determined using multiplication and addition. Multiple antennas at each user equipment (UE) and/or thousands of antennas at the base station (BS) comprise the extremely spectrum efficient large scale multi‐user multiple input multiple output system (BS). Due to space constraints, the closely spaced numerous antennas at each UE may cause inter antenna interference (IAI). Furthermore, when one UE comes into contact with another UE in the same cellular network, multi‐user interference (MUI) may be introduced to the received signal. To mitigate IAI, efficient precoding pre‐coding is necessary at each UE, and the MUI present at the BS can be canceled by efficient Multi‐user Detection (MUD) techniques. The majority of earlier literature deal with one or more of these interferences. This paper implements a joint pre‐coding and MUD, Lenstra‐Lovasz (LLL) based Lattice Reduction (LR) assisted likelihood accent search (LAS) (LLL‐LR‐LAS), to mitigate IAI and MUI simultaneously LLL‐based LR pre‐coding mitigates IAI at each UE, and the LAS algorithm is a neighborhood search‐based MUD that cancels BS MUI. The proposed approaches' performance was evaluated using Bit Error Rate analysis, and their complexity were determined using multiplication and addition. Key Points An Lenstra‐Lovasz (LLL)‐based Lattice Reduction (LR) aided likelihood accent search (LAS) detector for large‐scale multi‐user multiple input multiple output systems is suggested This work reduces the performance‐complexity gap while also mitigating inter antenna interference and multi‐user interference The suggested LLL‐based LR‐LAS approaches achieve maximum likelihood (ML) performance with a significant complexity gain over ML detector than traditional ones Multiple antennas at each user equipment (UE) and/or thousands of antennas at the base station (BS) comprise the extremely spectrum efficient large scale multi‐user multiple input multiple output system (BS). Due to space constraints, the closely spaced numerous antennas at each UE may cause inter antenna interference (IAI). Furthermore, when one UE comes into contact with another UE in the same cellular network, multi‐user interference (MUI) may be introduced to the received signal. To mitigate IAI, efficient precoding pre‐coding is necessary at each UE, and the MUI present at the BS can be canceled by efficient Multi‐user Detection (MUD) techniques. The majority of earlier literature deal with one or more of these interferences. This paper implements a joint pre‐coding and MUD, Lenstra‐Lovasz (LLL) based Lattice Reduction (LR) assisted likelihood accent search (LAS) (LLL‐LR‐LAS), to mitigate IAI and MUI simultaneously LLL‐based LR pre‐coding mitigates IAI at each UE, and the LAS algorithm is a neighborhood search‐based MUD that cancels BS MUI. The proposed approaches' performance was evaluated using Bit Error Rate analysis, and their complexity were determined using multiplication and addition.  | 
    
| Author | Alibakhshikenari, Mohammad Dayoub, Iyad Bagadi, Kalapraveen Limiti, Ernesto Falcone, Francisco Rajesh, Anbazhagan Aïssa, Sonia Challa, Nagaraj Ravikumar, Chinthaginjala V.  | 
    
| Author_xml | – sequence: 1 givenname: Kalapraveen orcidid: 0000-0003-1082-1972 surname: Bagadi fullname: Bagadi, Kalapraveen organization: Vellore Institute of Technology (VIT) – sequence: 2 givenname: Chinthaginjala V. surname: Ravikumar fullname: Ravikumar, Chinthaginjala V. email: cvrkvit@gmail.com organization: Vellore Institute of Technology (VIT) – sequence: 3 givenname: Mohammad orcidid: 0000-0002-8263-1572 surname: Alibakhshikenari fullname: Alibakhshikenari, Mohammad email: mohammad.alibakhshikenari@uc3m.es organization: Universidad Carlos III de Madrid – sequence: 4 givenname: Nagaraj orcidid: 0000-0001-9909-3849 surname: Challa fullname: Challa, Nagaraj organization: Bapatla Engineering College – sequence: 5 givenname: Anbazhagan surname: Rajesh fullname: Rajesh, Anbazhagan organization: SASTRA University – sequence: 6 givenname: Sonia surname: Aïssa fullname: Aïssa, Sonia organization: Institut National de la Recherche Scientifique (INRS) – sequence: 7 givenname: Iyad surname: Dayoub fullname: Dayoub, Iyad organization: INSA Hauts de France – sequence: 8 givenname: Francisco surname: Falcone fullname: Falcone, Francisco organization: Tecnologico de Monterrey – sequence: 9 givenname: Ernesto orcidid: 0000-0003-4668-7461 surname: Limiti fullname: Limiti, Ernesto organization: University of Rome “Tor Vergata”  | 
    
