Engineering Escherichia coli for l‐homoserine production
l‐homoserine, a nonprotein amino acid, is used to synthesize many active substances in the industry. Here, to develop a robust l‐homoserine‐producing strain, Escherichia coli W3110 was used as a chassis to be engineered. Based on a previous construct with blocked competing routes for l‐homoserine sy...
Saved in:
Published in | Journal of basic microbiology Vol. 63; no. 2; pp. 168 - 178 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Germany
01.02.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 0233-111X 1521-4028 1521-4028 |
DOI | 10.1002/jobm.202200488 |
Cover
Abstract | l‐homoserine, a nonprotein amino acid, is used to synthesize many active substances in the industry. Here, to develop a robust l‐homoserine‐producing strain, Escherichia coli W3110 was used as a chassis to be engineered. Based on a previous construct with blocked competing routes for l‐homoserine synthesis, five genes were overexpressed by promoter replacement strategy to increase the l‐homoserine production, including enhancement of precursors for l‐homoserine synthesis (ppc, thrA, and asd), reinforcement of the NADPH supply (pntAB) and efflux transporters (rhtA) to improve the l‐homoserine production. However, the plasmid losing was to blame for the wildly fluctuating fermentation performance of engineered strains, ranging between 2.1 and 6.2 g/L. Then, a hok/sok toxin/antitoxin system was introduced into the free plasmid expression cassette to maintain the genetic stability of the episomal plasmid; consequently, the plasmid‐losing rate sharply decreased, resulting in the engineered strain SHL17, which exhibited excellent stability in l‐homoserine production, with 6.3 g/L in shake flasks and 44.4 g/L in a 5‐L fermenter without antibiotic addition. This work verified the effective use of the hok/sok toxin/antitoxin system combined with promoter engineering to improve the genetic stability of E. coli episomal plasmids without antibiotics. |
---|---|
AbstractList | l
‐homoserine, a nonprotein amino acid, is used to synthesize many active substances in the industry. Here, to develop a robust
l
‐homoserine‐producing strain,
Escherichia coli
W3110 was used as a chassis to be engineered. Based on a previous construct with blocked competing routes for
l
‐homoserine synthesis, five genes were overexpressed by promoter replacement strategy to increase the
l
‐homoserine production, including enhancement of precursors for
l
‐homoserine synthesis (
ppc
,
thrA
, and
asd
), reinforcement of the NADPH supply (
pntAB
) and efflux transporters (
rhtA
) to improve the
l
‐homoserine production. However, the plasmid losing was to blame for the wildly fluctuating fermentation performance of engineered strains, ranging between 2.1 and 6.2 g/L. Then, a
hok
/
sok
toxin/antitoxin system was introduced into the free plasmid expression cassette to maintain the genetic stability of the episomal plasmid; consequently, the plasmid‐losing rate sharply decreased, resulting in the engineered strain SHL17, which exhibited excellent stability in
l
‐homoserine production, with 6.3 g/L in shake flasks and 44.4 g/L in a 5‐L fermenter without antibiotic addition. This work verified the effective use of the
hok
/
sok
toxin/antitoxin system combined with promoter engineering to improve the genetic stability of
