Monitoring machine learning models: a categorization of challenges and methods
The importance of software based on machine learning is growing rapidly, but the potential of prototypes may not be realized in operation. This study identified six categories of challenges for verification and validation of machine learning applications during production. Subsequently, monitoring w...
Saved in:
Published in | Data science and management Vol. 5; no. 3; pp. 105 - 116 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Elsevier B.V
01.09.2022
KeAi Communications Co. Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 2666-7649 2666-7649 |
DOI | 10.1016/j.dsm.2022.07.004 |
Cover
Abstract | The importance of software based on machine learning is growing rapidly, but the potential of prototypes may not be realized in operation. This study identified six categories of challenges for verification and validation of machine learning applications during production. Subsequently, monitoring was analyzed as a possible solution to mitigate those challenges. Capturing relevant data and model metrics may reveal problems at an early stage, allowing for targeted countermeasures. This study presents a taxonomy of methods and metrics currently addressed in scientific literature and compares these categories with case studies from practice. |
---|---|
AbstractList | The importance of software based on machine learning is growing rapidly, but the potential of prototypes may not be realized in operation. This study identified six categories of challenges for verification and validation of machine learning applications during production. Subsequently, monitoring was analyzed as a possible solution to mitigate those challenges. Capturing relevant data and model metrics may reveal problems at an early stage, allowing for targeted countermeasures. This study presents a taxonomy of methods and metrics currently addressed in scientific literature and compares these categories with case studies from practice. |
Author | Schulz, Michael Schröder, Tim |
Author_xml | – sequence: 1 givenname: Tim orcidid: 0000-0002-5693-9020 surname: Schröder fullname: Schröder, Tim email: timxschroeder@gmail.com – sequence: 2 givenname: Michael surname: Schulz fullname: Schulz, Michael |
BookMark | eNp9kMtKBDEQRYMoqKMf4K5_YNo8OklHVyK-wMdG1yFdqZ7J0JNI0gj69bYzIuLCVRWXOpfiHJLdmCIScsJozShTp6val3XNKec11TWlzQ454EqpuVaN2f2175PjUlaUUt4yxqU6II8PKYYx5RAX1drBMkSsBnQ5boLkcShnlavAjbiYrj7cGFKsUl_B0g0DxgWWykVfrXFcJl-OyF7vhoLH33NGXq6vni9v5_dPN3eXF_dzELpt5py1QijjoRNSKy2E8FL3THnTcPDMAOfMtY00XYcGGqqYFKrznHa991IyMSN3216f3Mq-5rB2-d0mF-wmSHlhXR4DDGi1Ub0SUggQsnGtMNC13plWGmgb39Gpi227IKdSMvY_fYzaL792ZSe_9suvpdpOfidG_2EgjBs3Y3Zh-Jc835KTWXwLmG2BgBHQh4wwTv-Hf-hPqPKWHA |
CitedBy_id | crossref_primary_10_1002_dac_5878 crossref_primary_10_3390_en17122909 crossref_primary_10_3390_su16219239 crossref_primary_10_1093_jamia_ocad114 crossref_primary_10_3390_foods13244015 crossref_primary_10_1016_j_agee_2024_109378 crossref_primary_10_3390_su16051951 crossref_primary_10_1016_j_ngib_2024_09_005 crossref_primary_10_1016_j_ijhydene_2023_08_148 crossref_primary_10_1515_dema_2024_0010 crossref_primary_10_1016_j_comcom_2024_02_005 crossref_primary_10_1016_j_jik_2024_100637 crossref_primary_10_3390_medicines10100058 crossref_primary_10_1007_s13042_024_02223_2 crossref_primary_10_1016_j_procs_2022_11_242 crossref_primary_10_1016_j_eswa_2023_122774 crossref_primary_10_1016_j_jmapro_2023_06_052 crossref_primary_10_3390_iot5020012 crossref_primary_10_1016_j_nlp_2024_100076 |
Cites_doi | 10.1109/TSE.2014.2372785 10.1023/A:1007604202679 10.1016/j.scico.2007.01.015 10.1109/ACCESS.2017.2696365 10.1214/aoms/1177729694 10.1145/267580.267590 10.2307/1968827 10.1038/nature21056 10.1126/science.aaa8415 10.1016/0893-6080(89)90020-8 10.1016/j.patcog.2011.06.019 10.1049/sej.1989.0001 10.1111/1467-9868.00353 10.14778/3229863.3229867 10.1145/2523813 10.1109/52.382180 10.1016/j.future.2012.02.006 10.2307/1912352 10.1214/aos/1176343842 10.1016/0305-0548(81)90019-8 10.1145/360248.360252 10.3354/cr030079 10.29297/orbit.v1i2.49 10.3233/IDA-2002-6504 10.1007/s10618-015-0448-4 10.1016/j.jmir.2016.06.004 |
ContentType | Journal Article |
Copyright | 2022 Xi’an Jiaotong University |
Copyright_xml | – notice: 2022 Xi’an Jiaotong University |
DBID | 6I. AAFTH AAYXX CITATION DOA |
DOI | 10.1016/j.dsm.2022.07.004 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2666-7649 |
EndPage | 116 |
ExternalDocumentID | oai_doaj_org_article_796f63533c354a839cb8da9859c84db0 10_1016_j_dsm_2022_07_004 S2666764922000303 |
GroupedDBID | 6I. AAEDW AAFTH AAXUO AEXQZ ALMA_UNASSIGNED_HOLDINGS AMRAJ EBS FDB GROUPED_DOAJ M~E OK1 ROL 0R~ AALRI AAYWO AAYXX ACVFH ADCNI ADVLN AEUPX AFPUW AIGII AITUG AKBMS AKRWK AKYEP CITATION |
ID | FETCH-LOGICAL-c3784-2183369dcb35767333d57f16d942cd19c221a8459bbe9c4061536bd20bfdd5513 |
IEDL.DBID | DOA |
ISSN | 2666-7649 |
IngestDate | Wed Aug 27 01:07:30 EDT 2025 Tue Jul 01 01:06:46 EDT 2025 Thu Apr 24 22:51:48 EDT 2025 Fri Feb 23 02:38:57 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Taxonomy Operations Monitoring Machine learning |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c3784-2183369dcb35767333d57f16d942cd19c221a8459bbe9c4061536bd20bfdd5513 |
ORCID | 0000-0002-5693-9020 |
OpenAccessLink | https://doaj.org/article/796f63533c354a839cb8da9859c84db0 |
PageCount | 12 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_796f63533c354a839cb8da9859c84db0 crossref_primary_10_1016_j_dsm_2022_07_004 crossref_citationtrail_10_1016_j_dsm_2022_07_004 elsevier_sciencedirect_doi_10_1016_j_dsm_2022_07_004 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-09-01 |
PublicationDateYYYYMMDD | 2022-09-01 |
PublicationDate_xml | – month: 09 year: 2022 text: 2022-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationTitle | Data science and management |
PublicationYear | 2022 |
Publisher | Elsevier B.V KeAi Communications Co. Ltd |
Publisher_xml | – name: Elsevier B.V – name: KeAi Communications Co. Ltd |
