Monitoring machine learning models: a categorization of challenges and methods

The importance of software based on machine learning is growing rapidly, but the potential of prototypes may not be realized in operation. This study identified six categories of challenges for verification and validation of machine learning applications during production. Subsequently, monitoring w...

Full description

Saved in:
Bibliographic Details
Published inData science and management Vol. 5; no. 3; pp. 105 - 116
Main Authors Schröder, Tim, Schulz, Michael
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.09.2022
KeAi Communications Co. Ltd
Subjects
Online AccessGet full text
ISSN2666-7649
2666-7649
DOI10.1016/j.dsm.2022.07.004

Cover

Abstract The importance of software based on machine learning is growing rapidly, but the potential of prototypes may not be realized in operation. This study identified six categories of challenges for verification and validation of machine learning applications during production. Subsequently, monitoring was analyzed as a possible solution to mitigate those challenges. Capturing relevant data and model metrics may reveal problems at an early stage, allowing for targeted countermeasures. This study presents a taxonomy of methods and metrics currently addressed in scientific literature and compares these categories with case studies from practice.
AbstractList The importance of software based on machine learning is growing rapidly, but the potential of prototypes may not be realized in operation. This study identified six categories of challenges for verification and validation of machine learning applications during production. Subsequently, monitoring was analyzed as a possible solution to mitigate those challenges. Capturing relevant data and model metrics may reveal problems at an early stage, allowing for targeted countermeasures. This study presents a taxonomy of methods and metrics currently addressed in scientific literature and compares these categories with case studies from practice.
Author Schulz, Michael
Schröder, Tim
Author_xml – sequence: 1
  givenname: Tim
  orcidid: 0000-0002-5693-9020
  surname: Schröder
  fullname: Schröder, Tim
  email: timxschroeder@gmail.com
– sequence: 2
  givenname: Michael
  surname: Schulz
  fullname: Schulz, Michael
BookMark eNp9kMtKBDEQRYMoqKMf4K5_YNo8OklHVyK-wMdG1yFdqZ7J0JNI0gj69bYzIuLCVRWXOpfiHJLdmCIScsJozShTp6val3XNKec11TWlzQ454EqpuVaN2f2175PjUlaUUt4yxqU6II8PKYYx5RAX1drBMkSsBnQ5boLkcShnlavAjbiYrj7cGFKsUl_B0g0DxgWWykVfrXFcJl-OyF7vhoLH33NGXq6vni9v5_dPN3eXF_dzELpt5py1QijjoRNSKy2E8FL3THnTcPDMAOfMtY00XYcGGqqYFKrznHa991IyMSN3216f3Mq-5rB2-d0mF-wmSHlhXR4DDGi1Ub0SUggQsnGtMNC13plWGmgb39Gpi227IKdSMvY_fYzaL792ZSe_9suvpdpOfidG_2EgjBs3Y3Zh-Jc835KTWXwLmG2BgBHQh4wwTv-Hf-hPqPKWHA
CitedBy_id crossref_primary_10_1002_dac_5878
crossref_primary_10_3390_en17122909
crossref_primary_10_3390_su16219239
crossref_primary_10_1093_jamia_ocad114
crossref_primary_10_3390_foods13244015
crossref_primary_10_1016_j_agee_2024_109378
crossref_primary_10_3390_su16051951
crossref_primary_10_1016_j_ngib_2024_09_005
crossref_primary_10_1016_j_ijhydene_2023_08_148
crossref_primary_10_1515_dema_2024_0010
crossref_primary_10_1016_j_comcom_2024_02_005
crossref_primary_10_1016_j_jik_2024_100637
crossref_primary_10_3390_medicines10100058
crossref_primary_10_1007_s13042_024_02223_2
crossref_primary_10_1016_j_procs_2022_11_242
crossref_primary_10_1016_j_eswa_2023_122774
crossref_primary_10_1016_j_jmapro_2023_06_052
crossref_primary_10_3390_iot5020012
crossref_primary_10_1016_j_nlp_2024_100076
Cites_doi 10.1109/TSE.2014.2372785
10.1023/A:1007604202679
10.1016/j.scico.2007.01.015
10.1109/ACCESS.2017.2696365
10.1214/aoms/1177729694
10.1145/267580.267590
10.2307/1968827
10.1038/nature21056
10.1126/science.aaa8415
10.1016/0893-6080(89)90020-8
10.1016/j.patcog.2011.06.019
10.1049/sej.1989.0001
10.1111/1467-9868.00353
10.14778/3229863.3229867
10.1145/2523813
10.1109/52.382180
10.1016/j.future.2012.02.006
10.2307/1912352
10.1214/aos/1176343842
10.1016/0305-0548(81)90019-8
10.1145/360248.360252
10.3354/cr030079
10.29297/orbit.v1i2.49
10.3233/IDA-2002-6504
10.1007/s10618-015-0448-4
10.1016/j.jmir.2016.06.004
ContentType Journal Article
Copyright 2022 Xi’an Jiaotong University
Copyright_xml – notice: 2022 Xi’an Jiaotong University
DBID 6I.
AAFTH
AAYXX
CITATION
DOA
DOI 10.1016/j.dsm.2022.07.004
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
DatabaseTitleList

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2666-7649
EndPage 116
ExternalDocumentID oai_doaj_org_article_796f63533c354a839cb8da9859c84db0
10_1016_j_dsm_2022_07_004
S2666764922000303
GroupedDBID 6I.
AAEDW
AAFTH
AAXUO
AEXQZ
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M~E
OK1
ROL
0R~
AALRI
AAYWO
AAYXX
ACVFH
ADCNI
ADVLN
AEUPX
AFPUW
AIGII
AITUG
AKBMS
AKRWK
AKYEP
CITATION
ID FETCH-LOGICAL-c3784-2183369dcb35767333d57f16d942cd19c221a8459bbe9c4061536bd20bfdd5513
IEDL.DBID DOA
ISSN 2666-7649
IngestDate Wed Aug 27 01:07:30 EDT 2025
Tue Jul 01 01:06:46 EDT 2025
Thu Apr 24 22:51:48 EDT 2025
Fri Feb 23 02:38:57 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Taxonomy
Operations
Monitoring
Machine learning
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c3784-2183369dcb35767333d57f16d942cd19c221a8459bbe9c4061536bd20bfdd5513
ORCID 0000-0002-5693-9020
OpenAccessLink https://doaj.org/article/796f63533c354a839cb8da9859c84db0
PageCount 12
ParticipantIDs doaj_primary_oai_doaj_org_article_796f63533c354a839cb8da9859c84db0
crossref_primary_10_1016_j_dsm_2022_07_004
crossref_citationtrail_10_1016_j_dsm_2022_07_004
elsevier_sciencedirect_doi_10_1016_j_dsm_2022_07_004
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-09-01
PublicationDateYYYYMMDD 2022-09-01
PublicationDate_xml – month: 09
  year: 2022
  text: 2022-09-01