E. coli
episomal plasmids without antibiotics. l‐homoserine, a nonprotein amino acid, is used to synthesize many active substances in the industry. Here, to develop a robust l‐homoserine‐producing strain, Escherichia coli W3110 was used as a chassis to be engineered. Based on a previous construct with blocked competing routes for l‐homoserine synthesis, five genes were overexpressed by promoter replacement strategy to increase the l‐homoserine production, including enhancement of precursors for l‐homoserine synthesis (ppc, thrA, and asd), reinforcement of the NADPH supply (pntAB) and efflux transporters (rhtA) to improve the l‐homoserine production. However, the plasmid losing was to blame for the wildly fluctuating fermentation performance of engineered strains, ranging between 2.1 and 6.2 g/L. Then, a hok/sok toxin/antitoxin system was introduced into the free plasmid expression cassette to maintain the genetic stability of the episomal plasmid; consequently, the plasmid‐losing rate sharply decreased, resulting in the engineered strain SHL17, which exhibited excellent stability in l‐homoserine production, with 6.3 g/L in shake flasks and 44.4 g/L in a 5‐L fermenter without antibiotic addition. This work verified the effective use of the hok/sok toxin/antitoxin system combined with promoter engineering to improve the genetic stability of E. coli episomal plasmids without antibiotics. l-homoserine, a nonprotein amino acid, is used to synthesize many active substances in the industry. Here, to develop a robust l-homoserine-producing strain, Escherichia coli W3110 was used as a chassis to be engineered. Based on a previous construct with blocked competing routes for l-homoserine synthesis, five genes were overexpressed by promoter replacement strategy to increase the l-homoserine production, including enhancement of precursors for l-homoserine synthesis (ppc, thrA, and asd), reinforcement of the NADPH supply (pntAB) and efflux transporters (rhtA) to improve the l-homoserine production. However, the plasmid losing was to blame for the wildly fluctuating fermentation performance of engineered strains, ranging between 2.1 and 6.2 g/L. Then, a hok/sok toxin/antitoxin system was introduced into the free plasmid expression cassette to maintain the genetic stability of the episomal plasmid; consequently, the plasmid-losing rate sharply decreased, resulting in the engineered strain SHL17, which exhibited excellent stability in l-homoserine production, with 6.3 g/L in shake flasks and 44.4 g/L in a 5-L fermenter without antibiotic addition. This work verified the effective use of the hok/sok toxin/antitoxin system combined with promoter engineering to improve the genetic stability of E. coli episomal plasmids without antibiotics.l-homoserine, a nonprotein amino acid, is used to synthesize many active substances in the industry. Here, to develop a robust l-homoserine-producing strain, Escherichia coli W3110 was used as a chassis to be engineered. Based on a previous construct with blocked competing routes for l-homoserine synthesis, five genes were overexpressed by promoter replacement strategy to increase the l-homoserine production, including enhancement of precursors for l-homoserine synthesis (ppc, thrA, and asd), reinforcement