References | Jordan, Mitchell (bib64) 2015; 349 Cam, Chui, Hall (bib24) 2019 Ernst, Perkins, Guo (bib37) 2007; 69 Alpaydin (bib3) 2020 Amershi, Begel, Bird (bib5) 2019 Arpteg, Brinne, Crnkovic-Friis (bib7) 2018 Beran (bib14) 1977; 5 Bridge, Fielding, Rowntree (bib23) 2016; 47 Hansson, Yella, Dougherty (bib51) 2016; 6 Bartlett, Ben-David, Kulkarni (bib12) 2000; 41 Barr, Harman, McMinn (bib11) 2015; 41 Pei, Cao, Yang (bib88) 2017 Wagstaff, Doran, Davies (bib116) 2019 EU Parliament (bib40) 2021 Ashmore, Calinescu, Paterson (bib8) 2019 Gass, Joel (bib46) 1981; 8 Ré, Niu, Gudipati (bib93) 2019 Sharir, Peleg, Shoham (bib101) 2020 Hornik, Stinchcombe, White (bib57) 1989; 2 Clarke, Klieber, Nováček (bib29) 2012 Gama, zliobaite, Bifet (bib44) 2014; 46 L’Heureux, Grolinger, El Yamany (bib76) 2017; 5 Touvron, Vedaldi, Douze (bib109) 2020 Jones, White, Zaidi (bib63) 2019 Jagielski, Oprea, Biggio (bib61) 2018 Huang, Kwiatkowska, Wang (bib58) 2017 Tripathi, Muhr, Manuel (bib110) 2020 Hendrycks, Dietterich (bib54) 2019 Peled, Vardi, Yannakakis (bib89) 1999 Morgenthaler, Gridnev, Sauciuc (bib84) 2012 Breck, Zinkevich, Polyzotis (bib22) 2019 Finkelstein, Harman, Mansouri (bib42) 2008; RE’08 Schelter, Bießmann, Januschowski (bib96) 2018; 41 Vaswani, Shazeer, Parmar (bib113) 2017 Guo, Pleiss, Sun (bib48) 2017 Polyzotis, Roy, Whang (bib91) 2017 Schelter, Lange, Schmidt (bib97) 2018; 11 Davenport, Ronanki (bib32) 2018 Schubmehl, Manabe, Minonne (bib99) 2020 McGregor (bib78) 2020 Wolf, Miller, Grodzinsky (bib119) 2017; 1 Japkowicz, Stephen (bib62) 2002; 6 Kodiyan (bib70) 2019 Spiegelhalter, Best, Carlin (bib103) 2002; 64 Voas, Miller (bib115) 1995; 12 Pham (bib90) 2006 Baylor, Breck, Cheng (bib82) 2017 Zaharia, Chen, Davidson (bib123) 2018; 41 Klaise, Van Looveren, Cox (bib69) 2020 Krishnan, Franklin, Goldberg (bib71) 2017 Hastie, Tibshirani, Friedman (bib52) 2009 Devlin, Chang, Lee (bib33) 2019 Kullback, Leibler (bib72) 1951; 22 Schlimmer, Granger (bib98) 1986; 1 Haldar, Abdool, Ramanathan (bib49) 2019 Kitchenham, Walker (bib68) 1989; 4 Ma, Papadakis, Tsakmalis (bib77) 2019 Bojarski, Del Testa, Dworakowski (bib18) 2016 Clark, Kearns, Overholt (bib28) 2014 Hall, Gill (bib50) 2018 Spanfelner, Richter, Ebel (bib102) 2012 Stoica, Song, Popa (bib104) 2017 Katz, Barrett, Dill (bib66) 2017 Doshi-Velez, Kim (bib34) 2017 Barocas, Selbst (bib10) 2016; 671 Verma, Rubin (bib114) 2018 Yu, Liu (bib121) 2004; 5 Gardiner (bib45) 1999 Lakshminarayanan, Pritzel, Blundell (bib75) 2017 Esteva, Kuprel, Novoa (bib38) 2017; 542 Adler, Feth, Schneider (bib1) 2016 Sculley, Holt, Golovin (bib100) 2015 Zhu, Hall, May (bib126) 1997; 29 Chilakapati (bib27) 2019 King (bib67) 1976; 19 Miller (bib81) 2018 Chen, Zhang, Guo (bib25) 2013; 29 Salay, Czarnecki (bib95) 2018 (bib39) 2016 Tallarida, Murray (bib107) 1987 Gajane, Pechenizkiy (bib43) 2018 Vartak, Madden (bib111) 2018; 41 Zhao, Nasrullah, Li (bib125) 2019 Cramer (bib31) 1940; 41 Sutton, Hobson, Geddes (bib106) 2018 Bernardi, Mavridis, Estevez (bib15) 2019 Cheng, Nührenberg, Ruess (bib26) 2017 Quionero-Candela, Sugiyama, Schwaighofer (bib92) 2009 Corbett-Davies, Goel (bib30) 2018 Ovadia, Fertig, Ren (bib86) 2019 Webb, Hyde, Cao (bib117) 2016; 30 Glorot, Bengio (bib47) 2010 Tan, Sun, Kong (bib108) 2018 Amershi, Chickering, Drucker (bib6) 2015 Yang, Shami (bib120) 2020 Borg, Englund, Wnuk (bib20) 2018 Kumar, Nyström, Lambert (bib73) 2020 Willmott, Matsuura (bib118) 2005; 30 Bengio (bib13) 2012 McMahan, Golovin, Chikkerur (bib79) 2013 Ribeiro, Singh, Guestrin (bib94) 2016 Bhatt, Xiang, Sharma (bib16) 2020 Engstrom, Tran, Tsipras (bib36) 2019 Farquhar, Gal (bib41) 2019 Albarghouthi, Vinitsky (bib2) 2019 Paleyes, Urma, Lawrence (bib87) 2020 Zhang, Harman, Ma (bib124) 2019 Bolukbasi, Chang, Zou (bib19) 2016 Zafar, Valera, Rodriguez (bib122) 2017 Hüllermeier, Waegeman (bib56) 2020 (bib4) 2000 Balzert (bib9) 2009 Breck, Cai, Nielsen (bib21) 2017 Herrera (bib55) 2011 Boehm, Kumar, Yang (bib17) 2019; 14 Kusner, Loftus, Russell (bib74) 2018 Miljković (bib80) 2010 Murphy, Kaiser, Arias (bib85) 2007 Heckman (bib53) 1979; 47 Sun, Huang, Kroening (bib105) 2019 Kanewala, Bieman (bib65) 2018 (bib60) 1990 Moreno-Torres, Raeder, Alaiz-RodríGuez (bib83) 2012; 45 Hynes, Sculley, Terry (bib59) 2017 Vartak, Subramanyam, Lee (bib112) 2016 Dwork, Hardt, Pitassi (bib35) 2011 Barocas (10.1016/j.dsm.2022.07.004_bib10) 2016; 671 Cam (10.1016/j.dsm.2022.07.004_bib24) Tripathi (10.1016/j.dsm.2022.07.004_bib110) 2020 Hastie (10.1016/j.dsm.2022.07.004_bib52) 2009 Klaise (10.1016/j.dsm.2022.07.004_bib69) 2020 Schlimmer (10.1016/j.dsm.2022.07.004_bib98) 1986; 1 Hynes (10.1016/j.dsm.2022.07.004_bib59) 2017 Glorot (10.1016/j.dsm.2022.07.004_bib47) 2010 Hendrycks (10.1016/j.dsm.2022.07.004_bib54) 2019 Kitchenham (10.1016/j.dsm.2022.07.004_bib68) 1989; 4 Gass (10.1016/j.dsm.2022.07.004_bib46) 1981; 8 Ashmore (10.1016/j.dsm.2022.07.004_bib8) 2019 Finkelstein (10.1016/j.dsm.2022.07.004_bib42) 2008; RE’08 Kullback (10.1016/j.dsm.2022.07.004_bib72) 1951; 22 Farquhar (10.1016/j.dsm.2022.07.004_bib41) 2019 Hall (10.1016/j.dsm.2022.07.004_bib50) 2018 Schubmehl (10.1016/j.dsm.2022.07.004_bib99) 2020 Touvron (10.1016/j.dsm.2022.07.004_bib109) 2020 Sharir (10.1016/j.dsm.2022.07.004_bib101) 2020 (10.1016/j.dsm.2022.07.004_bib60) 1990 Zhu (10.1016/j.dsm.2022.07.004_bib126) 1997; 29 Wagstaff (10.1016/j.dsm.2022.07.004_bib116) 2019 Arpteg (10.1016/j.dsm.2022.07.004_bib7) 2018 Bolukbasi (10.1016/j.dsm.2022.07.004_bib19) 2016 McMahan (10.1016/j.dsm.2022.07.004_bib79) 2013 Bojarski (10.1016/j.dsm.2022.07.004_bib18) 2016 Baylor (10.1016/j.dsm.2022.07.004_bib82) 2017 Webb (10.1016/j.dsm.2022.07.004_bib117) 2016; 30 Barr (10.1016/j.dsm.2022.07.004_bib11) 2015; 41 Breck (10.1016/j.dsm.2022.07.004_bib22) 2019 Gajane (10.1016/j.dsm.2022.07.004_bib43) 2018 Chilakapati (10.1016/j.dsm.2022.07.004_bib27) 2019 Yang (10.1016/j.dsm.2022.07.004_bib120) 2020 Kanewala (10.1016/j.dsm.2022.07.004_bib65) 2018 Willmott (10.1016/j.dsm.2022.07.004_bib118) 2005; 30 Bridge (10.1016/j.dsm.2022.07.004_bib23) 2016; 47 Quionero-Candela (10.1016/j.dsm.2022.07.004_bib92) 2009 Ribeiro (10.1016/j.dsm.2022.07.004_bib94) 2016 Borg (10.1016/j.dsm.2022.07.004_bib20) 2018 Clark (10.1016/j.dsm.2022.07.004_bib28) Pei (10.1016/j.dsm.2022.07.004_bib88) 2017 Zafar (10.1016/j.dsm.2022.07.004_bib122) 2017 Kumar (10.1016/j.dsm.2022.07.004_bib73) 2020 Ma (10.1016/j.dsm.2022.07.004_bib77) 2019 Hornik (10.1016/j.dsm.2022.07.004_bib57) 1989; 2 Schelter (10.1016/j.dsm.2022.07.004_bib97) 2018; 11 Albarghouthi (10.1016/j.dsm.2022.07.004_bib2) 2019 Gama (10.1016/j.dsm.2022.07.004_bib44) 2014; 46 Schelter (10.1016/j.dsm.2022.07.004_bib96) 2018; 41 Cramer (10.1016/j.dsm.2022.07.004_bib31) 1940; 41 Bhatt (10.1016/j.dsm.2022.07.004_bib16) 2020 Sun (10.1016/j.dsm.2022.07.004_bib105) 2019 Chen (10.1016/j.dsm.2022.07.004_bib25) 2013; 29 Japkowicz (10.1016/j.dsm.2022.07.004_bib62) 2002; 6 (10.1016/j.dsm.2022.07.004_bib4) 2000 Zhang (10.1016/j.dsm.2022.07.004_bib124) 2019 Doshi-Velez (10.1016/j.dsm.2022.07.004_bib34) 2017 Jagielski (10.1016/j.dsm.2022.07.004_bib61) 2018 Pham (10.1016/j.dsm.2022.07.004_bib90) 2006 Katz (10.1016/j.dsm.2022.07.004_bib66) 2017 Ernst (10.1016/j.dsm.2022.07.004_bib37) 2007; 69 Stoica (10.1016/j.dsm.2022.07.004_bib104) 2017 Jones (10.1016/j.dsm.2022.07.004_bib63) 2019 Morgenthaler (10.1016/j.dsm.2022.07.004_bib84) 2012 Moreno-Torres (10.1016/j.dsm.2022.07.004_bib83) 2012; 45 Heckman (10.1016/j.dsm.2022.07.004_bib53) 1979; 47 Haldar (10.1016/j.dsm.2022.07.004_bib49) 2019 Bartlett (10.1016/j.dsm.2022.07.004_bib12) 2000; 41 Huang (10.1016/j.dsm.2022.07.004_bib58) 2017 Kodiyan (10.1016/j.dsm.2022.07.004_bib70) Amershi (10.1016/j.dsm.2022.07.004_bib5) 2019 Lakshminarayanan (10.1016/j.dsm.2022.07.004_bib75) 2017 Sculley (10.1016/j.dsm.2022.07.004_bib100) 2015 Miljković (10.1016/j.dsm.2022.07.004_bib80) 2010 Balzert (10.1016/j.dsm.2022.07.004_bib9) 2009 L’Heureux (10.1016/j.dsm.2022.07.004_bib76) 2017; 5 Clarke (10.1016/j.dsm.2022.07.004_bib29) 2012 Wolf (10.1016/j.dsm.2022.07.004_bib119) 2017; 1 Dwork (10.1016/j.dsm.2022.07.004_bib35) 2011 Boehm (10.1016/j.dsm.2022.07.004_bib17) 2019; 14 Herrera (10.1016/j.dsm.2022.07.004_bib55) Esteva (10.1016/j.dsm.2022.07.004_bib38) 2017; 542 Polyzotis (10.1016/j.dsm.2022.07.004_bib91) 2017 Bengio (10.1016/j.dsm.2022.07.004_bib13) 2012 Voas (10.1016/j.dsm.2022.07.004_bib115) 1995; 12 King (10.1016/j.dsm.2022.07.004_bib67) 1976; 19 Spiegelhalter (10.1016/j.dsm.2022.07.004_bib103) 2002; 64 Tan (10.1016/j.dsm.2022.07.004_bib108) 2018 Hansson (10.1016/j.dsm.2022.07.004_bib51) 2016; 6 Hüllermeier (10.1016/j.dsm.2022.07.004_bib56) 2020 Krishnan (10.1016/j.dsm.2022.07.004_bib71) 2017 Bernardi (10.1016/j.dsm.2022.07.004_bib15) 2019 Ovadia (10.1016/j.dsm.2022.07.004_bib86) 2019 Corbett-Davies (10.1016/j.dsm.2022.07.004_bib30) 2018 Ré (10.1016/j.dsm.2022.07.004_bib93) 2019 Verma (10.1016/j.dsm.2022.07.004_bib114) 2018 Adler (10.1016/j.dsm.2022.07.004_bib1) 2016 McGregor (10.1016/j.dsm.2022.07.004_bib78) 2020 Alpaydin (10.1016/j.dsm.2022.07.004_bib3) 2020 Paleyes (10.1016/j.dsm.2022.07.004_bib87) 2020 EU Parliament (10.1016/j.dsm.2022.07.004_bib40) 2021 Devlin (10.1016/j.dsm.2022.07.004_bib33) 2019 (10.1016/j.dsm.2022.07.004_bib39) 2016 Gardiner (10.1016/j.dsm.2022.07.004_bib45) 1999 Amershi (10.1016/j.dsm.2022.07.004_bib6) 2015 Zaharia (10.1016/j.dsm.2022.07.004_bib123) 2018; 41 Guo (10.1016/j.dsm.2022.07.004_bib48) 2017 Peled (10.1016/j.dsm.2022.07.004_bib89) 1999 Zhao (10.1016/j.dsm.2022.07.004_bib125) 2019 Sutton (10.1016/j.dsm.2022.07.004_bib106) 2018 Murphy (10.1016/j.dsm.2022.07.004_bib85) 2007 Davenport (10.1016/j.dsm.2022.07.004_bib32) 2018 Spanfelner (10.1016/j.dsm.2022.07.004_bib102) Vartak (10.1016/j.dsm.2022.07.004_bib111) 2018; 41 Vartak (10.1016/j.dsm.2022.07.004_bib112) 2016 Vaswani (10.1016/j.dsm.2022.07.004_bib113) 2017 Yu (10.1016/j.dsm.2022.07.004_bib121) 2004; 5 Miller (10.1016/j.dsm.2022.07.004_bib81) 2018 Cheng (10.1016/j.dsm.2022.07.004_bib26) 2017 Breck (10.1016/j.dsm.2022.07.004_bib21) 2017 Jordan (10.1016/j.dsm.2022.07.004_bib64) 2015; 349 Salay (10.1016/j.dsm.2022.07.004_bib95) 2018 Beran (10.1016/j.dsm.2022.07.004_bib14) 1977; 5 Kusner (10.1016/j.dsm.2022.07.004_bib74) 2018 Engstrom (10.1016/j.dsm.2022.07.004_bib36) 2019 Tallarida (10.1016/j.dsm.2022.07.004_bib107) 1987 |
References_xml | – year: 2019 ident: bib41 article-title: Towards robust evaluations of continual learning – start-page: 2279 year: 2018 end-page: 2288 ident: bib106 article-title: Data diff: interpretable, executable summaries of changes in distributions for data wrangling publication-title: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining – year: 2019 ident: bib70 article-title: An overview of ethical issues in using AI systems in hiring with a case study of amazon’s AI based hiring tool – year: 2020 ident: bib109 article-title: Fixing the train-test resolution discrepancy: FixEfficientNet – volume: 542 start-page: 115 year: 2017 end-page: 118 ident: bib38 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature – year: 2017 ident: bib34 article-title: Towards a rigorous science of interpretable machine learning – year: 2011 ident: bib35 article-title: Fairness through awareness. arXiv:1104.3913 – year: 2017 ident: bib104 article-title: A berkeley view of systems challenges for AI. arXiv:1712.05855. – year: 2017 ident: bib71 article-title: BoostClean: automated error detection and repair for machine learning – year: 2019 ident: bib33 article-title: BERT: pre-training of deep bidirectional transformers for language understanding. – year: 2018 ident: bib50 article-title: Introduction to Machine Learning Interpretability – year: 2019 ident: bib49 article-title: Applying deep learning to Airbnb search publication-title: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining – start-page: 1 year: 2017 end-page: 7 ident: bib59 article-title: The data linter: lightweight automated sanity checking for ML data sets publication-title: In: Proceedings of 31st Conference on Neural Information Processing Systems (NIPS 2017) – year: 2021 ident: bib40 article-title: Proposal for a Regulation of the European Parliament and of the Council Laying Down Harmonised Rules on Artificial Intelligence (Artificial Intelligence Act) and Amending Certain Union Legislative Acts – start-page: 2191 year: 2019 end-page: 2201 ident: bib116 article-title: Enabling onboard detection of events of scientific interest for the europa clipper spacecraft publication-title: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining – year: 2019 ident: bib93 article-title: Overton: a data system for monitoring and improving machine-learned products. – year: 2019 ident: bib8 article-title: Assuring the machine learning lifecycle: desiderata, methods, and challenges – volume: 30 start-page: 79 year: 2005 end-page: 82 ident: bib118 article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance publication-title: Clim. Res. – year: 2020 ident: bib56 article-title: Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods. – volume: 41 start-page: 507 year: 2015 end-page: 525 ident: bib11 article-title: The oracle problem in software testing: a survey publication-title: IEEE Trans. Software Eng. – volume: 1 start-page: 1 year: 2017 end-page: 12 ident: bib119 article-title: Why we should have seen that coming: comments on microsoft’s tay “experiment”, and wider implications publication-title: ORBIT J. – year: 2020 ident: bib110 article-title: Ensuring the robustness and