  day: 01
PublicationDecade 2020
PublicationTitle Data science and management
PublicationYear 2022
Publisher Elsevier B.V
KeAi Communications Co. Ltd
Publisher_xml – name: Elsevier B.V
– name: KeAi Communications Co. Ltd
References Jordan, Mitchell (bib64) 2015; 349
Cam, Chui, Hall (bib24) 2019
Ernst, Perkins, Guo (bib37) 2007; 69
Alpaydin (bib3) 2020
Amershi, Begel, Bird (bib5) 2019
Arpteg, Brinne, Crnkovic-Friis (bib7) 2018
Beran (bib14) 1977; 5
Bridge, Fielding, Rowntree (bib23) 2016; 47
Hansson, Yella, Dougherty (bib51) 2016; 6
Bartlett, Ben-David, Kulkarni (bib12) 2000; 41
Barr, Harman, McMinn (bib11) 2015; 41
Pei, Cao, Yang (bib88) 2017
Wagstaff, Doran, Davies (bib116) 2019
EU Parliament (bib40) 2021
Ashmore, Calinescu, Paterson (bib8) 2019
Gass, Joel (bib46) 1981; 8
Ré, Niu, Gudipati (bib93) 2019
Sharir, Peleg, Shoham (bib101) 2020
Hornik, Stinchcombe, White (bib57) 1989; 2
Clarke, Klieber, Nováček (bib29) 2012
Gama, zliobaite, Bifet (bib44) 2014; 46
L’Heureux, Grolinger, El Yamany (bib76) 2017; 5
Touvron, Vedaldi, Douze (bib109) 2020
Jones, White, Zaidi (bib63) 2019
Jagielski, Oprea, Biggio (bib61) 2018
Huang, Kwiatkowska, Wang (bib58) 2017
Tripathi, Muhr, Manuel (bib110) 2020
Hendrycks, Dietterich (bib54) 2019
Peled, Vardi, Yannakakis (bib89) 1999
Morgenthaler, Gridnev, Sauciuc (bib84) 2012
Breck, Zinkevich, Polyzotis (bib22) 2019
Finkelstein, Harman, Mansouri (bib42) 2008; RE’08
Schelter, Bießmann, Januschowski (bib96) 2018; 41
Vaswani, Shazeer, Parmar (bib113) 2017
Guo, Pleiss, Sun (bib48) 2017
Polyzotis, Roy, Whang (bib91) 2017
Schelter, Lange, Schmidt (bib97) 2018; 11
Davenport, Ronanki (bib32) 2018
Schubmehl, Manabe, Minonne (bib99) 2020
McGregor (bib78) 2020
Wolf, Miller, Grodzinsky (bib119) 2017; 1
Japkowicz, Stephen (bib62) 2002; 6
Kodiyan (bib70) 2019
Spiegelhalter, Best, Carlin (bib103) 2002; 64
Voas, Miller (bib115) 1995; 12
Pham (bib90) 2006
Baylor, Breck, Cheng (bib82) 2017
Zaharia, Chen, Davidson (bib123) 2018; 41
Klaise, Van Looveren, Cox (bib69) 2020
Krishnan, Franklin, Goldberg (bib71) 2017
Hastie, Tibshirani, Friedman (bib52) 2009
Devlin, Chang, Lee (bib33) 2019
Kullback, Leibler (bib72) 1951; 22
Schlimmer, Granger (bib98) 1986; 1
Haldar, Abdool, Ramanathan (bib49) 2019
Kitchenham, Walker (bib68) 1989; 4
Ma, Papadakis, Tsakmalis (bib77) 2019
Bojarski, Del Testa, Dworakowski (bib18) 2016
Clark, Kearns, Overholt (bib28) 2014
Hall, Gill (bib50) 2018
Spanfelner, Richter, Ebel (bib102) 2012
Stoica, Song, Popa (bib104) 2017
Katz, Barrett, Dill (bib66) 2017
Doshi-Velez, Kim (bib34) 2017
Barocas, Selbst (bib10) 2016; 671
Verma, Rubin (bib114) 2018
Yu, Liu (bib121) 2004; 5
Gardiner (bib45) 1999
Lakshminarayanan, Pritzel, Blundell (bib75) 2017
Esteva, Kuprel, Novoa (bib38) 2017; 542
Adler, Feth, Schneider (bib1) 2016
Sculley, Holt, Golovin (bib100) 2015
Zhu, Hall, May (bib126) 1997; 29
Chilakapati (bib27) 2019
King (bib67) 1976; 19
Miller (bib81) 2018
Chen, Zhang, Guo (bib25) 2013; 29
Salay, Czarnecki (bib95) 2018
(bib39) 2016
Tallarida, Murray (bib107) 1987
Gajane, Pechenizkiy (bib43) 2018
Vartak, Madden (bib111) 2018; 41
Zhao, Nasrullah, Li (bib125) 2019
Cramer (bib31) 1940; 41
Sutton, Hobson, Geddes (bib106) 2018
Bernardi, Mavridis, Estevez (bib15) 2019
Cheng, Nührenberg, Ruess (bib26) 2017
Quionero-Candela, Sugiyama, Schwaighofer (bib92) 2009
Corbett-Davies, Goel (bib30) 2018
Ovadia, Fertig, Ren (bib86) 2019
Webb, Hyde, Cao (bib117) 2016; 30
Glorot, Bengio (bib47) 2010
Tan, Sun, Kong (bib108) 2018
Amershi, Chickering, Drucker (bib6) 2015
Yang, Shami (bib120) 2020
Borg, Englund, Wnuk (bib20) 2018
Kumar, Nyström, Lambert (bib73) 2020
Willmott, Matsuura (bib118) 2005; 30
Bengio (bib13) 2012
McMahan, Golovin, Chikkerur (bib79) 2013
Ribeiro, Singh, Guestrin (bib94) 2016
Bhatt, Xiang, Sharma (bib16) 2020
Engstrom, Tran, Tsipras (bib36) 2019
Farquhar, Gal (bib41) 2019
Albarghouthi, Vinitsky (bib2) 2019
Paleyes, Urma, Lawrence (bib87) 2020
Zhang, Harman, Ma (bib124) 2019
Bolukbasi, Chang, Zou (bib19) 2016
Zafar, Valera, Rodriguez (bib122) 2017
Hüllermeier, Waegeman (bib56) 2020
(bib4) 2000
Balzert (bib9) 2009
Breck, Cai, Nielsen (bib21) 2017
Herrera (bib55) 2011
Boehm, Kumar, Yang (bib17) 2019; 14
Kusner, Loftus, Russell (bib74) 2018
Miljković (bib80) 2010
Murphy, Kaiser, Arias (bib85) 2007
Heckman (bib53) 1979; 47
Sun, Huang, Kroening (bib105) 2019
Kanewala, Bieman (bib65) 2018
(bib60) 1990
Moreno-Torres, Raeder, Alaiz-RodríGuez (bib83) 2012; 45
Hynes, Sculley, Terry (bib59) 2017
Vartak, Subramanyam, Lee (bib112) 2016
Dwork, Hardt, Pitassi (bib35) 2011
Barocas (10.1016/j.dsm.2022.07.004_bib10) 2016; 671
Cam (10.1016/j.dsm.2022.07.004_bib24)
Tripathi (10.1016/j.dsm.2022.07.004_bib110) 2020
Hastie (10.1016/j.dsm.2022.07.004_bib52) 2009
Klaise (10.1016/j.dsm.2022.07.004_bib69) 2020
Schlimmer (10.1016/j.dsm.2022.07.004_bib98) 1986; 1
Hynes (10.1016/j.dsm.2022.07.004_bib59) 2017
Glorot (10.1016/j.dsm.2022.07.004_bib47) 2010
Hendrycks (10.1016/j.dsm.2022.07.004_bib54) 2019
Kitchenham (10.1016/j.dsm.2022.07.004_bib68) 1989; 4
Gass (10.1016/j.dsm.2022.07.004_bib46) 1981; 8
Ashmore (10.1016/j.dsm.2022.07.004_bib8) 2019
Finkelstein (10.1016/j.dsm.2022.07.004_bib42) 2008; RE’08
Kullback (10.1016/j.dsm.2022.07.004_bib72) 1951; 22
Farquhar (10.1016/j.dsm.2022.07.004_bib41) 2019
Hall (10.1016/j.dsm.2022.07.004_bib50) 2018
Schubmehl (10.1016/j.dsm.2022.07.004_bib99) 2020
Touvron (10.1016/j.dsm.2022.07.004_bib109) 2020
Sharir (10.1016/j.dsm.2022.07.004_bib101) 2020
(10.1016/j.dsm.2022.07.004_bib60) 1990
Zhu (10.1016/j.dsm.2022.07.004_bib126) 1997; 29
Wagstaff (10.1016/j.dsm.2022.07.004_bib116) 2019
Arpteg (10.1016/j.dsm.2022.07.004_bib7) 2018
Bolukbasi (10.1016/j.dsm.2022.07.004_bib19) 2016
McMahan (10.1016/j.dsm.2022.07.004_bib79) 2013
Bojarski (10.1016/j.dsm.2022.07.004_bib18) 2016