of the NADPH supply (pntAB) and efflux transporters (rhtA) to improve the l-homoserine production. However, the plasmid losing was to blame for the wildly fluctuating fermentation performance of engineered strains, ranging between 2.1 and 6.2 g/L. Then, a hok/sok toxin/antitoxin system was introduced into the free plasmid expression cassette to maintain the genetic stability of the episomal plasmid; consequently, the plasmid-losing rate sharply decreased, resulting in the engineered strain SHL17, which exhibited excellent stability in l-homoserine production, with 6.3 g/L in shake flasks and 44.4 g/L in a 5-L fermenter without antibiotic addition. This work verified the effective use of the hok/sok toxin/antitoxin system combined with promoter engineering to improve the genetic stability of E. coli episomal plasmids without antibiotics. |
Author | Wang, Feng‐Qing Sun, Bing‐Yao Zhao, Jian Tao, Xin‐Yi Liu, Min Wei, Dong‐Zhi |
Author_xml | – sequence: 1 givenname: Bing‐Yao orcidid: 0000-0003-4763-5508 surname: Sun fullname: Sun, Bing‐Yao organization: East China University of Science and Technology – sequence: 2 givenname: Feng‐Qing orcidid: 0000-0002-3473-5991 surname: Wang fullname: Wang, Feng‐Qing organization: East China University of Science and Technology – sequence: 3 givenname: Jian surname: Zhao fullname: Zhao, Jian organization: East China University of Science and Technology – sequence: 4 givenname: Xin‐Yi surname: Tao fullname: Tao, Xin‐Yi email: xytao@ecust.edu.cn organization: East China University of Science and Technology – sequence: 5 givenname: Min surname: Liu fullname: Liu, Min email: lmin@ecust.edu.cn organization: East China University of Science and Technology – sequence: 6 givenname: Dong‐Zhi surname: Wei fullname: Wei, Dong‐Zhi organization: East China University of Science and Technology |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36284486$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkT1PwzAQhi1URD9gZUQZWVLOjhPbbFCVLxV1AYnNShyndZXEJU6EuvET-I38EhK1BQkJMd0Nz3Onu3eIeqUtNUKnGMYYgFysbFKMCRACQDk_QAMcEuxTILyHBkCCwMcYv_TR0LkVAAhBxBHqBxHhlPJogC6n5cKUWlemXHhTp5Ztp5Ym9pTNjZfZyss_3z-WtrCuY7S3rmzaqNrY8hgdZnHu9MmujtDzzfRpcufP5rf3k6uZrwLGuZ_SAKeKJpBFIlJCd3uThMUq4ACsbWjKgjAkEdZYpSrVEWORAMZDBUQpGozQ-XZuu_q10a6WhXFK53lcats4STjGgmNK2f8oIwKIEBS36NkObZJCp3JdmSKuNnL_mhagW0BV1rlKZ1KZOu4Or6vY5BKD7BKQXQLyO4FWG__S9pP_FMRWeDO53vxDy4f59eOP-wVAcpiI |
CitedBy_id | crossref_primary_10_1002_bit_28861 crossref_primary_10_1038_s41522_024_00479_8 crossref_primary_10_1186_s12934_024_02623_7 crossref_primary_10_1016_j_jenvman_2024_123037 crossref_primary_10_1021_acs_jafc_3c09561 crossref_primary_10_3390_molecules28186745 crossref_primary_10_1021_acs_jafc_4c06697 crossref_primary_10_1021_cbe_3c00077 crossref_primary_10_3390_fermentation9080737 crossref_primary_10_1134_S0006297923090122 crossref_primary_10_1021_acssuschemeng_4c07838 crossref_primary_10_1021_acssynbio_4c00208 crossref_primary_10_1093_jambio_lxad075 crossref_primary_10_31857_S0320972523090129 |
