Engineering Escherichia coli for l‐homoserine production

l‐homoserine, a nonprotein amino acid, is used to synthesize many active substances in the industry. Here, to develop a robust l‐homoserine‐producing strain, Escherichia coli W3110 was used as a chassis to be engineered. Based on a previous construct with blocked competing routes for l‐homoserine sy...

Full description

Saved in:
Bibliographic Details
Published inJournal of basic microbiology Vol. 63; no. 2; pp. 168 - 178
Main Authors Sun, Bing‐Yao, Wang, Feng‐Qing, Zhao, Jian, Tao, Xin‐Yi, Liu, Min, Wei, Dong‐Zhi
Format Journal Article
LanguageEnglish
Published Germany 01.02.2023
Subjects
Online AccessGet full text
ISSN0233-111X
1521-4028
1521-4028
DOI10.1002/jobm.202200488

Cover

Abstract l‐homoserine, a nonprotein amino acid, is used to synthesize many active substances in the industry. Here, to develop a robust l‐homoserine‐producing strain, Escherichia coli W3110 was used as a chassis to be engineered. Based on a previous construct with blocked competing routes for l‐homoserine synthesis, five genes were overexpressed by promoter replacement strategy to increase the l‐homoserine production, including enhancement of precursors for l‐homoserine synthesis (ppc, thrA, and asd), reinforcement of the NADPH supply (pntAB) and efflux transporters (rhtA) to improve the l‐homoserine production. However, the plasmid losing was to blame for the wildly fluctuating fermentation performance of engineered strains, ranging between 2.1 and 6.2 g/L. Then, a hok/sok toxin/antitoxin system was introduced into the free plasmid expression cassette to maintain the genetic stability of the episomal plasmid; consequently, the plasmid‐losing rate sharply decreased, resulting in the engineered strain SHL17, which exhibited excellent stability in l‐homoserine production, with 6.3 g/L in shake flasks and 44.4 g/L in a 5‐L fermenter without antibiotic addition. This work verified the effective use of the hok/sok toxin/antitoxin system combined with promoter engineering to improve the genetic stability of E. coli episomal plasmids without antibiotics.
AbstractList l ‐homoserine, a nonprotein amino acid, is used to synthesize many active substances in the industry. Here, to develop a robust l ‐homoserine‐producing strain, Escherichia coli W3110 was used as a chassis to be engineered. Based on a previous construct with blocked competing routes for l ‐homoserine synthesis, five genes were overexpressed by promoter replacement strategy to increase the l ‐homoserine production, including enhancement of precursors for l ‐homoserine synthesis ( ppc , thrA , and asd ), reinforcement of the NADPH supply ( pntAB ) and efflux transporters ( rhtA ) to improve the l ‐homoserine production. However, the plasmid losing was to blame for the wildly fluctuating fermentation performance of engineered strains, ranging between 2.1 and 6.2 g/L. Then, a hok / sok toxin/antitoxin system was introduced into the free plasmid expression cassette to maintain the genetic stability of the episomal plasmid; consequently, the plasmid‐losing rate sharply decreased, resulting in the engineered strain SHL17, which exhibited excellent stability in l ‐homoserine production, with 6.3 g/L in shake flasks and 44.4 g/L in a 5‐L fermenter without antibiotic addition. This work verified the effective use of the hok / sok toxin/antitoxin system combined with promoter engineering to improve the genetic stability of E. coli episomal plasmids without antibiotics.
l‐homoserine, a nonprotein amino acid, is used to synthesize many active substances in the industry. Here, to develop a robust l‐homoserine‐producing strain, Escherichia coli W3110 was used as a chassis to be engineered. Based on a previous construct with blocked competing routes for l‐homoserine synthesis, five genes were overexpressed by promoter replacement strategy to increase the l‐homoserine production, including enhancement of precursors for l‐homoserine synthesis (ppc, thrA, and asd), reinforcement of the NADPH supply (pntAB) and efflux transporters (rhtA) to improve the l‐homoserine production. However, the plasmid losing was to blame for the wildly fluctuating fermentation performance of engineered strains, ranging between 2.1 and 6.2 g/L. Then, a hok/sok toxin/antitoxin system was introduced into the free plasmid expression cassette to maintain the genetic stability of the episomal plasmid; consequently, the plasmid‐losing rate sharply decreased, resulting in the engineered strain SHL17, which exhibited excellent stability in l‐homoserine production, with 6.3 g/L in shake flasks and 44.4 g/L in a 5‐L fermenter without antibiotic addition. This work verified the effective use of the hok/sok toxin/antitoxin system combined with promoter engineering to improve the genetic stability of E. coli episomal plasmids without antibiotics.