Baylor (10.1016/j.dsm.2022.07.004_bib82) 2017
Webb (10.1016/j.dsm.2022.07.004_bib117) 2016; 30
Barr (10.1016/j.dsm.2022.07.004_bib11) 2015; 41
Breck (10.1016/j.dsm.2022.07.004_bib22) 2019
Gajane (10.1016/j.dsm.2022.07.004_bib43) 2018
Chilakapati (10.1016/j.dsm.2022.07.004_bib27) 2019
Yang (10.1016/j.dsm.2022.07.004_bib120) 2020
Kanewala (10.1016/j.dsm.2022.07.004_bib65) 2018
Willmott (10.1016/j.dsm.2022.07.004_bib118) 2005; 30
Bridge (10.1016/j.dsm.2022.07.004_bib23) 2016; 47
Quionero-Candela (10.1016/j.dsm.2022.07.004_bib92) 2009
Ribeiro (10.1016/j.dsm.2022.07.004_bib94) 2016
Borg (10.1016/j.dsm.2022.07.004_bib20) 2018
Clark (10.1016/j.dsm.2022.07.004_bib28)
Pei (10.1016/j.dsm.2022.07.004_bib88) 2017
Zafar (10.1016/j.dsm.2022.07.004_bib122) 2017
Kumar (10.1016/j.dsm.2022.07.004_bib73) 2020
Ma (10.1016/j.dsm.2022.07.004_bib77) 2019
Hornik (10.1016/j.dsm.2022.07.004_bib57) 1989; 2
Schelter (10.1016/j.dsm.2022.07.004_bib97) 2018; 11
Albarghouthi (10.1016/j.dsm.2022.07.004_bib2) 2019
Gama (10.1016/j.dsm.2022.07.004_bib44) 2014; 46
Schelter (10.1016/j.dsm.2022.07.004_bib96) 2018; 41
Cramer (10.1016/j.dsm.2022.07.004_bib31) 1940; 41
Bhatt (10.1016/j.dsm.2022.07.004_bib16) 2020
Sun (10.1016/j.dsm.2022.07.004_bib105) 2019
Chen (10.1016/j.dsm.2022.07.004_bib25) 2013; 29
Japkowicz (10.1016/j.dsm.2022.07.004_bib62) 2002; 6
(10.1016/j.dsm.2022.07.004_bib4) 2000
Zhang (10.1016/j.dsm.2022.07.004_bib124) 2019
Doshi-Velez (10.1016/j.dsm.2022.07.004_bib34) 2017
Jagielski (10.1016/j.dsm.2022.07.004_bib61) 2018
Pham (10.1016/j.dsm.2022.07.004_bib90) 2006
Katz (10.1016/j.dsm.2022.07.004_bib66) 2017
Ernst (10.1016/j.dsm.2022.07.004_bib37) 2007; 69
Stoica (10.1016/j.dsm.2022.07.004_bib104) 2017
Jones (10.1016/j.dsm.2022.07.004_bib63) 2019
Morgenthaler (10.1016/j.dsm.2022.07.004_bib84) 2012
Moreno-Torres (10.1016/j.dsm.2022.07.004_bib83) 2012; 45
Heckman (10.1016/j.dsm.2022.07.004_bib53) 1979; 47
Haldar (10.1016/j.dsm.2022.07.004_bib49) 2019
Bartlett (10.1016/j.dsm.2022.07.004_bib12) 2000; 41
Huang (10.1016/j.dsm.2022.07.004_bib58) 2017
Kodiyan (10.1016/j.dsm.2022.07.004_bib70)
Amershi (10.1016/j.dsm.2022.07.004_bib5) 2019
Lakshminarayanan (10.1016/j.dsm.2022.07.004_bib75) 2017
Sculley (10.1016/j.dsm.2022.07.004_bib100) 2015
Miljković (10.1016/j.dsm.2022.07.004_bib80) 2010
Balzert (10.1016/j.dsm.2022.07.004_bib9) 2009
L’Heureux (10.1016/j.dsm.2022.07.004_bib76) 2017; 5
Clarke (10.1016/j.dsm.2022.07.004_bib29) 2012
Wolf (10.1016/j.dsm.2022.07.004_bib119) 2017; 1
Dwork (10.1016/j.dsm.2022.07.004_bib35) 2011
Boehm (10.1016/j.dsm.2022.07.004_bib17) 2019; 14
Herrera (10.1016/j.dsm.2022.07.004_bib55)
Esteva (10.1016/j.dsm.2022.07.004_bib38) 2017; 542
Polyzotis (10.1016/j.dsm.2022.07.004_bib91) 2017
Bengio (10.1016/j.dsm.2022.07.004_bib13) 2012
Voas (10.1016/j.dsm.2022.07.004_bib115) 1995; 12
King (10.1016/j.dsm.2022.07.004_bib67) 1976; 19
Spiegelhalter (10.1016/j.dsm.2022.07.004_bib103) 2002; 64
Tan (10.1016/j.dsm.2022.07.004_bib108) 2018
Hansson (10.1016/j.dsm.2022.07.004_bib51) 2016; 6
Hüllermeier (10.1016/j.dsm.2022.07.004_bib56) 2020
Krishnan (10.1016/j.dsm.2022.07.004_bib71) 2017
Bernardi (10.1016/j.dsm.2022.07.004_bib15) 2019
Ovadia (10.1016/j.dsm.2022.07.004_bib86) 2019
Corbett-Davies (10.1016/j.dsm.2022.07.004_bib30) 2018
Ré (10.1016/j.dsm.2022.07.004_bib93) 2019
Verma (10.1016/j.dsm.2022.07.004_bib114) 2018
Adler (10.1016/j.dsm.2022.07.004_bib1) 2016
McGregor (10.1016/j.dsm.2022.07.004_bib78) 2020
Alpaydin (10.1016/j.dsm.2022.07.004_bib3) 2020
Paleyes (10.1016/j.dsm.2022.07.004_bib87) 2020
EU Parliament (10.1016/j.dsm.2022.07.004_bib40) 2021
Devlin (10.1016/j.dsm.2022.07.004_bib33) 2019
(10.1016/j.dsm.2022.07.004_bib39) 2016
Gardiner (10.1016/j.dsm.2022.07.004_bib45) 1999
Amershi (10.1016/j.dsm.2022.07.004_bib6) 2015
Zaharia (10.1016/j.dsm.2022.07.004_bib123) 2018; 41
Guo (10.1016/j.dsm.2022.07.004_bib48) 2017
Peled (10.1016/j.dsm.2022.07.004_bib89) 1999
Zhao (10.1016/j.dsm.2022.07.004_bib125) 2019
Sutton (10.1016/j.dsm.2022.07.004_bib106) 2018
Murphy (10.1016/j.dsm.2022.07.004_bib85) 2007
Davenport (10.1016/j.dsm.2022.07.004_bib32) 2018
Spanfelner (10.1016/j.dsm.2022.07.004_bib102)
Vartak (10.1016/j.dsm.2022.07.004_bib111) 2018; 41
Vartak (10.1016/j.dsm.2022.07.004_bib112) 2016
Vaswani (10.1016/j.dsm.2022.07.004_bib113) 2017
Yu (10.1016/j.dsm.2022.07.004_bib121) 2004; 5
Miller (10.1016/j.dsm.2022.07.004_bib81) 2018
Cheng (10.1016/j.dsm.2022.07.004_bib26) 2017
Breck (10.1016/j.dsm.2022.07.004_bib21) 2017
Jordan (10.1016/j.dsm.2022.07.004_bib64) 2015; 349
Salay (10.1016/j.dsm.2022.07.004_bib95) 2018
Beran (10.1016/j.dsm.2022.07.004_bib14) 1977; 5
Kusner (10.1016/j.dsm.2022.07.004_bib74) 2018
Engstrom (10.1016/j.dsm.2022.07.004_bib36) 2019
Tallarida (10.1016/j.dsm.2022.07.004_bib107) 1987
References_xml – year: 2019
  ident: bib41
  article-title: Towards robust evaluations of continual learning
– start-page: 2279
  year: 2018
  end-page: 2288
  ident: bib106
  article-title: Data diff: interpretable, executable summaries of changes in distributions for data wrangling
  publication-title: Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
– year: 2019
  ident: bib70
  article-title: An overview of ethical issues in using AI systems in hiring with a case study of amazon’s AI based hiring tool
– year: 2020
  ident: bib109
  article-title: Fixing the train-test resolution discrepancy: FixEfficientNet
– volume: 542
  start-page: 115
  year: 2017
  end-page: 118
  ident: bib38
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
– year: 2017
  ident: bib34
  article-title: Towards a rigorous science of interpretable machine learning
– year: 2011
  ident: bib35
  article-title: Fairness through awareness. arXiv:1104.3913
– year: 2017
  ident: bib104
  article-title: A berkeley view of systems challenges for AI. arXiv:1712.05855.