Cites_doi | 10.1093/chrsci/49.2.118 10.1016/j.ymben.2021.07.011 10.1002/btpr.2341 10.1016/j.jbiotec.2004.03.010 10.1016/j.mib.2017.05.001 10.1007/978-1-4939-3515-4_11 10.3390/pathogens4020157 10.1016/j.jbiotec.2020.03.010 10.1038/s41467-019-10600-7 10.1006/jmbi.1995.0186 10.1038/nchembio.2046 10.1016/j.ymben.2022.07.001 10.1186/1475-2859-4-25 10.1007/s10529-021-03082-5 10.1016/j.ymben.2018.05.020 10.1016/j.biotechadv.2021.107767 10.1016/j.ymben.2019.07.007 10.1371/journal.pgen.1009656 10.1016/j.procbio.2016.09.024 10.1016/j.biortech.2021.124814 10.1016/j.cub.2020.07.019 10.1016/j.ymben.2018.08.002 10.1128/AEM.01477-20 10.1385/ABAB:114:1-3:373 10.1007/s11095-004-1873-z 10.1002/jobm.201500256 10.2144/05385RR02 10.1016/j.ymben.2017.10.014 10.1007/s12257-019-0269-1 10.1002/j.1460-2075.1994.tb06465.x 10.1093/nar/gkl750 |
ContentType | Journal Article |
Copyright | 2022 Wiley‐VCH GmbH. 2022 Wiley-VCH GmbH. |
Copyright_xml | – notice: 2022 Wiley‐VCH GmbH. – notice: 2022 Wiley-VCH GmbH. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7S9 L.6 |
DOI | 10.1002/jobm.202200488 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef AGRICOLA MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Biology |
EISSN | 1521-4028 |
EndPage | 178 |
ExternalDocumentID | 36284486 10_1002_jobm_202200488 JOBM202200488 |
Genre | article Journal Article |
GrantInformation_xml | – fundername: National Natural Science Foundation of China funderid: 31500043 – fundername: Open Funding Project of the State Key Laboratory of Bioreactor Engineering – fundername: Natural Science Foundation of Shanghai funderid: 21ZR1417200 – fundername: National Key Research and Development Program of China funderid: 2021YFC2100300 – fundername: National Natural Science Foundation of China grantid: 31500043 – fundername: Natural Science Foundation of Shanghai grantid: 21ZR1417200 – fundername: National Key Research and Development Program of China grantid: 2021YFC2100300 |
GroupedDBID | --- -~X .3N .GA .GJ .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 31~ 33P 3SF 3WU 4.4 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHQN AAMNL AANHP AANLZ AAONW AASGY AAXRX AAYCA AAZKR ABCUV ABIJN ABPVW ACAHQ ACBWZ ACCFJ ACCZN ACGFS ACPOU ACRPL ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADXAS ADZMN ADZOD AEEZP AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFPM AFGKR AFPWT AFWVQ AFZJQ AHBTC AI. AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 CS3 D-E D-F DCZOG DDYGU DPXWK DR2 DRFUL DRSTM EBD EBS EJD EMOBN F00 F01 F04 F5P FEDTE G-S G.N GNP GODZA H.T H.X HBH HF~ HGLYW HHY HVGLF HZ~ IX1 J0M JPC KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M62 MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MXFUL MXSTM N04 N05 N9A NF~ O66 O9- OIG P2W P2X P4D PALCI Q.N Q11 QB0 QRW R.K RIWAO ROL RWI RX1 RYL SAMSI SUPJJ SV3 UB1 V2E VH1 W8V W99 WBKPD WIH WIK WNSPC WOHZO WWD WXSBR WYISQ XG1 XPP XV2 ZXP ZZTAW ~IA ~KM ~WT AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM PKN 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY 7S9 L.6 |
ID | FETCH-LOGICAL-c3788-d431dc4b0f696c9e4486bb7ac38007b7a4d7355261e1cdcde677690785c02cc43 |
IEDL.DBID | DR2 |
ISSN | 0233-111X 1521-4028 |
IngestDate | Fri Jul 11 18:33:00 EDT 2025 Thu Jul 10 22:56:29 EDT 2025 Wed Feb 19 02:25:13 EST 2025 Tue Jul 01 00:43:53 EDT 2025 Thu Apr 24 22:53:03 EDT 2025 Wed Jan 22 16:24:17 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Keywords | plasmid stability hok/sok system metabolic engineering Escherichia coli l-homoserine |
Language | English |