l-homoserine, a nonprotein amino acid, is used to synthesize many active substances in the industry. Here, to develop a robust l-homoserine-producing strain, Escherichia coli W3110 was used as a chassis to be engineered. Based on a previous construct with blocked competing routes for l-homoserine synthesis, five genes were overexpressed by promoter replacement strategy to increase the l-homoserine production, including enhancement of precursors for l-homoserine synthesis (ppc, thrA, and asd), reinforcement of the NADPH supply (pntAB) and efflux transporters (rhtA) to improve the l-homoserine production. However, the plasmid losing was to blame for the wildly fluctuating fermentation performance of engineered strains, ranging between 2.1 and 6.2 g/L. Then, a hok/sok toxin/antitoxin system was introduced into the free plasmid expression cassette to maintain the genetic stability of the episomal plasmid; consequently, the plasmid-losing rate sharply decreased, resulting in the engineered strain SHL17, which exhibited excellent stability in l-homoserine production, with 6.3 g/L in shake flasks and 44.4 g/L in a 5-L fermenter without antibiotic addition. This work verified the effective use of the hok/sok toxin/antitoxin system combined with promoter engineering to improve the genetic stability of E. coli episomal plasmids without antibiotics.l-homoserine, a nonprotein amino acid, is used to synthesize many active substances in the industry. Here, to develop a robust l-homoserine-producing strain, Escherichia coli W3110 was used as a chassis to be engineered. Based on a previous construct with blocked competing routes for l-homoserine synthesis, five genes were overexpressed by promoter replacement strategy to increase the l-homoserine production, including enhancement of precursors for l-homoserine synthesis (ppc, thrA, and asd), reinforcement of the NADPH supply (pntAB) and efflux transporters (rhtA) to improve the l-homoserine production. However, the plasmid losing was to blame for the wildly fluctuating fermentation performance of engineered strains, ranging between 2.1 and 6.2 g/L. Then, a hok/sok toxin/antitoxin system was introduced into the free plasmid expression cassette to maintain the genetic stability of the episomal plasmid; consequently, the plasmid-losing rate sharply decreased, resulting in the engineered strain SHL17, which exhibited excellent stability in l-homoserine production, with 6.3 g/L in shake flasks and 44.4 g/L in a 5-L fermenter without antibiotic addition. This work verified the effective use of the hok/sok toxin/antitoxin system combined with promoter engineering to improve the genetic stability of E. coli episomal plasmids without antibiotics.