| BackLink | https://hal.science/hal-03890650$$DView record in HAL | 
    
| BookMark | eNp9kc9u1DAQxi1UJLaFGw9giRMSof6XOD6u2kIrZVXUsFJv1tSZ3XVJ48XOUu2NR-AZeRISpVUBIU6fNPrNzDffHJKDLnRIyGvO3nMmzLFgQlzVjOlcy2dkxo1SmTbm-oDMGFNlVhRMvSCHKd0yxlVeqBlxnyK60GBDK4hrpLWDFuli1_b-5_cfy4RxkMXF4pLW-9TjHV0m361p5b9g6zchNHSeHHY9rRGi29BViLT26w5aeoo9ut6H7iV5voI24asHPSLLD2efT86z6vLjxcm8ypzUpcmkY6A1OmiYNggiFzlvTNmAdJwzBCYbAeKmkUKh0gXwlRHc6RvZ5MCd0fKIZNPcXbeF_T20rd1GfwdxbzmzY0J2TCimKaGBfzvxG3giA3h7Pq_sWGOyNKzI2Tc-sG8mdhvD1x2m3t6GXRzOTFbovFSaKTFOFBPlYkgp4so638OYQR_Bt3_YeHzU0PTur6Z_uf4Nf9hx71vc_5e1V6e14NwY-QsDlaLT | 
    
| CitedBy_id | crossref_primary_10_1109_ACCESS_2024_3422182 crossref_primary_10_12720_jait_15_5_672_681 crossref_primary_10_1016_j_asej_2025_103286 crossref_primary_10_1016_j_rineng_2024_103275 crossref_primary_10_1038_s41598_025_92676_4 crossref_primary_10_1155_2023_6430987 crossref_primary_10_1016_j_asej_2024_103136  | 
    
| Cites_doi | 10.17485/ijst/2016/v9i30/95994 10.17485/ijst/2016/v9i20/90005 10.1109/9780470547229 10.1109/35.642841 10.1109/lcomm.2015.2391103 10.1109/TWC.2021.3089501 10.1109/3477.752798 10.17485/ijst/2016/v9i20/89851 10.1080/00207217.2012.743085 10.1109/TGCN.2018.2800537 10.1007/s11277-021-08688-6 10.1109/ACCESS.2020.2965290 10.1016/j.phycom.2016.07.001 10.1109/tcom.1971.1090705 10.1109/ACCESS.2022.3211392 10.1049/iet-com.2012.0688 10.1109/ACCESS.2021.3113782 10.1007/s11277-013-1492-2 10.3103/s0735272720050015 10.1049/ecej:20020202 10.1002/dac.2579  | 
    
| ContentType | Journal Article | 
    
| Copyright | 2022. The Authors. 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. Attribution  | 
    
| Copyright_xml | – notice: 2022. The Authors. – notice: 2022. This article is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. – notice: Attribution  | 
    
| DBID | 24P AAYXX CITATION 7SP 8FD H8D L7M 1XC VOOES ADTOC UNPAY  | 
    
| DOI | 10.1029/2022RS007573 | 
    
| DatabaseName | Wiley Online Library Open Access CrossRef Electronics & Communications Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace Hyper Article en Ligne (HAL) Hyper Article en Ligne (HAL) (Open Access) Unpaywall for CDI: Periodical Content Unpaywall  | 
    
| DatabaseTitle | CrossRef Aerospace Database Technology Research Database Advanced Technologies Database with Aerospace Electronics & Communications Abstracts  | 
    
| DatabaseTitleList | CrossRef Aerospace Database  | 
    
| Database_xml | – sequence: 1 dbid: 24P name: Wiley Online Library Open Access url: https://authorservices.wiley.com/open-science/open-access/browse-journals.html sourceTypes: Publisher – sequence: 2 dbid: UNPAY name: Unpaywall url: https://proxy.k.utb.cz/login?url=https://unpaywall.org/ sourceTypes: Open Access Repository  | 
    
| DeliveryMethod | fulltext_linktorsrc | 
    
| Discipline | Meteorology & Climatology Engineering  | 
    
| EISSN | 1944-799X | 
    
| EndPage | n/a | 
    
| ExternalDocumentID | 10.1029/2022rs007573 oai:HAL:hal-03890650v1 10_1029_2022RS007573 RDS21199  | 
    
| Genre | researchArticle | 
    
| GrantInformation_xml | – fundername: Gobierno de España funderid: PID2021‐127409OB‐C31 CONDOR – fundername: Innovación y Universidades – fundername: European Union's Horizon 2020 – fundername: Read & Publish funderid: CRUE‐CSIC2022 – fundername: Universidad Carlos III de Madrid – fundername: Marie Sklodowska‐Curie funderid: 801538 – fundername: Ministerio de Ciencia  | 
    