License | 2022 Wiley-VCH GmbH. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3788-d431dc4b0f696c9e4486bb7ac38007b7a4d7355261e1cdcde677690785c02cc43 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-3473-5991 0000-0003-4763-5508 |
PMID | 36284486 |
PQID | 2729029941 |
PQPubID | 23479 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_2811981447 proquest_miscellaneous_2729029941 pubmed_primary_36284486 crossref_citationtrail_10_1002_jobm_202200488 crossref_primary_10_1002_jobm_202200488 wiley_primary_10_1002_jobm_202200488_JOBM202200488 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | February 2023 2023-02-00 2023-Feb 20230201 |
PublicationDateYYYYMMDD | 2023-02-01 |
PublicationDate_xml | – month: 02 year: 2023 text: February 2023 |
PublicationDecade | 2020 |
PublicationPlace | Germany |
PublicationPlace_xml | – name: Germany |
PublicationTitle | Journal of basic microbiology |
PublicationTitleAlternate | J Basic Microbiol |
PublicationYear | 2023 |
References | 2021; 43 2021; 67 2015; 4 2020; 86 2006; 34 2016; 1409 2019; 55 2022; 73 2019; 10 2017; 44 2021; 327 2016; 32 2020; 314‐315 2016; 51 2021; 50 2005; 22 2018; 49 2018; 48 2016; 56 2016; 12 2004; 111 2004; 114 2020; 30 2017; 38 2021; 17 2005; 4 2020; 25 1994; 13 1995; 247 2011; 49 2005; 38 e_1_2_9_30_1 e_1_2_9_31_1 e_1_2_9_11_1 e_1_2_9_10_1 e_1_2_9_13_1 e_1_2_9_32_1 e_1_2_9_12_1 e_1_2_9_15_1 e_1_2_9_14_1 e_1_2_9_17_1 e_1_2_9_16_1 e_1_2_9_19_1 e_1_2_9_18_1 e_1_2_9_20_1 e_1_2_9_22_1 e_1_2_9_21_1 e_1_2_9_24_1 e_1_2_9_23_1 e_1_2_9_8_1 e_1_2_9_7_1 e_1_2_9_6_1 e_1_2_9_5_1 e_1_2_9_4_1 e_1_2_9_3_1 e_1_2_9_2_1 e_1_2_9_9_1 e_1_2_9_26_1 e_1_2_9_25_1 e_1_2_9_28_1 e_1_2_9_27_1 e_1_2_9_29_1 |
References_xml | – volume: 56 start-page: 206 year: 2016 end-page: 10 article-title: Curing of plasmid pBMB28 from YBT‐020 using an unstable replication region publication-title: J Basic Microbiol – volume: 32 start-page: 1418 year: 2016 end-page: 25 article-title: Testing plasmid stability of using the continuously operated shaken BIOreactor system publication-title: Biotechnol Prog – volume: 38 start-page: 775 year: 2005 end-page: 81 article-title: Separate‐component‐stabilization system for protein and DNA production without the use of antibiotics publication-title: Bio Techniques – volume: 38 start-page: 74 year: 2017 end-page: 80 article-title: An evolutionary perspective on plasmid lifestyle modes publication-title: Curr Opin Microbiol – volume: 314‐315 start-page: 1 year: 2020 end-page: 7 article-title: Increasing l‐homoserine production in by engineering the central metabolic pathways publication-title: J Biotechnol – volume: 17 year: 2021 article-title: Essential gene acquisition destabilizes plasmid inheritance publication-title: PLoS Genet – volume: 10 start-page: 2595 year: 2019 article-title: Emergence of plasmid stability under non‐selective conditions maintains antibiotic resistance publication-title: Nat Commun – volume: 34 start-page: 5915 year: 2006 end-page: 22 article-title: Competitive inhibition of natural antisense Sok‐RNA interactions activates Hok‐mediated cell killing in publication-title: Nucleic Acids Res – volume: 13 start-page: 1960 year: 1994 end-page: 8 article-title: Mechanism of post‐segregational killing: Sok antisense RNA interacts with Hok mRNA via its 5′‐end single‐stranded leader and competes with the 3′‐end of Hok mRNA for binding to the mok translational