Author Wang, Feng‐Qing
Sun, Bing‐Yao
Zhao, Jian
Tao, Xin‐Yi
Liu, Min
Wei, Dong‐Zhi
Author_xml – sequence: 1
  givenname: Bing‐Yao
  orcidid: 0000-0003-4763-5508
  surname: Sun
  fullname: Sun, Bing‐Yao
  organization: East China University of Science and Technology
– sequence: 2
  givenname: Feng‐Qing
  orcidid: 0000-0002-3473-5991
  surname: Wang
  fullname: Wang, Feng‐Qing
  organization: East China University of Science and Technology
– sequence: 3
  givenname: Jian
  surname: Zhao
  fullname: Zhao, Jian
  organization: East China University of Science and Technology
– sequence: 4
  givenname: Xin‐Yi
  surname: Tao
  fullname: Tao, Xin‐Yi
  email: xytao@ecust.edu.cn
  organization: East China University of Science and Technology
– sequence: 5
  givenname: Min
  surname: Liu
  fullname: Liu, Min
  email: lmin@ecust.edu.cn
  organization: East China University of Science and Technology
– sequence: 6
  givenname: Dong‐Zhi
  surname: Wei
  fullname: Wei, Dong‐Zhi
  organization: East China University of Science and Technology
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36284486$$D View this record in MEDLINE/PubMed
BookMark eNqFkT1PwzAQhi1URD9gZUQZWVLOjhPbbFCVLxV1AYnNShyndZXEJU6EuvET-I38EhK1BQkJMd0Nz3Onu3eIeqUtNUKnGMYYgFysbFKMCRACQDk_QAMcEuxTILyHBkCCwMcYv_TR0LkVAAhBxBHqBxHhlPJogC6n5cKUWlemXHhTp5Ztp5Ym9pTNjZfZyss_3z-WtrCuY7S3rmzaqNrY8hgdZnHu9MmujtDzzfRpcufP5rf3k6uZrwLGuZ_SAKeKJpBFIlJCd3uThMUq4ACsbWjKgjAkEdZYpSrVEWORAMZDBUQpGozQ-XZuu_q10a6WhXFK53lcats4STjGgmNK2f8oIwKIEBS36NkObZJCp3JdmSKuNnL_mhagW0BV1rlKZ1KZOu4Or6vY5BKD7BKQXQLyO4FWG__S9pP_FMRWeDO53vxDy4f59eOP-wVAcpiI
CitedBy_id crossref_primary_10_1002_bit_28861
crossref_primary_10_1038_s41522_024_00479_8
crossref_primary_10_1186_s12934_024_02623_7
crossref_primary_10_1016_j_jenvman_2024_123037
crossref_primary_10_1021_acs_jafc_3c09561
crossref_primary_10_3390_molecules28186745
crossref_primary_10_1021_acs_jafc_4c06697
crossref_primary_10_1021_cbe_3c00077
crossref_primary_10_3390_fermentation9080737
crossref_primary_10_1134_S0006297923090122
crossref_primary_10_1021_acssuschemeng_4c07838
crossref_primary_10_1021_acssynbio_4c00208
crossref_primary_10_1093_jambio_lxad075
crossref_primary_10_31857_S0320972523090129
Cites_doi 10.1093/chrsci/49.2.118
10.1016/j.ymben.2021.07.011
10.1002/btpr.2341
10.1016/j.jbiotec.2004.03.010
10.1016/j.mib.2017.05.001
10.1007/978-1-4939-3515-4_11
10.3390/pathogens4020157
10.1016/j.jbiotec.2020.03.010
10.1038/s41467-019-10600-7
10.1006/jmbi.1995.0186
10.1038/nchembio.2046
10.1016/j.ymben.2022.07.001
10.1186/1475-2859-4-25
10.1007/s10529-021-03082-5
10.1016/j.ymben.2018.05.020
10.1016/j.biotechadv.2021.107767
10.1016/j.ymben.2019.07.007
10.1371/journal.pgen.1009656
10.1016/j.procbio.2016.09.024
10.1016/j.biortech.2021.124814
10.1016/j.cub.2020.07.019
10.1016/j.ymben.2018.08.002
10.1128/AEM.01477-20
10.1385/ABAB:114:1-3:373
10.1007/s11095-004-1873-z
10.1002/jobm.201500256
10.2144/05385RR02
10.1016/j.ymben.2017.10.014
10.1007/s12257-019-0269-1
10.1002/j.1460-2075.1994.tb06465.x
10.1093/nar/gkl750
ContentType Journal Article
Copyright 2022 Wiley‐VCH GmbH.
2022 Wiley-VCH GmbH.
Copyright_xml – notice: 2022 Wiley‐VCH GmbH.