– year: 2017
  ident: bib71
  article-title: BoostClean: automated error detection and repair for machine learning
– year: 2019
  ident: bib33
  article-title: BERT: pre-training of deep bidirectional transformers for language understanding.
– year: 2018
  ident: bib50
  article-title: Introduction to Machine Learning Interpretability
– year: 2019
  ident: bib49
  article-title: Applying deep learning to Airbnb search
  publication-title: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
– start-page: 1
  year: 2017
  end-page: 7
  ident: bib59
  article-title: The data linter: lightweight automated sanity checking for ML data sets
  publication-title: In: Proceedings of 31st Conference on Neural Information Processing Systems (NIPS 2017)
– year: 2021
  ident: bib40
  article-title: Proposal for a Regulation of the European Parliament and of the Council Laying Down Harmonised Rules on Artificial Intelligence (Artificial Intelligence Act) and Amending Certain Union Legislative Acts
– start-page: 2191
  year: 2019
  end-page: 2201
  ident: bib116
  article-title: Enabling onboard detection of events of scientific interest for the europa clipper spacecraft
  publication-title: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
– year: 2019
  ident: bib93
  article-title: Overton: a data system for monitoring and improving machine-learned products.
– year: 2019
  ident: bib8
  article-title: Assuring the machine learning lifecycle: desiderata, methods, and challenges
– volume: 30
  start-page: 79
  year: 2005
  end-page: 82
  ident: bib118
  article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance
  publication-title: Clim. Res.
– year: 2020
  ident: bib56
  article-title: Aleatoric and epistemic uncertainty in machine learning: an introduction to concepts and methods.
– volume: 41
  start-page: 507
  year: 2015
  end-page: 525
  ident: bib11
  article-title: The oracle problem in software testing: a survey
  publication-title: IEEE Trans. Software Eng.
– volume: 1
  start-page: 1
  year: 2017
  end-page: 12
  ident: bib119
  article-title: Why we should have seen that coming: comments on microsoft’s tay “experiment”, and wider implications
  publication-title: ORBIT J.
– year: 2020
  ident: bib110
  article-title: Ensuring the robustness and reliability of data-driven knowledge discovery models in production and manufacturing.
– year: 2020
  ident: bib69
  article-title: Monitoring and explainability of models in production
– year: 2018
  ident: bib74
  article-title: Counterfactual fairness.
– start-page: 225
  year: 1999
  end-page: 240
  ident: bib89
  article-title: Black box checking
  publication-title: Formal Methods for Protocol Engineering and Distributed Systems. PSTV FORTE 1999. IFIP Advances in Information and Communication Technology
– start-page: 1
  year: 2016
  end-page: 3
  ident: bib112
  article-title: ModelDB: a system for machine learning model management
  publication-title: Proceedings of the Workshop on Human-In-The-Loop Data Analytics - HILDA ’16
– year: 2017
  ident: bib66
  article-title: Reluplex: an efficient SMT solver for verifying deep neural networks
– start-page: 17
  year: 2012
  end-page: 36
  ident: bib13
  article-title: Deep learning of representations for unsupervised and transfer learning
  publication-title: Proceedings of ICML Workshop on Unsupervised and Transfer Learning
– volume: 4
  start-page: 2
  year: 1989
  end-page: 14
  ident: bib68
  article-title: A quantitative approach to monitoring software development
  publication-title: Software Eng. J.
– year: 2012
  ident: bib102
  article-title: Challenges in applying the ISO 26262 for driver assistance systems
– year: 2018
  ident: bib95
  article-title: Using machine learning safely in automotive software: an assessment and adaption of software process requirements
– year: 2019
  ident: bib105
  article-title: Testing deep neural networks.
– volume: 30
  start-page: 964
  year: 2016
  end-page: 994
  ident: bib117
  article-title: Characterizing concept drift
  publication-title: Data Min. Knowl. Discov.
– start-page: 1
  year: 2018
  end-page: 7
  ident: bib114
  article-title: Fairness definitions explained
  publication-title: Proceedings of the International Workshop on Software Fairness
– volume: 671
  year: 2016
  ident: bib10
  article-title: Big data’s disparate impact
  publication-title: 104 California Law Review
– start-page: 200
  year: 2016
  end-page: 205
  ident: bib1
  article-title: Safety engineering for autonomous vehicles
  publication-title: 2016 46th Annual IEEE/IFIP International Conference on Dependable Systems and Networks Workshop (DSN-W)
– volume: 64
  start-page: 583
  year: 2002
  end-page: 639
  ident: bib103
  article-title: Bayesian measures of model complexity and fit
  publication-title: J. Roy. Stat. Soc.
– year: 2016
  ident: bib39
  article-title: Regulation (EU) 2016/679 of the European Parliament and of the Council of 27 April 2016 on the Protection of Natural Persons with Regard to the Processing of Personal Data and on the Free Movement of Such Data, and Repealing Directive 95/46/ec (General Data Protection Regulation)
– volume: 41
  start-page: 16
  year: 2018
  end-page: 25
  ident: bib111
  article-title: MODELDB: opportunities and challenges in managing machine learning models
  publication-title: IEEE Data Eng. Bull.
– year: 2019
  ident: bib22
  article-title: Data validation for machine learning
  publication-title: Proceedings of the 2nd SysML Conference
– start-page: 50
  year: 2018
  end-page: 59
  ident: bib7
  article-title: Software engineering challenges of deep learning
  publication-title: In: 2018 44th Euromicro Conference on Software Engineering and Advanced Applications (SEAA)
– start-page: 249
  year: 2010
  end-page: 256
  ident: bib47
  article-title: Understanding the difficulty of training deep feedforward neural networks
  publication-title: Proceedings of the 13th International Conference on Artificial Intelligence and Statistics
– volume: 8
  start-page: 341
  year: 1981
  end-page: 346
  ident: bib46
  article-title: Concepts of model confidence
  publication-title: Comput. Oper. Res.
– volume: 29
  start-page: 366
  year: 1997
  end-page: 427
  ident: bib126
  article-title: Software unit test coverage and adequacy
  publication-title: ACM Comput. Surv.
– volume: 349
  start-page: 255
  year: 2015
  end-page: 260
  ident: bib64
  article-title: Machine learning: trends, perspectives, and prospects
  publication-title: Science
– year: 2020
  ident: bib3
  article-title: Introduction to Machine Learning, 4th ed
– start-page: 593
  year: 2010
  end-page: 598
  ident: bib80
  article-title: Review of novelty detection methods
  publication-title: Proceedings of the 33rd International Convention MIPRO
– year: 2016
  ident: bib18
  article-title: End to end learning for self-driving cars.
– start-page: 1
  year: 2007
  end-page: 6
  ident: bib85
  article-title: An approach to software testing of machine learning applications
  publication-title: Proceedings of the 19th International Conference on Software Engineering & Knowledge Engineering
– year: 2019
  ident: bib24
  article-title: Global AI survey: AI proves its worth, but few scale impact
– volume: 29
  start-page: 1758
  year: 2013
  end-page: 1773
  ident: bib25
  article-title: State of the art: dynamic symbolic execution for automated test generation
  publication-title: Future Generat. Comput. Syst.
– volume: 14
  start-page: 1
  year: 2019
  end-page: 173
  ident: bib17
  article-title: Data management in machine learning systems
  publication-title: Synth. Lectures Data Manag.
– year: 2019
  ident: bib63
  article-title: Predicts 2020: data and analytics strategies—invest, influence and impact
  publication-title: Gartner Research
– year: 2017
  ident: bib75
  article-title: Simple and scalable predictive uncertainty estimation using deep ensembles.