| GroupedDBID | -~X 05W 0R~ 123 186 1OB 1OC 24P 29P 31~ 33P 3V. 50Y 6IK 6TJ 8-1 88I 8FE 8FG 8FH 8G5 8R4 8R5 A00 AAESR AAHHS AAHQN AAIHA AAJGR AAMNL AANHP AANLZ AASGY AAXRX AAYCA AAZKR ABAZT ABCUV ABDPE ABJNI ABTAH ABUWG ACAHQ ACBEA ACBWZ ACCFJ ACCZN ACGFO ACGFS ACGOD ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN AEEZP AEIGN AENEX AEQDE AEUYN AEUYR AFBPY AFFNX AFFPM AFGKR AFKRA AFPWT AFWVQ AHBTC AITYG AIURR AIWBW AJBDE ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ ALXUD AMYDB ARAPS ASPBG AVWKF AZFZN AZQEC AZVAB BDRZF BEFXN BENPR BFFAM BFHJK BGLVJ BGNUA BHPHI BKEBE BKSAR BMXJE BPEOZ BPHCQ BRXPI CCPQU CS3 D1K DCZOG DPXWK DRFUL DRSTM DU5 DWQXO EBS EJD FEDTE G-S GNUQQ GODZA GUQSH HCIFZ HGLYW HVGLF HZ~ H~9 IPLJI JAVBF K6- LATKE LEEKS LITHE LK5 LOXES LUTES LYRES M2O M2P M7R MEWTI MSFUL MSSTM MXFUL MXSTM MY~ O9- OCL OHT OK1 P-X P2P P2W P62 PCBAR PQQKQ PROAC Q2X R.K RIWAO RJQFR ROL SAMSI SUPJJ TN5 UHW UQL VOH WBKPD WIN WXSBR WYJ XOL YNT ZY4 ZZTAW ~02 ~OA ~~A AAMMB AAYXX ABVLG ADMLS AEFGJ AEYWJ AGHNM AGQPQ AGXDD AGYGG AIDQK AIDYY AIQQE CITATION LH4 PHGZM PHGZT PQGLB PUEGO 7SP 8FD H8D L7M 1XC VOOES ADTOC UNPAY  | 
    
| ID | FETCH-LOGICAL-c3789-3c0a77ecad079ea25251d98da3c110ea03d2a2bd324e476a1f921c7b3d5a1c973 | 
    
| IEDL.DBID | UNPAY | 
    
| ISSN | 0048-6604 1944-799X  | 
    
| IngestDate | Sun Oct 26 02:38:53 EDT 2025 Tue Oct 14 20:43:43 EDT 2025 Thu Aug 07 08:51:36 EDT 2025 Thu Apr 24 23:10:20 EDT 2025 Wed Oct 01 04:45:59 EDT 2025 Wed Jan 22 16:25:35 EST 2025  | 
    
| IsDoiOpenAccess | true | 
    
| IsOpenAccess | true | 
    
| IsPeerReviewed | true | 
    
| IsScholarly | true | 
    
| Issue | 12 | 
    
| Language | English | 
    
| License | Attribution Attribution: http://creativecommons.org/licenses/by cc-by  | 
    
| LinkModel | DirectLink | 
    
| MergedId | FETCHMERGED-LOGICAL-c3789-3c0a77ecad079ea25251d98da3c110ea03d2a2bd324e476a1f921c7b3d5a1c973 | 
    
| Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14  | 
    
| ORCID | 0000-0003-4668-7461 0000-0001-9909-3849 0000-0002-8263-1572 0000-0003-1082-1972 0000-0003-0910-4722  | 
    
| OpenAccessLink | https://proxy.k.utb.cz/login?url=https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2022RS007573 | 
    
| PQID | 2758470423 | 
    
| PQPubID | 54001 | 
    
| PageCount | 12 | 
    
| ParticipantIDs | unpaywall_primary_10_1029_2022rs007573 hal_primary_oai_HAL_hal_03890650v1 proquest_journals_2758470423 crossref_citationtrail_10_1029_2022RS007573 crossref_primary_10_1029_2022RS007573 wiley_primary_10_1029_2022RS007573_RDS21199  | 
    
| ProviderPackageCode | CITATION AAYXX  | 
    
| PublicationCentury | 2000 | 
    
| PublicationDate | December 2022 | 
    
| PublicationDateYYYYMMDD | 2022-12-01 | 
    
| PublicationDate_xml | – month: 12 year: 2022 text: December 2022  | 
    
| PublicationDecade | 2020 | 
    
| PublicationPlace | Washington | 
    
| PublicationPlace_xml | – name: Washington | 
    
| PublicationTitle | Radio science | 
    
| PublicationYear | 2022 | 
    
| Publisher | Blackwell Publishing Ltd American Geophysical Union  | 
    
| Publisher_xml | – name: Blackwell Publishing Ltd – name: American Geophysical Union  | 
    