– notice: 2022 Wiley-VCH GmbH.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7S9
L.6
DOI 10.1002/jobm.202200488
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
AGRICOLA
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Biology
EISSN 1521-4028
EndPage 178
ExternalDocumentID 36284486
10_1002_jobm_202200488
JOBM202200488
Genre article
Journal Article
GrantInformation_xml – fundername: National Natural Science Foundation of China
  funderid: 31500043
– fundername: Open Funding Project of the State Key Laboratory of Bioreactor Engineering
– fundername: Natural Science Foundation of Shanghai
  funderid: 21ZR1417200
– fundername: National Key Research and Development Program of China
  funderid: 2021YFC2100300
– fundername: National Natural Science Foundation of China
  grantid: 31500043
– fundername: Natural Science Foundation of Shanghai
  grantid: 21ZR1417200
– fundername: National Key Research and Development Program of China
  grantid: 2021YFC2100300
GroupedDBID ---
-~X
.3N
.GA
.GJ
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
31~
33P
3SF
3WU
4.4
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHQN
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAXRX
AAYCA
AAZKR
ABCUV
ABIJN
ABPVW
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACGFS
ACPOU
ACRPL
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFWVQ
AFZJQ
AHBTC
AI.
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
CS3
D-E
D-F
DCZOG
DDYGU
DPXWK
DR2
DRFUL
DRSTM
EBD
EBS
EJD
EMOBN
F00
F01
F04
F5P
FEDTE
G-S
G.N
GNP
GODZA
H.T
H.X
HBH
HF~
HGLYW
HHY
HVGLF
HZ~
IX1
J0M
JPC
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M62
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MXFUL
MXSTM
N04
N05
N9A
NF~
O66
O9-
OIG
P2W
P2X
P4D
PALCI
Q.N
Q11
QB0
QRW
R.K
RIWAO
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
UB1
V2E
VH1
W8V
W99
WBKPD
WIH
WIK
WNSPC
WOHZO
WWD
WXSBR
WYISQ
XG1
XPP
XV2
ZXP
ZZTAW
~IA
~KM
~WT
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
PKN
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
7S9
L.6
ID FETCH-LOGICAL-c3788-d431dc4b0f696c9e4486bb7ac38007b7a4d7355261e1cdcde677690785c02cc43
IEDL.DBID DR2
ISSN 0233-111X
1521-4028
IngestDate Fri Jul 11 18:33:00 EDT 2025
Thu Jul 10 22:56:29 EDT 2025
Wed Feb 19 02:25:13 EST 2025
Tue Jul 01 00:43:53 EDT 2025
Thu Apr 24 22:53:03 EDT 2025
Wed Jan 22 16:24:17 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords plasmid stability
hok/sok system
metabolic engineering
Escherichia coli
l-homoserine
Language English
License 2022 Wiley-VCH GmbH.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3788-d431dc4b0f696c9e4486bb7ac38007b7a4d7355261e1cdcde677690785c02cc43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-3473-5991
0000-0003-4763-5508
PMID 36284486
PQID 2729029941
PQPubID 23479
PageCount 11
ParticipantIDs proquest_miscellaneous_2811981447
proquest_miscellaneous_2729029941
pubmed_primary_36284486
crossref_citationtrail_10_1002_jobm_202200488
crossref_primary_10_1002_jobm_202200488
wiley_primary_10_1002_jobm_202200488_JOBM202200488
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2023
2023-02-00
2023-Feb
20230201
PublicationDateYYYYMMDD 2023-02-01
PublicationDate_xml – month: 02
  year: 2023