initiation region publication-title: EMBO J – volume: 4 start-page: 157 year: 2015 end-page: 81 article-title: Antibiotic‐free selection in biotherapeutics: now and forever publication-title: Pathogens – volume: 44 start-page: 284 year: 2017 end-page: 92 article-title: A systematically chromosomally engineered efficiently produces butanol publication-title: Metab Eng – volume: 55 start-page: 170 year: 2019 end-page: 8 article-title: Systematic engineering for high‐yield production of viridiflorol and amorphadiene in auxotrophic publication-title: Metab Eng – volume: 67 start-page: 321 year: 2021 end-page: 9 article-title: Highly efficient production of ‐homoserine in by engineering a redox balance route publication-title: Metab Eng – volume: 49 start-page: 118 year: 2011 end-page: 23 article-title: HPLC‐FLD for the simultaneous determination of primary and secondary amino acids from complex biological sample by pre‐column derivatization publication-title: J Chromatogr Sci – volume: 22 start-page: 362 year: 2005 end-page: 72 article-title: A scalable, extrusion‐free method for efficient liposomal encapsulation of plasmid DNA publication-title: Pharm Res – volume: 50 year: 2021 article-title: Recent advances in tuning the expression and regulation of genes for constructing microbial cell factories publication-title: Biotechnol Adv – volume: 86 start-page: e01477 year: 2020 end-page: 20 article-title: Multiplex design of metabolic network for production of l‐homoserine in publication-title: Appl Environ Microbiol – volume: 51 start-page: 1973 year: 2016 end-page: 83 article-title: Metabolic engineering of W3110 for ‐homoserine production publication-title: Process Biochem – volume: 4 start-page: 25 year: 2005 article-title: Organic acid toxicity, tolerance, and production in biorefining applications publication-title: Microb Cell Fact – volume: 114 start-page: 373 year: 2004 end-page: 9 article-title: Biosynthesis of ( )‐3‐hydroxyalkanoic acids by metabolically engineered publication-title: Appl Biochem Biotechnol – volume: 327 year: 2021 article-title: High‐level production of ‐homoserine using a non‐induced, non‐auxotrophic chassis through metabolic engineering publication-title: Bioresour Technol – volume: 111 start-page: 17 year: 2004 end-page: 30 article-title: A host/plasmid system that is not dependent on antibiotics and antibiotic resistance genes for stable plasmid maintenance in publication-title: J Biotechnol – volume: 73 start-page: 104 year: 2022 end-page: 13 article-title: Metabolic engineering of W3110 for efficient production of homoserine from glucose publication-title: Metab Eng – volume: 247 start-page: 859 year: 1995 end-page: 73 article-title: Mechanism of post‐segregational killing: secondary structure analysis of the entire Hok mRNA from plasmid R1 suggests a fold‐back structure that prevents translation and antisense RNA binding publication-title: J Mol Biol – volume: 1409 start-page: 125 year: 2016 end-page: 33 article-title: Determination of plasmid segregational stability in a growing bacterial population publication-title: Methods Mol Biol – volume: 30 start-page: 3841 year: 2020 end-page: 7 article-title: Antibiotics interfere with the evolution of plasmid stability publication-title: Curr Biol – volume: 12 start-page: 339 year: 