| References | 2021; 9 2002; 14 2021; 20 2015; 19 2019; 31 2020; 63 2016b; 11 1999; 29 2014; 27 2013; 100 1993 2004; 2 1999; 2 2021; 121 2013; 7 1995; 4 1995; 3 2016a; 9 2020; 8 2018; 9 2018; 2 2001 2017c 2017b 2017a 1971; 19 2020 1997; 35 2016; 20 2019 2022; 10 1998; 1 2016b; 9 2016a; 11 2014; 77 2016; 9 e_1_2_10_23_1 e_1_2_10_21_1 Ravikumar C. V. (e_1_2_10_32_1) 2018; 9 Jayaprabath (e_1_2_10_15_1) 2019 Ravikumar C. V. (e_1_2_10_28_1) 2017 Verdu S. (e_1_2_10_35_1) 1998 Viterbi A. J. (e_1_2_10_36_1) 1995 e_1_2_10_2_1 Erceg V. (e_1_2_10_11_1) 2001 Ravikumar C. V. (e_1_2_10_31_1) 2016; 11 e_1_2_10_4_1 e_1_2_10_18_1 Ravikumar C. V. (e_1_2_10_30_1) 2016; 11 e_1_2_10_3_1 e_1_2_10_19_1 e_1_2_10_6_1 Prasad R. (e_1_2_10_22_1) 2004 e_1_2_10_39_1 e_1_2_10_5_1 Imaudin M. D. (e_1_2_10_14_1) 2020 e_1_2_10_17_1 e_1_2_10_38_1 e_1_2_10_8_1 e_1_2_10_37_1 e_1_2_10_7_1 e_1_2_10_12_1 e_1_2_10_9_1 e_1_2_10_13_1 e_1_2_10_34_1 e_1_2_10_10_1 Miller L. (e_1_2_10_20_1) 1998 e_1_2_10_33_1 Ravi Kumar C. V. (e_1_2_10_29_1) 2019; 31 Jitish (e_1_2_10_16_1) 2020 Ravi Kumar C. V. (e_1_2_10_26_1) 2017 Ravi Kumar C. V. (e_1_2_10_27_1) 2017 Proakis J. G. (e_1_2_10_24_1) 1995 e_1_2_10_25_1  | 
    