  text: February 2023
PublicationDecade 2020
PublicationPlace Germany
PublicationPlace_xml – name: Germany
PublicationTitle Journal of basic microbiology
PublicationTitleAlternate J Basic Microbiol
PublicationYear 2023
References 2021; 43
2021; 67
2015; 4
2020; 86
2006; 34
2016; 1409
2019; 55
2022; 73
2019; 10
2017; 44
2021; 327
2016; 32
2020; 314‐315
2016; 51
2021; 50
2005; 22
2018; 49
2018; 48
2016; 56
2016; 12
2004; 111
2004; 114
2020; 30
2017; 38
2021; 17
2005; 4
2020; 25
1994; 13
1995; 247
2011; 49
2005; 38
e_1_2_9_30_1
e_1_2_9_31_1
e_1_2_9_11_1
e_1_2_9_10_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_12_1
e_1_2_9_15_1
e_1_2_9_14_1
e_1_2_9_17_1
e_1_2_9_16_1
e_1_2_9_19_1
e_1_2_9_18_1
e_1_2_9_20_1
e_1_2_9_22_1
e_1_2_9_21_1
e_1_2_9_24_1
e_1_2_9_23_1
e_1_2_9_8_1
e_1_2_9_7_1
e_1_2_9_6_1
e_1_2_9_5_1
e_1_2_9_4_1
e_1_2_9_3_1
e_1_2_9_2_1
e_1_2_9_9_1
e_1_2_9_26_1
e_1_2_9_25_1
e_1_2_9_28_1
e_1_2_9_27_1
e_1_2_9_29_1
References_xml – volume: 56
  start-page: 206
  year: 2016
  end-page: 10
  article-title: Curing of plasmid pBMB28 from YBT‐020 using an unstable replication region
  publication-title: J Basic Microbiol
– volume: 32
  start-page: 1418
  year: 2016
  end-page: 25
  article-title: Testing plasmid stability of using the continuously operated shaken BIOreactor system
  publication-title: Biotechnol Prog
– volume: 38
  start-page: 775
  year: 2005
  end-page: 81
  article-title: Separate‐component‐stabilization system for protein and DNA production without the use of antibiotics
  publication-title: Bio Techniques
– volume: 38
  start-page: 74
  year: 2017
  end-page: 80
  article-title: An evolutionary perspective on plasmid lifestyle modes
  publication-title: Curr Opin Microbiol
– volume: 314‐315
  start-page: 1
  year: 2020
  end-page: 7
  article-title: Increasing l‐homoserine production in by engineering the central metabolic pathways
  publication-title: J Biotechnol
– volume: 17
  year: 2021
  article-title: Essential gene acquisition destabilizes plasmid inheritance
  publication-title: PLoS Genet
– volume: 10
  start-page: 2595
  year: 2019
  article-title: Emergence of plasmid stability under non‐selective conditions maintains antibiotic resistance
  publication-title: Nat Commun
– volume: 34
  start-page: 5915
  year: 2006
  end-page: 22
  article-title: Competitive inhibition of natural antisense Sok‐RNA interactions activates Hok‐mediated cell killing in
  publication-title: Nucleic Acids Res
– volume: 13
  start-page: 1960
  year: 1994
  end-page: 8
  article-title: Mechanism of post‐segregational killing: Sok antisense RNA interacts with Hok mRNA via its 5′‐end single‐stranded leader and competes with the 3′‐end of Hok mRNA for binding to the mok translational initiation region
  publication-title: EMBO J
– volume: 4
  start-page: 157
  year: 2015
  end-page: 81
  article-title: Antibiotic‐free selection in biotherapeutics: now and forever
  publication-title: Pathogens
– volume: 44
  start-page: 284
  year: 2017
  end-page: 92
  article-title: A systematically chromosomally engineered efficiently produces butanol
  publication-title: Metab Eng
– volume: 55
  start-page: 170
  year: 2019
  end-page: 8