– volume: 12
  start-page: 17
  year: 1995
  end-page: 28
  ident: bib115
  article-title: Software testability: the new verification
  publication-title: IEEE Software
– start-page: 2503
  year: 2015
  end-page: 2511
  ident: bib100
  article-title: Hidden technical debt in machine learning systems
  publication-title: Advances in Neural Information Processing Systems
– start-page: 1123
  year: 2017
  end-page: 1132
  ident: bib21
  article-title: The ML test score: a rubric for ML production readiness and technical debt reduction
  publication-title: 2017 IEEE International Conference on Big Data (Big Data)
– volume: 46
  year: 2014
  ident: bib44
  article-title: A survey on concept drift adaptation
  publication-title: ACM Comput. Surv.
– volume: 47
  start-page: 153
  year: 1979
  end-page: 161
  ident: bib53
  article-title: Sample selection bias as a specification error
  publication-title: Econometrica
– year: 2009
  ident: bib9
  article-title: Lehrbuch der Softwaretechnik: Basiskonzepte und Requirements Engineering, 3rd ed
– volume: 1
  start-page: 317
  year: 1986
  end-page: 354
  ident: bib98
  article-title: Incremental learning from noisy data
  publication-title: Machine Language
– volume: RE’08
  start-page: 115
  year: 2008
  end-page: 124
  ident: bib42
  article-title: Fairness analysis in requirements assignments
  publication-title: Proceedings of the 16th IEEE International Requirements Engineering Conference
– volume: 6
  start-page: 429
  year: 2002
  end-page: 449
  ident: bib62
  article-title: The class imbalance problem: a systematic study
  publication-title: Intell. Data Anal.
– volume: 5
  start-page: 7776
  year: 2017
  end-page: 7797
  ident: bib76
  article-title: Machine learning with big data: challenges and approaches
  publication-title: IEEE Access
– start-page: 6000
  year: 2017
  end-page: 6010
  ident: bib113
  article-title: Attention is all you need
  publication-title: In: Proceedings of the 31st International Conference on Neural Information Processing Systems
– year: 2018
  ident: bib65
  article-title: Testing scientific software: a systematic literature review
– year: 2017
  ident: bib58
  article-title: Safety verification of deep neural networks.
– year: 2019
  ident: bib86
  article-title: Can you trust your model’s uncertainty? Evaluating predictive uncertainty under dataset shift.
– year: 2020
  ident: bib120
  article-title: On hyperparameter optimization of machine learning algorithms: theory and practice
– year: 2018
  ident: bib32
  article-title: Artificial intelligence for the real world
  publication-title: Harv. Bus. Rev
– start-page: 1
  year: 2012
  end-page: 30
  ident: bib29
  article-title: Model checking and the state explosion problem
  publication-title: Tools for Practical Software Verification: LASER, International Summer School 2011, Elba Island, Italy, Revised Tutorial Lectures
– volume: 41
  start-page: 5
  year: 2018
  end-page: 15
  ident: bib96
  article-title: On challenges in machine learning model management
  publication-title: IEEE Data Eng. Bull.
– start-page: 15458
  year: 2020
  end-page: 15463
  ident: bib78
  article-title: Preventing repeated real world AI failures by cataloging incidents: the AI incident database
  publication-title: In: Proceedings of the AAAI Conference on Artificial Intelligence
– year: 2009
  ident: bib92
  article-title: Dataset Shift in Machine Learning
– year: 2020
  ident: bib99
  article-title: Worldwide artificial intelligence spending guide
– year: 2018
  ident: bib43
  article-title: On formalizing fairness in prediction with machine learning.
– volume: 22
  start-page: 79
  year: 1951
  end-page: 86
  ident: bib72
  article-title: On information and sufficiency
  publication-title: Ann. Math. Stat.
– start-page: 1723
  year: 2017
  end-page: 1726
  ident: bib91
  article-title: Data management challenges in production machine learning
  publication-title: Proceedings of the 2017 ACM International Conference on Management of Data
– volume: 47
  start-page: 217
  year: 2016
  end-page: 220
  ident: bib23
  article-title: Intraobserver variability: should we worry?
  publication-title: J. Med. Imag. Radiat. Sci.
– year: 2019
  ident: bib125
  article-title: PyOD: a Python toolbox for scalable outlier detection.
– volume: 45
  start-page: 521
  year: 2012
  end-page: 530
  ident: bib83
  article-title: A unifying view on dataset shift in classification
  publication-title: Pattern Recogn.
– start-page: 1
  year: 2012
  end-page: 6
  ident: bib84
  article-title: Searching for build debt: experiences managing technical debt at Google
  publication-title: 2012 Third International Workshop on Managing Technical Debt (MTD)
– volume: 11
  start-page: 1781
  year: 2018
  end-page: 1794
  ident: bib97
  article-title: Automating large-scale data quality verification
  publication-title: Proc. VLDB Endowment
– year: 2020
  ident: bib101
  article-title: The cost of training NLP models: a concise overview.
– year: 2018
  ident: bib108
  article-title: A survey on deep transfer learning
– volume: 41
  start-page: 153
  year: 2000
  end-page: 174
  ident: bib12
  article-title: Learning changing concepts by exploiting the structure of change
  publication-title: Mach. Learn.
– year: 2009
  ident: bib52
  article-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed
  publication-title: Springer, New York
– volume: 2
  start-page: 359
  year: 1989
  end-page: 366
  ident: bib57
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Network
– volume: 41
  start-page: 215
  year: 1940
  end-page: 230
  ident: bib31
  article-title: On the theory of stationary random processes
  publication-title: Ann. Math.
– start-page: 1
  year: 2017
  end-page: 18
  ident: bib88
  article-title: DeepXplore: automated whitebox testing of deep learning systems
  publication-title: Proceedings of the 26th Symposium on Operating Systems Principles
– volume: 5
  start-page: 1205
  year: 2004
  end-page: 1224
  ident: bib121
  article-title: Efficient feature selection via analysis of relevance and redundancy
  publication-title: J. Mach. Learn. Res.
– year: 2019
  ident: bib36
  article-title: Exploring the landscape of spatial robustness.
– start-page: 1
  year: 1990
  end-page: 84
  ident: bib60
  article-title: 610.12-1990 IEEE Standard Glossary of Software Engineering Terminology
– volume: 69
  start-page: 35
  year: 2007
  end-page: 45
  ident: bib37
  article-title: The Daikon system for dynamic detection of likely invariants
  publication-title: Sci. Comput. Program.
– year: 2018
  ident: bib30
  article-title: The measure and mismeasure of fairness: a critical review of fair machine learning.
– year: 2006
  ident: bib90
  article-title: Introduction. In: System Software Reliability
  publication-title: pp. 1–7
– volume: 19
  start-page: 385
  year: 1976
  end-page: 394
  ident: bib67
  article-title: Symbolic execution and program testing
  publication-title: Commun. ACM
– year: 2020
  ident: bib87
  article-title: Challenges in deploying machine learning: a survey of case studies
– year: 1999
  ident: bib45
  article-title: Testing Safety-Related Software: A Practical Handbook
– year: 2017
  ident: bib26
  article-title: Maximum resilience of artificial neural networks
– start-page: 1743
  year: 2019
  end-page: 1751
  ident: bib15
  article-title: 150 successful machine learning models: 6 lessons learned at Booking.com
  publication-title: Proceedings of the 25th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining
– start-page: 211
  year: 2019
  end-page: 219
  ident: bib2
  article-title: Fairness-aware programming
  publication-title: Proceedings of the Conference on Fairness, Accountability, and Transparency
– year: 2014
  ident: bib28
  article-title: Air force research laboratory test and evaluation, verification and validation of autonomous systems challenge exploration
– year: 2019
  ident: bib77
  article-title: Test selection for deep learning systems
– year: 2000
  ident: bib4
  publication-title: Statistics with Confidence: Confidence Intervals and Statistical Guidelines, 2nd ed
– year: 2018
  ident: bib61
  article-title: Manipulating machine learning: poisoning attacks and countermeasures for regression learning
– volume: 41
  start-page: 39
  year: 2018
  end-page: 45
  ident: bib123
  article-title: Accelerating the machine learning lifecycle with MLflow
  publication-title: IEEE Data Eng. Bull.