| References_xml | – volume: 9 year: 2016a article-title: Performance analysis of HSRP in provisioning layer‐3 gateway redundancy for corporate networks publication-title: Indian Journalof Science and Technology – volume: 3 year: 1995 – volume: 20 start-page: 93 year: 2016 end-page: 108 article-title: Recent trends in multiuser detection techniques for SDMA–OFDM communication system publication-title: Physical Communication – volume: 2 year: 1999 – volume: 11 start-page: 6284 issue: 9 year: 2016a end-page: 6289 article-title: Implementing mobile adhoc networks with improved publication-title: AODV protocol” International Journal of Applied Engineering and Research – volume: 121 start-page: 1627 issue: 3 year: 2021 end-page: 1646 article-title: Design of large scale MU‐MIMO system with joint precoding and detection schemes for beyond 5G wireless networks publication-title: Wireless Personal Communications – year: 2017c article-title: Receiver design using artificial neural network for signal detection in MC‐CDMA system publication-title: International Journal of Intelligent Engineering & Systems – volume: 7 start-page: 1394 issue: 13 year: 2013 end-page: 1404 article-title: Efficient complex radial basis function model for multiuser detection in a space division multiple access/multiple input multiple output orthogonal frequency division multiplexing system publication-title: IET Communications – volume: 14 start-page: 52 issue: 2 year: 2002 end-page: 60 article-title: Multicarrier CDMA for future generation mobile communication publication-title: Electronics & Communication Engineering Journal – volume: 27 start-page: 3837 issue: 12 year: 2014 end-page: 3854 article-title: Minimum symbol error rate multiuser detection using an effective invasive weed optimization for MIMO/SDMA–OFDM system publication-title: International Journal of Communication Systems – year: 2001 article-title: Channel models for fixed wireless applications 802 publication-title: Contribution IEEE – volume: 77 start-page: 21 issue: 1 year: 2014 end-page: 39 article-title: Multiuser detection in SDMA–OFDM wireless communication system using complex multilayer perceptron neural network publication-title: Wireless Personal Communications – volume: 2 start-page: 385 issue: 2 year: 2018 end-page: 396 article-title: Energy efficiency and asymptotic performance evaluation of beamforming structures in doubly massive MIMO mmWave systems publication-title: IEEE Transactions on Green Communications and Networking – volume: 29 start-page: 262 issue: 2 year: 1999 end-page: 271 article-title: Nonlinear channel equalization for QAM signal constellation using artificial neural networks publication-title: IEEE Transactions on Systems, Man, and Cybernetics – volume: 2 year: 2004 – volume: 31 start-page: 1263 issue: 2 year: 2019 end-page: 1273 article-title: Design of multilayer perceptron receiver for MC‐CDMA system to mitigate multiple access interference and non‐linear distortion publication-title: Neural Computing & Applications – volume: 20 start-page: 8006 issue: 12 year: 2021 end-page: 8022 article-title: Robust efficient hybrid pre‐coding scheme for mmWave cell‐free and user‐centric massive MIMO communication publication-title: IEEE Transactions on Wireless Communications – volume: 4 year: 1995 – volume: 19 start-page: 628 issue: 5 year: 1971 end-page: 634 article-title: Data transmission by frequency‐division multiplexing using the discrete Fourier transform publication-title: IEEE Transactions on Communications – volume: 100 start-page: 1332 issue: 10 year: 2013 end-page: 1347 article-title: Neural network‐based multiuser detection for SDMA–OFDM system over IEEE 802.11 n indoor wireless local area network channel models publication-title: International Journal of Electronics – volume: 63 start-page: 223 issue: 5 year: 2020 end-page: 234 article-title: Likelihood ascent search detection for coded massive MU—MIMO systems to mitigate IAI and MUI publication-title: Radioelectronics and Communications Systems – volume: 9 start-page: 133820 year: 2021 end-page: 133834 article-title: Impact of Circuit Intake Power on the Spectral Energy Efficiency of Massive MIMO With Channel Estimation Errors publication-title: IEEE Access – start-page: 285 year: 2020 end-page: 296 – volume: 9 issue: 30 year: 2016b article-title: Robust neural network based multiuser detector in MC‐CDMA MAI mitigation publication-title: Indian Journal of Science and Technology – volume: 11 issue: 9 year: 2016b article-title: Improoving Interference alignment of Gaussian MIMO x channel and Gaussian MIMO z channel publication-title: International Journal of Applied Engineering Research – volume: 9 start-page: 578 issue: 13 year: 2018 end-page: 585 article-title: Adaptive cruise control and cooperative cruise control in real life traffic situation publication-title: International Journal of Mechanical Engineering & Technology – volume: 8 start-page: 10491 year: 2020 end-page: 10502 article-title: FDD channel inference methods with experimental performance evaluation publication-title: IEEE Access – volume: 10 start-page: 105674 year: 2022 end-page: 105684 article-title: Detection of Signals in MC–CDMA using a novel iterative block decision feedback equalizer publication-title: IEEE Access – year: 2020 – year: 2017a – volume: 1 year: 1998 – volume: 19 start-page: 661 issue: 4 year: 2015 end-page: 664 article-title: Novel frequency‐domain oversampling receiver for CP MC–CDMA systems publication-title: IEEE Communications Letters – year: 2019 – volume: 9 issue: 20 year: 2016 article-title: Performance analysis of ipv4 to ipv6 transition methods publication-title: Indian Journal of Science & Technology – year: 1993 – year: 2017b article-title: MCCDMA receiver design using recurrent neural networks for eliminating multiple access interference and nonlinear distortion publication-title: International Journal of Communication Systems – volume: 35 start-page: 126 issue: 12 year: 1997 end-page: 133 article-title: Overview of multicarrier CDMA publication-title: IEEE Communications Magazine – ident: e_1_2_10_25_1 doi: 10.17485/ijst/2016/v9i30/95994 – ident: e_1_2_10_17_1 doi: 10.17485/ijst/2016/v9i20/90005 – volume: 11 issue: 9 year: 2016 ident: e_1_2_10_31_1 article-title: Improoving Interference alignment of Gaussian MIMO x channel and Gaussian MIMO z channel publication-title: International Journal of Applied Engineering Research – volume: 11 start-page: 6284 issue: 9 year: 2016 ident: e_1_2_10_30_1 article-title: Implementing mobile adhoc networks with improved publication-title: AODV protocol” International Journal of Applied Engineering and Research – ident: e_1_2_10_34_1 doi: 10.1109/9780470547229 – ident: e_1_2_10_39_1 – year: 2017 ident: e_1_2_10_27_1 article-title: MCCDMA receiver design using recurrent neural networks for eliminating multiple access interference and nonlinear distortion publication-title: International Journal of Communication Systems – volume: 9 start-page: 578 issue: 13 year: 2018 ident: e_1_2_10_32_1 article-title: Adaptive cruise control and cooperative cruise control in real life traffic situation publication-title: International Journal of Mechanical Engineering & Technology – ident: e_1_2_10_23_1 doi: 10.1109/35.642841 – volume-title: Performance analysis of interior and exterior routing protocols year: 2019 ident: e_1_2_10_15_1 – ident: e_1_2_10_38_1 doi: 10.1109/lcomm.2015.2391103 – ident: e_1_2_10_12_1 doi: 10.1109/TWC.2021.3089501 – volume-title: CDMA systems engineering handbook year: 1998 ident: e_1_2_10_20_1 – ident: e_1_2_10_21_1 doi: 10.1109/3477.752798 – ident: e_1_2_10_33_1 doi: 10.17485/ijst/2016/v9i20/89851 – ident: e_1_2_10_2_1 doi: 10.1080/00207217.2012.743085 – ident: e_1_2_10_8_1 doi: 10.1109/TGCN.2018.2800537 – volume-title: OFDM for wireless communications systems year: 2004 ident: e_1_2_10_22_1 – volume-title: CDMA: Principles of spread spectrum communication year: 1995 ident: e_1_2_10_36_1 – ident: e_1_2_10_10_1 doi: 10.1007/s11277-021-08688-6 – ident: e_1_2_10_13_1 doi: 10.1109/ACCESS.2020.2965290 – volume-title: Designof MC‐CDMA receiver using radial basisfunction network to mitigate multiple access interference and nonlinear distortion year: 2017 ident: e_1_2_10_26_1 – ident: e_1_2_10_4_1 doi: 10.1016/j.phycom.2016.07.001 – volume-title: Digital communications year: 1995 ident: e_1_2_10_24_1 – ident: e_1_2_10_37_1 doi: 10.1109/tcom.1971.1090705 – ident: e_1_2_10_7_1 doi: 10.1109/ACCESS.2022.3211392 – ident: e_1_2_10_5_1 doi: 10.1049/iet-com.2012.0688 – ident: e_1_2_10_18_1 doi: 10.1109/ACCESS.2021.3113782 – year: 2001 ident: e_1_2_10_11_1 article-title: Channel models for fixed wireless applications 802 publication-title: Contribution IEEE – volume-title: Signal detection in MC‐CDMA system using ELM receiver to mitigate MAI and non‐linear distortion year: 2020 ident: e_1_2_10_14_1 – volume: 31 start-page: 1263 issue: 2 year: 2019 ident: e_1_2_10_29_1 article-title: Design of multilayer perceptron receiver for MC‐CDMA system to mitigate multiple access interference and non‐linear distortion publication-title: Neural Computing & Applications – ident: e_1_2_10_3_1 doi: 10.1007/s11277-013-1492-2 – ident: e_1_2_10_9_1 doi: 10.3103/s0735272720050015 – year: 2017 ident: e_1_2_10_28_1 article-title: Receiver design using artificial neural network for signal detection in MC‐CDMA system publication-title: International Journal of Intelligent Engineering & Systems – volume-title: Multiuser detection year: 1998 ident: e_1_2_10_35_1 – start-page: 285 volume-title: LPWAN technologies for IoTdeployment.11 year: 2020 ident: e_1_2_10_16_1 – ident: e_1_2_10_19_1 doi: 10.1049/ecej:20020202 – ident: e_1_2_10_6_1 doi: 10.1002/dac.2579  | 
    