  article-title: Systematic engineering for high‐yield production of viridiflorol and amorphadiene in auxotrophic
  publication-title: Metab Eng
– volume: 67
  start-page: 321
  year: 2021
  end-page: 9
  article-title: Highly efficient production of ‐homoserine in by engineering a redox balance route
  publication-title: Metab Eng
– volume: 49
  start-page: 118
  year: 2011
  end-page: 23
  article-title: HPLC‐FLD for the simultaneous determination of primary and secondary amino acids from complex biological sample by pre‐column derivatization
  publication-title: J Chromatogr Sci
– volume: 22
  start-page: 362
  year: 2005
  end-page: 72
  article-title: A scalable, extrusion‐free method for efficient liposomal encapsulation of plasmid DNA
  publication-title: Pharm Res
– volume: 50
  year: 2021
  article-title: Recent advances in tuning the expression and regulation of genes for constructing microbial cell factories
  publication-title: Biotechnol Adv
– volume: 86
  start-page: e01477
  year: 2020
  end-page: 20
  article-title: Multiplex design of metabolic network for production of l‐homoserine in
  publication-title: Appl Environ Microbiol
– volume: 51
  start-page: 1973
  year: 2016
  end-page: 83
  article-title: Metabolic engineering of W3110 for ‐homoserine production
  publication-title: Process Biochem
– volume: 4
  start-page: 25
  year: 2005
  article-title: Organic acid toxicity, tolerance, and production in biorefining applications
  publication-title: Microb Cell Fact
– volume: 114
  start-page: 373
  year: 2004
  end-page: 9
  article-title: Biosynthesis of ( )‐3‐hydroxyalkanoic acids by metabolically engineered
  publication-title: Appl Biochem Biotechnol
– volume: 327
  year: 2021
  article-title: High‐level production of ‐homoserine using a non‐induced, non‐auxotrophic chassis through metabolic engineering
  publication-title: Bioresour Technol
– volume: 111
  start-page: 17
  year: 2004
  end-page: 30
  article-title: A host/plasmid system that is not dependent on antibiotics and antibiotic resistance genes for stable plasmid maintenance in
  publication-title: J Biotechnol
– volume: 73
  start-page: 104
  year: 2022
  end-page: 13
  article-title: Metabolic engineering of W3110 for efficient production of homoserine from glucose
  publication-title: Metab Eng
– volume: 247
  start-page: 859
  year: 1995
  end-page: 73
  article-title: Mechanism of post‐segregational killing: secondary structure analysis of the entire Hok mRNA from plasmid R1 suggests a fold‐back structure that prevents translation and antisense RNA binding
  publication-title: J Mol Biol
– volume: 1409
  start-page: 125
  year: 2016
  end-page: 33
  article-title: Determination of plasmid segregational stability in a growing bacterial population
  publication-title: Methods Mol Biol
– volume: 30
  start-page: 3841
  year: 2020
  end-page: 7
  article-title: Antibiotics interfere with the evolution of plasmid stability
  publication-title: Curr Biol
– volume: 12
  start-page: 339
  year: 2016
  end-page: 44
  article-title: Exploiting nongenetic cell‐to‐cell variation for enhanced biosynthesis
  publication-title: Nat Chem Biol
– volume: 48
  start-page: 121
  year: 2018
  end-page: 8