– year: 2017
  ident: bib122
  article-title: Fairness constraints: mechanisms for fair classification.
– year: 2011
  ident: bib55
  article-title: Dataset shift in classification: approaches and problems, IWANN
– year: 2020
  ident: bib16
  article-title: Explainable machine learning in deployment
– start-page: 291
  year: 2019
  end-page: 300
  ident: bib5
  article-title: Software engineering for machine learning: a case study
  publication-title: 2019 IEEE/ACM 41st International Conference on Software Engineering: Software Engineering in Practice (ICSE-SEIP)
– year: 2016
  ident: bib19
  article-title: Man is to computer programmer as woman is to homemaker? debiasing word embeddings.
– year: 2018
  ident: bib20
  article-title: Safely entering the deep: a review of verification and validation for machine learning and a challenge elicitation in the automotive industry
– year: 2016
  ident: bib94
  article-title: Model-agnostic interpretability of machine learning
– start-page: 140
  year: 1987
  end-page: 142
  ident: bib107
  article-title: Chi-square test
  publication-title: Manual of Pharmacologic Calculations: with Computer Programs
– volume: 6
  start-page: 1
  year: 2016
  end-page: 13
  ident: bib51
  article-title: Machine learning algorithms in heavy process manufacturing
  publication-title: Am. J. Intell. Syst.
– year: 2018
  ident: bib81
  article-title: Explanation in artificial intelligence: insights from the social sciences
– year: 2019
  ident: bib124
  article-title: Machine learning testing: survey, landscapes and horizons
– year: 2020
  ident: bib73
  article-title: Adversarial machine learning-industry perspectives
– start-page: 1387
  year: 2017
  end-page: 1395
  ident: bib82
  article-title: TFX: a TensorFlow-based production-scale machine learning platform
– start-page: 337
  year: 2015
  end-page: 346
  ident: bib6
  article-title: ModelTracker: redesigning performance analysis tools for machine learning
  publication-title: ACM Conference on Human Factors in Computing Systems
– volume: 5
  start-page: 445
  year: 1977
  end-page: 463
  ident: bib14
  article-title: Minimum hellinger distance estimates for parametric models
  publication-title: Ann. Stat.
– year: 2019
  ident: bib54
  article-title: Benchmarking neural network robustness to common corruptions and perturbations.
– year: 2019
  ident: bib27
  article-title: Concept drift and model decay in machine learning
– year: 2017
  ident: bib48
  article-title: On calibration of modern neural networks.
– start-page: 1222
  year: 2013
  end-page: 1230
  ident: bib79
  article-title: Ad click prediction: a view from the trenches
  publication-title: Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining — KDD ’13
– volume: 5
  start-page: 1205
  issue: 12
  year: 2004
  ident: 10.1016/j.dsm.2022.07.004_bib121
  article-title: Efficient feature selection via analysis of relevance and redundancy
  publication-title: J. Mach. Learn. Res.
– year: 2019
  ident: 10.1016/j.dsm.2022.07.004_bib63
  article-title: Predicts 2020: data and analytics strategies—invest, influence and impact
– volume: 41
  start-page: 507
  issue: 5
  year: 2015
  ident: 10.1016/j.dsm.2022.07.004_bib11
  article-title: The oracle problem in software testing: a survey
  publication-title: IEEE Trans. Software Eng.
  doi: 10.1109/TSE.2014.2372785
– year: 1999
  ident: 10.1016/j.dsm.2022.07.004_bib45
– start-page: 1
  year: 1990
  ident: 10.1016/j.dsm.2022.07.004_bib60
– start-page: 1222
  year: 2013
  ident: 10.1016/j.dsm.2022.07.004_bib79
  article-title: Ad click prediction: a view from the trenches
– start-page: 1
  year: 2012
  ident: 10.1016/j.dsm.2022.07.004_bib84
  article-title: Searching for build debt: experiences managing technical debt at Google
– year: 2009
  ident: 10.1016/j.dsm.2022.07.004_bib92
– year: 2020
  ident: 10.1016/j.dsm.2022.07.004_bib69
– year: 2020
  ident: 10.1016/j.dsm.2022.07.004_bib87
– volume: 1
  start-page: 317
  issue: Sep.
  year: 1986
  ident: 10.1016/j.dsm.2022.07.004_bib98
  article-title: Incremental learning from noisy data
  publication-title: Machine Language
– year: 2018
  ident: 10.1016/j.dsm.2022.07.004_bib20
– start-page: 593
  year: 2010
  ident: 10.1016/j.dsm.2022.07.004_bib80
  article-title: Review of novelty detection methods
– year: 2000
  ident: 10.1016/j.dsm.2022.07.004_bib4
– year: 2016
  ident: 10.1016/j.dsm.2022.07.004_bib39
– volume: 41
  start-page: 153
  issue: Nov.
  year: 2000
  ident: 10.1016/j.dsm.2022.07.004_bib12
  article-title: Learning changing concepts by exploiting the structure of change
  publication-title: Mach. Learn.
  doi: 10.1023/A:1007604202679
– year: 2018
  ident: 10.1016/j.dsm.2022.07.004_bib81
– year: 2006
  ident: 10.1016/j.dsm.2022.07.004_bib90
  article-title: Introduction. In: System Software Reliability
  publication-title: pp. 1–7
– start-page: 2279
  year: 2018
  ident: 10.1016/j.dsm.2022.07.004_bib106
  article-title: Data diff: interpretable, executable summaries of changes in distributions for data wrangling
– volume: 69
  start-page: 35
  issue: 1–3
  year: 2007
  ident: 10.1016/j.dsm.2022.07.004_bib37
  article-title: The Daikon system for dynamic detection of likely invariants
  publication-title: Sci. Comput. Program.
  doi: 10.1016/j.scico.2007.01.015
– volume: 5
  start-page: 7776
  issue: Jan.
  year: 2017
  ident: 10.1016/j.dsm.2022.07.004_bib76
  article-title: Machine learning with big data: challenges and approaches
  publication-title: IEEE Access
  doi: 10.1109/ACCESS.2017.2696365
– volume: 22
  start-page: 79
  issue: 1
  year: 1951
  ident: 10.1016/j.dsm.2022.07.004_bib72
  article-title: On information and sufficiency
  publication-title: Ann. Math. Stat.
  doi: 10.1214/aoms/1177729694
– volume: 29
  start-page: 366
  issue: 4
  year: 1997
  ident: 10.1016/j.dsm.2022.07.004_bib126
  article-title: Software unit test coverage and adequacy
  publication-title: ACM Comput. Surv.
  doi: 10.1145/267580.267590
– start-page: 291
  year: 2019
  ident: 10.1016/j.dsm.2022.07.004_bib5
  article-title: Software engineering for machine learning: a case study
– volume: 41
  start-page: 215
  year: 1940
  ident: 10.1016/j.dsm.2022.07.004_bib31
  article-title: On the theory of stationary random processes
  publication-title: Ann. Math.
  doi: 10.2307/1968827
– volume: 14
  start-page: 1
  issue: Feb.
  year: 2019
  ident: 10.1016/j.dsm.2022.07.004_bib17
  article-title: Data management in machine learning systems
  publication-title: Synth. Lectures Data Manag.