| SSID | ssj0014564 | 
    
| Score | 2.4524307 | 
    
| Snippet | Multiple antennas at each user equipment (UE) and/or thousands of antennas at the base station (BS) comprise the extremely spectrum efficient large scale... Multiple antennas at each User Equipment (UE) and/or thousands of antennas at the Base Station comprise the extremely spectrum efficient large scale Multi-User...  | 
    
| SourceID | unpaywall hal proquest crossref wiley  | 
    
| SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher  | 
    
| SubjectTerms | Algorithms Antennas Bit error rate Cellular communication Coding Engineering Sciences inter antenna interference (IAI) Interference Mud Multiplication multi‐user detection (MUD) multi‐user interference (MUI) Searching Signal and Image processing Signal detection  | 
    
| SummonAdditionalLinks | – databaseName: Wiley Online Library Open Access dbid: 24P link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1bS8MwFMcPXh7UB_GK9UYQ9UWKa3rJ8ji8MGVTcQ58K2ma6XBU2abimx_Bz-gn8Zy0KxNU8Kk0nJCSkzT_JCe_AOzKqGPRUi6K5Y4bCCNcZan7QRKhoItwUKMDzs2LqN4Ozm_D22LBjc7C5HyIcsGNeob9X1MHV8mggA0QIxNn7fy6RUOe8Cdh2kMpQy2cB1flLgKhUvId5qobRZWgCHzH_Ifjub8NSZP3FBA5pjZnnrMn9faqer3v-tUOQKcLMF8oR1bLXb0IEyZbgrkxnuASOE2UwI99u1LO9tlRr4t61L4tg76iuW9qUtag4G_WQucYZs_ffr5_tLEl4qN51rxkOcSc2WAC1ug-YD0R-5jVLPiJ5QHKDMUua3Xv6JOOzdAGdGUr0D49uTmqu8UNC672RVW6vq4oIYxWaUVIo3iIaieV1VT5GmWBURU_5YonKaouE4hIeR3JPS0SPw2Vp6XwV2Eqe8zMGrBQh5HPTUhQL5x0SakSgiCjnVBJoEMHDkaVHOsCP063YPRiuw3OZTzuEgf2SuunHLvxi90O-qs0IVZ2vdaIKY3IgaQ_XzwHNkfujIseOoi5oA1iigpyYL908Y-F9Qejwg6s___8ovj6uEXUPLn-L-sNmKX0PFBmE6aG_WezhXJnmGzbNv0FQMjy4g priority: 102 providerName: Wiley-Blackwell  | 
    