  article-title: Synthetic auxotrophs for stable and tunable maintenance of plasmid copy number
  publication-title: Metab Eng
– volume: 49
  start-page: 105
  year: 2018
  end-page: 15
  article-title: Metabolic engineering of for high‐level astaxanthin production with high productivity
  publication-title: Metab Eng
– volume: 25
  start-page: 39
  year: 2020
  end-page: 44
  article-title: Enhanced production of malic acid by co‐localization of phosphoenolpyruvate carboxylase and malate dehydrogenase using synthetic protein scaffold in
  publication-title: Biotechnol Bioproc E
– volume: 43
  start-page: 1265
  year: 2021
  end-page: 76
  article-title: Efficient strategies to enhance plasmid stability for fermentation of recombinant harboring tyrosine phenol lyase
  publication-title: Biotechnol Lett
– ident: e_1_2_9_13_1
  doi: 10.1093/chrsci/49.2.118
– ident: e_1_2_9_5_1
  doi: 10.1016/j.ymben.2021.07.011
– ident: e_1_2_9_21_1
  doi: 10.1002/btpr.2341
– ident: e_1_2_9_22_1
  doi: 10.1016/j.jbiotec.2004.03.010
– ident: e_1_2_9_17_1
  doi: 10.1016/j.mib.2017.05.001
– ident: e_1_2_9_29_1
  doi: 10.1007/978-1-4939-3515-4_11
– ident: e_1_2_9_32_1
  doi: 10.3390/pathogens4020157
– ident: e_1_2_9_3_1
  doi: 10.1016/j.jbiotec.2020.03.010
– ident: e_1_2_9_10_1
  doi: 10.1038/s41467-019-10600-7
– ident: e_1_2_9_26_1
  doi: 10.1006/jmbi.1995.0186
– ident: e_1_2_9_19_1
  doi: 10.1038/nchembio.2046
– ident: e_1_2_9_6_1
  doi: 10.1016/j.ymben.2022.07.001
– ident: e_1_2_9_15_1
  doi: 10.1186/1475-2859-4-25
– ident: e_1_2_9_16_1
  doi: 10.1007/s10529-021-03082-5
– ident: e_1_2_9_20_1
  doi: 10.1016/j.ymben.2018.05.020
– ident: e_1_2_9_8_1
  doi: 10.1016/j.biotechadv.2021.107767
– ident: e_1_2_9_31_1
  doi: 10.1016/j.ymben.2019.07.007
– ident: e_1_2_9_28_1
  doi: 10.1371/journal.pgen.1009656
– ident: e_1_2_9_7_1
  doi: 10.1016/j.procbio.2016.09.024
– ident: e_1_2_9_4_1
  doi: 10.1016/j.biortech.2021.124814
– ident: e_1_2_9_9_1
  doi: 10.1016/j.cub.2020.07.019
– ident: e_1_2_9_24_1
  doi: 10.1016/j.ymben.2018.08.002
– ident: e_1_2_9_2_1
  doi: 10.1128/AEM.01477-20
– ident: e_1_2_9_12_1
  doi: 10.1385/ABAB:114:1-3:373
– ident: e_1_2_9_23_1
  doi: 10.1007/s11095-004-1873-z
– ident: e_1_2_9_18_1
  doi: 10.1002/jobm.201500256
– ident: e_1_2_9_30_1
  doi: 10.2144/05385RR02
– ident: e_1_2_9_11_1
  doi: 10.1016/j.ymben.2017.10.014
– ident: e_1_2_9_14_1
  doi: 10.1007/s12257-019-0269-1
– ident: e_1_2_9_25_1
  doi: 10.1002/j.1460-2075.1994.tb06465.x
– ident: e_1_2_9_27_1
  doi: 10.1093/nar/gkl750
SSID ssj0009929
Score 2.4014637
Snippet l‐homoserine, a nonprotein amino acid, is used to synthesize many active substances in the industry. Here, to develop a robust l‐homoserine‐producing strain,...
l ‐homoserine, a nonprotein amino acid, is used to synthesize many active substances in the industry. Here, to develop a robust l ‐homoserine‐producing strain,...
l-homoserine, a nonprotein amino acid, is used to synthesize many active substances in the industry. Here, to develop a robust l-homoserine-producing strain,...
SourceID proquest
pubmed
crossref
wiley
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 168
SubjectTerms Anti-Bacterial Agents - metabolism
antibiotics
antitoxins
Antitoxins - genetics
Antitoxins - metabolism