– volume: 542
  start-page: 115
  issue: 7639
  year: 2017
  ident: 10.1016/j.dsm.2022.07.004_bib38
  article-title: Dermatologist-level classification of skin cancer with deep neural networks
  publication-title: Nature
  doi: 10.1038/nature21056
– start-page: 1
  year: 2017
  ident: 10.1016/j.dsm.2022.07.004_bib88
  article-title: DeepXplore: automated whitebox testing of deep learning systems
– year: 2019
  ident: 10.1016/j.dsm.2022.07.004_bib49
  article-title: Applying deep learning to Airbnb search
– year: 2017
  ident: 10.1016/j.dsm.2022.07.004_bib58
– year: 2018
  ident: 10.1016/j.dsm.2022.07.004_bib65
– start-page: 2191
  year: 2019
  ident: 10.1016/j.dsm.2022.07.004_bib116
  article-title: Enabling onboard detection of events of scientific interest for the europa clipper spacecraft
– volume: 349
  start-page: 255
  issue: 6245
  year: 2015
  ident: 10.1016/j.dsm.2022.07.004_bib64
  article-title: Machine learning: trends, perspectives, and prospects
  publication-title: Science
  doi: 10.1126/science.aaa8415
– start-page: 2503
  year: 2015
  ident: 10.1016/j.dsm.2022.07.004_bib100
  article-title: Hidden technical debt in machine learning systems
– year: 2009
  ident: 10.1016/j.dsm.2022.07.004_bib9
– start-page: 15458
  year: 2020
  ident: 10.1016/j.dsm.2022.07.004_bib78
  article-title: Preventing repeated real world AI failures by cataloging incidents: the AI incident database
– volume: 2
  start-page: 359
  issue: 5
  year: 1989
  ident: 10.1016/j.dsm.2022.07.004_bib57
  article-title: Multilayer feedforward networks are universal approximators
  publication-title: Neural Network
  doi: 10.1016/0893-6080(89)90020-8
– start-page: 6000
  year: 2017
  ident: 10.1016/j.dsm.2022.07.004_bib113
  article-title: Attention is all you need
– start-page: 1
  year: 2012
  ident: 10.1016/j.dsm.2022.07.004_bib29
  article-title: Model checking and the state explosion problem
– year: 2020
  ident: 10.1016/j.dsm.2022.07.004_bib56
– year: 2018
  ident: 10.1016/j.dsm.2022.07.004_bib43
– volume: 45
  start-page: 521
  issue: 1
  year: 2012
  ident: 10.1016/j.dsm.2022.07.004_bib83
  article-title: A unifying view on dataset shift in classification
  publication-title: Pattern Recogn.
  doi: 10.1016/j.patcog.2011.06.019
– start-page: 200
  year: 2016
  ident: 10.1016/j.dsm.2022.07.004_bib1
  article-title: Safety engineering for autonomous vehicles
– ident: 10.1016/j.dsm.2022.07.004_bib24
– ident: 10.1016/j.dsm.2022.07.004_bib55
– volume: 671
  year: 2016
  ident: 10.1016/j.dsm.2022.07.004_bib10
  article-title: Big data’s disparate impact
  publication-title: 104 California Law Review
– start-page: 1
  year: 2017
  ident: 10.1016/j.dsm.2022.07.004_bib59
  article-title: The data linter: lightweight automated sanity checking for ML data sets
– year: 2018
  ident: 10.1016/j.dsm.2022.07.004_bib61
– year: 2021
  ident: 10.1016/j.dsm.2022.07.004_bib40
– year: 2017
  ident: 10.1016/j.dsm.2022.07.004_bib71
– start-page: 337
  year: 2015
  ident: 10.1016/j.dsm.2022.07.004_bib6
  article-title: ModelTracker: redesigning performance analysis tools for machine learning
– year: 2018
  ident: 10.1016/j.dsm.2022.07.004_bib50
– year: 2018
  ident: 10.1016/j.dsm.2022.07.004_bib74
– year: 2020
  ident: 10.1016/j.dsm.2022.07.004_bib120
– year: 2017
  ident: 10.1016/j.dsm.2022.07.004_bib122
– year: 2017
  ident: 10.1016/j.dsm.2022.07.004_bib48
– year: 2017
  ident: 10.1016/j.dsm.2022.07.004_bib75
– volume: 4
  start-page: 2
  issue: 1
  year: 1989
  ident: 10.1016/j.dsm.2022.07.004_bib68
  article-title: A quantitative approach to monitoring software development
  publication-title: Software Eng. J.
  doi: 10.1049/sej.1989.0001
– year: 2019
  ident: 10.1016/j.dsm.2022.07.004_bib8
– year: 2019
  ident: 10.1016/j.dsm.2022.07.004_bib93
– volume: 64
  start-page: 583
  issue: 4
  year: 2002
  ident: 10.1016/j.dsm.2022.07.004_bib103
  article-title: Bayesian measures of model complexity and fit
  publication-title: J. Roy. Stat. Soc.
  doi: 10.1111/1467-9868.00353
– start-page: 1
  year: 2018
  ident: 10.1016/j.dsm.2022.07.004_bib114
  article-title: Fairness definitions explained
– volume: 11
  start-page: 1781
  issue: 12
  year: 2018
  ident: 10.1016/j.dsm.2022.07.004_bib97
  article-title: Automating large-scale data quality verification
  publication-title: Proc. VLDB Endowment
  doi: 10.14778/3229863.3229867
– start-page: 50
  year: 2018
  ident: 10.1016/j.dsm.2022.07.004_bib7
  article-title: Software engineering challenges of deep learning
– year: 2017
  ident: 10.1016/j.dsm.2022.07.004_bib26
– volume: 46
  issue: 4
  year: 2014
  ident: 10.1016/j.dsm.2022.07.004_bib44
  article-title: A survey on concept drift adaptation
  publication-title: ACM Comput. Surv.
  doi: 10.1145/2523813
– start-page: 1387
  year: 2017
  ident: 10.1016/j.dsm.2022.07.004_bib82
– year: 2019
  ident: 10.1016/j.dsm.2022.07.004_bib77
– start-page: 1
  year: 2016
  ident: 10.1016/j.dsm.2022.07.004_bib112
  article-title: ModelDB: a system for machine learning model management
– volume: 12
  start-page: 17
  issue: 3
  year: 1995
  ident: 10.1016/j.dsm.2022.07.004_bib115
  article-title: Software testability: the new verification
  publication-title: IEEE Software
  doi: 10.1109/52.382180
– volume: 29
  start-page: 1758
  issue: 7
  year: 2013
  ident: 10.1016/j.dsm.2022.07.004_bib25
  article-title: State of the art: dynamic symbolic execution for automated test generation
  publication-title: Future Generat. Comput. Syst.
  doi: 10.1016/j.future.2012.02.006
– start-page: 1743
  year: 2019
  ident: 10.1016/j.dsm.2022.07.004_bib15
  article-title: 150 successful machine learning models: 6 lessons learned at Booking.com
– start-page: 1123
  year: 2017
  ident: 10.1016/j.dsm.2022.07.004_bib21
  article-title: The ML test score: a rubric for ML production readiness and technical debt reduction
– start-page: 249
  year: 2010
  ident: 10.1016/j.dsm.2022.07.004_bib47
  article-title: Understanding the difficulty of training deep feedforward neural networks
– year: 2020
  ident: 10.1016/j.dsm.2022.07.004_bib16
– year: 2011
  ident: 10.1016/j.dsm.2022.07.004_bib35
– year: 2018
  ident: 10.1016/j.dsm.2022.07.004_bib30
– volume: 47
  start-page: 153
  issue: 1
  year: 1979
  ident: 10.1016/j.dsm.2022.07.004_bib53
  article-title: Sample selection bias as a specification error
  publication-title: Econometrica
  doi: 10.2307/1912352
– year: 2019
  ident: 10.1016/j.dsm.2022.07.004_bib41
– year: 2019
  ident: 10.1016/j.dsm.2022.07.004_bib27
– year: 2018
  ident: 10.1016/j.dsm.2022.07.004_bib95
– year: 2018
  ident: 10.1016/j.dsm.2022.07.004_bib108
– volume: 5
  start-page: 445
  issue: 3
  year: 1977
  ident: 10.1016/j.dsm.2022.07.004_bib14
  article-title: Minimum hellinger distance estimates for parametric models
  publication-title: Ann. Stat.
  doi: 10.1214/aos/1176343842
– year: 2016
  ident: 10.1016/j.dsm.2022.07.004_bib19
– volume: RE’08
  start-page: 115
  year: 2008
  ident: 10.1016/j.dsm.2022.07.004_bib42
  article-title: Fairness analysis in requirements assignments
– year: 2019
  ident: 10.1016/j.dsm.2022.07.004_bib125
– volume: 6
  start-page: 1
  issue: Jun.
  year: 2016
  ident: 10.1016/j.dsm.2022.07.004_bib51
  article-title: Machine learning algorithms in heavy process manufacturing
  publication-title: Am. J. Intell. Syst.