reliability of data-driven knowledge discovery models in production and manufacturing. – year: 2020 ident: bib69 article-title: Monitoring and explainability of models in production – year: 2018 ident: bib74 article-title: Counterfactual fairness. – start-page: 225 year: 1999 end-page: 240 ident: bib89 article-title: Black box checking publication-title: Formal Methods for Protocol Engineering and Distributed Systems. PSTV FORTE 1999. IFIP Advances in Information and Communication Technology – start-page: 1 year: 2016 end-page: 3 ident: bib112 article-title: ModelDB: a system for machine learning model management publication-title: Proceedings of the Workshop on Human-In-The-Loop Data Analytics - HILDA ’16 – year: 2017 ident: bib66 article-title: Reluplex: an efficient SMT solver for verifying deep neural networks – start-page: 17 year: 2012 end-page: 36 ident: bib13 article-title: Deep learning of representations for unsupervised and transfer learning publication-title: Proceedings of ICML Workshop on Unsupervised and Transfer Learning – volume: 4 start-page: 2 year: 1989 end-page: 14 ident: bib68 article-title: A quantitative approach to monitoring software development publication-title: Software Eng. J. – year: 2012 ident: bib102 article-title: Challenges in applying the ISO 26262 for driver assistance systems – year: 2018 ident: bib95 article-title: Using machine learning safely in automotive software: an assessment and adaption of software process requirements – year: 2019 ident: bib105 article-title: Testing deep neural networks. – volume: 30 start-page: 964 year: 2016 end-page: 994 ident: bib117 article-title: Characterizing concept drift publication-title: Data Min. Knowl. Discov. – start-page: 1 year: 2018 end-page: 7 ident: bib114 article-title: Fairness definitions explained publication-title: Proceedings of the International Workshop on Software Fairness – volume: 671 year: 2016 ident: bib10 article-title: Big data’s disparate impact publication-title: 104 California Law Review – start-page: 200 year: 2016 end-page: 205 ident: bib1 article-title: Safety engineering for autonomous vehicles publication-title: 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshop (DSN-W) – volume: 64 start-page: 583 year: 2002 end-page: 639 ident: bib103 article-title: Bayesian measures of model complexity and fit publication-title: J. Roy. Stat. Soc. – year: 2016 ident: bib39 article-title: Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the Protection of Natural Persons with Regard to the Processing of Personal Data and on the Free Movement of Such Data, and Repealing Directive 95/46/ec (General Data Protection Regulation) – volume: 41 start-page: 16 year: 2018 end-page: 25 ident: bib111 article-title: MODELDB: opportunities and challenges in managing machine learning models publication-title: IEEE Data Eng. Bull. – year: 2019 ident: bib22 article-title: Data validation for machine learning publication-title: Proceedings of the 2nd SysML Conference – start-page: 50 year: 2018 end-page: 59 ident: bib7 article-title: Software engineering challenges of deep learning publication-title: In: 2018 44th Euromicro Conference on Software Engineering and Advanced Applications (SEAA) – start-page: 249 year: 2010 end-page: 256 ident: bib47 article-title: Understanding the difficulty of training deep feedforward neural networks publication-title: Proceedings of the 13th International Conference on Artificial Intelligence and Statistics – volume: 8 start-page: 341 year: 1981 end-page: 346 ident: bib46 article-title: Concepts of model confidence publication-title: Comput. Oper. Res. – volume: 29 start-page: 366 year: 1997 end-page: 427 ident: bib126 article-title: Software unit test coverage and adequacy publication-title: ACM Comput. Surv. – volume: 349 start-page: 255 year: 2015 end-page: 260 ident: bib64 article-title: Machine learning: trends, perspectives, and prospects publication-title: Science – year: 2020 ident: bib3 article-title: Introduction to Machine Learning, 4th ed – start-page: 593 year: 2010 end-page: 598 ident: bib80 article-title: Review of novelty detection methods publication-title: Proceedings of the 33rd International Convention MIPRO – year: 2016 ident: bib18 article-title: End to end learning for self-driving cars. – start-page: 1 year: 2007 end-page: 6 ident: bib85 article-title: An approach to software testing of machine learning applications publication-title: Proceedings of the 19th International Conference on Software Engineering & Knowledge Engineering – year: 2019 ident: bib24 article-title: Global AI survey: AI proves its worth, but few scale impact – volume: 29 start-page: 1758 year: 2013 end-page: 1773 ident: bib25 article-title: State of the art: dynamic symbolic execution for automated test generation publication-title: Future Generat. Comput. Syst. – volume: 14 start-page: 1 year: 2019 end-page: 173 ident: bib17 article-title: Data management in machine learning systems publication-title: Synth. Lectures Data Manag. – year: 2019 ident: bib63 article-title: Predicts 2020: data and analytics strategies—invest, influence and impact publication-title: Gartner Research – year: 2017 ident: bib75 article-title: Simple and scalable predictive uncertainty estimation using deep ensembles. – volume: 12 start-page: 17 year: 1995 end-page: 28 ident: bib115 article-title: Software testability: the new verification publication-title: IEEE Software – start-page: 2503 year: 2015 end-page: 2511 ident: bib100 article-title: Hidden technical debt in machine learning systems publication-title: Advances in Neural Information Processing Systems – start-page: 1123 year: 2017 end-page: 1132 ident: bib21 article-title: The ML test score: a rubric for ML production readiness and technical debt reduction publication-title: 2017 IEEE International Conference on Big Data (Big Data) – volume: 46 year: 2014 ident: bib44 article-title: A survey on concept drift adaptation publication-title: ACM Comput. Surv. – volume: 47 start-page: 153 year: 1979 end-page: 161 ident: bib53 article-title: Sample selection bias as a specification error publication-title: Econometrica – year: 2009 ident: bib9 article-title: Lehrbuch der Softwaretechnik: Basiskonzepte und Requirements Engineering, 3rd ed – volume: 1 start-page: 317 year: 1986 end-page: 354 ident: bib98 article-title: Incremental learning from noisy data publication-title: Machine Language – volume: RE’08 start-page: 115 year: 2008 end-page: 124 ident: bib42 article-title: Fairness analysis in requirements assignments publication-title: Proceedings of the 16th IEEE International Requirements Engineering Conference – volume: 6 start-page: 429 year: 2002 end-page: 449 ident: bib62 article-title: The class imbalance problem: a systematic study publication-title: Intell. Data Anal. – volume: 5 start-page: 7776 year: 2017 end-page: 7797 ident: bib76 article-title: Machine learning with big data: challenges and approaches publication-title: IEEE Access – start-page: 6000 year: 2017 end-page: 6010 ident: bib113 article-title: Attention is all you need publication-title: In: Proceedings of the 31st International Conference on Neural Information Processing Systems – year: 2018 ident: bib65 article-title: Testing scientific software: a systematic literature review – year: 2017 ident: bib58 article-title: Safety verification of deep neural networks. – year: 2019 ident: bib86 article-title: Can you trust your model’s uncertainty? Evaluating predictive uncertainty under dataset shift. – year: 2020 ident: bib120 article-title: On hyperparameter optimization of machine learning algorithms: theory and practice – year: 2018 ident: bib32 article-title: Artificial intelligence for the real world publication-title: Harv. Bus. Rev – start-page: 1 year: 2012 end-page: 30 ident: bib29 article-title: Model checking and the state explosion problem publication-title: Tools for Practical Software Verification: LASER, International Summer School 2011, Elba Island, Italy, Revised Tutorial Lectures – volume: 41 start-page: 5 year: 2018 end-page: 15 ident: bib96 article-title: On challenges in machine learning model management publication-title: IEEE Data Eng. Bull. – start-page: 15458 year: 2020 end-page: 15463 ident: bib78 article-title: Preventing repeated real world AI failures by cataloging incidents: the AI incident database publication-title: In: Proceedings of the AAAI Conference on Artificial Intelligence – year: 2009 ident: bib92 article-title: Dataset Shift in Machine Learning – year: 2020 ident: bib99 article-title: Worldwide artificial intelligence spending guide – year: 2018 ident: bib43 article-title: On formalizing fairness in prediction with machine learning. – volume: 22 start-page: 79 year: 1951 end-page: 86 ident: bib72 article-title: On information and sufficiency publication-title: Ann. Math. Stat. – start-page: 1723 year: 2017 end-page: 1726 ident: bib91 article-title: Data management challenges in production machine learning publication-title: Proceedings of the 2017 ACM International Conference on Management of Data – volume: 47 start-page: 217 year: 2016 end-page: 220 ident: bib23 article-title: Intraobserver variability: should we worry? publication-title: J. Med. Imag. Radiat. Sci. – year: 2019 ident: bib125 article-title: PyOD: a Python toolbox for scalable outlier detection. – volume: 45 start-page: 521 year: 2012 end-page: 530 ident: bib83 article-title: A unifying view on dataset shift in classification publication-title: Pattern Recogn. – start-page: 1 year: 2012 end-page: 6 ident: bib84 article-title: Searching for build debt: experiences managing technical debt at Google publication-title: 2012 Third International Workshop on Managing Technical Debt (MTD) – volume: 11 start-page: 1781 year: 2018 end-page: 1794 ident: bib97 article-title: Automating large-scale data quality verification publication-title: Proc. VLDB Endowment – year: 2020 ident: bib101 article-title: The cost of training NLP models: a concise overview. – year: 2018 ident: bib108 article-title: A survey on deep transfer learning – volume: 41 start-page: 153 year: 2000 end-page: 174 ident: bib12 article-title: Learning changing concepts by exploiting the structure of change publication-title: Mach. Learn. – year: 2009 ident: bib52 article-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed publication-title: Springer, New York – volume: 2 start-page: 359 year: 1989 end-page: 366 ident: bib57 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Network – volume: 41 start-page: 215 year: 1940 end-page: 230 ident: bib31 article-title: On the theory of stationary random processes publication-title: Ann. Math. – start-page: 1 year: 2017 end-page: 18 ident: bib88 article-title: DeepXplore: automated whitebox testing of deep learning systems publication-title: Proceedings of the 26th Symposium on Operating Systems Principles – volume: 5 start-page: 1205 year: 2004 end-page: 1224 ident: bib121 article-title: Efficient feature selection via analysis of relevance and redundancy publication-title: J. Mach. Learn. Res. – year: 2019 ident: bib36 article-title: Exploring the landscape of spatial robustness. – start-page: 1 year: 1990 end-page: 84 ident: bib60 article-title: 610.12-1990 IEEE Standard Glossary of Software Engineering Terminology – volume: 69 start-page: 35 year: 2007 end-page: 45 ident: bib37 article-title: The Daikon system for dynamic detection of likely invariants publication-title: Sci. Comput. Program. – year: 2018 ident: bib30 article-title: The measure and mismeasure of fairness: a critical review of fair machine learning. – year: 2006 ident: bib90 article-title: Introduction. In: System Software Reliability publication-title: pp. 1–7 – volume: 19 start-page: 385 year: 1976 end-page: 394 ident: bib67 article-title: Symbolic execution and program testing publication-title: Commun. ACM – year: 2020 ident: bib87 article-title: Challenges in deploying machine learning: a survey of case studies – year: 1999 ident: bib45 article-title: Testing Safety-Related Software: A Practical Handbook – year: 2017 ident: bib26 article-title: Maximum resilience of artificial neural networks – start-page: 1743 year: 2019 end-page: 1751 ident: bib15 article-title: 150 successful machine learning models: 6 lessons learned at Booking.com publication-title: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining – start-page: 211 year: 2019 end-page: 219 ident: bib2 article-title: Fairness-aware programming publication-title: Proceedings of the Conference on Fairness, Accountability, and Transparency – year: 2014 ident: bib28 article-title: Air force research laboratory test and evaluation, verification and validation of autonomous systems challenge exploration – year: 2019 ident: bib77 article-title: Test selection for deep learning systems – year: 2000 ident: bib4 publication-title: Statistics with Confidence: Confidence Intervals and Statistical Guidelines, 2nd ed – year: 2018 