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
fermentation
fermenters
genetic stability
hok/sok system
Homoserine - metabolism
industry
l‐homoserine
metabolic engineering
Metabolic Engineering - methods
microbiology
nonprotein amino acids
plasmid stability
plasmids
Plasmids - genetics
toxins
Title Engineering Escherichia coli for l‐homoserine production
URI https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fjobm.202200488
https://www.ncbi.nlm.nih.gov/pubmed/36284486
https://www.proquest.com/docview/2729029941
https://www.proquest.com/docview/2811981447
Volume 63
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LS8NAEB6kIHrxUV_xRQTBU9o0z403rS2loIJY6C1kNylWa1JMe9CTP8Hf6C9xJtukraKC3hLYJZt57HyT7HwDcBxwRnGbaUT9oVkeNzXOTJ38yrODmosxMWP7vHJaHavdtbszVfySH6L44Eaeke3X5OABT6tT0tD7hFMluWFkRoibcM10iDz_4mbKH-V5WZsyjEumhk7dzVkbdaM6P30-Kn2BmvPINQs9zVUI8kXLEycPlfGIV8TLJz7H_7zVGqxMcKl6Jg1pHRaiuAyLslPlcxmW6nljuA04neEwVBspab1PJ6ZVtKm-iiBYHby_vt0lj0ma1RaqQ8kqixawCZ1m47be0iYtGDRBRPNaiPgiFBbXe47nCC_CZM7h3A2EiUDTxQsrdBGxYBoW1UQowshxXcq3mS10QwjL3IJSnMTRDqiO6FmMWmW5CME8O-S9AMGBCM1AMBZZXAEtV4EvJvzk1CZj4EtmZcMn2fiFbBQ4KcYPJTPHtyOPco36KCr6IxLEUTJOfQNTC1ySZ9V-GMPQbBnmna4C29Iciudh9GckEgWMTKm_LMRvX59fFne7f5m0B8vU8F6eG9-H0uhpHB0gLBrxw8z0PwB2ggIt
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xCMGFfSlrkJA4pU2TNLa5AQKVskkIpN6i2ElFWRpE2wOc-AS-kS9hxm5SCgIkuCWRrTiemcwbe_wGYCuSnPw2t4n6w_aF9GzJPYfsSlSiMkOfqNk-z4LqlV-rV7JsQjoLY_gh8gU3sgz9vyYDpwXpUp819CaVdJTcdbUWDsOo3qQjXHTRZ5ASQhcqQ8_k2WjW9Yy30XFLg_0H_dIXsDmIXbXzOZwCmQ3b5JzcFrsdWVTPnxgd__Vd0zDZg6bWrtGlGRhKWrMwZopVPs3C-H5WG24Odj7QGFoHbRJ8k5KmLVSrpoU42Lp7e3m9Tu_Ttj5eaD0YYllUgnm4Ojy43K_avSoMtiKueTtGiBErXzqNQARKJBjPBVKySHmINRle-DFD0IKRWFJWsYqTgDEKuXlFOa5SvrcAI620lSyBFaiGz6laFkMUJiqxbESID1TsRYrzxJcFsDMZhKpHUU6VMu5CQ67shjQ3YT43BdjO2z8Yco5vW25mIg1xqmhTJGolabcduhhd4JCEX_6hDUfN5Rh6sgIsGn3I34cAgNOUFMDVUv1lIGHtfO80v1v-S6cNGK9enp6EJ0dnxyswgc89k0a-CiOdx26yhiipI9e1HbwDpzoGSw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LT4NAEJ5ojY-Lj_rCJyYmnugDFli8aW1Tq1ZjNOmNsAuN1QqNbQ968if4G_0lzrKFtho10RuQ2bDMg_kGdr8B2PcYFXmbaoL6QyMOMzRGjYKIK8f0ijbmxJjts25Vb0mtYTZGdvFLfoj0g5uIjPh9LQK84zfzQ9LQ-4iJneS6HjvhJEwRC3OlgEXXQwIpx4n7lGFiMjSM6kZC21jQ8-Pjx9PSF6w5Dl3j3FNZAC-ZtVxy8pDr91iOv3widPzPYy3C_ACYqkfSk5ZgIgizMC1bVT5nYbaUdIZbhsMREkO13BVmb4kl0yo6VUtFFKy231_f7qLHqBtvLlQ7klYWXWAFbivlm1JVG_Rg0Lhgmtd8BBg-J6zQtByLOwFWcxZjtscNRJo2HhDfRsiCdVhQ5D73A8u2RcFNTV7QOSfGKmTCKAzWQbV4k1DRK8tGDOaYPmt6iA64b3ic0oAwBbTEBC4fEJSLPhltV1Ir667QjZvqRoGDVL4jqTm-ldxLLOqiqsQvES8Mon7X1bG2wCk5pPiDDEW_pVh42gqsSXdI74fpnwqVKKDHRv1lIm7t8vgiPdv4y6BdmLk6qbjnp_WzTZjDy4ZcQ74Fmd5TP9hGiNRjO3EUfACHJQT6
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+Escherichia+coli+for+l%E2%80%90homoserine+production&rft.jtitle=Journal+of+basic+microbiology&rft.au=Sun%2C+Bing%E2%80%90Yao&rft.au=Wang%2C+Feng%E2%80%90Qing&rft.au=Zhao%2C+Jian&rft.au=Tao%2C+Xin%E2%80%90Yi&rft.date=2023-02-01&rft.issn=0233-111X&rft.volume=63&rft.issue=2+p.168-178&rft.spage=168&rft.epage=178&rft_id=info:doi/10.1002%2Fjobm.202200488&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0233-111X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0233-111X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0233-111X&client=summon