– year: 2017
  ident: 10.1016/j.dsm.2022.07.004_bib104
– year: 2019
  ident: 10.1016/j.dsm.2022.07.004_bib124
– start-page: 17
  year: 2012
  ident: 10.1016/j.dsm.2022.07.004_bib13
  article-title: Deep learning of representations for unsupervised and transfer learning
– volume: 8
  start-page: 341
  issue: 4
  year: 1981
  ident: 10.1016/j.dsm.2022.07.004_bib46
  article-title: Concepts of model confidence
  publication-title: Comput. Oper. Res.
  doi: 10.1016/0305-0548(81)90019-8
– year: 2016
  ident: 10.1016/j.dsm.2022.07.004_bib94
– year: 2020
  ident: 10.1016/j.dsm.2022.07.004_bib110
– year: 2017
  ident: 10.1016/j.dsm.2022.07.004_bib66
– start-page: 140
  year: 1987
  ident: 10.1016/j.dsm.2022.07.004_bib107
  article-title: Chi-square test
– year: 2019
  ident: 10.1016/j.dsm.2022.07.004_bib86
– start-page: 1
  year: 2007
  ident: 10.1016/j.dsm.2022.07.004_bib85
  article-title: An approach to software testing of machine learning applications
– year: 2019
  ident: 10.1016/j.dsm.2022.07.004_bib105
– year: 2009
  ident: 10.1016/j.dsm.2022.07.004_bib52
  article-title: The Elements of Statistical Learning: Data Mining, Inference, and Prediction, 2nd ed
  publication-title: Springer, New York
– year: 2019
  ident: 10.1016/j.dsm.2022.07.004_bib54
– year: 2020
  ident: 10.1016/j.dsm.2022.07.004_bib101
– year: 2020
  ident: 10.1016/j.dsm.2022.07.004_bib109
– ident: 10.1016/j.dsm.2022.07.004_bib70
– year: 2019
  ident: 10.1016/j.dsm.2022.07.004_bib22
  article-title: Data validation for machine learning
– year: 2017
  ident: 10.1016/j.dsm.2022.07.004_bib34
– year: 2020
  ident: 10.1016/j.dsm.2022.07.004_bib3
– volume: 19
  start-page: 385
  year: 1976
  ident: 10.1016/j.dsm.2022.07.004_bib67
  article-title: Symbolic execution and program testing
  publication-title: Commun. ACM
  doi: 10.1145/360248.360252
– year: 2016
  ident: 10.1016/j.dsm.2022.07.004_bib18
– volume: 41
  start-page: 5
  year: 2018
  ident: 10.1016/j.dsm.2022.07.004_bib96
  article-title: On challenges in machine learning model management
  publication-title: IEEE Data Eng. Bull.
– year: 2018
  ident: 10.1016/j.dsm.2022.07.004_bib32
  article-title: Artificial intelligence for the real world
  publication-title: Harv. Bus. Rev
– volume: 30
  start-page: 79
  issue: 1
  year: 2005
  ident: 10.1016/j.dsm.2022.07.004_bib118
  article-title: Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance
  publication-title: Clim. Res.
  doi: 10.3354/cr030079
– year: 2020
  ident: 10.1016/j.dsm.2022.07.004_bib99
– volume: 1
  start-page: 1
  issue: 2
  year: 2017
  ident: 10.1016/j.dsm.2022.07.004_bib119
  article-title: Why we should have seen that coming: comments on microsoft’s tay “experiment”, and wider implications
  publication-title: ORBIT J.
  doi: 10.29297/orbit.v1i2.49
– ident: 10.1016/j.dsm.2022.07.004_bib28
– volume: 6
  start-page: 429
  issue: 5
  year: 2002
  ident: 10.1016/j.dsm.2022.07.004_bib62
  article-title: The class imbalance problem: a systematic study
  publication-title: Intell. Data Anal.
  doi: 10.3233/IDA-2002-6504
– volume: 41
  start-page: 16
  issue: 4
  year: 2018
  ident: 10.1016/j.dsm.2022.07.004_bib111
  article-title: MODELDB: opportunities and challenges in managing machine learning models
  publication-title: IEEE Data Eng. Bull.
– start-page: 225
  year: 1999
  ident: 10.1016/j.dsm.2022.07.004_bib89
  article-title: Black box checking
– volume: 30
  start-page: 964
  issue: 4
  year: 2016
  ident: 10.1016/j.dsm.2022.07.004_bib117
  article-title: Characterizing concept drift
  publication-title: Data Min. Knowl. Discov.
  doi: 10.1007/s10618-015-0448-4
– volume: 41
  start-page: 39
  issue: Dec.
  year: 2018
  ident: 10.1016/j.dsm.2022.07.004_bib123
  article-title: Accelerating the machine learning lifecycle with MLflow
  publication-title: IEEE Data Eng. Bull.
– year: 2020
  ident: 10.1016/j.dsm.2022.07.004_bib73
– start-page: 211
  year: 2019
  ident: 10.1016/j.dsm.2022.07.004_bib2
  article-title: Fairness-aware programming
– year: 2019
  ident: 10.1016/j.dsm.2022.07.004_bib33
– start-page: 1723
  year: 2017
  ident: 10.1016/j.dsm.2022.07.004_bib91
  article-title: Data management challenges in production machine learning
– volume: 47
  start-page: 217
  issue: 3
  year: 2016
  ident: 10.1016/j.dsm.2022.07.004_bib23
  article-title: Intraobserver variability: should we worry?
  publication-title: J. Med. Imag. Radiat. Sci.
  doi: 10.1016/j.jmir.2016.06.004
– year: 2019
  ident: 10.1016/j.dsm.2022.07.004_bib36
– ident: 10.1016/j.dsm.2022.07.004_bib102
SSID ssj0002811256
Score 2.3481553
Snippet The importance of software based on machine learning is growing rapidly, but the potential of prototypes may not be realized in operation. This study...
SourceID doaj
crossref
elsevier
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 105
SubjectTerms Machine learning
Monitoring
Operations
Taxonomy
Title Monitoring machine learning models: a categorization of challenges and methods
URI https://dx.doi.org/10.1016/j.dsm.2022.07.004
https://doaj.org/article/796f63533c354a839cb8da9859c84db0
Volume 5
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1JS8QwFA7iSQ_iiuNGDp6EYNtsjTcVh0FwTg7MLWQVB-2IHf-_WdqhF_XisSFNyssr33vJy_cBcFnWznteElRY7xFR2iFNmEe-dpgr7jUzcb_jacomM_I4p_OB1FesCcv0wNlw11wwH0ARY4MpUQHOja6tEjUVpiZWp2y9EMUgmVqkLaMQRyTp1gBADHFGRH-kmYq7bBtvoVdVIu7sRNp6UErc_QNsGuDNeBfsdIEivM0fuAc2XLMPtgf0gQdgmn_I-ADfU1Gkg50KRGiIEjftDVQw1jy9hF75wiVcemh6BZUWqsbCrCLdHoLZ-OH5foI6fQRkMK8JitENZsIajUPWwDHGlnJfMitIZWwpTFWVqiZUaO2EichNMdO2KrS3Ngq7HIHNZtm4YwC5V4JYExbMWsKcFsRTLarCWU4Z5sUIFL2BpOnIw6OGxZvsq8QWMthURpvKIh5pkxG4Wr_ykZkzfut8F62-7hhJr1NDcAXZuYL8yxVGgPRrJrv4IccFYajXn-c--Y-5T8FWHDJXn52BzdXnlzsP4cpKXyTP_AYYUuU3
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Monitoring+machine+learning+models%3A+a+categorization+of+challenges+and+methods&rft.jtitle=Data+science+and+management&rft.au=Tim+Schr%C3%B6der&rft.au=Michael+Schulz&rft.date=2022-09-01&rft.pub=KeAi+Communications+Co.+Ltd&rft.issn=2666-7649&rft.eissn=2666-7649&rft.volume=5&rft.issue=3&rft.spage=105&rft.epage=116&rft_id=info:doi/10.1016%2Fj.dsm.2022.07.004&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_796f63533c354a839cb8da9859c84db0
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-7649&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-7649&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-7649&client=summon