ident: bib61 article-title: Manipulating machine learning: poisoning attacks and countermeasures for regression learning – volume: 41 start-page: 39 year: 2018 end-page: 45 ident: bib123 article-title: Accelerating the machine learning lifecycle with MLflow publication-title: IEEE Data Eng. Bull. – year: 2017 ident: bib122 article-title: Fairness constraints: mechanisms for fair classification. – year: 2011 ident: bib55 article-title: Dataset shift in classification: approaches and problems, IWANN – year: 2020 ident: bib16 article-title: Explainable machine learning in deployment – start-page: 291 year: 2019 end-page: 300 ident: bib5 article-title: Software engineering for machine learning: a case study publication-title: 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP) – year: 2016 ident: bib19 article-title: Man is to computer programmer as woman is to homemaker? debiasing word embeddings. – year: 2018 ident: bib20 article-title: Safely entering the deep: a review of verification and validation for machine learning and a challenge elicitation in the automotive industry – year: 2016 ident: bib94 article-title: Model-agnostic interpretability of machine learning – start-page: 140 year: 1987 end-page: 142 ident: bib107 article-title: Chi-square test publication-title: Manual of Pharmacologic Calculations: with Computer Programs – volume: 6 start-page: 1 year: 2016 end-page: 13 ident: bib51 article-title: Machine learning algorithms in heavy process manufacturing publication-title: Am. J. Intell. Syst. – year: 2018 ident: bib81 article-title: Explanation in artificial intelligence: insights from the social sciences – year: 2019 ident: bib124 article-title: Machine learning testing: survey, landscapes and horizons – year: 2020 ident: bib73 article-title: Adversarial machine learning-industry perspectives – start-page: 1387 year: 2017 end-page: 1395 ident: bib82 article-title: TFX: a TensorFlow-based production-scale machine learning platform – start-page: 337 year: 2015 end-page: 346 ident: bib6 article-title: ModelTracker: redesigning performance analysis tools for machine learning publication-title: ACM Conference on Human Factors in Computing Systems – volume: 5 start-page: 445 year: 1977 end-page: 463 ident: bib14 article-title: Minimum hellinger distance estimates for parametric models publication-title: Ann. Stat. – year: 2019 ident: bib54 article-title: Benchmarking neural network robustness to common corruptions and perturbations. – year: 2019 ident: bib27 article-title: Concept drift and model decay in machine learning – year: 2017 ident: bib48 article-title: On calibration of modern neural networks. – start-page: 1222 year: 2013 end-page: 1230 ident: bib79 article-title: Ad click prediction: a view from the trenches publication-title: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining — KDD ’13 – volume: 5 start-page: 1205 issue: 12 year: 2004 ident: 10.1016/j.dsm.2022.07.004_bib121 article-title: Efficient feature selection via analysis of relevance and redundancy publication-title: J. Mach. Learn. Res. – year: 2019 ident: 10.1016/j.dsm.2022.07.004_bib63 article-title: Predicts 2020: data and analytics strategies—invest, influence and impact – volume: 41 start-page: 507 issue: 5 year: 2015 ident: 10.1016/j.dsm.2022.07.004_bib11 article-title: The oracle problem in software testing: a survey publication-title: IEEE Trans. Software Eng. doi: 10.1109/TSE.2014.2372785 – year: 1999 ident: 10.1016/j.dsm.2022.07.004_bib45 – start-page: 1 year: 1990 ident: 10.1016/j.dsm.2022.07.004_bib60 – start-page: 1222 year: 2013 ident: 10.1016/j.dsm.2022.07.004_bib79 article-title: Ad click prediction: a view from the trenches – start-page: 1 year: 2012 ident: 10.1016/j.dsm.2022.07.004_bib84 article-title: Searching for build debt: experiences managing technical debt at Google – year: 2009 ident: 10.1016/j.dsm.2022.07.004_bib92 – year: 2020 ident: 10.1016/j.dsm.2022.07.004_bib69 – year: 2020 ident: 10.1016/j.dsm.2022.07.004_bib87 – volume: 1 start-page: 317 issue: Sep. year: 1986 ident: 10.1016/j.dsm.2022.07.004_bib98 article-title: Incremental learning from noisy data publication-title: Machine Language – year: 2018 ident: 10.1016/j.dsm.2022.07.004_bib20 – start-page: 593 year: 2010 ident: 10.1016/j.dsm.2022.07.004_bib80 article-title: Review of novelty detection methods – year: 2000 ident: 10.1016/j.dsm.2022.07.004_bib4 – year: 2016 ident: 10.1016/j.dsm.2022.07.004_bib39 – volume: 41 start-page: 153 issue: Nov. year: 2000 ident: 10.1016/j.dsm.2022.07.004_bib12 article-title: Learning changing concepts by exploiting the structure of change publication-title: Mach. Learn. doi: 10.1023/A:1007604202679 – year: 2018 ident: 10.1016/j.dsm.2022.07.004_bib81 – year: 2006 ident: 10.1016/j.dsm.2022.07.004_bib90 article-title: Introduction. In: System Software Reliability publication-title: pp. 1–7 – start-page: 2279 year: 2018 ident: 10.1016/j.dsm.2022.07.004_bib106 article-title: Data diff: interpretable, executable summaries of changes in distributions for data wrangling – volume: 69 start-page: 35 issue: 1–3 year: 2007 ident: 10.1016/j.dsm.2022.07.004_bib37 article-title: The Daikon system for dynamic detection of likely invariants publication-title: Sci. Comput. Program. doi: 10.1016/j.scico.2007.01.015 – volume: 5 start-page: 7776 issue: Jan. year: 2017 ident: 10.1016/j.dsm.2022.07.004_bib76 article-title: Machine learning with big data: challenges and approaches publication-title: IEEE Access doi: 10.1109/ACCESS.2017.2696365 – volume: 22 start-page: 79 issue: 1 year: 1951 ident: 10.1016/j.dsm.2022.07.004_bib72 article-title: On information and sufficiency publication-title: Ann. Math. Stat. doi: 10.1214/aoms/1177729694 – volume: 29 start-page: 366 issue: 4 year: 1997 ident: 10.1016/j.dsm.2022.07.004_bib126 article-title: Software unit test coverage and adequacy publication-title: ACM Comput. Surv. doi: 10.1145/267580.267590 – start-page: 291 year: 2019 ident: 10.1016/j.dsm.2022.07.004_bib5 article-title: Software engineering for machine learning: a case study – volume: 41 start-page: 215 year: 1940 ident: 10.1016/j.dsm.2022.07.004_bib31 article-title: On the theory of stationary random processes publication-title: Ann. Math. doi: 10.2307/1968827 – volume: 14 start-page: 1 issue: Feb. year: 2019 ident: 10.1016/j.dsm.2022.07.004_bib17 article-title: Data management in machine learning systems publication-title: Synth. Lectures Data Manag. – volume: 542 start-page: 115 issue: 7639 year: 2017 