2016 end-page: 44 article-title: Exploiting nongenetic cell‐to‐cell variation for enhanced biosynthesis publication-title: Nat Chem Biol – volume: 48 start-page: 121 year: 2018 end-page: 8 article-title: Synthetic auxotrophs for stable and tunable maintenance of plasmid copy number publication-title: Metab Eng – volume: 49 start-page: 105 year: 2018 end-page: 15 article-title: Metabolic engineering of for high‐level astaxanthin production with high productivity publication-title: Metab Eng – volume: 25 start-page: 39 year: 2020 end-page: 44 article-title: Enhanced production of malic acid by co‐localization of phosphoenolpyruvate carboxylase and malate dehydrogenase using synthetic protein scaffold in publication-title: Biotechnol Bioproc E – volume: 43 start-page: 1265 year: 2021 end-page: 76 article-title: Efficient strategies to enhance plasmid stability for fermentation of recombinant harboring tyrosine phenol lyase publication-title: Biotechnol Lett – ident: e_1_2_9_13_1 doi: 10.1093/chrsci/49.2.118 – ident: e_1_2_9_5_1 doi: 10.1016/j.ymben.2021.07.011 – ident: e_1_2_9_21_1 doi: 10.1002/btpr.2341 – ident: e_1_2_9_22_1 doi: 10.1016/j.jbiotec.2004.03.010 – ident: e_1_2_9_17_1 doi: 10.1016/j.mib.2017.05.001 – ident: e_1_2_9_29_1 doi: 10.1007/978-1-4939-3515-4_11 – ident: e_1_2_9_32_1 doi: 10.3390/pathogens4020157 – ident: e_1_2_9_3_1 doi: 10.1016/j.jbiotec.2020.03.010 – ident: e_1_2_9_10_1 doi: 10.1038/s41467-019-10600-7 – ident: e_1_2_9_26_1 doi: 10.1006/jmbi.1995.0186 – ident: e_1_2_9_19_1 doi: 10.1038/nchembio.2046 – ident: e_1_2_9_6_1 doi: 10.1016/j.ymben.2022.07.001 – ident: e_1_2_9_15_1 doi: 10.1186/1475-2859-4-25 – ident: e_1_2_9_16_1 doi: 10.1007/s10529-021-03082-5 – ident: e_1_2_9_20_1 doi: 10.1016/j.ymben.2018.05.020 – ident: e_1_2_9_8_1 doi: 10.1016/j.biotechadv.2021.107767 – ident: e_1_2_9_31_1 doi: 10.1016/j.ymben.2019.07.007 – ident: e_1_2_9_28_1 doi: 10.1371/journal.pgen.1009656 – ident: e_1_2_9_7_1 doi: 10.1016/j.procbio.2016.09.024 – ident: e_1_2_9_4_1 doi: 10.1016/j.biortech.2021.124814 – ident: e_1_2_9_9_1 doi: 10.1016/j.cub.2020.07.019 – ident: e_1_2_9_24_1 doi: 10.1016/j.ymben.2018.08.002 – ident: e_1_2_9_2_1 doi: 10.1128/AEM.01477-20 – ident: e_1_2_9_12_1 doi: 10.1385/ABAB:114:1-3:373 – ident: e_1_2_9_23_1 doi: 10.1007/s11095-004-1873-z – ident: e_1_2_9_18_1 doi: 10.1002/jobm.201500256 – ident: e_1_2_9_30_1 doi: 10.2144/05385RR02 – ident: e_1_2_9_11_1 doi: 10.1016/j.ymben.2017.10.014 – ident: e_1_2_9_14_1 doi: 10.1007/s12257-019-0269-1 – ident: e_1_2_9_25_1 doi: 10.1002/j.1460-2075.1994.tb06465.x – ident: e_1_2_9_27_1 doi: 10.1093/nar/gkl750 |
SSID | ssj0009929 |
Score | 2.4014637 |
Snippet | l‐homoserine, a nonprotein amino acid, is used to synthesize many active substances in the industry. Here, to develop a robust l‐homoserine‐producing strain,... l ‐homoserine, a nonprotein amino acid, is used to synthesize many active substances in the industry. Here, to develop a robust l ‐homoserine‐producing strain,... l-homoserine, a nonprotein amino acid, is used to synthesize many active substances in the industry. Here, to develop a robust l-homoserine-producing strain,... |
SourceID | proquest pubmed crossref wiley |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 168 |