| Title | Precoded Large Scale Multi‐User‐MIMO System Using Likelihood Ascent Search for Signal Detection | 
    
| URI | https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2022RS007573 https://www.proquest.com/docview/2758470423 https://hal.science/hal-03890650 https://onlinelibrary.wiley.com/doi/pdfdirect/10.1029/2022RS007573  | 
    
| UnpaywallVersion | publishedVersion | 
    
| Volume | 57 | 
    
| hasFullText | 1 | 
    
| inHoldings | 1 | 
    
| isFullTextHit | |
| isPrint | |
| journalDatabaseRights | – providerCode: PRVEBS databaseName: Inspec with Full Text customDbUrl: eissn: 1944-799X dateEnd: 20241103 omitProxy: false ssIdentifier: ssj0014564 issn: 0048-6604 databaseCode: ADMLS dateStart: 19681101 isFulltext: true titleUrlDefault: https://www.ebsco.com/products/research-databases/inspec-full-text providerName: EBSCOhost  | 
    
| link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1db9MwFL2i7QPwwGAwERiVhWAvKFObL9eP0cpUUDOqhUrlKXIcF6pVWdW1m-CJn7DfuF-ye-2k6hAgJJ4iR9eJnVz7HtvHxwBvRDQ10lIuguWpG3DNXWlU94M8QkAXYVCjDc7JSTQYBx8n4WRrL4zVh9hMuFHLMP01NfBFMbX9fCU5IGjk7p2mFPa434BWFCIeb0JrfDKKv9il5Z4bRR27tBwELhdiUrHf6-zLC5v9TlxqfCNW5BbkvL8uF_L7lZzP74JYE4WOd0DV5bfkk7PD9So_VD9-kXb8vwo-hkcVSGWx9aoncE-Xu_BwS7pwF5wE0fb50kzKswN2NJ8h9DWpp6BGNMwudMGGxDNnKfqBZmar783P6zE6PV6SD8knZvXSmeEtsOHsDEtMMsssNhpTzHKhGeJqls6-UpH6emW4Y-UzGB-__3w0cKvDHFzl855wfdWRnGsliw4XWnohAqtC9ArpK0QgWnb8wpNeXiDA0wGPZHcqvK7iuV-EsqsE9_egWZ6X-jmwUIWR7-mQ9MNwfCeEzElvGe24zAMVOvCu_pWZqpTO6cCNeWZW3D2RbX9WB95urBdW4eMPdq_RKzYmJMs9iIcZ3SORQoK6l10H9munyarO4CLzOK1FEwHJgYONI_32ZbU3YhWMa_y1RNlpPyWBPvHiXx_7Eh5Q0tJx9qG5Wq71KwRVq7wNDS8YtaEV95Nh2q7a0C1QoBq8 | 
    
| linkProvider | Unpaywall | 
    
| linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1BT9swFMefBjuwHSYGTMvWgYUGFxTROIldH6sCKiNhiFKJW-Q47qioAioFtNs-wj7jPsnec9KoSAxppyjRs2z52fHf9vPPAF-VGDm0lI9ieeRH0kpfO-p-lAsUdAIHNTrgnJ6K_jD6dhlf1vec0lmYig_RLLhRz3D_a-rgtCBd0wYIkonTdn4-oDFPhkvwOhKBoNkXj86abQRipVRbzB1fiHZUR75j-v3F1E_GpKUriohckJsr9-Wt_vmoJ5OnAtaNQEer8K6Wjqxb-fo9vLLlGrxdAAqugZeiBr6ZuqVytst6kzEKUve2DuaMJr-FLVhC0d9sgN6xzB3A_fPr9xCbIj7S4_Q7qyjmzEUTsGR8jRVF8GPWdeQnVkUoM1S7bDD-QUU6sDMX0VVuwPDo8KLX9-srFnwTyo7yQ9PWUlqji7ZUVvMY5U6hOoUODeoCq9thwTXPC5RdNpJCByPFAyPzsIh1YJQMP8ByeVPaj8BiE4uQ25ioXjjrUkrnREFGO6nzyMQe7M0rOTM1f5yuwZhkbh-cq2zRJR7sNNa3FXfjH3bb6K_GhGDZ_W6S0TdCB5IAfQg8aM3dmdVd9C7jknaIKSzIg93Gxc9mNr2bZ7bn_P9iibLzgwFh89Sn_7LegpX-RZpkyfHpyWd4QzZV1EwLlmfTe_sFtc8s33Tt-y9qc_ZO | 
    
| linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlZ1Lb9NAEMdHNEg8DggKqIYAKwS5VFYdvzZ7jBKiBJIQNUTqzVrvbmhE5ER5tOLWj9DP2E_SmbVjJRIgcbJsjWVrx-v5787sbwE-iXhq0VIuiuWpG3LDXWmp-2Eao6CLMajRAufBMO5Owq8X0UWxzymthcn5EOWEG_UM-7-mDm6WelrQBgiSicN2_3xMMY8HR_AwjDAYEto5HJVpBGKl5CnmhhvHXlhUvuP9Z_t3H8Sko0uqiNyTm4-32VL-vpbz-aGAtRGo8xyeFdKRNXNfv4AHJjuGp3tAwWNwBqiBFys7Vc5qrDWfoSC1Zy9BjWjwq41mfar-ZmP0jmF2Ae7dze0EP0U8DHqD7yynmDNbTcD6s1_YUAQ_Zk1LfmJ5hTJDtcvGs5_0Sm2zsRVd2SuYdL78aHXdYosFVwW8IdxAeZJzo6T2uDDSj1DuaNHQMlCoC4z0Au1LP9Uou0zIY1mfCr-ueBroSNaV4MFrqGSLzJwAi1QUB76JiOqFoy4hZEoUZLTjMg1V5MDprpETVfDHaRuMeWLz4L5I9l3iwOfSeplzN_5i9xH9VZoQLLvb7Cd0jdCBJECv6g5Ud-5Mii66TnxOGWIqC3KgVrr4jw9brXcPO7X-_-cbJeftMWHzxJv_sv4Aj0btTtLvDb-9hSdkkhfNVKGyWW3NO5Q-m_S9_bzvAS8X9d0 | 
    
| linkToUnpaywall | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1dT9swFL0a5WHjYRts0wJsstDGyxTU5sOuHysYKlMLiK5S9xQ5trtVVKEq7RA88RP4jfslu9dOqjKNaRJPkaPrxE6ufY_t42OAD5IPnbRUiGB5GCbCilA51f0k5wjoOAY12uDcPebtfvJlkA6W9sJ4fYjFhBu1DNdfUwOfmKHv50vJAUkj9-isR2FPxCuwylPE4zVY7R-ftr75peVmyHndLy0nSSikHJTs9yr79NJnvxeXVn4QK3IJcj6dFxN1faXG4_sg1kWhwxegq_J78sn53nyW7-mbP6QdH1fBl_C8BKms5b1qHZ7YYgPWlqQLNyDoItq-mLpJebbL9scjhL4u9Qr0KQ2zjTWsQzxz1kM_sMxt9f11e9dHp8dL96h7wrxeOnO8BdYZnWOJSWaZtZzGFPNcaIa4mvVG36lIB3bmuGPFa-gffv663w7LwxxCHYumDGNdV0JYrUxdSKuiFIGVkU2jYo0IxKp6bCIV5QYBnk0EV42hjBpa5LFJVUNLEb-BWnFR2LfAUp3yOLIp6Yfh-E5KlZPeMtoJlSc6DeBT9SszXSqd04Eb48ytuEcyW_6sAXxcWE-8wscDdjvoFQsTkuVutzoZ3SORQoK6PxsBbFdOk5WdwWUWCVqLJgJSALsLR_rryypvxCo41_hnibKzgx4J9MnN_33sFjyjpKfjbENtNp3bdwiqZvn7stX8BvJhGFE | 
    
| openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Precoded+Large+Scale+Multi%E2%80%90User%E2%80%90MIMO+System+Using+Likelihood+Ascent+Search+for+Signal+Detection&rft.jtitle=Radio+science&rft.au=Bagadi%2C+Kalapraveen&rft.au=Ravikumar%2C+Chinthaginjala+V&rft.au=Alibakhshikenari%2C+Mohammad&rft.au=Challa%2C+Nagaraj&rft.date=2022-12-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=0048-6604&rft.eissn=1944-799X&rft.volume=57&rft.issue=12&rft_id=info:doi/10.1029%2F2022RS007573&rft.externalDBID=HAS_PDF_LINK | 
    
| thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0048-6604&client=summon | 
    
| thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0048-6604&client=summon | 
    
| thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0048-6604&client=summon |