ident: 10.1016/j.dsm.2022.07.004_bib38 article-title: Dermatologist-level classification of skin cancer with deep neural networks publication-title: Nature doi: 10.1038/nature21056 – start-page: 1 year: 2017 ident: 10.1016/j.dsm.2022.07.004_bib88 article-title: DeepXplore: automated whitebox testing of deep learning systems – year: 2019 ident: 10.1016/j.dsm.2022.07.004_bib49 article-title: Applying deep learning to Airbnb search – year: 2017 ident: 10.1016/j.dsm.2022.07.004_bib58 – year: 2018 ident: 10.1016/j.dsm.2022.07.004_bib65 – start-page: 2191 year: 2019 ident: 10.1016/j.dsm.2022.07.004_bib116 article-title: Enabling onboard detection of events of scientific interest for the europa clipper spacecraft – volume: 349 start-page: 255 issue: 6245 year: 2015 ident: 10.1016/j.dsm.2022.07.004_bib64 article-title: Machine learning: trends, perspectives, and prospects publication-title: Science doi: 10.1126/science.aaa8415 – start-page: 2503 year: 2015 ident: 10.1016/j.dsm.2022.07.004_bib100 article-title: Hidden technical debt in machine learning systems – year: 2009 ident: 10.1016/j.dsm.2022.07.004_bib9 – start-page: 15458 year: 2020 ident: 10.1016/j.dsm.2022.07.004_bib78 article-title: Preventing repeated real world AI failures by cataloging incidents: the AI incident database – volume: 2 start-page: 359 issue: 5 year: 1989 ident: 10.1016/j.dsm.2022.07.004_bib57 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Network doi: 10.1016/0893-6080(89)90020-8 – start-page: 6000 year: 2017 ident: 10.1016/j.dsm.2022.07.004_bib113 article-title: Attention is all you need – start-page: 1 year: 2012 ident: 10.1016/j.dsm.2022.07.004_bib29 article-title: Model checking and the state explosion problem – year: 2020 ident: 10.1016/j.dsm.2022.07.004_bib56 – year: 2018 ident: 10.1016/j.dsm.2022.07.004_bib43 – volume: 45 start-page: 521 issue: 1 year: 2012 ident: 10.1016/j.dsm.2022.07.004_bib83 article-title: A unifying view on dataset shift in classification publication-title: Pattern Recogn. doi: 10.1016/j.patcog.2011.06.019 – start-page: 200 year: 2016 ident: 10.1016/j.dsm.2022.07.004_bib1 article-title: Safety engineering for autonomous vehicles – ident: 10.1016/j.dsm.2022.07.004_bib24 – ident: 10.1016/j.dsm.2022.07.004_bib55 – volume: 671 year: 2016 ident: 10.1016/j.dsm.2022.07.004_bib10 article-title: Big data’s disparate impact publication-title: 104 California Law Review – start-page: 1 year: 2017 ident: 10.1016/j.dsm.2022.07.004_bib59 article-title: The data linter: lightweight automated sanity checking for ML data sets – year: 2018 ident: 10.1016/j.dsm.2022.07.004_bib61 – year: 2021 ident: 10.1016/j.dsm.2022.07.004_bib40 – year: 2017 ident: 10.1016/j.dsm.2022.07.004_bib71 – start-page: 337 year: 2015 ident: 10.1016/j.dsm.2022.07.004_bib6 article-title: ModelTracker: redesigning performance analysis tools for machine learning – year: 2018 ident: 10.1016/j.dsm.2022.07.004_bib50 – year: 2018 ident: 10.1016/j.dsm.2022.07.004_bib74 – year: 2020 ident: 10.1016/j.dsm.2022.07.004_bib120 – year: 2017 ident: 10.1016/j.dsm.2022.07.004_bib122 – year: 2017 ident: 10.1016/j.dsm.2022.07.004_bib48 – year: 2017 ident: 10.1016/j.dsm.2022.07.004_bib75 – volume: 4 start-page: 2 issue: 1 year: 1989 ident: 10.1016/j.dsm.2022.07.004_bib68 article-title: A quantitative approach to monitoring software development publication-title: Software Eng. J. doi: 10.1049/sej.1989.0001 – year: 2019 ident: 10.1016/j.dsm.2022.07.004_bib8 – year: 2019 ident: 10.1016/j.dsm.2022.07.004_bib93 – volume: 64 start-page: 583 issue: 4 year: 2002 ident: 10.1016/j.dsm.2022.07.004_bib103 article-title: Bayesian measures of model complexity and fit publication-title: J. Roy. Stat. Soc. doi: 10.1111/1467-9868.00353 – start-page: 1 year: 2018 ident: 10.1016/j.dsm.2022.07.004_bib114 article-title: Fairness definitions explained – volume: 11 start-page: 1781 issue: 12 year: 2018 ident: 10.1016/j.dsm.2022.07.004_bib97 article-title: Automating large-scale data quality verification publication-title: Proc. VLDB Endowment doi: 10.14778/3229863.3229867 – start-page: 50 year: 2018 ident: 10.1016/j.dsm.2022.07.004_bib7 article-title: Software engineering challenges of deep learning – year: 2017 ident: 10.1016/j.dsm.2022.07.004_bib26 – volume: 46 issue: 4 year: 2014 ident: 10.1016/j.dsm.2022.07.004_bib44 article-title: A survey on concept drift adaptation publication-title: ACM Comput. Surv. doi: 10.1145/2523813 – start-page: 1387 year: 2017 ident: 10.1016/j.dsm.2022.07.004_bib82 – year: 2019 ident: 10.1016/j.dsm.2022.07.004_bib77 – start-page: 1 year: 2016 ident: 10.1016/j.dsm.2022.07.004_bib112 article-title: ModelDB: a system for machine learning model management – volume: 12 start-page: 17 issue: 3 year: 1995 ident: 10.1016/j.dsm.2022.07.004_bib115 article-title: Software testability: the new verification publication-title: IEEE Software doi: 10.1109/52.382180 – volume: 29 start-page: 1758 issue: 7 year: 2013 ident: 10.1016/j.dsm.2022.07.004_bib25 article-title: State of the art: dynamic symbolic execution for automated test generation publication-title: Future Generat. Comput. Syst. doi: 10.1016/j.future.2012.02.006 – start-page: 1743 year: 2019 ident: 10.1016/j.dsm.2022.07.004_bib15 article-title: 150 successful machine learning models: 6 lessons learned at Booking.com – start-page: 1123 year: 2017 ident: 10.1016/j.dsm.2022.07.004_bib21 article-title: The ML test score: a rubric for ML production readiness and technical debt reduction – start-page: 249 year: 2010 ident: 10.1016/j.dsm.2022.07.004_bib47 article-title: Understanding the difficulty of training deep feedforward neural networks – year: 2020 ident: 10.1016/j.dsm.2022.07.004_bib16 – year: 2011 ident: 10.1016/j.dsm.2022.07.004_bib35 – year: 2018 ident: 10.1016/j.dsm.2022.07.004_bib30 – volume: 47 start-page: 153 issue: 1 year: 1979 ident: 10.1016/j.dsm.2022.07.004_bib53 article-title: Sample selection bias as a specification error publication-title: Econometrica doi: 10.2307/1912352 – year: 2019 ident: 10.1016/j.dsm.2022.07.004_bib41 – year: 2019 ident: 10.1016/j.dsm.2022.07.004_bib27 – year: 2018 ident: 10.1016/j.dsm.2022.07.004_bib95 – year: 2018 ident: 10.1016/j.dsm.2022.07.004_bib108 – volume: 5 start-page: 445 issue: 3 year: 1977 ident: 10.1016/j.dsm.2022.07.004_bib14 article-title: Minimum hellinger distance estimates for parametric models publication-title: Ann. Stat. doi: 10.1214/aos/1176343842 – year: 2016 ident: 10.1016/j.dsm.2022.07.004_bib19 – volume: RE’08 start-page: 115 year: 2008 