SubjectTerms | Anti-Bacterial Agents - metabolism antibiotics antitoxins Antitoxins - genetics Antitoxins - metabolism Escherichia coli Escherichia coli - genetics Escherichia coli - metabolism Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism fermentation fermenters genetic stability hok/sok system Homoserine - metabolism industry l‐homoserine metabolic engineering Metabolic Engineering - methods microbiology nonprotein amino acids plasmid stability plasmids Plasmids - genetics toxins |
Title | Engineering Escherichia coli for l‐homoserine production |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjobm.202200488 https://www.ncbi.nlm.nih.gov/pubmed/36284486 https://www.proquest.com/docview/2729029941 https://www.proquest.com/docview/2811981447 |
Volume | 63 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kIHrxUV_xRQTBU9o0z403rS2loIJY6C1kNylWa1JMe9CTP8Hf6C9xJtukraKC3hLYJZt57HyT7HwDcBxwRnGbaUT9oVkeNzXOTJ38yrODmosxMWP7vHJaHavdtbszVfySH6L44Eaeke3X5OABT6tT0tD7hFMluWFkRoibcM10iDz_4mbKH-V5WZsyjEumhk7dzVkbdaM6P30-Kn2BmvPINQs9zVUI8kXLEycPlfGIV8TLJz7H_7zVGqxMcKl6Jg1pHRaiuAyLslPlcxmW6nljuA04neEwVBspab1PJ6ZVtKm-iiBYHby_vt0lj0ma1RaqQ8kqixawCZ1m47be0iYtGDRBRPNaiPgiFBbXe47nCC_CZM7h3A2EiUDTxQsrdBGxYBoW1UQowshxXcq3mS10QwjL3IJSnMTRDqiO6FmMWmW5CME8O-S9AMGBCM1AMBZZXAEtV4EvJvzk1CZj4EtmZcMn2fiFbBQ4KcYPJTPHtyOPco36KCr6IxLEUTJOfQNTC1ySZ9V-GMPQbBnmna4C29Iciudh9GckEgWMTKm_LMRvX59fFne7f5m0B8vU8F6eG9-H0uhpHB0gLBrxw8z0PwB2ggIt |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xCMGFfSlrkJA4pU2TNLa5AQKVskkIpN6i2ElFWRpE2wOc-AS-kS9hxm5SCgIkuCWRrTiemcwbe_wGYCuSnPw2t4n6w_aF9GzJPYfsSlSiMkOfqNk-z4LqlV-rV7JsQjoLY_gh8gU3sgz9vyYDpwXpUp819CaVdJTcdbUWDsOo3qQjXHTRZ5ASQhcqQ8_k2WjW9Yy30XFLg_0H_dIXsDmIXbXzOZwCmQ3b5JzcFrsdWVTPnxgd__Vd0zDZg6bWrtGlGRhKWrMwZopVPs3C-H5WG24Odj7QGFoHbRJ8k5KmLVSrpoU42Lp7e3m9Tu_Ttj5eaD0YYllUgnm4Ojy43K_avSoMtiKueTtGiBErXzqNQARKJBjPBVKySHmINRle-DFD0IKRWFJWsYqTgDEKuXlFOa5SvrcAI620lSyBFaiGz6laFkMUJiqxbESID1TsRYrzxJcFsDMZhKpHUU6VMu5CQ67shjQ3YT43BdjO2z8Yco5vW25mIg1xqmhTJGolabcduhhd4JCEX_6hDUfN5Rh6sgIsGn3I34cAgNOUFMDVUv1lIGHtfO80v1v-S6cNGK9enp6EJ0dnxyswgc89k0a-CiOdx26yhiipI9e1HbwDpzoGSw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEJ5ojY-Lj_rCJyYmnugDFli8aW1Tq1ZjNOmNsAuN1QqNbQ968if4G_0lzrKFtho10RuQ2bDMg_kGdr8B2PcYFXmbaoL6QyMOMzRGjYKIK8f0ijbmxJjts25Vb0mtYTZGdvFLfoj0g5uIjPh9LQK84zfzQ9LQ-4iJneS6HjvhJEwRC3OlgEXXQwIpx4n7lGFiMjSM6kZC21jQ8-Pjx9PSF6w5Dl3j3FNZAC-ZtVxy8pDr91iOv3widPzPYy3C_ACYqkfSk5ZgIgizMC1bVT5nYbaUdIZbhsMREkO13BVmb4kl0yo6VUtFFKy231_f7qLHqBtvLlQ7klYWXWAFbivlm1JVG_Rg0Lhgmtd8BBg-J6zQtByLOwFWcxZjtscNRJo2HhDfRsiCdVhQ5D73A8u2RcFNTV7QOSfGKmTCKAzWQbV4k1DRK8tGDOaYPmt6iA64b3ic0oAwBbTEBC4fEJSLPhltV1Ir667QjZvqRoGDVL4jqTm-ldxLLOqiqsQvES8Mon7X1bG2wCk5pPiDDEW_pVh42gqsSXdI74fpnwqVKKDHRv1lIm7t8vgiPdv4y6BdmLk6qbjnp_WzTZjDy4ZcQ74Fmd5TP9hGiNRjO3EUfACHJQT6 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+Escherichia+coli+for+l%E2%80%90homoserine+production&rft.jtitle=Journal+of+basic+microbiology&rft.au=Sun%2C+Bing%E2%80%90Yao&rft.au=Wang%2C+Feng%E2%80%90Qing&rft.au=Zhao%2C+Jian&rft.au=Tao%2C+Xin%E2%80%90Yi&rft.date=2023-02-01&rft.issn=0233-111X&rft.volume=63&rft.issue=2+p.168-178&rft.spage=168&rft.epage=178&rft_id=info:doi/10.1002%2Fjobm.202200488&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-111X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-111X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-111X&client=summon |