ident: 10.1016/j.dsm.2022.07.004_bib42 article-title: Fairness analysis in requirements assignments – year: 2019 ident: 10.1016/j.dsm.2022.07.004_bib125 – volume: 6 start-page: 1 issue: Jun. year: 2016 ident: 10.1016/j.dsm.2022.07.004_bib51 article-title: Machine learning algorithms in heavy process manufacturing publication-title: Am. J. Intell. Syst. – year: 2017 ident: 10.1016/j.dsm.2022.07.004_bib104 – year: 2019 ident: 10.1016/j.dsm.2022.07.004_bib124 – start-page: 17 year: 2012 ident: 10.1016/j.dsm.2022.07.004_bib13 article-title: Deep learning of representations for unsupervised and transfer learning – volume: 8 start-page: 341 issue: 4 year: 1981 ident: 10.1016/j.dsm.2022.07.004_bib46 article-title: Concepts of model confidence publication-title: Comput. Oper. Res. doi: 10.1016/0305-0548(81)90019-8 – year: 2016 ident: 10.1016/j.dsm.2022.07.004_bib94 – year: 2020 ident: 10.1016/j.dsm.2022.07.004_bib110 – year: 2017 ident: 10.1016/j.dsm.2022.07.004_bib66 – start-page: 140 year: 1987 ident: 10.1016/j.dsm.2022.07.004_bib107 article-title: Chi-square test – year: 2019 ident: 10.1016/j.dsm.2022.07.004_bib86 – start-page: 1 year: 2007 ident: 10.1016/j.dsm.2022.07.004_bib85 article-title: An approach to software testing of machine learning applications – year: 2019 ident: 10.1016/j.dsm.2022.07.004_bib105 – year: 2009 ident: 10.1016/j.dsm.2022.07.004_bib52 article-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed publication-title: Springer, New York – year: 2019 ident: 10.1016/j.dsm.2022.07.004_bib54 – year: 2020 ident: 10.1016/j.dsm.2022.07.004_bib101 – year: 2020 ident: 10.1016/j.dsm.2022.07.004_bib109 – ident: 10.1016/j.dsm.2022.07.004_bib70 – year: 2019 ident: 10.1016/j.dsm.2022.07.004_bib22 article-title: Data validation for machine learning – year: 2017 ident: 10.1016/j.dsm.2022.07.004_bib34 – year: 2020 ident: 10.1016/j.dsm.2022.07.004_bib3 – volume: 19 start-page: 385 year: 1976 ident: 10.1016/j.dsm.2022.07.004_bib67 article-title: Symbolic execution and program testing publication-title: Commun. ACM doi: 10.1145/360248.360252 – year: 2016 ident: 10.1016/j.dsm.2022.07.004_bib18 – volume: 41 start-page: 5 year: 2018 ident: 10.1016/j.dsm.2022.07.004_bib96 article-title: On challenges in machine learning model management publication-title: IEEE Data Eng. Bull. – year: 2018 ident: 10.1016/j.dsm.2022.07.004_bib32 article-title: Artificial intelligence for the real world publication-title: Harv. Bus. Rev – volume: 30 start-page: 79 issue: 1 year: 2005 ident: 10.1016/j.dsm.2022.07.004_bib118 article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance publication-title: Clim. Res. doi: 10.3354/cr030079 – year: 2020 ident: 10.1016/j.dsm.2022.07.004_bib99 – volume: 1 start-page: 1 issue: 2 year: 2017 ident: 10.1016/j.dsm.2022.07.004_bib119 article-title: Why we should have seen that coming: comments on microsoft’s tay “experiment”, and wider implications publication-title: ORBIT J. doi: 10.29297/orbit.v1i2.49 – ident: 10.1016/j.dsm.2022.07.004_bib28 – volume: 6 start-page: 429 issue: 5 year: 2002 ident: 10.1016/j.dsm.2022.07.004_bib62 article-title: The class imbalance problem: a systematic study publication-title: Intell. Data Anal. doi: 10.3233/IDA-2002-6504 – volume: 41 start-page: 16 issue: 4 year: 2018 ident: 10.1016/j.dsm.2022.07.004_bib111 article-title: MODELDB: opportunities and challenges in managing machine learning models publication-title: IEEE Data Eng. Bull. – start-page: 225 year: 1999 ident: 10.1016/j.dsm.2022.07.004_bib89 article-title: Black box checking – volume: 30 start-page: 964 issue: 4 year: 2016 ident: 10.1016/j.dsm.2022.07.004_bib117 article-title: Characterizing concept drift publication-title: Data Min. Knowl. Discov. doi: 10.1007/s10618-015-0448-4 – volume: 41 start-page: 39 issue: Dec. year: 2018 ident: 10.1016/j.dsm.2022.07.004_bib123 article-title: Accelerating the machine learning lifecycle with MLflow publication-title: IEEE Data Eng. Bull. – year: 2020 ident: 10.1016/j.dsm.2022.07.004_bib73 – start-page: 211 year: 2019 ident: 10.1016/j.dsm.2022.07.004_bib2 article-title: Fairness-aware programming – year: 2019 ident: 10.1016/j.dsm.2022.07.004_bib33 – start-page: 1723 year: 2017 ident: 10.1016/j.dsm.2022.07.004_bib91 article-title: Data management challenges in production machine learning – volume: 47 start-page: 217 issue: 3 year: 2016 ident: 10.1016/j.dsm.2022.07.004_bib23 article-title: Intraobserver variability: should we worry? publication-title: J. Med. Imag. Radiat. Sci. doi: 10.1016/j.jmir.2016.06.004 – year: 2019 ident: 10.1016/j.dsm.2022.07.004_bib36 – ident: 10.1016/j.dsm.2022.07.004_bib102 |
SSID | ssj0002811256 |
Score | 2.3481553 |
Snippet | The importance of software based on machine learning is growing rapidly, but the potential of prototypes may not be realized in operation. This study... |
SourceID | doaj crossref elsevier |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 105 |
SubjectTerms | Machine learning Monitoring Operations Taxonomy |
Title | Monitoring machine learning models: a categorization of challenges and methods |
URI | https://dx.doi.org/10.1016/j.dsm.2022.07.004 https://doaj.org/article/796f63533c354a839cb8da9859c84db0 |
Volume | 5 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8QwFA7iSQ_iiuNGDp6EYNtsjTcVh0FwTg7MLWQVB-2IHf-_WdqhF_XisSFNyssr33vJy_cBcFnWznteElRY7xFR2iFNmEe-dpgr7jUzcb_jacomM_I4p_OB1FesCcv0wNlw11wwH0ARY4MpUQHOja6tEjUVpiZWp2y9EMUgmVqkLaMQRyTp1gBADHFGRH-kmYq7bBtvoVdVIu7sRNp6UErc_QNsGuDNeBfsdIEivM0fuAc2XLMPtgf0gQdgmn_I-ADfU1Gkg50KRGiIEjftDVQw1jy9hF75wiVcemh6BZUWqsbCrCLdHoLZ-OH5foI6fQRkMK8JitENZsIajUPWwDHGlnJfMitIZWwpTFWVqiZUaO2EichNMdO2KrS3Ngq7HIHNZtm4YwC5V4JYExbMWsKcFsRTLarCWU4Z5sUIFL2BpOnIw6OGxZvsq8QWMthURpvKIh5pkxG4Wr_ykZkzfut8F62-7hhJr1NDcAXZuYL8yxVGgPRrJrv4IccFYajXn-c--Y-5T8FWHDJXn52BzdXnlzsP4cpKXyTP_AYYUuU3 |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monitoring+machine+learning+models%3A+a+categorization+of+challenges+and+methods&rft.jtitle=Data+science+and+management&rft.au=Tim+Schr%C3%B6der&rft.au=Michael+Schulz&rft.date=2022-09-01&rft.pub=KeAi+Communications+Co.+Ltd&rft.issn=2666-7649&rft.eissn=2666-7649&rft.volume=5&rft.issue=3&rft.spage=105&rft.epage=116&rft_id=info:doi/10.1016%2Fj.dsm.2022.07.004&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_796f63533c354a839cb8da9859c84db0 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-7649&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-7649&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-7649&client=summon |